Mitochondrial Dysfunction in Neurodegenerative Diseases

Chongyang Chen , Yujie Zhao , Jing Wang , Donghui Pan , Xinyu Wang , Yuping Xu , Junjie Yan , Lizhen Wang , Xifei Yang , Ming Lu , Gong-Ping Liu

MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70326

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (9) : e70326 DOI: 10.1002/mco2.70326
REVIEW

Mitochondrial Dysfunction in Neurodegenerative Diseases

Author information +
History +
PDF

Abstract

Mitochondria are indispensable for the normal physiological activities and metabolism of living organisms. The proper function of mitochondria in the brain is crucial for maintaining the normal brain function with high energy demands. There are growing evidences that mitochondrial dysfunction plays a critical role in multiple of neurodegenerative diseases (NDDs), including Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, and Huntington's disease. In this review, the research progress and future development trajectory of mitochondrial function in NDDs will be comprehensively summarized, which focusing on mitochondrial physiological function, the mechanisms underlying mitochondrial dysfunction in diverse NDDs, research approaches for exploring mitochondrial function, various strategies for targeted mitochondrial therapy, and the challenges and opportunities encountered in the evaluation of mitochondrial-targeted therapeutic drugs. The feasibility of in vivo mitochondrial imaging and the future perspectives of AI for mitochondria-targeted drug screening are deliberated, which will facilitate the advancement of the comprehension of mitochondrial functional mechanisms in NDDs and the development of future clinical therapeutic drugs. This review shall furnish several insights regarding novel research methodologies and drug developments for researchers engaged in the investigation of mitochondrial dysfunction in NDDs.

Keywords

mitochondrial dysfunction / mitochondrial imaging / mitochondrial omics / neurodegenerative diseases / targeted drug screening

Cite this article

Download citation ▾
Chongyang Chen, Yujie Zhao, Jing Wang, Donghui Pan, Xinyu Wang, Yuping Xu, Junjie Yan, Lizhen Wang, Xifei Yang, Ming Lu, Gong-Ping Liu. Mitochondrial Dysfunction in Neurodegenerative Diseases. MedComm, 2025, 6(9): e70326 DOI:10.1002/mco2.70326

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J. Nunnari and A. Suomalainen, “Mitochondria: In Sickness and in Health,” Cell 148, no. 6 (2012): 1145-1159.

[2]

E. Verdin, M. D. Hirschey, L. W. Finley, and M. C. Haigis, “Sirtuin Regulation of Mitochondria: Energy Production, Apoptosis, and Signaling,” Trends in Biochemical Sciences 35, no. 12 (2010): 669-675.

[3]

M. T. Lin and M. F. Beal, “Mitochondrial Dysfunction and Oxidative Stress in Neurodegenerative Diseases,” Nature 443, no. 7113 (2006): 787-795.

[4]

P. Kramer and P. Bressan, “Our (Mother's) Mitochondria and Our Mind,” Perspectives on Psychological Science 13, no. 1 (2018): 88-100.

[5]

M. J. Devine and J. T. Kittler, “Mitochondria at the Neuronal Presynapse in Health and Disease,” Nature Reviews Neuroscience 19, no. 2 (2018): 63-80.

[6]

C. V. Ly and P. Verstreken, “Mitochondria at the Synapse,” Neuroscientist 12, no. 4 (2006): 291-299.

[7]

M. P. Mattson, M. Gleichmann, and A. Cheng, “Mitochondria in Neuroplasticity and Neurological Disorders,” Neuron 60, no. 5 (2008): 748-766.

[8]

R. J. Mailloux, J. Treberg, C. Grayson, L. B. Agellon, and H. Sies, “Mitochondrial Function and Phenotype Are Defined by Bioenergetics,” Nature Metabolism 5, no. 10 (2023): 1641.

[9]

N. J. Lake, A. G. Compton, S. Rahman, and D. R. Thorburn, “Leigh Syndrome: One Disorder, More Than 75 Monogenic Causes,” Annals of Neurology 79, no. 2 (2016): 190-203.

[10]

F. Rey, S. Ottolenghi, G. V. Zuccotti, M. Samaja, and S. Carelli, “Mitochondrial Dysfunctions in Neurodegenerative Diseases: Role in Disease Pathogenesis, Strategies for Analysis and Therapeutic Prospects,” Neural Regeneration Research 17, no. 4 (2022): 754-758.

[11]

J. Martijn, J. Vosseberg, L. Guy, P. Offre, and T. J. G. Ettema, “Deep Mitochondrial Origin Outside the Sampled Alphaproteobacteria,” Nature 557, no. 7703 (2018): 101-105.

[12]

P. H. Reddy and T. P. Reddy, “Mitochondria as a Therapeutic Target for Aging and Neurodegenerative Diseases,” Current Alzheimer Research 8, no. 4 (2011): 393-409.

[13]

X. Li, L. Huang, J. Lan, et al., “Molecular Mechanisms of Mitophagy and Its Roles in Neurodegenerative Diseases,” Pharmacological Research 163 (2021): 105240.

[14]

K. Itoh, K. Nakamura, M. Iijima, and H. Sesaki, “Mitochondrial Dynamics in Neurodegeneration,” Trends in Cell Biology 23, no. 2 (2013): 64-71.

[15]

P. H. Reddy, “Role of Mitochondria in Neurodegenerative Diseases: Mitochondria as a Therapeutic Target in Alzheimer's Disease,” CNS Spectrums 14, suppl.no. 87 (2009): 8-13. discussion 16-18.

[16]

S. Jamwal, J. K. Blackburn, and J. D. Elsworth, “PPARgamma/PGC1alpha Signaling as a Potential Therapeutic Target for Mitochondrial Biogenesis in Neurodegenerative Disorders,” Pharmacology & Therapeutics 219 (2021): 107705.

[17]

S. Saito and K. Mori, “Detection and Quantification of Calcium Ions in the Endoplasmic Reticulum and Cytoplasm of Cultured Cells Using Fluorescent Reporter Proteins and ImageJ Software,” Bio-Protocol 13, no. 16 (2023): e4738.

[18]

M. X. Chen, E. Ward, M. Caivano, et al., “Probing Mitochondrial Permeability Transition Pore Activity in Nucleated Cells and Platelets by High-Throughput Screening Assays Suggests Involvement of Protein Phosphatase 2B in Mitochondrial Dynamics,” Assay and Drug Development Technologies 16, no. 8 (2018): 445-455.

[19]

R. Miao, C. Jiang, W. Y. Chang, et al., “Gasdermin D Permeabilization of Mitochondrial Inner and Outer Membranes Accelerates and Enhances Pyroptosis,” Immunity 56, no. 11 (2023): 2523-2541.

[20]

N. M. C. Connolly, P. Theurey, and V. Adam-Vizi, “Guidelines on Experimental Methods to Assess Mitochondrial Dysfunction in Cellular Models of Neurodegenerative Diseases,” Cell Death and Differentiation 25, no. 3 (2018): 542-572.

[21]

J. A. Schafer, F. X. R. Sutandy, and C. Munch, “Omics-Based Approaches for the Systematic Profiling of Mitochondrial Biology,” Molecular Cell 83, no. 6 (2023): 911-926.

[22]

R. Zhai, B. Fang, Y. Lai, et al., “Small-Molecule Fluorogenic Probes for Mitochondrial Nanoscale Imaging,” Chemical Society Reviews 52, no. 3 (2023): 942-972.

[23]

A. V. Kotrys, T. J. Durham, X. A. Guo, V. R. Vantaku, S. Parangi, and V. K. Mootha, “Single-Cell Analysis Reveals Context-Dependent, Cell-Level Selection of mtDNA,” Nature 629, no. 8011 (2024): 458-466.

[24]

H. Li, M. Uittenbogaard, R. Navarro, et al., “Integrated Proteomic and Metabolomic Analyses of the Mitochondrial Neurodegenerative Disease MELAS,” Molecular Omics 18, no. 3 (2022): 196-205.

[25]

Y. Wang, P. Wang, and C. Li, “Fluorescence Microscopic Platforms Imaging Mitochondrial Abnormalities in Neurodegenerative Diseases,” Advanced Drug Delivery Reviews 197 (2023): 114841.

[26]

Q. Zheng, H. Liu, Y. Gao, G. Cao, Y. Wang, and Z. Li, “Ameliorating Mitochondrial Dysfunction for the Therapy of Parkinson's Disease,” Small 20, no. 29 (2024): e2311571.

[27]

S. C. Cunnane, E. Trushina, C. Morland, et al., “Brain Energy Rescue: An Emerging Therapeutic Concept for Neurodegenerative Disorders of Ageing,” Nature Reviews Drug Discovery 19, no. 9 (2020): 609-633.

[28]

A. Johri and M. F. Beal, “Mitochondrial Dysfunction in Neurodegenerative Diseases,” Journal of Pharmacology and Experimental Therapeutics 342, no. 3 (2012): 619-630.

[29]

F. A. Bustamante-Barrientos, N. Luque-Campos, M. J. Araya, et al., “Mitochondrial Dysfunction in Neurodegenerative Disorders: Potential Therapeutic Application of Mitochondrial Transfer to Central Nervous System-Residing Cells,” Journal of Translational Medicine 21, no. 1 (2023): 613.

[30]

B. B. Ganguly and N. N. Kadam, “Therapeutics for Mitochondrial Dysfunction-Linked Diseases in Down Syndrome,” Mitochondrion 68 (2023): 25-43.

