Pleural Mesothelioma: Pathogenesis, Diagnosis, Treatment, Prognosis, and Survival

Libo Zhang , Meijuan Huang

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70327

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70327 DOI: 10.1002/mco2.70327
REVIEW

Pleural Mesothelioma: Pathogenesis, Diagnosis, Treatment, Prognosis, and Survival

Author information +
History +
PDF

Abstract

Pleural mesothelioma (PM) presents significant challenges in clinical management, with current treatment options such as chemotherapy, anti-angiogenic therapies, and immunotherapies only modestly extending progression-free survival (PFS) and overall survival (OS). Another relevant reason is the absence of subsequent-line therapy strategies following progression of PM after approved therapy. Despite extensive research efforts, the development of effective targeted therapies has proven difficult, as most identified mutations in PM tend to be tumor suppressors rather than the driving mutations seen in other cancers. This review aims to provide an in-depth analysis of the biological mechanisms of PM, focusing on genetic alterations, the tumor's immune microenvironment, and dysregulated signaling pathways that contribute to tumorigenesis and resistance to treatment. Additionally, we discuss the growing importance of biomarkers for patient stratification and the development of personalized therapeutic approaches tailored to individual molecular profiles. We also explore promising avenues for novel therapeutic strategies, such as combination therapies and immunotherapeutic interventions. By integrating insights from both basic and clinical research, this review seeks to present a comprehensive framework for understanding PM and advancing its therapeutic management, ultimately aiming to improve patient outcomes through more effective and targeted treatment approaches.

Keywords

chemoresistance / epigenetic modifications / immunotherapy / pleural mesothelioma / targeted therapy

Cite this article

Download citation ▾
Libo Zhang, Meijuan Huang. Pleural Mesothelioma: Pathogenesis, Diagnosis, Treatment, Prognosis, and Survival. MedComm, 2025, 6(9): e70327 DOI:10.1002/mco2.70327

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

F. J. Brims, T. M. Meniawy, I. Duffus, et al., “A Novel Clinical Prediction Model for Prognosis in Malignant Pleural Mesothelioma Using Decision Tree Analysis,” Journal of Thoracic Oncology 11, no. 4 (2016): 573-582.

[2]

C. O. Odgerel, K. Takahashi, T. Sorahan, et al., “Estimation of the Global Burden of Mesothelioma Deaths From Incomplete National Mortality Data,” Occupational and Environmental Medicine 74, no. 12 (2017): 851-858.

[3]

Y. Minami, “[III. The Notable Topics of the 5th Edition of WHO Classification for the Thoracic Tumours (2021)],” Gan to Kagaku Ryoho Cancer & Chemotherapy 49, no. 8 (2022): 847-852.

[4]

H. L. Kindler, N. Ismaila, S. G. Armato, et al., “Treatment of Malignant Pleural Mesothelioma: American Society of Clinical Oncology Clinical Practice Guideline,” Journal of Clinical Oncology 36, no. 13 (2018): 1343-1373.

[5]

N. J. Vogelzang, J. J. Rusthoven, J. Symanowski, et al., “Phase III Study of Pemetrexed in Combination With Cisplatin Versus Cisplatin Alone in Patients With Malignant Pleural Mesothelioma,” Journal of Clinical Oncology 21, no. 14 (2003): 2636-2644.

[6]

G. Zalcman, J. Mazieres, J. Margery, et al., “Bevacizumab for Newly Diagnosed Pleural Mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): A Randomised, Controlled, Open-Label, Phase 3 Trial,” Lancet 387, no. 10026 (2016): 1405-1414.

[7]

P. Baas, A. Scherpereel, A. K. Nowak, et al., “First-Line Nivolumab Plus Ipilimumab in Unresectable Malignant Pleural Mesothelioma (CheckMate 743): A Multicentre, Randomised, Open-Label, Phase 3 Trial,” Lancet 397, no. 10272 (2021): 375-386.

[8]

W. Mei, Y. P. Zhang, S J. Yang, “[Research Progress on Pathogenesis of Malignant Mesothelioma],” Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi = Zhonghua Laodong Weisheng Zhiyebing Zazhi = Chinese Journal of Industrial Hygiene and Occupational Diseases 42, no. 3 (2024): 232-240.

[9]

A. A. Zolondick, G. Gaudino, J. Xue, H. I. Pass, M. Carbone, H. Yang, “Asbestos-Induced Chronic Inflammation in Malignant Pleural Mesothelioma and Related Therapeutic Approaches—A Narrative Review,” Precision Cancer Medicine 4 (2021): 27.

[10]

S. Benedetti, B. Nuvoli, S. Catalani, R. Galati, “Reactive Oxygen Species a Double-Edged Sword for Mesothelioma,” Oncotarget 6, no. 19 (2015): 16848-16865.

[11]

Y. Ohara, A. Enomoto, Y. Tsuyuki, et al., “Connective Tissue Growth Factor Produced by Cancer‑Associated Fibroblasts Correlates With Poor Prognosis in Epithelioid Malignant Pleural Mesothelioma,” Oncology Reports 44, no. 3 (2020): 838-848.

[12]

P. L. Chia, P. Russell, K. Asadi, et al., “Analysis of Angiogenic and Stromal Biomarkers in a Large Malignant Mesothelioma Cohort,” Lung Cancer 150 (2020): 1-8.

[13]

M. S. Boyles, L. Young, D. M. Brown, et al., “Multi-Walled Carbon Nanotube Induced Frustrated Phagocytosis, Cytotoxicity and Pro-Inflammatory Conditions in Macrophages Are Length Dependent and Greater Than That of Asbestos,” Toxicology in Vitro 29, no. 7 (2015): 1513-1528.

[14]

Y. Nishimura, N. Kumagai-Takei, H. Matsuzaki, et al., “Functional Alteration of Natural Killer Cells and Cytotoxic T Lymphocytes Upon Asbestos Exposure and in Malignant Mesothelioma Patients,” BioMed Research International 2015 (2015): 238431.

[15]

N. Kumagai-Takei, Y. Nishimura, H. Matsuzaki, S. Lee, K. Yoshitome, T. Otsuki, “Decrease in Intracellular Perforin Levels and IFN-Gamma Production in Human CD8(+) T Cell Line Following Long-Term Exposure to Asbestos Fibers,” Journal of Immunology Research 2018 (2018): 4391731.

[16]

V. Panou, O D. Roe, “Inherited Genetic Mutations and Polymorphisms in Malignant Mesothelioma: A Comprehensive Review,” International Journal of Molecular Sciences 21, no. 12 (2020): 4327.

[17]

M. Carbone, M. Minaai, M. Kittaneh, et al., “Clinical and Pathologic Phenotyping of Mesotheliomas Developing in Carriers of Germline BAP1 Mutations,” Journal of Thoracic Oncology. June 27, 2025.

[18]

M. Nishikubo, N. Jimbo, Y. Tanaka, M. Tachihara, T. Itoh, Y. Maniwa, “Sarcomatoid Mesothelioma Originating From Mesothelioma In Situ: Are Methylthioadenosine Phosphorylase Loss and CDKN2A Homozygous Deletion Poor Prognostic Factors for Preinvasive Mesothelioma?,” Virchows Archiv 481, no. 2 (2022): 307-312.

[19]

N. S. Seker, E. Tekin, G. Ak, M. Metintas, S. Metintas, E. Dundar, “Investigation of MTAP and BAP1 Staining Loss and P16/CDKN2A Deletion in Pleural Cytology Specimens and Its Role in the Diagnosis of Mesothelioma,” Diagnostic Cytopathology 52, no. 4 (2024): 211-216.

[20]

Y. Kinoshita, T. Hida, M. Hamasaki, et al., “A Combination of MTAP and BAP1 Immunohistochemistry in Pleural Effusion Cytology for the Diagnosis of Mesothelioma,” Cancer Cytopathol 126, no. 1 (2018): 54-63.

[21]

F. Baumann, E. Flores, A. Napolitano, et al., “Mesothelioma Patients With Germline BAP1 Mutations Have 7-Fold Improved Long-Term Survival,” Carcinogenesis 36, no. 1 (2015): 76-81.

[22]

T. Sato, Y. Sekido, “NF2/Merlin Inactivation and Potential Therapeutic Targets in Mesothelioma,” International Journal of Molecular Sciences 19, no. 4 (2018): 988.

[23]

J. Hmeljak, F. Sanchez-Vega, K. A. Hoadley, et al., “Integrative Molecular Characterization of Malignant Pleural Mesothelioma,” Cancer Discovery 8, no. 12 (2018): 1548-1565.

[24]

K V. Shah, “SV40 and Human Cancer: A Review of Recent Data,” International Journal of Cancer 120, no. 2 (2007): 215-223.

[25]

F. S. Alchami, R. L. Attanoos, A. Gibbs, F. Morgan, B. Jasani, “Does Simian Virus 40 (SV40) Have a Role in UK Malignant Pleural Mesothelioma? No Role Is Identified in a Sensitive RNA In Situ Hybridization Study on Potentially Affected Birth Cohorts,” Applied Immunohistochemistry & Molecular Morphology 28, no. 6 (2020): 444-447.

[26]

R. A. Liu, B. Y. Wang, X. Chen, et al., “Association Study of Pleural Mesothelioma and Oncogenic Simian Virus 40 in the Crocidolite-Contaminated Area of Dayao County, Yunnan Province, Southwest China,” Genetic Testing and Molecular Biomarkers 28, no. 5 (2024): 189-198.

[27]

P. Olin, J. Giesecke, “Potential Exposure to SV40 in Polio Vaccines Used in Sweden During 1957: No Impact on Cancer Incidence Rates 1960 to 1993,” Developments in Biological Standardization 94 (1998): 227-233.