[31]

N. Pfanner, N. Wiedemann, C. Meisinger, and T. Lithgow, “Assembling the Mitochondrial Outer Membrane,” Nature Structural & Molecular Biology 11, no. 11 (2004): 1044-1048.

[32]

R. H. Haas, “The Evidence Basis for Coenzyme Q Therapy in Oxidative Phosphorylation Disease,” Mitochondrion 7 suppl (2007): S136-S145.

[33]

D. C. Wallace, W. Fan, and V. Procaccio, “Mitochondrial Energetics and Therapeutics,” Annual Review of Pathology 5 (2010): 297-348.

[34]

W. Neupert and J. M. Herrmann, “Translocation of Proteins Into Mitochondria,” Annual Review of Biochemistry 76 (2007): 723-749.

[35]

P. F. Chinnery, H. R. Elliott, G. Hudson, D. C. Samuels, and C. L. Relton, “Epigenetics, Epidemiology and Mitochondrial DNA Diseases,” International Journal of Epidemiology 41, no. 1 (2012): 177-187.

[36]

T. G. Frey and C. A. Mannella, “The Internal Structure of Mitochondria,” Trends in Biochemical Sciences 25, no. 7 (2000): 319-324.

[37]

M. M. Klemmensen, S. H. Borrowman, C. Pearce, B. Pyles, and B. Chandra, “Mitochondrial Dysfunction in Neurodegenerative Disorders,” Neurotherapeutics 21, no. 1 (2024): e00292.

[38]

F. Vogel, C. Bornhovd, W. Neupert, and A. S. Reichert, “Dynamic Subcompartmentalization of the Mitochondrial Inner Membrane,” Journal of Cell Biology 175, no. 2 (2006): 237-247.

[39]

A. M. van der Bliek, M. M. Sedensky, and P. G. Morgan, “Cell Biology of the Mitochondrion,” Genetics 207, no. 3 (2017): 843-871.

[40]

M. T. Ryan and N. J. Hoogenraad, “Mitochondrial-Nuclear Communications,” Annual Review of Biochemistry 76 (2007): 701-722.

[41]

K. Bartlett and S. Eaton, “Mitochondrial Beta-Oxidation,” European Journal of Biochemistry 271, no. 3 (2004): 462-469.

[42]

P. Maechler, S. Carobbio, and B. Rubi, “In Beta-Cells, Mitochondria Integrate and Generate Metabolic Signals Controlling Insulin Secretion,” International Journal of Biochemistry & Cell Biology 38, no. 5-6 (2006): 696-709.

[43]

N. J. Newman, P. Yu-Wai-Man, P. S. Subramanian, et al., “Randomized Trial of Bilateral Gene Therapy Injection for M.11778G>A MT-ND4 Leber Optic Neuropathy,” Brain 146, no. 4 (2023): 1328-1341.

[44]

D. Gezen-Ak, M. Alaylioglu, G. Genc, et al., “Altered Transcriptional Profile of Mitochondrial DNA-Encoded OXPHOS Subunits, Mitochondria Quality Control Genes, and Intracellular ATP Levels in Blood Samples of Patients With Parkinson's Disease,” Journal of Alzheimer's Disease 74, no. 1 (2020): 287-307.

[45]

E. Tresse, J. Marturia-Navarro, W. Q. G. Sew, et al., “Mitochondrial DNA Damage Triggers Spread of Parkinson's Disease-Like Pathology,” Molecular Psychiatry 28, no. 11 (2023): 4902-4914.

[46]

A. P. Anderson, X. Luo, W. Russell, and Y. W. Yin, “Oxidative Damage Diminishes Mitochondrial DNA Polymerase Replication Fidelity,” Nucleic Acids Research 48, no. 2 (2020): 817-829.

[47]

G. Napolitano, G. Fasciolo, and P. Venditti, “Mitochondrial Management of Reactive Oxygen Species,” Antioxidants (Basel) 10, no. 11 (2021): 1824.

[48]

Y. Liu, Y. Huang, C. Xu, et al., “Mitochondrial Dysfunction and Therapeutic Perspectives in Cardiovascular Diseases,” International Journal of Molecular Sciences 23, no. 24 (2022): 16053.

[49]

T. Sanyal, P. Bhattacharjee, S. Bhattacharjee, and P. Bhattacharjee, “Hypomethylation of Mitochondrial D-Loop and ND6 With Increased Mitochondrial DNA Copy Number in the Arsenic-Exposed Population,” Toxicology 408 (2018): 54-61.

[50]

A. P. West, W. Khoury-Hanold, M. Staron, et al., “Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response,” Nature 520, no. 7548 (2015): 553-557.

[51]

M. M. Hu and H. B. Shu, “Mitochondrial DNA-Triggered Innate Immune Response: Mechanisms and Diseases,” Cellular & Molecular Immunology 20, no. 12 (2023): 1403-1412.

[52]

C. H. Yu, S. Davidson, C. R. Harapas, et al., “TDP-43 Triggers Mitochondrial DNA Release via mPTP to Activate cGAS/STING in ALS,” Cell 183, no. 3 (2020): 636-649.e18.

[53]

S. Quan, X. Fu, H. Cai, Z. Ren, Y. Xu, and L. Jia, “The Neuroimmune Nexus: Unraveling the Role of the mtDNA-cGAS-STING Signal Pathway in Alzheimer's Disease,” Molecular Neurodegeneration 20, no. 1 (2025): 25.

[54]

M. Wang, T. Tian, H. Zhou, et al., “Metformin Normalizes Mitochondrial Function to Delay Astrocyte Senescence in a Mouse Model of Parkinson's Disease Through Mfn2-cGAS Signaling,” Journal of Neuroinflammation 21, no. 1 (2024): 81.

[55]

J. Goldsmith, A. Ordureau, J. W. Harper, and E. L. F. Holzbaur, “Brain-Derived Autophagosome Profiling Reveals the Engulfment of Nucleoid-Enriched Mitochondrial Fragments by Basal Autophagy in Neurons,” Neuron 110, no. 6 (2022): 967-976.e8.

[56]

Z. Zhong, S. Liang, E. Sanchez-Lopez, et al., “New Mitochondrial DNA Synthesis Enables NLRP3 Inflammasome Activation,” Nature 560, no. 7717 (2018): 198-203.

[57]

D. Shang, M. Huang, B. Wang, X. Yan, Z. Wu, and X. Zhang, “mtDNA Maintenance and Alterations in the Pathogenesis of Neurodegenerative Diseases,” Current Neuropharmacology 21, no. 3 (2023): 578-598.

[58]

Y. Song, W. Wang, B. Wang, and Q. Shi, “The Protective Mechanism of TFAM on Mitochondrial DNA and Its Role in Neurodegenerative Diseases,” Molecular Neurobiology 61, no. 7 (2024): 4381-4390.

[59]

T. Pass, K. M. Ricke, P. Hofmann, et al., “Preserved Striatal Innervation Maintains Motor Function Despite Severe Loss of Nigral Dopaminergic Neurons,” Brain 147, no. 9 (2024): 3189-3203.

[60]

J. E. Lee, L. M. Westrate, H. Wu, C. Page, and G. K. Voeltz, “Multiple Dynamin Family Members Collaborate to Drive Mitochondrial Division,” Nature 540, no. 7631 (2016): 139-143.

[61]

J. Macuada, I. Molina-Riquelme, G. Vidal, et al., “OPA1 and Disease-Causing Mutants Perturb Mitochondrial Nucleoid Distribution,” Cell Death & Disease 15, no. 11 (2024): 870.

[62]

L. C. Tabara, S. P. Burr, M. Frison, et al., “MTFP1 Controls Mitochondrial Fusion to Regulate Inner Membrane Quality Control and Maintain mtDNA Levels,” Cell 187, no. 14 (2024): 3619-3637.e27.

[63]

J. Feng, Z. Chen, Y. Ma, et al., “AKAP1 Contributes to Impaired mtDNA Replication and Mitochondrial Dysfunction in Podocytes of Diabetic Kidney Disease,” International Journal of Biological Sciences 18, no. 10 (2022): 4026-4042.

[64]

C. Liu, Z. Fu, S. Wu, et al., “Mitochondrial HSF1 Triggers Mitochondrial Dysfunction and Neurodegeneration in Huntington's Disease,” EMBO Molecular Medicine 14, no. 7 (2022): e15851.

[65]

L. Qian, Y. Zhu, C. Deng, et al., “Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1 (PGC-1) Family in Physiological and Pathophysiological Process and Diseases,” Signal Transduction and Targeted Therapy 9, no. 1 (2024): 50.

[66]

Y. Liao, S. Octaviani, Z. Tian, S. R. Wang, C. Huang, and J. Huang, “Mitochondrial Quality Control in Hematopoietic Stem Cells: Mechanisms, Implications, and Therapeutic Opportunities,” Stem Cell Research & Therapy 16, no. 1 (2025): 180.

[67]

Y. Cheng, A. Zhao, Y. Li, et al., “Roles of SIRT3 in Cardiovascular and Neurodegenerative Diseases,” Ageing Research Reviews 104 (2025): 102654.

[68]

N. Wang, X. Wang, B. Lan, Y. Gao, and Y. Cai, “DRP1, Fission and Apoptosis,” Cell Death Discovery 11, no. 1 (2025): 150.

[69]

L. D. Osellame, T. S. Blacker, and M. R. Duchen, “Cellular and Molecular Mechanisms of Mitochondrial Function,” Best Practice & Research. Clinical Endocrinology & Metabolism 26, no. 6 (2012): 711-723.

[70]

H. Grel, D. Woznica, K. Ratajczak, et al., “Mitochondrial Dynamics in Neurodegenerative Diseases: Unraveling the Role of Fusion and Fission Processes,” International Journal of Molecular Sciences 24, no. 17 (2023): 13033.

[71]

D. P. Narendra and R. J. Youle, “The Role of PINK1-Parkin in Mitochondrial Quality Control,” Nature Cell Biology 26, no. 10 (2024): 1639-1651.

[72]

A. Li, M. Gao, B. Liu, et al., “Mitochondrial Autophagy: Molecular Mechanisms and Implications for Cardiovascular Disease,” Cell Death & Disease 13, no. 5 (2022): 444.

[73]

L. S. Jouaville, P. Pinton, C. Bastianutto, G. A. Rutter, and R. Rizzuto, “Regulation of Mitochondrial ATP Synthesis by Calcium: Evidence for a Long-Term Metabolic Priming,” PNAS 96, no. 24 (1999): 13807-13812.

[74]

M. R. Duchen, “Ca(2+)-Dependent Changes in the Mitochondrial Energetics in Single Dissociated Mouse Sensory Neurons,” Biochemical Journal 283, no. pt 1 (1992): 41-50.

[75]

X. N. Sun, Y. A. An, V. A. Paschoal, et al., “GPR84-Mediated Signal Transduction Affects Metabolic Function by Promoting Brown Adipocyte Activity,” Journal of Clinical Investigation 133, no. 24 (2023): e168992.

[76]

L. Diebold and N. S. Chandel, “Mitochondrial ROS Regulation of Proliferating Cells,” Free Radical Biology and Medicine 100 (2016): 86-93.

[77]

A. Y. Abramov, A. Scorziello, and M. R. Duchen, “Three Distinct Mechanisms Generate Oxygen Free Radicals in Neurons and Contribute to Cell Death During Anoxia and Reoxygenation,” Journal of Neuroscience 27, no. 5 (2007): 1129-1138.

[78]

P. R. Angelova, V. Kasymov, I. Christie, et al., “Functional Oxygen Sensitivity of Astrocytes,” Journal of Neuroscience 35, no. 29 (2015): 10460-10473.

[79]

A. Ruggiero, M. Katsenelson, and I. Slutsky, “Mitochondria: New Players in Homeostatic Regulation of Firing Rate Set Points,” Trends in Neuroscience (TINS) 44, no. 8 (2021): 605-618.

[80]

Y. Z. Li, C. J. Li, A. V. Pinto, and A. B. Pardee, “Release of Mitochondrial Cytochrome C in Both Apoptosis and Necrosis Induced by Beta-Lapachone in Human Carcinoma Cells,” Molecular Medicine 5, no. 4: 232-239.

[81]

M. P. Mattson, “Apoptosis in Neurodegenerative Disorders,” Nature Reviews Molecular Cell Biology 1, no. 2 (2000): 120-129.

[82]

B. P. Dranka, G. A. Benavides, A. R. Diers, et al., “Assessing Bioenergetic Function in Response to Oxidative Stress by Metabolic Profiling,” Free Radical Biology and Medicine 51, no. 9 (2011): 1621-1635.

[83]

V. Rhein, X. Song, A. Wiesner, et al., “Amyloid-Beta and Tau Synergistically Impair the Oxidative Phosphorylation System in Triple Transgenic Alzheimer's Disease Mice,” PNAS 106, no. 47 (2009): 20057-20062.

[84]

A. A. Polyzos and C. T. McMurray, “The Chicken or the Egg: Mitochondrial Dysfunction as a Cause or Consequence of Toxicity in Huntington's Disease,” Mechanisms of Ageing and Development 161, no. pt A (2017): 181-197.

[85]

S. A. Mookerjee, A. A. Gerencser, D. G. Nicholls, and M. D. Brand, “Quantifying Intracellular Rates of Glycolytic and Oxidative ATP Production and Consumption Using Extracellular Flux Measurements,” Journal of Biological Chemistry 293, no. 32 (2018): 12649-12652.

[86]

S. A. Mookerjee, R. L. S. Goncalves, A. A. Gerencser, D. G. Nicholls, and M. D. Brand, “The Contributions of Respiration and Glycolysis to Extracellular Acid Production,” Biochimica et Biophysica Acta 1847, no. 2 (2015): 171-181.

[87]

D. G. Nicholls and S. L. Budd, “Mitochondria and Neuronal Survival,” Physiological Reviews 80, no. 1 (2000): 315-360.

[88]

S. W. Perry, J. P. Norman, J. Barbieri, E. B. Brown, and H. A. Gelbard, “Mitochondrial Membrane Potential Probes and the Proton Gradient: A Practical Usage Guide,” Biotechniques 50, no. 2 (2011): 98-115.

[89]

T. S. Blacker and M. R. Duchen, “Investigating Mitochondrial Redox State Using NADH and NADPH Autofluorescence,” Free Radical Biology and Medicine 100 (2016): 53-65.

[90]

G. Morciano, A. C. Sarti, S. Marchi, et al., “Use of Luciferase Probes to Measure ATP in Living Cells and Animals,” Nature Protocols 12, no. 8 (2017): 1542-1562.

[91]

J. Qiu, Y. W. Tan, A. M. Hagenston, et al., “Mitochondrial Calcium Uniporter Mcu Controls Excitotoxicity and Is Transcriptionally Repressed by Neuroprotective Nuclear Calcium Signals,” Nature Communications 4 (2013): 2034.

[92]

M. O. Breckwoldt, A. A. Armoundas, M. A. Aon, et al., “Mitochondrial Redox and pH Signaling Occurs in Axonal and Synaptic Organelle Clusters,” Scientific Reports 6 (2016): 23251.

[93]

K. M. Robinson, M. S. Janes, M. Pehar, et al., “Selective Fluorescent Imaging of Superoxide In Vivo Using Ethidium-Based Probes,” PNAS 103, no. 41 (2006): 15038-15043.

[94]

S. E. Calvo, K. R. Clauser, and V. K. Mootha, “MitoCarta2.0: An Updated Inventory of Mammalian Mitochondrial Proteins,” Nucleic Acids Research 44, no. D1 (2016): D1251-D1257.

[95]

J. Rahman and S. Rahman, “Mitochondrial Medicine in the Omics Era,” Lancet 391, no. 10139 (2018): 2560-2574.

[96]

D. A. Stroud, E. E. Surgenor, L. E. Formosa, et al., “Accessory Subunits Are Integral for Assembly and Function of Human Mitochondrial Complex I,” Nature 538, no. 7623 (2016): 123-126.

[97]

E. Balsa, R. Marco, E. Perales-Clemente, et al., “NDUFA4 is a Subunit of Complex IV of the Mammalian Electron Transport Chain,” Cell Metabolism 16, no. 3 (2012): 378-386.

[98]

R. Perez-Perez, T. Lobo-Jarne, D. Milenkovic, et al., “COX7A2L Is a Mitochondrial Complex III Binding Protein That Stabilizes the III2+IV Supercomplex Without Affecting Respirasome Formation,” Cell Reports 16, no. 9 (2016): 2387-2398.

[99]

A. E. Frazier, D. R. Thorburn, and A. G. Compton, “Mitochondrial Energy Generation Disorders: Genes, Mechanisms, and Clues to Pathology,” Journal of Biological Chemistry 294, no. 14 (2019): 5386-5395.

[100]

A. Suomalainen, J. M. Elo, K. H. Pietilainen, et al., “FGF-21 as a Biomarker for Muscle-Manifesting Mitochondrial Respiratory Chain Deficiencies: A Diagnostic Study,” Lancet Neurology 10, no. 9 (2011): 806-818.

[101]

Y. Fujita, M. Ito, T. Kojima, S. Yatsuga, Y. Koga, and M. Tanaka, “GDF15 Is a Novel Biomarker to Evaluate Efficacy of Pyruvate Therapy for Mitochondrial Diseases,” Mitochondrion 20 (2015): 34-42.

[102]

J. Thompson Legault, L. Strittmatter, J. Tardif, et al., “A Metabolic Signature of Mitochondrial Dysfunction Revealed Through a Monogenic Form of Leigh Syndrome,” Cell Reports 13, no. 5 (2015): 981-989.

[103]

C. Veyrat-Durebex, C. Bocca, S. Chupin, et al., “Metabolomics and Lipidomics Profiling of a Combined Mitochondrial Plus Endoplasmic Reticulum Fraction of Human Fibroblasts: A Robust Tool for Clinical Studies,” Journal of Proteome Research 17, no. 1 (2018): 745-750.

[104]

P. M. Quiros, M. A. Prado, N. Zamboni, et al., “Multi-Omics Analysis Identifies ATF4 as a Key Regulator of the Mitochondrial Stress Response in Mammals,” Journal of Cell Biology 216, no. 7 (2017): 2027-2045.

[105]

A. Bachmatiuk, J. Zhao, S. M. Gorantla, et al., “Low Voltage Transmission Electron Microscopy of Graphene,” Small 12, no. 10 (2016): 1251.

[106]

P. J. Lea, R. J. Temkin, K. B. Freeman, G. A. Mitchell, and B. H. Robinson, “Variations in Mitochondrial Ultrastructure and Dynamics Observed by High Resolution Scanning Electron Microscopy (HRSEM),” Microscopy Research and Technique 27, no. 4 (1994): 269-277.