[28]

H. D. Strickler, P. S. Rosenberg, S. S. Devesa, J. Hertel, J. F. Fraumeni, J. J. Goedert, “Contamination of Poliovirus Vaccines With Simian Virus 40 (1955-1963) and Subsequent Cancer Rates,” Jama 279, no. 4 (1998): 292-295.

[29]

R. R. Gill, S. Patz, I. Muradyan, R T. Seethamraju, “Novel MR Imaging Applications for Pleural Evaluation,” Magnetic Resonance Imaging Clinics of North America 23, no. 2 (2015): 179-195.

[30]

J. Dubreuil, F. Giammarile, P. Rousset, et al., “The Role of 18F-FDG-PET/ceCT in Peritoneal Mesothelioma,” Nuclear Medicine Communications 38, no. 4 (2017): 312-318.

[31]

P. G. Barbieri, D. Consonni, M. Schneider, “Accuracy of Pleural Biopsy for the Diagnosis of Histologic Subtype of Malignant Pleural Mesothelioma: Necropsy-Based Study of 134 Cases,” Tumori 108, no. 1 (2022): 26-32.

[32]

A. K. Nowak, K. Chansky, D. C. Rice, et al., “The IASLC Mesothelioma Staging Project: Proposals for Revisions of the T Descriptors in the Forthcoming Eighth Edition of the TNM Classification for Pleural Mesothelioma,” Journal of Thoracic Oncology 11, no. 12 (2016): 2089-2099.

[33]

W. G. Richards, J. J. Godleski, B. Y. Yeap, et al., “Proposed Adjustments to Pathologic Staging of Epithelial Malignant Pleural Mesothelioma Based on Analysis of 354 Cases,” Cancer 116, no. 6 (2010): 1510-1517.

[34]

E. G. Butchart, T. Ashcroft, W. C. Barnsley, M P. Holden, “Pleuropneumonectomy in the Management of Diffuse Malignant Mesothelioma of the Pleura. Experience With 29 Patients,” Thorax 31, no. 1 (1976): 15-24.

[35]

D. W. Henderson, G. Reid, S. C. Kao, N. van Zandwijk, S. Klebe, “Challenges and Controversies in the Diagnosis of Mesothelioma: Part 1. Cytology-Only Diagnosis, Biopsies, Immunohistochemistry, Discrimination Between Mesothelioma and Reactive Mesothelial Hyperplasia, and Biomarkers,” Journal of Clinical Pathology 66, no. 10 (2013): 847-853.

[36]

A. N. Husain, T. V. Colby, N. G. Ordonez, et al., “Guidelines for Pathologic Diagnosis of Malignant Mesothelioma 2017 Update of the Consensus Statement From the International Mesothelioma Interest Group,” Archives of Pathology & Laboratory Medicine 142, no. 1 (2018): 89-108.

[37]

M. Betti, A. Aspesi, D. Ferrante, et al., “Sensitivity to Asbestos Is Increased in Patients With Mesothelioma and Pathogenic Germline Variants in BAP1 or Other DNA Repair Genes,” Genes, Chromosomes & Cancer 57, no. 11 (2018): 573-583.

[38]

D. Wu, K. Hiroshima, S. Matsumoto, et al., “Diagnostic Usefulness of p16/CDKN2A FISH in Distinguishing Between Sarcomatoid Mesothelioma and Fibrous Pleuritis,” American Journal of Clinical Pathology 139, no. 1 (2013): 39-46.

[39]

Y. Blum, C. Meiller, L. Quetel, et al., “Dissecting Heterogeneity in Malignant Pleural Mesothelioma Through Histo-Molecular Gradients for Clinical Applications,” Nature Communications 10, no. 1 (2019): 1333.

[40]

G. Tosato, Y. Blum, J. B. Assié, et al., “239MO: Stratification of Pleural Mesothelioma Patients for Combined Immunotherapy Based on Sarcomatoid Component and Tumour Microenvironment Markers in the IFCT-MAPS2 Study,” Journal of Thoracic Oncology 20, no. 3 (2025): S151.

[41]

D. E. Magouliotis, P. A. Zotos, A. A. Rad, et al., “Meta-Analysis of Survival After Extrapleural Pneumonectomy (EPP) Versus Pleurectomy/Decortication (P/D) for Malignant Pleural Mesothelioma in the Context of Macroscopic Complete Resection (MCR),” Updates in Surgery 74, no. 6 (2022): 1827-1837.

[42]

F. Danuzzo, S. Maiorca, G. Bonitta, M. Nosotti, “Systematic Review and Meta-Analysis of Pleurectomy/Decortication Versus Extrapleural Pneumonectomy in the Treatment of Malignant Pleural Mesothelioma,” Journal of Clinical Medicine 11, no. 19 (2022): 5544.

[43]

N. Zhou, D. C. Rice, A. S. Tsao, et al., “Extrapleural Pneumonectomy Versus Pleurectomy/Decortication for Malignant Pleural Mesothelioma,” Annals of Thoracic Surgery 113, no. 1 (2022): 200-208.

[44]

M. Hashimoto, H. Yamamoto, S. Endo, et al., “Japanese Current Status of Curative-Intent Surgery for Malignant Pleural Mesothelioma,” Annals of Thoracic Surgery 113, no. 4 (2022): 1348-1353.

[45]

O. Lauk, M. Patella, T. Neuer, I. Inci, W. Weder, I. Opitz, “Quality of Life Is Not Deteriorated after Extrapleural Pneumonectomy vs. (Extended) Pleurectomy/Decortication in Patients With Malignant Pleural Mesothelioma,” Frontiers in Surgery 8 (2021): 766033.

[46]

Y. Kai, Y. Tsutani, N. Tsubokawa, et al., “Prolonged Post-recurrence Survival Following Pleurectomy/Decortication for Malignant Pleural Mesothelioma,” Oncology Letters 17, no. 3 (2019): 3607-3614.

[47]

J. Remon, E. Nadal, M. Domine, et al., “Malignant Pleural Mesothelioma: Treatment Patterns and Outcomes From the Spanish Lung Cancer Group,” Lung Cancer 147 (2020): 83-90.

[48]

S. Popat, A. Curioni-Fontecedro, U. Dafni, et al., “A Multicentre Randomised Phase III Trial Comparing pembrolizumab Versus Single-Agent Chemotherapy for Advanced Pre-Treated Malignant Pleural Mesothelioma: The European Thoracic Oncology Platform (ETOP 9-15) PROMISE-meso Trial,” Annals of Oncology 31, no. 12 (2020): 1734-1745.

[49]

G. Pellavio, S. Martinotti, M. Patrone, E. Ranzato, U. Laforenza, “Aquaporin-6 May Increase the Resistance to Oxidative Stress of Malignant Pleural Mesothelioma Cells,” Cells 11, no. 12 (2022): 1892.

[50]

S. Borchert, P. M. Suckrau, M. Wessolly, et al., “Screening of Pleural Mesothelioma Cell Lines for Kinase Activity May Identify New Mechanisms of Therapy Resistance in Patients Receiving Platin-Based Chemotherapy,” Journal of Oncology 2019 (2019): 2902985.

[51]

M. Lapidot, S. V. Saladi, R. Salgia, M. Sattler, “Novel Therapeutic Targets and Immune Dysfunction in Malignant Pleural Mesothelioma,” Frontiers in Pharmacology 12 (2021): 806570.

[52]

I. Opitz, O. Lauk, M. Meerang, et al., “Intracavitary Cisplatin-Fibrin Chemotherapy After Surgery for Malignant Pleural Mesothelioma: A Phase I Trial,” Journal of Thoracic and Cardiovascular Surgery 159, no. 1 (2020): 330-340.

[53]

M. Willems, M. Hamaidia, A. Fontaine, et al., “The Impact of Charcot-Leyden Crystal Protein on Mesothelioma Chemotherapy: Targeting Eosinophils for Enhanced Chemosensitivity,” EBioMedicine 109 (2024): 105418.

[54]

A. G. Dawson, K. Kutywayo, S. B. Mohammed, D. A. Fennell, A. Nakas, “Cytoreductive Surgery With Hyperthermic Intrathoracic Chemotherapy for Malignant Pleural Mesothelioma: A Systematic Review,” Thorax 78, no. 4 (2023): 409-417.

[55]

Y. Hao, A. Gkasti, A. J. Managh, et al., “Hyperthermic Intrathoracic Chemotherapy Modulates the Immune Microenvironment of Pleural Mesothelioma and Improves the Impact of Dual Immune Checkpoint Inhibition,” Cancer Immunology Research 13, no. 2 (2025): 185-199.

[56]

D. M. Jackman, H. L. Kindler, B. Y. Yeap, et al., “Erlotinib Plus Bevacizumab in Previously Treated Patients With Malignant Pleural Mesothelioma,” Cancer 113, no. 4 (2008): 808-814.

[57]

J. E. Dowell, F. R. Dunphy, R. N. Taub, et al., “A Multicenter Phase II Study of Cisplatin, Pemetrexed, and Bevacizumab in Patients With Advanced Malignant Mesothelioma,” Lung Cancer 77, no. 3 (2012): 567-571.

[58]

H. L. Kindler, T. G. Karrison, D. R. Gandara, et al., “Multicenter, Double-Blind, Placebo-Controlled, Randomized Phase II Trial of Gemcitabine/Cisplatin Plus Bevacizumab or Placebo in Patients With Malignant Mesothelioma,” Journal of Clinical Oncology 30, no. 20 (2012): 2509-2515.

[59]

G. L. Ceresoli, P. A. Zucali, M. Mencoboni, et al., “Phase II Study of Pemetrexed and Carboplatin plus Bevacizumab as First-Line Therapy in Malignant Pleural Mesothelioma,” British Journal of Cancer 109, no. 3 (2013): 552-558.