[107]

M. A. Phillips, M. Harkiolaki, D. M. Susano Pinto, et al., “CryoSIM: Super-Resolution 3D Structured Illumination Cryogenic Fluorescence Microscopy for Correlated Ultrastructural Imaging,” Optica 7, no. 7 (2020): 802-812.

[108]

V. Rybka, Y. J. Suzuki, A. S. Gavrish, V. A. Dibrova, S. G. Gychka, and N. V. Shults, “Transmission Electron Microscopy Study of Mitochondria in Aging Brain Synapses,” Antioxidants (Basel) 8, no. 6 (2019): 171.

[109]

Y. Feng, N. B. Madungwe, and J. C. Bopassa, “Mitochondrial Inner Membrane Protein, Mic60/Mitofilin in Mammalian Organ Protection,” Journal of Cellular Physiology 234, no. 4 (2019): 3383-3393.

[110]

Z. Lv, Z. Man, H. Cui, et al., “Red AIE Luminogens With Tunable Organelle Specific Anchoring for Live Cell Dynamic Super Resolution Imaging,” Advanced Functional Materials 31, no. 10 (2021): 2009329.

[111]

K. N. Wang, X. Shao, Z. Tian, et al., “A Continuous Add-On Probe Reveals the Nonlinear Enlargement of Mitochondria in Light-Activated Oncosis,” Advanced Science (Weinheim) 8, no. 17 (2021): e2004566.

[112]

Z. Ye, H. Yu, W. Yang, et al., “Strategy to Lengthen the On-Time of Photochromic Rhodamine Spirolactam for Super-Resolution Photoactivated Localization Microscopy,” Journal of the American Chemical Society 141, no. 16 (2019): 6527-6536.

[113]

Y. N. Ou, W. Xu, J. Q. Li, et al., “FDG-PET as an Independent Biomarker for Alzheimer's Biological Diagnosis: A Longitudinal Study,” Alzheimer's Research & Therapy 11, no. 1 (2019): 57.

[114]

G. Chetelat, J. Arbizu, H. Barthel, et al., “Amyloid-PET and (18)F-FDG-PET in the Diagnostic Investigation of Alzheimer's Disease and Other Dementias,” Lancet Neurology 19, no. 11 (2020): 951-962.

[115]

X. Xiang, K. Wind, T. Wiedemann, et al., “Microglial Activation States Drive Glucose Uptake and FDG-PET Alterations in Neurodegenerative Diseases,” Science Translational Medicine 13, no. 615 (2021): eabe5640.

[116]

A. C. Dupont, B. Largeau, M. J. Santiago Ribeiro, D. Guilloteau, C. Tronel, and N. Arlicot, “Translocator Protein-18 kDa (TSPO) Positron Emission Tomography (PET) Imaging and Its Clinical Impact in Neurodegenerative Diseases,” International Journal of Molecular Sciences 18, no. 4 (2017): 785.

[117]

L. Zhang, K. Hu, T. Shao, et al., “Recent Developments on PET Radiotracers for TSPO and Their Applications in Neuroimaging,” Acta Pharmaceutica Sinica B 11, no. 2 (2021): 373-393.

[118]

M. Momcilovic, A. Jones, S. T. Bailey, et al., “In Vivo Imaging of Mitochondrial Membrane Potential in Non-Small-Cell Lung Cancer,” Nature 575, no. 7782 (2019): 380-384.

[119]

L. Zheng, Z. Wang, X. Zhang, et al., “Development of Mitochondria-Targeted Small-Molecule Dyes for Myocardial PET and Fluorescence Bimodal Imaging,” Journal of Medicinal Chemistry 65, no. 1 (2022): 497-506.

[120]

H. Tsukada, PET Imaging of Mitochondrial Function in the Living Brain IntechOpen (2020), https://doi.org/10.5772/intechopen.86492.

[121]

A. Mansur, E. A. Rabiner, R. A. Comley, et al., “Characterization of 3 PET Tracers for Quantification of Mitochondrial and Synaptic Function in Healthy Human Brain: (18)F-BCPP-EF, (11)C-SA-4503, and (11)C-UCB-J,” Journal of Nuclear Medicine 61, no. 1 (2020): 96-103.

[122]

H. Tsukada, M. Kanazawa, H. Ohba, S. Nishiyama, N. Harada, and T. Kakiuchi, “PET Imaging of Mitochondrial Complex I With 18F-BCPP-EF in the Brains of MPTP-Treated Monkeys,” Journal of Nuclear Medicine 57, no. 6 (2016): 950-953.

[123]

T. Terada, J. Therriault, M. S. P. Kang, et al., “Mitochondrial Complex I Abnormalities Is Associated With Tau and Clinical Symptoms in Mild Alzheimer's Disease,” Molecular Neurodegeneration 16, no. 1 (2021): 28.

[124]

Q. Wang, Z. Sun, S. Cao, et al., “Reduced Immunity Regulator MAVS Contributes to Non-Hypertrophic Cardiac Dysfunction by Disturbing Energy Metabolism and Mitochondrial Homeostasis,” Frontiers in Immunology 13 (2022): 919038.

[125]

L. Liu, Y. Li, and Q. Chen, “The Emerging Role of FUNDC1-Mediated Mitophagy in Cardiovascular Diseases,” Frontiers in Physiology 12 (2021): 807654.

[126]

J. S. Harrington, S. W. Ryter, M. Plataki, D. R. Price, and A. M. K. Choi, “Mitochondria in Health, Disease, and Aging,” Physiological Reviews 103, no. 4 (2023): 2349-2422.

[127]

Z. Hong, K. H. Chen, A. DasGupta, et al., “MicroRNA-138 and MicroRNA-25 Down-Regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype,” American Journal of Respiratory and Critical Care Medicine 195, no. 4 (2017): 515-529.

[128]

K. P. Maremanda, I. K. Sundar, and I. Rahman, “Role of Inner Mitochondrial Protein OPA1 in Mitochondrial Dysfunction by Tobacco Smoking and in the Pathogenesis of COPD,” Redox Biology 45 (2021): 102055.

[129]

D. Wu, C. B. Spencer, L. Ortoga, H. Zhang, C. Miao, “Histone Lactylation-Regulated METTL3 Promotes Ferroptosis via m6A-Modification on ACSL4 in Sepsis-Associated Lung Injury,” Redox Biology 74 (2024): 103194.

[130]

S. Ryytty and R. H. Hamalainen, “The Mitochondrial M.3243A>G Mutation on the Dish, Lessons From In Vitro Models,” International Journal of Molecular Sciences 24, no. 17 (2023): 13478.

[131]

H. J. Hong, K. H. Joung, Y. K. Kim, et al., “Mitoribosome Insufficiency in Beta Cells Is Associated With Type 2 Diabetes-Like Islet Failure,” Experimental & Molecular Medicine 54, no. 7 (2022): 932-945.

[132]

Y. Song, Y. Zhou, and X. Zhou, “The Role of Mitophagy in Innate Immune Responses Triggered by Mitochondrial Stress,” Cell Communication and Signaling 18, no. 1 (2020): 186.

[133]

A. Suomalainen and B. J. Battersby, “Mitochondrial Diseases: The Contribution of Organelle Stress Responses to Pathology,” Nature Reviews Molecular Cell Biology 19, no. 2 (2018): 77-92.

[134]

M. P. Murphy and R. C. Hartley, “Mitochondria as a Therapeutic Target for Common Pathologies,” Nature Reviews Drug Discovery 17, no. 12 (2018): 865-886.

[135]

T. Briston and A. R. Hicks, “Mitochondrial Dysfunction and Neurodegenerative Proteinopathies: Mechanisms and Prospects for Therapeutic Intervention,” Biochemical Society Transactions 46, no. 4 (2018): 829-842.

[136]

2024 Alzheimer's Disease Facts and Figures. Alzheimers & Dementia 2024; 20(5): 3708-3821.

[137]

G. Monzio Compagnoni, A. Di Fonzo, S. Corti, G. P. Comi, N. Bresolin, and E. Masliah, “The Role of Mitochondria in Neurodegenerative Diseases: The Lesson From Alzheimer's Disease and Parkinson's Disease,” Molecular Neurobiology 57, no. 7 (2020): 2959-2980.

[138]

R. H. Swerdlow, “Mitochondria and Mitochondrial Cascades in Alzheimer's Disease,” Journal of Alzheimer's Disease 62, no. 3 (2018): 1403-1416.

[139]

D. M. A. Oliver and P. H. Reddy, “Molecular Basis of Alzheimer's Disease: Focus on Mitochondria,” Journal of Alzheimer's Disease 72, no. s1 (2019): S95-S116.

[140]

W. Wang, F. Zhao, X. Ma, G. Perry, and X. Zhu, “Mitochondria Dysfunction in the Pathogenesis of Alzheimer's Disease: Recent Advances,” Molecular Neurodegeneration 15, no. 1 (2020): 30.

[141]

D. H. Cho, T. Nakamura, J. Fang, et al., “S-Nitrosylation of Drp1 Mediates Beta-Amyloid-Related Mitochondrial Fission and Neuronal Injury,” Science 324, no. 5923 (2009): 102-105.

[142]

J. W. Lustbader, M. Cirilli, C. Lin, et al., “ABAD Directly Links Abeta to Mitochondrial Toxicity in Alzheimer's Disease,” Science 304, no. 5669 (2004): 448-452.

[143]

D. Mossmann, F. N. Vogtle, A. A. Taskin, et al., “Amyloid-Beta Peptide Induces Mitochondrial Dysfunction by Inhibition of Preprotein Maturation,” Cell Metabolism 20, no. 4 (2014): 662-669.

[144]

L. Vaillant-Beuchot, A. Mary, and R. Pardossi-Piquard, “Accumulation of Amyloid Precursor Protein C-Terminal Fragments Triggers Mitochondrial Structure, Function, and Mitophagy Defects in Alzheimer's Disease Models and Human Brains,” Acta Neuropathologica 141, no. 1 (2021): 39-65.

[145]

C. Supnet, I. Bezprozvanny, “The Dysregulation of Intracellular Calcium in Alzheimer Disease,” Cell Calcium 47, no. 2 (2010): 183-189.

[146]

Y. Hu, X. C. Li, Z. H. Wang, et al., “Tau Accumulation Impairs Mitophagy via Increasing Mitochondrial Membrane Potential and Reducing Mitochondrial Parkin,” Oncotarget 7, no. 14 (2016): 17356-17368.

[147]

Q. Liu, X. Wang, Y. Hu, et al., “Acetylated Tau Exacerbates Learning and Memory Impairment by Disturbing With Mitochondrial Homeostasis,” Redox Biology 62 (2023): 102697.

[148]

J. F. Zhang, Z. T. Fang, J. N. Zhao, et al., “Acetylated Tau Exacerbates Apoptosis by Disturbing Mitochondrial Dynamics in HEK293 Cells,” Journal of Neurochemistry 168, no. 3 (2024): 288-302.

[149]

R. H. Swerdlow, and S. M. Khan, “A “Mitochondrial Cascade Hypothesis” for Sporadic Alzheimer's Disease,” Medical Hypotheses 63, no. 1 (2004): 8-20.

[150]

X. Zhu, G. Perry, M. A. Smith, and X. Wang, “Abnormal Mitochondrial Dynamics in the Pathogenesis of Alzheimer's Disease,” Journal of Alzheimer's Disease 33, suppl 1, no. 01 (2013): S253-S262.

[151]

P. Mishra and D. C. Chan, “Mitochondrial Dynamics and Inheritance During Cell Division, Development and Disease,” Nature Reviews Molecular Cell Biology 15, no. 10 (2014): 634-646.

[152]

E. K. Pickett, J. Rose, C. McCrory, et al., “Region-Specific Depletion of Synaptic Mitochondria in the Brains of Patients With Alzheimer's Disease,” Acta Neuropathologica 136, no. 5 (2018): 747-757.

[153]

A. C. Rice, P. M. Keeney, N. K. Algarzae, A. C. Ladd, R. R. Thomas, and J. P. Bennett, “Mitochondrial DNA Copy Numbers in Pyramidal Neurons Are Decreased and Mitochondrial Biogenesis Transcriptome Signaling Is Disrupted in Alzheimer's Disease Hippocampi,” Journal of Alzheimer's Disease 40, no. 2 (2014): 319-330.

[154]

Y. Liu and X. Zhu, “Endoplasmic Reticulum-Mitochondria Tethering in Neurodegenerative Diseases,” Translational Neurodegeneration 6 (2017): 21.

[155]

K. Volgyi, K. Badics, F. J. Sialana, et al., “Early Presymptomatic Changes in the Proteome of Mitochondria-Associated Membrane in the APP/PS1 Mouse Model of Alzheimer's Disease,” Molecular Neurobiology 55, no. 10 (2018): 7839-7857.

[156]

E. F. Fang, Y. Hou, K. Palikaras, et al., “Mitophagy Inhibits Amyloid-Beta and Tau Pathology and Reverses Cognitive Deficits in Models of Alzheimer's Disease,” Nature Neuroscience 22, no. 3 (2019): 401-412.

[157]

J. A. Pradeepkiran and P. H. Reddy, “Defective Mitophagy in Alzheimer's Disease,” Ageing Research Reviews 64 (2020): 101191.

[158]

R. Sultana and D. A. Butterfield, “Oxidatively Modified, Mitochondria-Relevant Brain Proteins in Subjects With Alzheimer Disease and Mild Cognitive Impairment,” Journal of Bioenergetics and Biomembranes 41, no. 5 (2009): 441-446.

[159]

V. Sorrentino, M. Romani, L. Mouchiroud, et al., “Enhancing Mitochondrial Proteostasis Reduces Amyloid-Beta Proteotoxicity,” Nature 552, no. 7684 (2017): 187-193.

[160]

C. Chen, X. Jiang, Y. Li, et al., “Low-Dose Oral Copper Treatment Changes the Hippocampal Phosphoproteomic Profile and Perturbs Mitochondrial Function in a Mouse Model of Alzheimer's Disease,” Free Radical Biology and Medicine 135 (2019): 144-156.

[161]

X. Wang, Q. Liu, H. T. Yu, et al., “A Positive Feedback Inhibition of Isocitrate Dehydrogenase 3Beta on Paired-Box Gene 6 Promotes Alzheimer-Like Pathology,” Signal Transduction and Targeted Therapy 9, no. 1 (2024): 105.

[162]

A. Carreras-Sureda, G. Kroemer, J. C. Cardenas, and C. Hetz, “Balancing Energy and Protein Homeostasis at ER-Mitochondria Contact Sites,” Science Signaling 15, no. 741 (2022): eabm7524.

[163]

N. Exner, A. K. Lutz, C. Haass, and K. F. Winklhofer, “Mitochondrial Dysfunction in Parkinson's Disease: Molecular Mechanisms and Pathophysiological Consequences,” EMBO Journal 31, no. 14 (2012): 3038-3062.

[164]

A. H. Schapira, J. M. Cooper, D. Dexter, P. Jenner, J. B. Clark, and C. D. Marsden, “Mitochondrial Complex I Deficiency in Parkinson's Disease,” Lancet 1, no. 8649 (1989): 1269.

[165]

H. E. Moon and S. H. Paek, “Mitochondrial Dysfunction in Parkinson's Disease,” Experimental Neurobiology 24, no. 2 (2015): 103-116.

[166]

A. Bender, K. J. Krishnan, C. M. Morris, et al., “High Levels of Mitochondrial DNA Deletions in Substantia Nigra Neurons in Aging and Parkinson Disease,” Nature Genetics 38, no. 5 (2006): 515-517.

[167]

M. Borsche, S. L. Pereira, C. Klein, and A. Grunewald, “Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects,” Journal of Parkinson's Disease 11, no. 1 (2021): 45-60.

[168]

M. C. Chartier-Harlin, J. Kachergus, C. Roumier, et al., “Alpha-Synuclein Locus Duplication as a Cause of Familial Parkinson's Disease,” Lancet 364, no. 9440 (2004): 1167-1169.

[169]

N. Cremades, S. I. Cohen, E. Deas, et al., “Direct Observation of the Interconversion of Normal and Toxic Forms of Alpha-Synuclein,” Cell 149, no. 5 (2012): 1048-1059.

[170]

M. H. R. Ludtmann, P. R. Angelova, M. H. Horrocks, et al., “Alpha-Synuclein Oligomers Interact With ATP Synthase and Open the Permeability Transition Pore in Parkinson's Disease,” Nature Communications 9, no. 1 (2018): 2293.

[171]

R. Di Maio, P. J. Barrett, E. K. Hoffman, et al., “Alpha-Synuclein Binds to TOM20 and Inhibits Mitochondrial Protein Import in Parkinson's Disease,” Science Translational Medicine 8, no. 342 (2016): 342ra78.

[172]

D. Jacobs, D. P. Hoogerheide, A. Rovini, et al., “Probing Membrane Association of Alpha-Synuclein Domains With VDAC Nanopore Reveals Unexpected Binding Pattern,” Scientific Reports 9, no. 1 (2019): 4580.

[173]

H. W. Kim, W. S. Choi, N. Sorscher, et al., “Genetic Reduction of Mitochondrial Complex I Function Does Not Lead to Loss of Dopamine Neurons In Vivo,” Neurobiology of Aging 36, no. 9 (2015): 2617-2627.

[174]

P. Gonzalez-Rodriguez, E. Zampese, K. A. Stout, et al., “Disruption of Mitochondrial Complex I Induces Progressive Parkinsonism,” Nature 599, no. 7886 (2021): 650-656.

[175]

Y. Zhou, Y. Liu, Z. Kang, et al., “CircEPS15, as a Sponge of MIR24-3p Ameliorates Neuronal Damage in Parkinson Disease Through Boosting PINK1-PRKN-Mediated Mitophagy,” Autophagy 19, no. 9 (2023): 2520-2537.

[176]

K. E. Zeuner, E. Schaffer, F. Hopfner, N. Bruggemann, and D. Berg, “Progress of Pharmacological Approaches in Parkinson's Disease,” Clinical Pharmacology & Therapeutics 105, no. 5 (2019): 1106-1120.

[177]

E. O. Talbott, A. M. Malek, and D. Lacomis, “The Epidemiology of Amyotrophic Lateral Sclerosis,” Handbook of Clinical Neurology 138 (2016): 225-238.

[178]

A. Wood, Y. Gurfinkel, N. Polain, W. Lamont, and S. Lyn Rea, “Molecular Mechanisms Underlying TDP-43 Pathology in Cellular and Animal Models of ALS and FTLD,” International Journal of Molecular Sciences 22, no. 9 (2021): 4705.

[179]

X. Zuo, J. Zhou, Y. Li, et al., “TDP-43 Aggregation Induced by Oxidative Stress Causes Global Mitochondrial Imbalance in ALS,” Nature Structural & Molecular Biology 28, no. 2 (2021): 132-142.