[60]

G. Eberst, A. Anota, A. Scherpereel, et al., “Health-Related Quality of Life Impact From Adding Bevacizumab to Cisplatin-Pemetrexed in Malignant Pleural Mesothelioma in the MAPS IFCT-GFPC-0701 Phase III Trial,” Clinical Cancer Research 25, no. 19 (2019): 5759-5765.

[61]

E. Felip, S. Popat, U. Dafni, et al., “A Randomised Phase III Study of Bevacizumab and Carboplatin-Pemetrexed Chemotherapy With or Without Atezolizumab, as First-Line Treatment for Advanced Pleural Mesothelioma: Results of the ETOP 13 18 BEAT-Meso Trial,” Annals of Oncology 36, no. 5 (2025): 548-560.

[62]

D. S. Ettinger, D. E. Wood, W. Akerley, et al., “NCCN Guidelines Insights: Malignant Pleural Mesothelioma, Version 3.2016,” Journal of the National Comprehensive Cancer Network: JNCCN 14, no. 7 (2016): 825-836.

[63]

G. V. Scagliotti, R. Gaafar, A. K. Nowak, et al., “Nintedanib in Combination With Pemetrexed and Cisplatin for Chemotherapy-Naive Patients With Advanced Malignant Pleural Mesothelioma (LUME-Meso): A Double-Blind, Randomised, Placebo-Controlled Phase 3 Trial,” Lancet Respiratory Medicine 7, no. 7 (2019): 569-580.

[64]

A. J. Wozniak, B. Schneider, G. P. Kalemkerian, et al., “Short Report of a Phase II Trial of Nintedanib in Recurrent Malignant Pleural Mesothelioma (MPM),” Clinical Lung Cancer 24, no. 6 (2023): 563-567.

[65]

F.-X. Danlos, C. Baldini, M. Texier, et al., “378 Efficacy, Safety and Ancillary Analyses of Pembrolizumab in Combination With Nintedanib for the Treatment of Patients With Relapsed Advanced Mesothelioma,” Journal for ImmunoTherapy of Cancer 9, no. Suppl 2 (2021): A409-A409.

[66]

F. X. Danlos, M. Texier, B. Job, et al., “Genomic Instability and Protumoral Inflammation Are Associated With Primary Resistance to Anti-PD-1 + Antiangiogenesis in Malignant Pleural Mesothelioma,” Cancer Discovery 13, no. 4 (2023): 858-879.

[67]

N. P. Campbell, R. Kunnavakkam, N. Leighl, et al., “Cediranib in Patients With Malignant Mesothelioma: A Phase II Trial of the University of Chicago Phase II Consortium,” Lung Cancer 78, no. 1 (2012): 76-80.

[68]

L. L. Garland, K. Chansky, A. J. Wozniak, et al., “Phase II Study of Cediranib in Patients With Malignant Pleural Mesothelioma: SWOG S0509,” Journal of Thoracic Oncology 6, no. 11 (2011): 1938-1945.

[69]

A. S. Tsao, J. Moon, I. I. Wistuba, et al., “Phase I Trial of Cediranib in Combination With Cisplatin and Pemetrexed in Chemonaive Patients With Unresectable Malignant Pleural Mesothelioma (SWOG S0905),” Journal of Thoracic Oncology 12, no. 8 (2017): 1299-1308.

[70]

A. S. Tsao, J. Miao, I. I. Wistuba, et al., “Phase II Trial of Cediranib in Combination With Cisplatin and Pemetrexed in Chemotherapy-Naive Patients With Unresectable Malignant Pleural Mesothelioma (SWOG S0905),” Journal of Clinical Oncology 37, no. 28 (2019): 2537-2547.

[71]

N. Alcala, L. Mangiante, N. Le-Stang, et al., “Redefining Malignant Pleural Mesothelioma Types as a Continuum Uncovers Immune-Vascular Interactions,” EBioMedicine 48 (2019): 191-202.

[72]

H. Ujiie, K. Kadota, J. I. Nitadori, et al., “The Tumoral and Stromal Immune Microenvironment in Malignant Pleural Mesothelioma: A Comprehensive Analysis Reveals Prognostic Immune Markers,” Oncoimmunology 4, no. 6 (2015): e1009285.

[73]

L. Calabro, G. Bronte, F. Grosso, et al., “Immunotherapy of Mesothelioma: The Evolving Change of a Long-Standing Therapeutic Dream,” Frontiers in Immunology 14 (2023): 1333661.

[74]

D. Shek, B. Gao, H. Mahajan, et al., “In-Depth Profiling of Tumor Tissue Derived From Malignant Pleural Mesothelioma Patients Identifies Potential Biomarkers Predicting Response to Immune-Checkpoint Inhibitor Therapy,” Genes & Diseases 11, no. 6 (2024): 101189.

[75]

G. J. Chu, N. van Zandwijk, J E J. Rasko, “The Immune Microenvironment in Mesothelioma: Mechanisms of Resistance to Immunotherapy,” Frontiers in Oncology 9 (2019): 1366.

[76]

L. A. Lievense, R. Cornelissen, K. Bezemer, M. E. Kaijen-Lambers, J. P. Hegmans, J G. Aerts, “Pleural Effusion of Patients With Malignant Mesothelioma Induces Macrophage-Mediated T Cell Suppression,” Journal of Thoracic Oncology 11, no. 10 (2016): 1755-1764.

[77]

A. L. Chene, S. d'Almeida, T. Blondy, et al., “Pleural Effusions From Patients With Mesothelioma Induce Recruitment of Monocytes and Their Differentiation Into M2 Macrophages,” Journal of Thoracic Oncology 11, no. 10 (2016): 1765-1773.

[78]

R. Cornelissen, L. A. Lievense, A. P. Maat, et al., “Ratio of Intratumoral Macrophage Phenotypes Is a Prognostic Factor in Epithelioid Malignant Pleural Mesothelioma,” PLoS ONE 9, no. 9 (2014): e106742.

[79]

N. Joalland, A. Quemener, S. Deshayes, et al., “New Soluble CSF-1R-Dimeric Mutein With Enhanced Trapping of Both CSF-1 and IL-34 Reduces Suppressive Tumor-Associated Macrophages in Pleural Mesothelioma,” Journal for ImmunoTherapy of Cancer 13, no. 3 (2025): e010112.

[80]

V. Bronte, S. Brandau, S. H. Chen, et al., “Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards,” Nature Communications 7 (2016): 12150.

[81]

K. H. Parker, D. W. Beury, S. Ostrand-Rosenberg, “Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment,” Advances in Cancer Research 128 (2015): 95-139.

[82]

J. Minnema-Luiting, H. Vroman, J. Aerts, R. Cornelissen, “Heterogeneity in Immune Cell Content in Malignant Pleural Mesothelioma,” International Journal of Molecular Sciences 19, no. 4 (2018): 1041.

[83]

I. C. Salaroglio, J. Kopecka, F. Napoli, et al., “Potential Diagnostic and Prognostic Role of Microenvironment in Malignant Pleural Mesothelioma,” Journal of Thoracic Oncology 14, no. 8 (2019): 1458-1471.

[84]

J. D. Veltman, M. E. Lambers, M. van Nimwegen, et al., “COX-2 Inhibition Improves Immunotherapy and Is Associated With Decreased Numbers of Myeloid-derived Suppressor Cells in Mesothelioma. Celecoxib Influences MDSC Function,” BMC Cancer 10 (2010): 464.

[85]

M. Anraku, K. S. Cunningham, Z. Yun, et al., “Impact of Tumor-Infiltrating T Cells on Survival in Patients With Malignant Pleural Mesothelioma,” Journal of Thoracic and Cardiovascular Surgery 135, no. 4 (2008): 823-829.

[86]

E. Marcq, J. Waele, J. V. Audenaerde, et al., “Abundant Expression of TIM-3, LAG-3, PD-1 and PD-L1 as Immunotherapy Checkpoint Targets in Effusions of Mesothelioma Patients,” Oncotarget 8, no. 52 (2017): 89722-89735.

[87]

A. Alay, D. Cordero, S. Hijazo-Pechero, et al., “Integrative Transcriptome Analysis of Malignant Pleural Mesothelioma Reveals a Clinically Relevant Immune-Based Classification,” Journal for ImmunoTherapy of Cancer 9, no. 2 (2021): e001601.

[88]

J. van Genugten, D. Faulkner, J. Hahne, et al., “246P: Optimizing Immune Checkpoint Blockade in Pleural Mesothelioma by Targeting Immune Evasion: A Systems Biology Approach,” Journal of Thoracic Oncology 20, no. 3 (2025): S154-S155.

[89]

N. S. Patil, L. Righi, H. Koeppen, et al., “Molecular and Histopathological Characterization of the Tumor Immune Microenvironment in Advanced Stage of Malignant Pleural Mesothelioma,” Journal of Thoracic Oncology 13, no. 1 (2018): 124-133.

[90]

S. J. Chee, M. Lopez, T. Mellows, et al., “Evaluating the Effect of Immune Cells on the Outcome of Patients With Mesothelioma,” British Journal of Cancer 117, no. 9 (2017): 1341-1348.

[91]

L. Mannarino, L. Paracchini, F. Pezzuto, et al., “Epithelioid Pleural Mesothelioma Is Characterized by Tertiary Lymphoid Structures in Long Survivors: Results From the MATCH Study,” International Journal of Molecular Sciences 23, no. 10 (2022): 5786.

[92]

B. Chandra Jena, S. Sarkar, L. Rout, M. Mandal, “The Transformation of Cancer-Associated Fibroblasts: Current Perspectives on the Role of TGF-beta in CAF Mediated Tumor Progression and Therapeutic Resistance,” Cancer Letters 520 (2021): 222-232.