[180]

S. Watanabe, Y. Murata, Y. Oka, et al., “Mitochondria-Associated Membrane Collapse Impairs TBK1-Mediated Proteostatic Stress Response in ALS,” PNAS 120, no. 47 (2023): e2315347120.

[181]

H. P. Nguyen, C. Van Broeckhoven, and J. van der Zee, “ALS Genes in the Genomic Era and Their Implications for FTD,” Trends in Genetics 34, no. 6 (2018): 404-423.

[182]

T. Wang, H. Liu, K. Itoh, et al., “C9orf72 Regulates Energy Homeostasis by Stabilizing Mitochondrial Complex I Assembly,” Cell Metabolism 33, no. 3 (2021): 531-546.e9.

[183]

R. Dafinca, P. Barbagallo, and K. Talbot, “The Role of Mitochondrial Dysfunction and ER Stress in TDP-43 and C9ORF72 ALS,” Frontiers in Cellular Neuroscience 15 (2021): 653688.

[184]

T. M. Miller, A. Pestronk, W. David, et al., “An Antisense Oligonucleotide Against SOD1 Delivered Intrathecally for Patients With SOD1 Familial Amyotrophic Lateral Sclerosis: A Phase 1, Randomised, First-in-Man Study,” Lancet Neurology 12, no. 5 (2013): 435-442.

[185]

Y. Liu, A. Andreucci, N. Iwamoto, et al., “Preclinical Evaluation of WVE-004, Aninvestigational Stereopure Oligonucleotide for the Treatment of C9orf72-Associated ALS or FTD,” Molecular Therapy Nucleic Acids 28 (2022): 558-570.

[186]

M. Herrando-Grabulosa, N. Gaja-Capdevila, J. M. Vela, and X. Navarro, “Sigma 1 Receptor as a Therapeutic Target for Amyotrophic Lateral Sclerosis,” British Journal of Pharmacology 178, no. 6 (2021): 1336-1352.

[187]

S. J. Tabrizi, M. D. Flower, C. A. Ross, and E. J. Wild, “Huntington Disease: New Insights Into Molecular Pathogenesis and Therapeutic Opportunities,” Nature Reviews Neurology 16, no. 10 (2020): 529-546.

[188]

M. Jimenez-Sanchez, F. Licitra, B. R. Underwood, and D. C. Rubinsztein, “Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies,” Cold Spring Harbor Perspectives in Medicine 7, no. 7 (2017): a024240.

[189]

J. Kim, J. P. Moody, C. K. Edgerly, et al., “Mitochondrial Loss, Dysfunction and Altered Dynamics in Huntington's Disease,” Human Molecular Genetics 19, no. 20 (2010): 3919-3935.

[190]

P. H. Reddy, “Increased Mitochondrial Fission and Neuronal Dysfunction in Huntington's Disease: Implications for Molecular Inhibitors of Excessive Mitochondrial Fission,” Drug Discovery Today 19, no. 7 (2014): 951-955.

[191]

X. Guo, X. Sun, D. Hu, et al., “VCP Recruitment to Mitochondria Causes Mitophagy Impairment and Neurodegeneration in Models of Huntington's Disease,” Nature Communications 7 (2016): 12646.

[192]

X. Guo, H. Sesaki, and X. Qi, “Drp1 Stabilizes p53 on the Mitochondria to Trigger Necrosis Under Oxidative Stress Conditions In Vitro and In Vivo,” Biochemical Journal 461, no. 1 (2014): 137-146.

[193]

T. A. Strope and H. M. Wilkins, “Amyloid Precursor Protein and Mitochondria,” Current Opinion in Neurobiology 78 (2023): 102651.

[194]

J. Han, H. Park, C. Maharana, et al., “Alzheimer's Disease-Causing Presenilin-1 Mutations Have Deleterious Effects on Mitochondrial Function,” Theranostics 11, no. 18 (2021): 8855-8873.

[195]

H. Jiang, S. M. Pederson, M. Newman, Y. Dong, K. Barthelson, and M. Lardelli, “Transcriptome Analysis Indicates Dominant Effects on Ribosome and Mitochondrial Function of a Premature Termination Codon Mutation in the Zebrafish Gene psen2,” PLoS ONE 15, no. 7 (2020): e0232559.

[196]

M. Pires and A. C. Rego, “Apoe4 and Alzheimer's Disease Pathogenesis-Mitochondrial Deregulation and Targeted Therapeutic Strategies,” International Journal of Molecular Sciences 24, no. 1 (2023): 778.

[197]

C. C. Lin, J. Yan, M. D. Kapur, et al., “Parkin Coordinates Mitochondrial Lipid Remodeling to Execute Mitophagy,” EMBO Reports 23, no. 12 (2022): e55191.

[198]

A. Karimi-Moghadam, S. Charsouei, B. Bell, and M. R. Jabalameli, “Parkinson Disease From Mendelian Forms to Genetic Susceptibility: New Molecular Insights Into the Neurodegeneration Process,” Cellular and Molecular Neurobiology 38, no. 6 (2018): 1153-1178.

[199]

L. Devi, V. Raghavendran, B. M. Prabhu, N. G. Avadhani, and H. K. Anandatheerthavarada, “Mitochondrial Import and Accumulation of Alpha-Synuclein Impair Complex I in Human Dopaminergic Neuronal Cultures and Parkinson Disease Brain,” Journal of Biological Chemistry 283, no. 14 (2008): 9089-9100.

[200]

A. B. Malpartida, M. Williamson, D. P. Narendra, R. Wade-Martins, and B. J. Ryan, “Mitochondrial Dysfunction and Mitophagy in Parkinson's Disease: From Mechanism to Therapy,” Trends in Biochemical Sciences 46, no. 4 (2021): 329-343.

[201]

D. Imberechts, I. Kinnart, F. Wauters, et al., “DJ-1 Is an Essential Downstream Mediator in PINK1/Parkin-Dependent Mitophagy,” Brain 145, no. 12 (2022): 4368-4384.

[202]

Z. D. Zhou, J. C. T. Lee, and E. K. Tan, “Pathophysiological Mechanisms Linking F-Box Only Protein 7 (FBXO7) and Parkinson's Disease (PD),” Mutation Research-Reviews in Mutation Research 778 (2018): 72-78.

[203]

W. Zhou, D. Ma, A. X. Sun, et al., “PD-Linked CHCHD2 Mutations Impair CHCHD10 and MICOS Complex Leading to Mitochondria Dysfunction,” Human Molecular Genetics 28, no. 7 (2019): 1100-1116.

[204]

S. Lesage, V. Drouet, E. Majounie, et al., “Loss of VPS13C Function in Autosomal-Recessive Parkinsonism Causes Mitochondrial Dysfunction and Increases PINK1/Parkin-Dependent Mitophagy,” American Journal of Human Genetics 98, no. 3 (2016): 500-513.

[205]

A. Bouron, L. Aubry, D. Loreth, M. O. Fauvarque, and C. Meyer-Schwesinger, “Role of the Deubiquitinating Enzyme UCH-L1 in Mitochondrial Function,” Frontiers in Cellular Neuroscience 17 (2023): 1149954.

[206]

T. F. Outeiro, K. Harvey, A. Dominguez-Meijide, and E. Gerhardt, “LRRK2, Alpha-Synuclein, and Tau: Partners in Crime or Unfortunate Bystanders?,” Biochemical Society Transactions 47, no. 3 (2019): 827-838.

[207]

M. K. Nam, Y. Seong, G. H. Jeong, S. A. Yoo, and H. Rhim, “HtrA2 Regulates Alpha-Synuclein-Mediated Mitochondrial Reactive Oxygen Species Production in the Mitochondria of Microglia,” Biochemical and Biophysical Research Communications 638 (2023): 84-93.

[208]

M. Zaman and T. E. Shutt, “The Role of Impaired Mitochondrial Dynamics in MFN2-Mediated Pathology,” Frontiers in Cell and Developmental Biology 10 (2022): 858286.

[209]

Y. Guo, T. Guan, Q. Yu, et al., “ALS-Linked SOD1 Mutations Impair Mitochondrial-Derived Vesicle Formation and Accelerate Aging,” Redox Biology 69 (2024): 102972.

[210]

Y. J. Tak, J. H. Park, H. Rhim, and S. Kang, “ALS-Related Mutant SOD1 Aggregates Interfere With Mitophagy by Sequestering the Autophagy Receptor Optineurin,” International Journal of Molecular Sciences 21, no. 20 (2020): 7525.

[211]

E. Onesto, C. Colombrita, V. Gumina, et al., “Gene-Specific Mitochondria Dysfunctions in Human TARDBP and C9ORF72 Fibroblasts,” Acta Neuropathologica Communications 4, no. 1 (2016): 47.

[212]

R. Stoica, K. J. De Vos, S. Paillusson, et al., “ER-Mitochondria Associations Are Regulated by the VAPB-PTPIP51 Interaction and Are Disrupted by ALS/FTD-Associated TDP-43,” Nature Communications 5 (2014): 3996.

[213]

R. Stoica, S. Paillusson, P. Gomez-Suaga, et al., “ALS/FTD-Associated FUS Activates GSK-3beta to Disrupt the VAPB-PTPIP51 Interaction and ER-Mitochondria Associations,” EMBO Reports 17, no. 9 (2016): 1326-1342.

[214]

M. Gautam, J. H. Jara, G. Sekerkova, M. V. Yasvoina, M. Martina, and P. H. Ozdinler, “Absence of Alsin Function Leads to Corticospinal Motor Neuron Vulnerability via Novel Disease Mechanisms,” Human Molecular Genetics 25, no. 6 (2016): 1074-1087.

[215]

H. C. Wong, A. E. Lang, C. Stein, and C. M. Drerup, “ALS-Linked VapB P56S Mutation Alters Neuronal Mitochondrial Turnover at the Synapse,” Journal of Neuroscience 44, no. 35 (2024): e0879242024.

[216]

N. Bernard-Marissal, J. J. Medard, H. Azzedine, and R. Chrast, “Dysfunction in Endoplasmic Reticulum-Mitochondria Crosstalk Underlies SIGMAR1 Loss of Function Mediated Motor Neuron Degeneration,” Brain 138, no. pt 4 (2015): 875-890.

[217]

M. L. Seibenhener, Y. Du, M. T. Diaz-Meco, J. Moscat, M. C. Wooten, and M. W. Wooten, “A Role for Sequestosome 1/p62 in Mitochondrial Dynamics, Import and Genome Integrity,” Biochimica et Biophysica Acta 1833, no. 3 (2013): 452-459.

[218]

J. Schulz, D. Avci, M. A. Queisser, et al., “Conserved Cytoplasmic Domains Promote Hrd1 Ubiquitin Ligase Complex Formation for ER-Associated Degradation (ERAD),” Journal of Cell Science 130, no. 19 (2017): 3322-3335.

[219]

I. R. Straub, A. Janer, W. Weraarpachai, et al., “Loss of CHCHD10-CHCHD2 Complexes Required for Respiration Underlies the Pathogenicity of a CHCHD10 Mutation in ALS,” Human Molecular Genetics 27, no. 1 (2018): 178-189.

[220]

S. Franco-Iborra, A. Plaza-Zabala, M. Montpeyo, D. Sebastian, M. Vila, and M. Martinez-Vicente, “Mutant HTT (Huntingtin) Impairs Mitophagy in a Cellular Model of Huntington Disease,” Autophagy 17, no. 3 (2021): 672-689.

[221]

L. Korn, A. M. Speicher, C. B. Schroeter, et al., “MAPT Genotype-Dependent Mitochondrial Aberration and ROS Production Trigger Dysfunction and Death in Cortical Neurons of Patients With Hereditary FTLD,” Redox Biology 59 (2023): 102597.

[222]

G. Rodriguez-Perinan, A. de la Encarnacion, F. Moreno, et al., “Progranulin Deficiency Induces Mitochondrial Dysfunction in Frontotemporal Lobar Degeneration With TDP-43 Inclusions,” Antioxidants (Basel) 12, no. 3 (2023): 581.

[223]

P. Yu-Wai-Man, P. G. Griffiths, G. S. Gorman, et al., “Multi-System Neurological Disease Is Common in Patients With OPA1 Mutations,” Brain 133, no. pt 3 (2010): 771-786.

[224]

S. Rahman and W. C. Copeland, “POLG-Related Disorders and Their Neurological Manifestations,” Nature Reviews Neurology 15, no. 1 (2019): 40-52.

[225]

E. Gnimpieba, D. M. Diing, J. Ailts, et al., “Mapping Novel Frataxin Mitochondrial Networks Through Protein-Protein Interactions,” preprint, Research Square, April 26, 2024, https://doi.org/10.21203/rs.3.rs-4259413/v1.

[226]

N. Pourshafie, E. Masati, E. Bunker, et al., “Linking Epigenetic Dysregulation, Mitochondrial Impairment, and Metabolic Dysfunction in SBMA Motor Neurons,” JCI Insight 5, no. 13 (2020): e136539.

[227]

P. Zanfardino, A. Amati, M. Perrone, and V. Petruzzella, “The Balance of MFN2 and OPA1 in Mitochondrial Dynamics, Cellular Homeostasis, and Disease,” Biomolecules 15, no. 3 (2025): 433.

[228]

M. M. Rahman, M. A. A. Tumpa, M. S. Rahaman, et al., “Emerging Promise of Therapeutic Approaches Targeting Mitochondria in Neurodegenerative Disorders,” Current Neuropharmacology 21, no. 5 (2023): 1081-1099.

[229]

A. K. Camara, E. J. Lesnefsky, and D. F. Stowe, “Potential Therapeutic Benefits of Strategies Directed to Mitochondria,” Antioxidants & Redox Signaling 13, no. 3 (2010): 279-347.

[230]

G. Cohen and N. Kesler, “Monoamine Oxidase and Mitochondrial Respiration,” Journal of Neurochemistry 73, no. 6 (1999): 2310-2315.

[231]

G. Cohen and N. Kesler, “Monoamine Oxidase Inhibits Mitochondrial Respiration,” Annals of the New York Academy of Sciences 893 (1999): 273-278.

[232]

M. Baumgart, S. Priebe, M. Groth, et al., “Longitudinal RNA-Seq Analysis of Vertebrate Aging Identifies Mitochondrial Complex I as a Small-Molecule-Sensitive Modifier of Lifespan,” Cell Systems 2, no. 2 (2016): 122-132.

[233]

D. Hu, F. Xie, Y. Xiao, et al., “Metformin: A Potential Candidate for Targeting Aging Mechanisms,” Aging and Disease 12, no. 2 (2021): 480-493.

[234]

J. A. Luchsinger, T. Perez, H. Chang, et al., “Metformin in Amnestic Mild Cognitive Impairment: Results of a Pilot Randomized Placebo Controlled Clinical Trial,” Journal of Alzheimer's Disease 51, no. 2 (2016): 501-514.

[235]

E. Tellone, A. Galtieri, A. Russo, B. Giardina, and S. Ficarra, “Resveratrol: A Focus on Several Neurodegenerative Diseases,” Oxidative Medicine and Cellular Longevity 2015 (2015): 392169.

[236]

S. Bastianetto, C. Menard, and R. Quirion, “Neuroprotective Action of Resveratrol,” Biochimica et Biophysica Acta 1852, no. 6 (2015): 1195-1201.

[237]

E. Trushina, S. Trushin, and M. F. Hasan, “Mitochondrial Complex I as a Therapeutic Target for Alzheimer's Disease,” Acta Pharmaceutica Sinica B 12, no. 2 (2022): 483-495.

[238]

C. Chen, P. Liu, J. Wang, et al., “Dauricine Attenuates Spatial Memory Impairment and Alzheimer-Like Pathologies by Enhancing Mitochondrial Function in a Mouse Model of Alzheimer's Disease,” Frontiers in Cell and Developmental Biology 8 (2020): 624339.

[239]

X. Li, C. Chen, X. Zhan, et al., “R13 Preserves Motor Performance in SOD1(G93A) Mice by Improving Mitochondrial Function,” Theranostics 11, no. 15 (2021): 7294-7307.

[240]

E. Tjahjono, D. R. Kirienko, and N. V. Kirienko, “The Emergent Role of Mitochondrial Surveillance in Cellular Health,” Aging Cell 21, no. 11 (2022): e13710.

[241]

L. F. Ng, J. Gruber, I. K. Cheah, et al., “The Mitochondria-Targeted Antioxidant MitoQ Extends Lifespan and Improves Healthspan of a Transgenic Caenorhabditis elegans Model of Alzheimer Disease,” Free Radical Biology and Medicine 71 (2014): 390-401.

[242]

E. A. Rudnitskaya, A. O. Burnyasheva, T. A. Kozlova, D. A. Peunov, N. G. Kolosova, and N. A. Stefanova, “Changes in Glial Support of the Hippocampus During the Development of an Alzheimer's Disease-Like Pathology and Their Correction by Mitochondria-Targeted Antioxidant SkQ1,” International Journal of Molecular Sciences 23, no. 3 (2022): 1134.

[243]

X. W. Ding, M. Robinson, R. Li, H. Aldhowayan, T. Geetha, and J. R. Babu, “Mitochondrial Dysfunction and Beneficial Effects of Mitochondria-Targeted Small Peptide SS-31 in Diabetes Mellitus and Alzheimer's Disease,” Pharmacological Research 171 (2021): 105783.

[244]

R. M. Whitaker, D. Corum, C. C. Beeson, and R. G. Schnellmann, “Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases,” Annual Review of Pharmacology and Toxicology 56 (2016): 229-249.

[245]

P. J. Fernandez-Marcos and J. Auwerx, “Regulation of PGC-1Alpha, a Nodal Regulator of Mitochondrial Biogenesis,” American Journal of Clinical Nutrition 93, no. 4 (2011): 884S-890S.

[246]

A. P. Gureev, E. A. Shaforostova, and V. N. Popov, “Regulation of Mitochondrial Biogenesis as a Way for Active Longevity: Interaction between the Nrf2 and PGC-1Alpha Signaling Pathways,” Frontiers in Genetics 10 (2019): 435.

[247]

C. A. Piantadosi and H. B. Suliman, “Redox Regulation of Mitochondrial Biogenesis,” Free Radical Biology and Medicine 53, no. 11 (2012): 2043-2053.

[248]

M. S. Ur Rasheed, M. K. Tripathi, A. K. Mishra, S. Shukla, and M. P. Singh, “Resveratrol Protects From Toxin-Induced Parkinsonism: Plethora of Proofs Hitherto Petty Translational Value,” Molecular Neurobiology 53, no. 5 (2016): 2751-2760.