[93]

Y. Zhang, G. Liu, Q. Zeng, et al., “CCL19-Producing Fibroblasts Promote Tertiary Lymphoid Structure Formation Enhancing Anti-Tumor IgG Response in Colorectal Cancer Liver Metastasis,” Cancer Cell 42, no. 8 (2024): 1370-1385.

[94]

L. Calabro, A. Morra, E. Fonsatti, et al., “Tremelimumab for Patients With Chemotherapy-Resistant Advanced Malignant Mesothelioma: An Open-Label, Single-Arm, Phase 2 Trial,” Lancet Oncology 14, no. 11 (2013): 1104-1111.

[95]

M. Maio, A. Scherpereel, L. Calabro, et al., “Tremelimumab as Second-Line or Third-Line Treatment in Relapsed Malignant Mesothelioma (DETERMINE): A Multicentre, International, Randomised, Double-Blind, Placebo-Controlled Phase 2b Trial,” Lancet Oncology 18, no. 9 (2017): 1261-1273.

[96]

E. W. Alley, J. Lopez, A. Santoro, et al., “Clinical Safety and Activity of Pembrolizumab in Patients With Malignant Pleural Mesothelioma (KEYNOTE-028): Preliminary Results From a Non-Randomised, Open-Label, Phase 1b Trial,” Lancet Oncology 18, no. 5 (2017): 623-630.

[97]

M. Okada, T. Kijima, K. Aoe, et al., “Clinical Efficacy and Safety of Nivolumab: Results of a Multicenter, Open-Label, Single-Arm, Japanese Phase II Study in Malignant Pleural Mesothelioma (MERIT),” Clinical Cancer Research 25, no. 18 (2019): 5485-5492.

[98]

D. A. Fennell, S. Ewings, C. Ottensmeier, et al., “Nivolumab Versus Placebo in Patients With Relapsed Malignant Mesothelioma (CONFIRM): A Multicentre, Double-Blind, Randomised, Phase 3 Trial,” Lancet Oncology 22, no. 11 (2021): 1530-1540.

[99]

R. J. Motzer, N. M. Tannir, D. F. McDermott, et al., “Nivolumab Plus Ipilimumab Versus Sunitinib in Advanced Renal-Cell Carcinoma,” New England Journal of Medicine 378, no. 14 (2018): 1277-1290.

[100]

S. K. Wong, K. E. Beckermann, D. B. Johnson, S. Das, “Combining Anti-Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) and -Programmed Cell Death Protein 1 (PD-1) Agents for Cancer Immunotherapy,” Expert Opinion on Biological Therapy 21, no. 12 (2021): 1623-1634.

[101]

L. Calabro, A. Morra, D. Giannarelli, et al., “Tremelimumab Combined With Durvalumab in Patients With Mesothelioma (NIBIT-MESO-1): An Open-Label, Non-Randomised, Phase 2 Study,” Lancet Respiratory Medicine 6, no. 6 (2018): 451-460.

[102]

L. Calabro, G. Rossi, A. Morra, et al., “Tremelimumab Plus Durvalumab Retreatment and 4-Year Outcomes in Patients With Mesothelioma: A Follow-Up of the Open Label, Non-Randomised, Phase 2 NIBIT-MESO-1 Study,” Lancet Respiratory Medicine 9, no. 9 (2021): 969-976.

[103]

A. Scherpereel, J. Mazieres, L. Greillier, et al., “Nivolumab or Nivolumab Plus Ipilimumab in Patients With Relapsed Malignant Pleural Mesothelioma (IFCT-1501 MAPS2): A Multicentre, Open-Label, Randomised, Non-Comparative, Phase 2 Trial,” Lancet Oncology 20, no. 2 (2019): 239-253.

[104]

M. J. Disselhorst, J. Quispel-Janssen, F. Lalezari, et al., “Ipilimumab and Nivolumab in the Treatment of Recurrent Malignant Pleural Mesothelioma (INITIATE): Results of a Prospective, Single-Arm, Phase 2 Trial,” Lancet Respiratory Medicine 7, no. 3 (2019): 260-270.

[105]

E. C. Nakajima, P. J. Vellanki, E. Larkins, et al., “FDA Approval Summary: Nivolumab in Combination With Ipilimumab for the Treatment of Unresectable Malignant Pleural Mesothelioma,” Clinical Cancer Research 28, no. 3 (2022): 446-451.

[106]

W. J. Lesterhuis, J. Salmons, A. K. Nowak, et al., “Synergistic Effect of CTLA-4 Blockade and Cancer Chemotherapy in the Induction of Anti-Tumor Immunity,” PLoS ONE 8, no. 4 (2013): e61895.

[107]

A. K. Nowak, R. A. Lake, A. L. Marzo, et al., “Induction of Tumor Cell Apoptosis in Vivo Increases Tumor Antigen Cross-Presentation, Cross-Priming Rather Than Cross-Tolerizing Host Tumor-Specific CD8 T Cells,” Journal of Immunology 170, no. 10 (2003): 4905-4913.

[108]

A. K. Nowak, W. J. Lesterhuis, P. S. Kok, et al., “Durvalumab With First-Line Chemotherapy in Previously Untreated Malignant Pleural Mesothelioma (DREAM): A Multicentre, Single-Arm, Phase 2 Trial With a Safety Run-In,” Lancet Oncology 21, no. 9 (2020): 1213-1223.

[109]

P. M. Forde, V. Anagnostou, Z. Sun, et al., “Durvalumab With Platinum-Pemetrexed for Unresectable Pleural Mesothelioma: Survival, Genomic and Immunologic Analyses From the Phase 2 PrE0505 Trial,” Nature Medicine 27, no. 11 (2021): 1910-1920.

[110]

Y. Miyamoto, T. Kozuki, K. Aoe, et al., “JME-001 Phase II Trial of First-Line Combination Chemotherapy With Cisplatin, Pemetrexed, and Nivolumab for Unresectable Malignant Pleural Mesothelioma,” Journal for ImmunoTherapy of Cancer 9, no. 10 (2021): e003288.

[111]

M. C. Piccirillo, Q. Chu, P. Bradbury, et al., “Brief Report: Canadian Cancer Trials Group IND.227: A Phase 2 Randomized Study of Pembrolizumab in Patients With Advanced Malignant Pleural Mesothelioma (NCT02784171),” Journal of Thoracic Oncology 18, no. 6 (2023): 813-819.

[112]

Q. Chu, F. Perrone, L. Greillier, et al., “Pembrolizumab Plus Chemotherapy Versus Chemotherapy in Untreated Advanced Pleural Mesothelioma in Canada, Italy, and France: A Phase 3, Open-Label, Randomised Controlled Trial,” Lancet 402, no. 10419 (2023): 2295-2306.

[113]

L. Brcic, T. Klikovits, Z. Megyesfalvi, et al., “Prognostic Impact of PD-1 and PD-L1 Expression in Malignant Pleural Mesothelioma: An International Multicenter Study,” Translational Lung Cancer Research 10, no. 4 (2021): 1594-1607.

[114]

S. Brosseau, C. Danel, A. Scherpereel, et al., “Shorter Survival in Malignant Pleural Mesothelioma Patients With High PD-L1 Expression Associated With Sarcomatoid or Biphasic Histology Subtype: A Series of 214 Cases From the Bio-MAPS Cohort,” Clinical Lung Cancer 20, no. 5 (2019): e564-e575.

[115]

D. A. Fennell, S. Dulloo, J. Harber, “Immunotherapy Approaches for Malignant Pleural Mesothelioma,” Nature Reviews Clinical Oncology 19, no. 9 (2022): 573-584.

[116]

K. Homicsko, P. Zygoura, M. Norkin, et al., “PD-1-Expressing Macrophages and CD8 T Cells Are Independent Predictors of Clinical Benefit From PD-1 Inhibition in Advanced Mesothelioma,” Journal for ImmunoTherapy of Cancer 11, no. 10 (2023): e007585.

[117]

G. Espinosa-Carrasco, E. Chiu, A. Scrivo, et al., “Intratumoral Immune Triads Are Required for Immunotherapy-Mediated Elimination of Solid Tumors,” Cancer Cell 42, no. 7 (2024): 1202-1216.

[118]

J. van Genugten, D. Faulkner, J. Hahne, et al., “245P: The Predictive and Prognostic Value of T- and B-Cell Transcriptomic Signatures for Clinical Response to Immune Checkpoint Blockade in Pleural Mesothelioma,” Journal of Thoracic Oncology 20, no. 3 (2025): S154.

[119]

H. Brossel, A. Fontaine, C. Hoyos, et al., “Activation of DNA Damage Tolerance Pathways May Improve Immunotherapy of Mesothelioma,” Cancers (Basel) 13, no. 13 (2021): 3211.

[120]

A. S. Mansfield, T. Peikert, G. Vasmatzis, “Chromosomal Rearrangements and Their Neoantigenic Potential in Mesothelioma,” Translational Lung Cancer Research 9, no. Suppl 1 (2020): S92-S99.

[121]

G. Han, G. Yang, D. Hao, et al., “9p21 Loss Confers a Cold Tumor Immune Microenvironment and Primary Resistance to Immune Checkpoint Therapy,” Nature Communications 12, no. 1 (2021): 5606.

[122]

M. Grard, C. Chatelain, T. Delaunay, E. Pons-Tostivint, J. Bennouna, J F. Fonteneau, “Homozygous Co-Deletion of Type I Interferons and CDKN2A Genes in Thoracic Cancers: Potential Consequences for Therapy,” Frontiers in Oncology 11 (2021): 695770.

[123]

G. Y. Ma, S. Shi, P. Wang, X. G. Wang, Z G. Zhang, “Clinical Significance of 9P21 Gene Combined With BAP1 and MTAP Protein Expression in Diagnosis and Prognosis of Mesothelioma Serous Effusion,” Biomedical Reports 17, no. 2 (2022): 66.

[124]

H. U. Osmanbeyoglu, D. Palmer, A. Sagan, E. Sementino, M. J. Becich, J R. Testa, “Isolated BAP1 Genomic Alteration in Malignant Pleural Mesothelioma Predicts Distinct Immunogenicity With Implications for Immunotherapeutic Response,” Cancers (Basel) 14, no. 22 (2022): 5626.

[125]

O. Ogbue, S. Unlu, S. Sorathia, et al., “Impact of BAP1 Mutational Status on Immunotherapy Outcomes in Advanced Malignant Pleural Mesothelioma: A Single Institution Experience,” Journal of Clinical Oncology 41, no. 16_suppl (2023): e20537.

[126]

I. Dagogo-Jack, O. Mitchell, E. Codd, et al., “Immune Composition and Immunotherapy Outcomes of Mesothelioma With BAP1, CDKN2A, MTAP, and NF2 Alterations,” Journal of Thoracic Oncology. June 25, 2025.

[127]

H. J. Jang, M. Patel, D. Y. Wang, et al., “Ad-SGE-DKK3 Gene Therapy Overcomes Resistance to Immune Checkpoint Blockade in Pleural Mesothelioma,” Clinical Cancer Research 31, no. 13 (2025): 2639-2654.

[128]

S. Frentzas, T. Meniawy, S. C.-H. Kao, et al., “AdvanTIG-105: Phase 1 Dose-Escalation Study of Anti-TIGIT Monoclonal Antibody Ociperlimab (BGB-A1217) in Combination With Tislelizumab in Patients With Advanced Solid Tumors,” Journal of Clinical Oncology 39, no. 15_suppl (2021): 2583-2583.

[129]

H. Shi, T. K. Yu, B. Johnson, et al., “A Combination of PD-1 and TIGIT Immune Checkpoint Inhibitors Elicits a Strong Anti-Tumour Response in Mesothelioma,” Journal of Experimental & Clinical Cancer Research 44, no. 1 (2025): 51.

[130]

S. G. Gray, T. Meirson, L. Mutti, “Based on the Real-World Results From Australia, Immunotherapy Is Not a Good Option for Patients With Mesothelioma,” Journal of Thoracic Oncology 19, no. 4 (2024): 541-546.

[131]

N. McNamee, C. Harvey, L. Gray, et al., “Brief Report: Real-World Toxicity and Survival of Combination Immunotherapy in Pleural Mesothelioma-RIOMeso,” Journal of Thoracic Oncology 19, no. 4 (2024): 636-642.

[132]

D. W. Dumoulin, L. H. Douma, M. M. Hofman, et al., “Nivolumab and Ipilimumab in the Real-World Setting in Patients With Mesothelioma,” Lung Cancer 187 (2024): 107440.

[133]

K. V. C. Chow, C. Turner, B. Hughes, Z. Lwin, B. Chan, “Real-World Outcomes for Patients With Pleural Mesothelioma: A Multisite Retrospective Cohort Study,” Asia-Pacific Journal of Clinical Oncology 20, no. 6 (2024): 723-730.

[134]

T. Meirson, V. Nardone, F. Pentimalli, et al., “Analysis of New Treatments Proposed for Malignant Pleural Mesothelioma Raises Concerns About the Conduction of Clinical Trials in Oncology,” Journal of Translational Medicine 20, no. 1 (2022): 593.

[135]

T. Meirson, F. Pentimalli, F. Cerza, et al., “Comparison of 3 Randomized Clinical Trials of Frontline Therapies for Malignant Pleural Mesothelioma,” JAMA Network Open 5, no. 3 (2022): e221490.

[136]

D. W. Dumoulin, R. Cornelissen, K. Bezemer, S. J. Baart, J. Aerts, “Long-Term Follow-Up of Mesothelioma Patients Treated With Dendritic Cell Therapy in Three Phase I/II Trials,” Vaccines (Basel) 9, no. 5 (2021): 525.

[137]

N. Trempolec, B. Doix, C. Degavre, et al., “Photodynamic Therapy-Based Dendritic Cell Vaccination Suited to Treat Peritoneal Mesothelioma,” Cancers (Basel) 12, no. 3 (2020): 545.

[138]

J. P. Hegmans, J. D. Veltman, M. E. Lambers, et al., “Consolidative Dendritic Cell-Based Immunotherapy Elicits Cytotoxicity Against Malignant Mesothelioma,” American Journal of Respiratory and Critical Care Medicine 181, no. 12 (2010): 1383-1390.

[139]

R. A. Belderbos, P. Baas, R. Berardi, et al., “A Multicenter, Randomized, Phase II/III Study of Dendritic Cells Loaded With Allogeneic Tumor Cell Lysate (MesoPher) in Subjects With Mesothelioma as Maintenance Therapy After Chemotherapy: DENdritic Cell Immunotherapy for Mesothelioma (DENIM) Trial,” Translational Lung Cancer Research 8, no. 3 (2019): 280-285.

[140]

J. G. Aerts, R. Belderbos, P. Baas, et al., “Dendritic Cells Loaded With Allogeneic Tumour Cell Lysate plus Best Supportive Care Versus Best Supportive Care Alone in Patients With Pleural Mesothelioma as Maintenance Therapy After Chemotherapy (DENIM): A Multicentre, Open-Label, Randomised, Phase 2/3 Study,” Lancet Oncology 25, no. 7 (2024): 865-878.

[141]

P. S. Adusumilli, L. Cherkassky, J. Villena-Vargas, et al., “Regional Delivery of Mesothelin-Targeted CAR T Cell Therapy Generates Potent and Long-Lasting CD4-Dependent Tumor Immunity,” Science Translational Medicine 6, no. 261 (2014): 261ra151.

[142]

S. Hiltbrunner, C. Britschgi, P. Schuberth, et al., “Local Delivery of CAR T Cells Targeting Fibroblast Activation Protein Is Safe in Patients With Pleural Mesothelioma: First Report of FAPME, a Phase I Clinical Trial,” Annals of Oncology 32, no. 1 (2021): 120-121.

[143]

T. Thayaparan, R. M. Petrovic, D. Y. Achkova, et al., “CAR T-Cell Immunotherapy of MET-Expressing Malignant Mesothelioma,” Oncoimmunology 6, no. 12 (2017): e1363137.

[144]

N. K. Chintala, D. Restle, H. Quach, et al., “CAR T-Cell Therapy for Pleural Mesothelioma: Rationale, Preclinical Development, and Clinical Trials,” Lung Cancer 157 (2021): 48-59.

[145]

P. C. Schuberth, C. Hagedorn, S. M. Jensen, et al., “Treatment of Malignant Pleural Mesothelioma by Fibroblast Activation Protein-Specific Re-Directed T Cells,” Journal of Translational Medicine 11 (2013): 187.

[146]

P. S. Adusumilli, M. G. Zauderer, I. Riviere, et al., “A Phase I Trial of Regional Mesothelin-Targeted CAR T-Cell Therapy in Patients With Malignant Pleural Disease, in Combination With the Anti-PD-1 Agent Pembrolizumab,” Cancer Discovery 11, no. 11 (2021): 2748-2763.

[147]

T. Xu, T. Tian, C. Wang, et al., “Efficacy and Safety of Novel Multiple-Chain DAP-CAR-T Cells Targeting Mesothelin in Ovarian Cancer and Mesothelioma: A Single-Arm, Open-Label and First-in-Human Study,” Genome Medicine 16, no. 1 (2024): 133.

[148]

T. Kouro, N. Higashijima, S. Horaguchi, et al., “Novel Chimeric Antigen Receptor-Expressing T Cells Targeting the Malignant Mesothelioma-Specific Antigen Sialylated HEG1,” International Journal of Cancer 154, no. 10 (2024): 1828-1841.

[149]

M. F. Lofiego, R. Tufano, E. Bello, et al., “DNA Methylation Status Classifies Pleural Mesothelioma Cells According to Their Immune Profile: Implication for Precision Epigenetic Therapy,” Journal of Experimental & Clinical Cancer Research 44, no. 1 (2025): 58.

[150]

G. Cugliari, A. Allione, A. Russo, et al., “New DNA Methylation Signals for Malignant Pleural Mesothelioma Risk Assessment,” Cancers (Basel) 13, no. 11 (2021): 2636.

[151]

A. Allione, C. Viberti, I. Cotellessa, et al., “Blood Cell DNA Methylation Biomarkers in Preclinical Malignant Pleural Mesothelioma: The EPIC Prospective Cohort,” International Journal of Cancer 152, no. 4 (2023): 725-737.

[152]

J. Vandenhoeck, J. P. van Meerbeeck, E. Fransen, et al., “DNA Methylation as a Diagnostic Biomarker for Malignant Mesothelioma: A Systematic Review and Meta-Analysis,” Journal of Thoracic Oncology 16, no. 9 (2021): 1461-1478.

[153]

G. Yang, C. Li, F. Tao, et al., “The Emerging Roles of Lysine-Specific Demethylase 4A in Cancer: Implications in Tumorigenesis and Therapeutic Opportunities,” Genes & Diseases 11, no. 2 (2024): 645-663.

[154]

M. Lapidot, A. E. Case, E. L. Weisberg, et al., “Essential Role of the Histone Lysine Demethylase KDM4A in the Biology of Malignant Pleural Mesothelioma (MPM),” British Journal of Cancer 125, no. 4 (2021): 582-592.

[155]

B. Noce, E. Di Bello, R. Fioravanti, A. Mai, “LSD1 Inhibitors for Cancer Treatment: Focus on Multi-Target Agents and Compounds in Clinical Trials,” Frontiers in Pharmacology 14 (2023): 1120911.

[156]

A. Wirawan, K. Tajima, F. Takahashi, et al., “A Novel Therapeutic Strategy Targeting the Mesenchymal Phenotype of Malignant Pleural Mesothelioma by Suppressing LSD1,” Molecular Cancer Research 20, no. 1 (2022): 127-138.

[157]

W. Sheng, M. W. LaFleur, T. H. Nguyen, et al., “LSD1 Ablation Stimulates Anti-Tumor Immunity and Enables Checkpoint Blockade,” Cell 174, no. 3 (2018): 549-563. e19.

[158]

W. Sheng, Y. Liu, D. Chakraborty, B. Debo, Y. Shi, “Simultaneous Inhibition of LSD1 and TGFbeta Enables Eradication of Poorly Immunogenic Tumors With Anti-PD-1 Treatment,” Cancer Discovery 11, no. 8 (2021): 1970-1981.

[159]

H. Sidhu, N. Capalash, “UHRF1: The Key Regulator of Epigenetics and Molecular Target for Cancer Therapeutics,” Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine 39, no. 2 (2017): 1010428317692205.

[160]

N. Wang, Q. N. Zhao, Q. Yuan, B. L. Zhu, W. Wu, “Prognostic Significance and Immune Cell Infiltration Analysis of Differentially Expressed Genes in Malignant Pleural Mesothelioma],” Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi = Zhonghua Laodong Weisheng Zhiyebing Zazhi = Chinese Journal of Industrial Hygiene and Occupational Diseases 41, no. 9 (2023): 641-647.

[161]

E. S. Reardon, V. Shukla, S. Xi, et al., “UHRF1 Is a Novel Druggable Epigenetic Target in Malignant Pleural Mesothelioma,” Journal of Thoracic Oncology 16, no. 1 (2021): 89-103.

[162]

D. P. Tsang, A S. Cheng, “Epigenetic Regulation of Signaling Pathways in Cancer: Role of the Histone Methyltransferase EZH2,” Journal of Gastroenterology and Hepatology 26, no. 1 (2011): 19-27.

[163]

G. Pinton, Z. Wang, C. Balzano, et al., “CDKN2A Determines Mesothelioma Cell Fate to EZH2 Inhibition,” Frontiers in Oncology 11 (2021): 678447.

[164]

S. Mola, G. Pinton, M. Erreni, et al., “Inhibition of the Histone Methyltransferase EZH2 Enhances Protumor Monocyte Recruitment in Human Mesothelioma Spheroids,” International Journal of Molecular Sciences 22, no. 9 (2021): 4391.

[165]

M. Hamaidia, H. Gazon, C. Hoyos, et al., “Inhibition of EZH2 Methyltransferase Decreases Immunoediting of Mesothelioma Cells by Autologous Macrophages Through a PD-1-Dependent Mechanism,” JCI Insight 4, no. 18 (2019): e128474.

[166]

M. G. Zauderer, P. W. Szlosarek, S. Le Moulec, et al., “EZH2 Inhibitor Tazemetostat in Patients With Relapsed or Refractory, BAP1-Inactivated Malignant Pleural Mesothelioma: A Multicentre, Open-Label, Phase 2 Study,” Lancet Oncology 23, no. 6 (2022): 758-767.

[167]

H. S. Ibrahim, M. Abdelsalam, Y. Zeyn, et al., “Synthesis, Molecular Docking and Biological Characterization of Pyrazine Linked 2-Aminobenzamides as New Class I Selective Histone Deacetylase (HDAC) Inhibitors With Anti-Leukemic Activity,” International Journal of Molecular Sciences 23, no. 1 (2021): 369.

[168]

M. C. Crisanti, A. F. Wallace, V. Kapoor, et al., “The HDAC Inhibitor Panobinostat (LBH589) Inhibits Mesothelioma and Lung Cancer Cells in Vitro and in Vivo With Particular Efficacy for Small Cell Lung Cancer,” Molecular Cancer Therapeutics 8, no. 8 (2009): 2221-2231.

[169]

J. L. Hurwitz, I. Stasik, E. M. Kerr, et al., “Vorinostat/SAHA-Induced Apoptosis in Malignant Mesothelioma Is FLIP/Caspase 8-Dependent and HR23B-Independent,” European Journal of Cancer 48, no. 7 (2012): 1096-1107.

[170]

B. R. You, W H. Park, “The Levels of HDAC1 and thioredoxin1 Are Related to the Death of Mesothelioma Cells by Suberoylanilide Hydroxamic Acid,” International Journal of Oncology 48, no. 5 (2016): 2197-2204.

[171]

L. M. Krug, H. L. Kindler, H. Calvert, et al., “Vorinostat in Patients With Advanced Malignant Pleural Mesothelioma Who Have Progressed on Previous Chemotherapy (VANTAGE-014): A Phase 3, Double-Blind, Randomised, Placebo-Controlled Trial,” Lancet Oncology 16, no. 4 (2015): 447-456.

[172]

C. Hoyos, A. Fontaine, J. R. Jacques, et al., “HDAC Inhibition With Valproate Improves Direct Cytotoxicity of Monocytes Against Mesothelioma Tumor Cells,” Cancers (Basel) 14, no. 9 (2022): 1264.

[173]

D. P. Bartel, “Metazoan MicroRNAs,” Cell 173, no. 1 (2018): 20-51.

[174]

G. Reid, M. E. Pel, M. B. Kirschner, et al., “Restoring Expression of miR-16: A Novel Approach to Therapy for Malignant Pleural Mesothelioma,” Annals of Oncology 24, no. 12 (2013): 3128-3135.

[175]

S. C. Kao, Y. Y. Cheng, M. Williams, et al., “Tumor Suppressor MicroRNAs Contribute to the Regulation of PD-L1 Expression in Malignant Pleural Mesothelioma,” Journal of Thoracic Oncology 12, no. 9 (2017): 1421-1433.

[176]

N. van Zandwijk, N. Pavlakis, S. C. Kao, et al., “Safety and Activity of microRNA-Loaded Minicells in Patients With Recurrent Malignant Pleural Mesothelioma: A First-in-Man, Phase 1, Open-Label, Dose-Escalation Study,” Lancet Oncology 18, no. 10 (2017): 1386-1396.

[177]

M. Williams, M. B. Kirschner, Y. Y. Cheng, et al., “miR-193a-3p Is a Potential Tumor Suppressor in Malignant Pleural Mesothelioma,” Oncotarget 6, no. 27 (2015): 23480-23495.

[178]

A. Singh, N. Bhattacharyya, A. Srivastava, et al., “MicroRNA-215-5p Treatment Suppresses Mesothelioma Progression via the MDM2-p53-Signaling Axis,” Molecular Therapy 27, no. 9 (2019): 1665-1680.

[179]

S. Pinelli, R. Alinovi, M. Corradi, et al., “A Comparison Between the Effects of Over-Expression of miRNA-16 and miRNA-34a on Cell Cycle Progression of Mesothelioma Cell Lines and on Their Cisplatin Sensitivity,” Cancer Treatment and Research Communications 26 (2021): 100276.

[180]

F. Monaco, L. De Conti, S. Vodret, et al., “Force-Feeding Malignant Mesothelioma Stem-Cell Like With Exosome-Delivered miR-126 Induces Tumour Cell Killing,” Translational Oncology 20 (2022): 101400.

[181]

A. Singh, N. Pruett, R. Pahwa, A. P. Mahajan, D. S. Schrump, C D. Hoang, “MicroRNA-206 Suppresses Mesothelioma Progression via the Ras Signaling Axis,” Molecular Therapy Nucleic Acids 24 (2021): 669-681.

[182]

Y. N. Gao, M. Zhang, F. F. Zhang, Z. Y. Jia, X. Y. Yuan, L J. Zhu, “Effects of microRNA-106b on Migration and Invasion of Human Malignant Pleural Mesothelioma Cell NCI-H2452],” Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi = Zhonghua Laodong Weisheng Zhiyebing Zazhi = Chinese Journal of Industrial Hygiene and Occupational Diseases 41, no. 9 (2023): 648-654.

[183]

I. Endo, V. J. Amatya, K. Kushitani, T. Nakagiri, K. Aoe, Y. Takeshima, “miR-142-3p Suppresses Invasion and Adhesion of Mesothelioma Cells by Downregulating ITGAV,” Pathobiology 90, no. 4 (2023): 270-280.

[184]

G. Reid, T. G. Johnson, N. van Zandwijk, “Manipulating microRNAs for the Treatment of Malignant Pleural Mesothelioma: Past, Present and Future,” Frontiers in Oncology 10 (2020): 105.

[185]

R. Suzuki, V. J. Amatya, K. Kushitani, Y. Kai, T. Kambara, Y. Takeshima, “miR-182 and miR-183 Promote Cell Proliferation and Invasion by Targeting FOXO1 in Mesothelioma,” Frontiers in Oncology 8 (2018): 446.

[186]

X. Xu, H. Li, M. Xie, Z. Zhou, D. Wang, W. Mao, “LncRNAs and Related Molecular Basis in Malignant Pleural Mesothelioma: Challenges and Potential,” Critical Reviews in Oncology/Hematology 186 (2023): 104012.

[187]

D. M. Elkahwagy, C. J. Kiriacos, M. E. Sobeih, O. M. R. Khorshid, M. Mansour, “The lncRNAs Gas5, MALAT1 and SNHG8 as Diagnostic Biomarkers for Epithelial Malignant Pleural Mesothelioma in Egyptian Patients,” Scientific Reports 14, no. 1 (2024): 4823.

[188]

A. Renganathan, J. Kresoja-Rakic, N. Echeverry, et al., “GAS5 Long Non-Coding RNA in Malignant Pleural Mesothelioma,” Molecular Cancer 13 (2014): 119.

[189]

M. Matboli, A. E. Shafei, M. A. Ali, et al., “Clinical Significance of Serum DRAM1 mRNA, ARSA mRNA, Hsa-miR-2053 and lncRNA-RP1-86D1.3 Axis Expression in Malignant Pleural Mesothelioma,” Journal of Cellular Biochemistry 120, no. 3 (2019): 3203-3211.

[190]

Y. Fujii, V. J. Amatya, K. Kushitani, et al., “Downregulation of lncRNA PVT1 Inhibits Proliferation and Migration of Mesothelioma Cells by Targeting FOXM1,” Oncology Reports 47, no. 2 (2022): 27.

[191]

I. Endo, V. J. Amatya, K. Kushitani, T. Nakagiri, K. Aoe, Y. Takeshima, “Long Non-Coding RNA LINC00152 Requires EZH2 to Promote Mesothelioma Cell Proliferation, Migration, and Invasion,” Anticancer Research 43, no. 12 (2023): 5367-5376.

[192]

M. Gugnoni, E. Lorenzini, F. Torricelli, et al., “Linc00941 Fuels Ribogenesis and Protein Synthesis by Supporting Robust cMYC Translation in Malignant Pleural Mesothelioma,” Cancer Letters 592 (2024): 216950.

[193]

R. Bueno, E. W. Stawiski, L. D. Goldstein, et al., “Comprehensive Genomic Analysis of Malignant Pleural Mesothelioma Identifies Recurrent Mutations, Gene Fusions and Splicing Alterations,” Nature Genetics 48, no. 4 (2016): 407-416.

[194]

Y. Ishii, K. K. Kolluri, A. Pennycuick, et al., “BAP1 and YY1 Regulate Expression of Death Receptors in Malignant Pleural Mesothelioma,” Journal of Biological Chemistry 297, no. 5 (2021): 101223.

[195]

E. Conway, F. Rossi, D. Fernandez-Perez, et al., “BAP1 Enhances Polycomb Repression by Counteracting Widespread H2AK119ub1 Deposition and Chromatin Condensation,” Molecular Cell 81, no. 17 (2021): 3526-3541.

[196]

I. T. S. Meliala, R. Hosea, V. Kasim, S. Wu, “The Biological Implications of Yin Yang 1 in the Hallmarks of Cancer,” Theranostics 10, no. 9 (2020): 4183-4200.

[197]

L. Quetel, C. Meiller, J. B. Assie, et al., “Genetic Alterations of Malignant Pleural Mesothelioma: Association With Tumor Heterogeneity and Overall Survival,” Molecular Oncology 14, no. 6 (2020): 1207-1223.

[198]

H. Yang, S. R. R. Hall, B. Sun, et al., “NF2 and Canonical Hippo-YAP Pathway Define Distinct Tumor Subsets Characterized by Different Immune Deficiency and Treatment Implications in Human Pleural Mesothelioma,” Cancers (Basel) 13, no. 7 (2021): 1561.

[199]

R. K. Sahu, S. Ruhi, A. K. Jeppu, et al., “Malignant Mesothelioma Tumours: Molecular Pathogenesis, Diagnosis, and Therapies Accompanying Clinical Studies,” Frontiers in Oncology 13 (2023): 1204722.

[200]

H. Hillen, A. Candi, B. Vanderhoydonck, et al., “A Novel Irreversible TEAD Inhibitor, SWTX-143, Blocks Hippo Pathway Transcriptional Output and Causes Tumor Regression in Preclinical Mesothelioma Models,” Molecular Cancer Therapeutics 23, no. 1 (2024): 3-13.

[201]

E. A. Chapeau, L. Sansregret, G. G. Galli, et al., “Direct and Selective Pharmacological Disruption of the YAP-TEAD Interface by IAG933 Inhibits Hippo-Dependent and RAS-MAPK-Altered Cancers,” Nat Cancer 5, no. 7 (2024): 1102-1120.

[202]

Y. Sekido, T. Sato, “NF2 alteration in Mesothelioma,” Frontiers in Toxicology 5 (2023): 1161995.

[203]

F. Pezzuto, F. Lunardi, L. Vedovelli, et al., “P14/ARF-Positive Malignant Pleural Mesothelioma: A Phenotype With Distinct Immune Microenvironment,” Frontiers in Oncology 11 (2021): 653497.

[204]

J. Li, M. J. Poi, M D. Tsai, “Regulatory Mechanisms of Tumor Suppressor P16(INK4A) and Their Relevance to Cancer,” Biochemistry 50, no. 25 (2011): 5566-5582.

[205]

E. Aliagas, A. Alay, M. Martinez-Iniesta, et al., “Efficacy of CDK4/6 Inhibitors in Preclinical Models of Malignant Pleural Mesothelioma,” British Journal of Cancer 125, no. 10 (2021): 1365-1376.

[206]

S. Paternot, E. Raspe, C. Meiller, et al., “Preclinical Evaluation of CDK4 Phosphorylation Predicts High Sensitivity of Pleural Mesotheliomas to CDK4/6 Inhibition,” Molecular Oncology 18, no. 4 (2024): 866-894.

[207]

D. A. Fennell, A. King, S. Mohammed, et al., “Abemaciclib in Patients With p16ink4A-Deficient Mesothelioma (MiST2): A Single-Arm, Open-Label, Phase 2 Trial,” Lancet Oncology 23, no. 3 (2022): 374-381.

[208]

Y. Zhang, T. Hunter, “Roles of Chk1 in Cell Biology and Cancer Therapy,” International Journal of Cancer 134, no. 5 (2014): 1013-1023.

[209]

K. Akagi, H. Taniguchi, H. Tomono, et al., “Abstract 4286: CHK1 as a Novel Therapeutic Target for Pleural Mesothelioma,” Cancer Research 85, no. 8_Supplement_1 (2025): 4286-4286.

[210]

F. Cordier, J. Van der Meulen, N. van Roy, et al., “Malignant Pleural Mesothelioma With an EML4-ALK Fusion: Expect the Unexpected!,” Pathology, Research and Practice 231 (2022): 153772.

[211]

Y. Chen, B. Chen, X. Zhu, J. Zhong, “A Patient With Malignant Pleural Mesothelioma Carrying BRAF V600E Mutation Responding to Vemurafenib,” Lung Cancer 116 (2018): 96-98.

[212]

L. Yu, J. Wei, P. Liu, “Attacking the PI3K/Akt/mTOR Signaling Pathway for Targeted Therapeutic Treatment in Human Cancer,” Seminars in Cancer Biology 85 (2022): 69-94.

[213]

Y. Pignochino, C. Dell'Aglio, S. Inghilleri, et al., “The Combination of Sorafenib and Everolimus Shows Antitumor Activity in Preclinical Models of Malignant Pleural Mesothelioma,” BMC Cancer 15 (2015): 374.

[214]

S. H. Ou, J. Moon, L. L. Garland, et al., “SWOG S0722: Phase II Study of mTOR Inhibitor Everolimus (RAD001) in Advanced Malignant Pleural Mesothelioma (MPM),” Journal of Thoracic Oncology 10, no. 2 (2015): 387-391.

[215]

M. G. Zauderer, E. W. Alley, J. Bendell, et al., “Phase 1 Cohort Expansion Study of LY3023414, a Dual PI3K/mTOR Inhibitor, in Patients With Advanced Mesothelioma,” Investigational New Drugs 39, no. 4 (2021): 1081-1088.

[216]

R. Timpl, T. Sasaki, G. Kostka, M L. Chu, “Fibulins: A Versatile Family of Extracellular Matrix Proteins,” Nature Reviews Molecular Cell Biology 4, no. 6 (2003): 479-489.

[217]

C. Sorino, M. Mondoni, G. Marchetti, et al., “Pleural Mesothelioma: Advances in Blood and Pleural Biomarkers,” Journal of Clinical Medicine 12, no. 22 (2023): 7006.

[218]

S. Tsim, L. Alexander, C. Kelly, et al., “Serum Proteomics and Plasma Fibulin-3 in Differentiation of Mesothelioma from Asbestos-Exposed Controls and Patients With Other Pleural Diseases,” Journal of Thoracic Oncology 16, no. 10 (2021): 1705-1717.

[219]

A. Roshini, C. Goparaju, S. Kundu, et al., “The Extracellular Matrix Protein Fibulin-3/EFEMP1 Promotes Pleural Mesothelioma Growth by Activation of PI3K/Akt Signaling,” Frontiers in Oncology 12 (2022): 1014749.

[220]

R. Dixit, X. Ai, A. Fine, “Derivation of Lung Mesenchymal Lineages From the Fetal Mesothelium Requires Hedgehog Signaling for Mesothelial Cell Entry,” Development (Cambridge, England) 140, no. 21 (2013): 4398-4406.

[221]

Y. Shi, U. Moura, I. Opitz, et al., “Role of Hedgehog Signaling in Malignant Pleural Mesothelioma,” Clinical Cancer Research 18, no. 17 (2012): 4646-4656.

[222]

M. Occhipinti, M. Brambilla, R. Di Liello, et al., “Unleashing Precision: A Review of Targeted Approaches in Pleural Mesothelioma,” Critical Reviews in Oncology/Hematology 203 (2024): 104481.

[223]

E. Felley-Bosco, I. Opitz, M. Meerang, “Hedgehog Signaling in Malignant Pleural Mesothelioma,” Genes (Basel) 6, no. 3 (2015): 500-511.

[224]

G. Y. Ma, S. Shi, Y. Z. Sang, P. Wang, Z G. Zhang, “High Expression of SMO and GLI1 Genes With Poor Prognosis in Malignant Mesothelioma,” BioMed Research International 2023 (2023): 6575194.

[225]

D. Signorelli, C. Proto, L. Botta, et al., “SMO Mutations Confer Poor Prognosis in Malignant Pleural Mesothelioma,” Translational Lung Cancer Research 9, no. 5 (2020): 1940-1951.

[226]

S. Hiltbrunner, Z. Fleischmann, E. S. Sokol, M. Zoche, E. Felley-Bosco, A. Curioni-Fontecedro, “Genomic Landscape of Pleural and Peritoneal Mesothelioma Tumours,” British Journal of Cancer 127, no. 11 (2022): 1997-2005.

[227]

M. You, J. Varona-Santos, S. Singh, D. J. Robbins, N. Savaraj, D M. Nguyen, “Targeting of the Hedgehog Signal Transduction Pathway Suppresses Survival of Malignant Pleural Mesothelioma Cells in Vitro,” Journal of Thoracic and Cardiovascular Surgery 147, no. 1 (2014): 508-516.

[228]

M. Meerang, K. Berard, E. Felley-Bosco, et al., “Antagonizing the Hedgehog Pathway With Vismodegib Impairs Malignant Pleural Mesothelioma Growth in Vivo by Affecting Stroma,” Molecular Cancer Therapeutics 15, no. 5 (2016): 1095-1105.

[229]

P. M. LoRusso, C. M. Rudin, J. C. Reddy, et al., “Phase I Trial of Hedgehog Pathway Inhibitor Vismodegib (GDC-0449) in Patients With Refractory, Locally Advanced or Metastatic Solid Tumors,” Clinical Cancer Research 17, no. 8 (2011): 2502-2511.

[230]

J. Rodon, H. A. Tawbi, A. L. Thomas, et al., “A Phase I, Multicenter, Open-Label, First-in-Human, Dose-Escalation Study of the Oral Smoothened Inhibitor Sonidegib (LDE225) in Patients With Advanced Solid Tumors,” Clinical Cancer Research 20, no. 7 (2014): 1900-1909.

[231]

K. M. Jayatilleke, M D. Hulett, “Heparanase and the Hallmarks of Cancer,” Journal of Translational Medicine 18, no. 1 (2020): 453.

[232]

I. Vlodavsky, P. Singh, I. Boyango, et al., “Heparanase: From Basic Research to Therapeutic Applications in Cancer and Inflammation,” Drug Resistance Updates 29 (2016): 54-75.

[233]

U. Barash, M. Lapidot, Y. Zohar, et al., “Involvement of Heparanase in the Pathogenesis of Mesothelioma: Basic Aspects and Clinical Applications,” JNCI: Journal of the National Cancer Institute 110, no. 10 (2018): 1102-1114.

[234]

L. Li, U. Barash, N. Ilan, et al., “A New Synthesized Dicarboxylated Oxy-Heparin Efficiently Attenuates Tumor Growth and Metastasis,” Cells 13, no. 3 (2024): 211.

[235]

S. Oliveto, P. Ritter, G. Deroma, et al., “The Impact of 3D Nichoids and Matrix Stiffness on Primary Malignant Mesothelioma Cells,” Genes (Basel) 15, no. 2 (2024): 199.

[236]

X. Chen, E. Song, “Turning Foes to Friends: Targeting Cancer-Associated Fibroblasts,” Nature Reviews Drug Discovery 18, no. 2 (2019): 99-115.

[237]

Y. Chrisochoidou, R. Roy, P. Farahmand, et al., “Crosstalk With Lung Fibroblasts Shapes the Growth and Therapeutic Response of Mesothelioma Cells,” Cell Death & Disease 14, no. 11 (2023): 725.

[238]

D. Yeo, L. Castelletti, N. van Zandwijk, J. E. J. Rasko, “Hitting the Bull's-Eye: Mesothelin's Role as a Biomarker and Therapeutic Target for Malignant Pleural Mesothelioma,” Cancers (Basel) 13, no. 16 (2021): 3932.

[239]

A. N. Qualiotto, C. M. Baldavira, M. Balancin, A. Ab'Saber, T. Takagaki, V. L. Capelozzi, “Mesothelin Expression Remodeled the Immune-Matrix Tumor Microenvironment Predicting the Risk of Death in Patients With Malignant Pleural Mesothelioma,” Frontiers in Immunology 14 (2023): 1268927.

[240]

R. Hassan, W. Ebel, E. L. Routhier, et al., “Preclinical Evaluation of MORAb-009, a Chimeric Antibody Targeting Tumor-Associated Mesothelin,” Cancer Immunity 7 (2007): 20.

[241]

R. Hassan, H. L. Kindler, T. Jahan, et al., “Phase II Clinical Trial of Amatuximab, a Chimeric Antimesothelin Antibody With Pemetrexed and Cisplatin in Advanced Unresectable Pleural Mesothelioma,” Clinical Cancer Research 20, no. 23 (2014): 5927-5936.

[242]

N. C. Nicolaides, C. Schweizer, E. B. Somers, et al., “CA125 Suppresses Amatuximab Immune-Effector Function and Elevated Serum Levels Are Associated With Reduced Clinical Response in First Line Mesothelioma Patients,” Cancer Biology & Therapy 19, no. 7 (2018): 622-630.

[243]

E. Hatterer, X. Chauchet, F. Richard, et al., “Targeting a Membrane-Proximal Epitope on Mesothelin Increases the Tumoricidal Activity of a Bispecific Antibody Blocking CD47 on Mesothelin-Positive Tumors,” MAbs 12, no. 1 (2020): 1739408.

[244]

S. Golfier, C. Kopitz, A. Kahnert, et al., “Anetumab Ravtansine: A Novel Mesothelin-Targeting Antibody-Drug Conjugate Cures Tumors With Heterogeneous Target Expression Favored by Bystander Effect,” Molecular Cancer Therapeutics 13, no. 6 (2014): 1537-1548.

[245]

R. Hassan, G. R. Blumenschein, K. N. Moore, “First-in-Human, Multicenter, Phase I Dose-Escalation and Expansion Study of Anti-Mesothelin Antibody-Drug Conjugate Anetumab Ravtansine in Advanced or Metastatic Solid Tumors,” Journal of Clinical Oncology 38, no. 16 (2020): 1824-1835.

[246]

K. E. R. Smith, J. Ayers-Ringler, P. Dizona, et al., “Soluble Mesothelin Neutralizes Mesothelin Antibody-Based Therapies,” Journal of Clinical Oncology 42, no. 16_suppl (2024): 2565-2565.

[247]

G. D. Demetri, J. J. Luke, A. Hollebecque, et al., “First-in-Human Phase 1 Study of ABBV-085, an Antibody-Drug Conjugate (ADC) Targeting LRRC15, in Sarcomas and Other Advanced Solid Tumors,” Journal of Clinical Oncology 37, no. 15_suppl (2019): 3004-3004.

[248]

R. van der Meel, E. Sulheim, Y. Shi, F. Kiessling, W. J. M. Mulder, T. Lammers, “Smart Cancer Nanomedicine,” Nature Nanotechnology 14, no. 11 (2019): 1007-1017.

[249]

A. D. Santin, I. Vergote, A. Gonzalez-Martin, et al., “Safety and Activity of Anti-Mesothelin Antibody-Drug Conjugate Anetumab Ravtansine in Combination With Pegylated-Liposomal Doxorubicin in Platinum-Resistant Ovarian Cancer: Multicenter, Phase Ib Dose Escalation and Expansion Study,” International Journal of Gynecological Cancer 33, no. 4 (2023): 562-570.

[250]

H. J. Hsu, C. P. Tung, C. M. Yu, et al., “Eradicating Mesothelin-Positive Human Gastric and Pancreatic Tumors in Xenograft Models With Optimized Anti-Mesothelin Antibody-Drug Conjugates From Synthetic Antibody Libraries,” Scientific Reports 11, no. 1 (2021): 15430.

[251]

C. H. June, M. Sadelain, “Chimeric Antigen Receptor Therapy,” New England Journal of Medicine 379, no. 1 (2018): 64-73.

[252]

U. Amit, U. Uslu, I. I. Verginadis, et al., “Proton Radiation Boosts the Efficacy of Mesothelin-Targeting Chimeric Antigen Receptor T Cell Therapy in Pancreatic Cancer,” PNAS 121, no. 31 (2024): e2403002121.

[253]

E. Lanitis, M. Poussin, I. S. Hagemann, et al., “Redirected Antitumor Activity of Primary Human Lymphocytes Transduced With a Fully Human Anti-Mesothelin Chimeric Receptor,” Molecular Therapy 20, no. 3 (2012): 633-643.

[254]

G. L. Beatty, A. R. Haas, M. V. Maus, et al., “Mesothelin-Specific Chimeric Antigen Receptor mRNA-Engineered T Cells Induce Anti-Tumor Activity in Solid Malignancies,” Cancer Immunology Research 2, no. 2 (2014): 112-120.

[255]

A. R. Haas, J. L. Tanyi, M. H. O'Hara, “Phase I Study of Lentiviral-Transduced Chimeric Antigen Receptor-Modified T Cells Recognizing Mesothelin in Advanced Solid Cancers,” Molecular Therapy 27, no. 11 (2019): 1919-1929.

[256]

E. K. Moon, C. Carpenito, J. Sun, et al., “Expression of a Functional CCR2 Receptor Enhances Tumor Localization and Tumor Eradication by Retargeted Human T Cells Expressing a Mesothelin-Specific Chimeric Antibody Receptor,” Clinical Cancer Research 17, no. 14 (2011): 4719-4730.

[257]

B. Li, Y. Zeng, P. M. Reeves, et al., “AMD3100 Augments the Efficacy of Mesothelin-Targeted, Immune-Activating VIC-008 in Mesothelioma by Modulating Intratumoral Immunosuppression,” Cancer Immunology Research 6, no. 5 (2018): 539-551.

[258]

Q. Xu, Z. Liu, Y. Xia, et al., “Phase I Clinical Safety and Preliminary Efficacy of PD-1-mesoCAR-T Cells in the Treatment of Malignant Pleural/Peritoneal Mesothelioma,” Journal of Clinical Oncology 40, no. 16_suppl (2022): 8559-8559.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/