[249]

X. Zhang, L. Du, W. Zhang, Y. Yang, Q. Zhou, and G. Du, “Therapeutic Effects of Baicalein on Rotenone-Induced Parkinson's Disease Through Protecting Mitochondrial Function and Biogenesis,” Scientific Reports 7, no. 1 (2017): 9968.

[250]

M. Yamanaka, T. Ishikawa, A. Griep, D. Axt, M. P. Kummer, and M. T. Heneka, “PPARgamma/RXRalpha-Induced and CD36-Mediated Microglial Amyloid-Beta Phagocytosis Results in Cognitive Improvement in Amyloid Precursor Protein/Presenilin 1 Mice,” Journal of Neuroscience 32, no. 48 (2012): 17321-17331.

[251]

M. C. Chiang, Y. C. Cheng, C. J. Nicol, et al., “Rosiglitazone Activation of PPARGamma-Dependent Signaling Is Neuroprotective in Mutant Huntingtin Expressing Cells,” Experimental Cell Research 338, no. 2 (2015): 183-193.

[252]

M. Kiaei, K. Kipiani, J. Chen, N. Y. Calingasan, and M. F. Beal, “Peroxisome Proliferator-Activated Receptor-Gamma Agonist Extends Survival in Transgenic Mouse Model of Amyotrophic Lateral Sclerosis,” Experimental Neurology 191, no. 2 (2005): 331-336.

[253]

W. Chen, H. Zhao, and Y. Li, “Mitochondrial Dynamics in Health and Disease: Mechanisms and Potential Targets,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 333.

[254]

P. Mishra and D. C. Chan, “Metabolic Regulation of Mitochondrial Dynamics,” Journal of Cell Biology 212, no. 4 (2016): 379-387.

[255]

W. Wang, J. Yin, X. Ma, et al., “Inhibition of Mitochondrial Fragmentation Protects Against Alzheimer's Disease in Rodent Model,” Human Molecular Genetics 26, no. 21 (2017): 4118-4131.

[256]

A. U. Joshi, N. L. Saw, M. Shamloo, and D. Mochly-Rosen, “Drp1/Fis1 Interaction Mediates Mitochondrial Dysfunction, Bioenergetic Failure and Cognitive Decline in Alzheimer's Disease,” Oncotarget 9, no. 5 (2018): 6128-6143.

[257]

X. Qi, N. Qvit, Y. C. Su, and D. Mochly-Rosen, “A Novel Drp1 Inhibitor Diminishes Aberrant Mitochondrial Fission and Neurotoxicity,” Journal of Cell Science 126, no. pt 3 (2013): 789-802.

[258]

X. Guo, M. H. Disatnik, M. Monbureau, M. Shamloo, D. Mochly-Rosen, and X. Qi, “Inhibition of Mitochondrial Fragmentation Diminishes Huntington's Disease-Associated Neurodegeneration,” Journal of Clinical Investigation 123, no. 12 (2013): 5371-5388.

[259]

A. U. Joshi, N. L. Saw, H. Vogel, A. D. Cunnigham, M. Shamloo, and D. Mochly-Rosen, “Inhibition of Drp1/Fis1 Interaction Slows Progression of Amyotrophic Lateral Sclerosis,” EMBO Molecular Medicine 10, no. 3 (2018): e8166.

[260]

Q. Cai and Y. Y. Jeong, “Mitophagy in Alzheimer's Disease and Other Age-Related Neurodegenerative Diseases,” Cells 9, no. 1 (2020): 150.

[261]

E. H. Clark, A. Vazquez de la Torre, T. Hoshikawa, and T. Briston, “Targeting Mitophagy in Parkinson's Disease,” Journal of Biological Chemistry 296 (2021): 100209.

[262]

M. Redmann, M. Dodson, M. Boyer-Guittaut, V. Darley-Usmar, and J. Zhang, “Mitophagy Mechanisms and Role in Human Diseases,” International Journal of Biochemistry & Cell Biology 53 (2014): 127-133.

[263]

Y. Wang, N. Liu, and B. Lu, “Mechanisms and Roles of Mitophagy in Neurodegenerative Diseases,” CNS Neuroscience & Therapeutics 25, no. 7 (2019): 859-875.

[264]

C. Rodolfo, S. Campello, and F. Cecconi, “Mitophagy in Neurodegenerative Diseases,” Neurochemistry International 117 (2018): 156-166.

[265]

X. Cen, Y. Chen, X. Xu, et al., “Pharmacological Targeting of MCL-1 Promotes Mitophagy and Improves Disease Pathologies in an Alzheimer's Disease Mouse Model,” Nature Communications 11, no. 1 (2020): 5731.

[266]

C. Chen, C. Yang, J. Wang, et al., “Melatonin Ameliorates Cognitive Deficits Through Improving Mitophagy in a Mouse Model of Alzheimer's Disease,” Journal of Pineal Research 71, no. 4 (2021): e12774.

[267]

L. Zhang, L. Dai, and D. Li, “Mitophagy in Neurological Disorders,” Journal of Neuroinflammation 18, no. 1 (2021): 297.

[268]

S. Mani, G. Swargiary, and R. Chadha, “Mitophagy Impairment in Neurodegenerative Diseases: Pathogenesis and Therapeutic Interventions,” Mitochondrion 57 (2021): 270-293.

[269]

E. V. Rusilowicz-Jones, J. Jardine, A. Kallinos, et al., “USP30 Sets a Trigger Threshold for PINK1-PARKIN Amplification of Mitochondrial Ubiquitylation,” Life Science Alliance 3, no. 8 (2020): e202000768.

[270]

H. Luo, J. Krigman, R. Zhang, M. Yang, and N. Sun, “Pharmacological Inhibition of USP30 Activates Tissue-Specific Mitophagy,” Acta Physiologica (Oxford) 232, no. 3 (2021): e13666.

[271]

Y. Liu, T. B. Lear, M. Verma, et al., “Chemical Inhibition of FBXO7 Reduces Inflammation and Confers Neuroprotection by Stabilizing the Mitochondrial Kinase PINK1,” JCI Insight 5, no. 11 (2020): e131834.

[272]

D. Takahashi, J. Moriyama, T. Nakamura, et al., “AUTACs: Cargo-Specific Degraders Using Selective Autophagy,” Molecular Cell 76, no. 5 (2019): 797-810.e10.

[273]

S. Tan, D. Wang, Y. Fu, H. Zheng, Y. Liu, and B. Lu, “Targeted Clearance of Mitochondria by an Autophagy-Tethering Compound (ATTEC) and Its Potential Therapeutic Effects,” Science Bulletin 68, no. 23 (2023): 3013-3026.

[274]

H. Katayama, H. Hama, K. Nagasawa, et al., “Visualizing and Modulating Mitophagy for Therapeutic Studies of Neurodegeneration,” Cell 181, no. 5 (2020): 1176-1187.e16.

[275]

C. J. Choong, and H. Mochizuki, “Involvement of Mitochondria in Parkinson's Disease,” International Journal of Molecular Sciences 24, no. 23 (2023): 17027.

[276]

H. Eo, S. H. Yu, Y. Choi, et al., “Mitochondrial Transplantation Exhibits Neuroprotective Effects and Improves Behavioral Deficits in an Animal Model of Parkinson's Disease,” Neurotherapeutics 21, no. 4 (2024): e00355.

[277]

M. Cao, J. Zou, M. Shi, et al., “A Promising Therapeutic: Exosome-Mediated Mitochondrial Transplantation,” International Immunopharmacology 142, no. pt A (2024): 113104.

[278]

B. J. Snow, F. L. Rolfe, M. M. Lockhart, et al., “A Double-Blind, Placebo-Controlled Study to Assess the Mitochondria-Targeted Antioxidant MitoQ as a Disease-Modifying Therapy in Parkinson's Disease,” Movement Disorders 25, no. 11 (2010): 1670-1674.

[279]

P. A. Gammage, J. Rorbach, A. I. Vincent, E. J. Rebar, and M. Minczuk, “Mitochondrially Targeted ZFNs for Selective Degradation of Pathogenic Mitochondrial Genomes Bearing Large-Scale Deletions or Point Mutations,” EMBO Molecular Medicine 6, no. 4 (2014): 458-466.

[280]

Y. Yang, H. Wu, X. Kang, et al., “Targeted Elimination of Mutant Mitochondrial DNA in MELAS-iPSCs by mitoTALENs,” Protein Cell 9, no. 3 (2018): 283-297.

[281]

W. P. Bian, Y. L. Chen, J. J. Luo, C. Wang, S. L. Xie, and D. S. Pei, “Knock-In Strategy for Editing Human and Zebrafish Mitochondrial DNA Using Mito-CRISPR/Cas9 System,” ACS Synthetic Biology 8, no. 4 (2019): 621-632.

[282]

B. Y. Mok, M. H. de Moraes, J. Zeng, et al., “A Bacterial Cytidine Deaminase Toxin Enables CRISPR-Free Mitochondrial Base Editing,” Nature 583, no. 7817 (2020): 631-637.

[283]

E. Kawamura, M. Hibino, H. Harashima, and Y. Yamada, “Targeted Mitochondrial Delivery of Antisense RNA-Containing Nanoparticles by a MITO-Porter for Safe and Efficient Mitochondrial Gene Silencing,” Mitochondrion 49 (2019): 178-188.

[284]

F. Soldner, J. Laganiere, A. W. Cheng, et al., “Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations,” Cell 146, no. 2 (2011): 318-331.

[285]

M. C. An, N. Zhang, G. Scott, et al., “Genetic Correction of Huntington's Disease Phenotypes in Induced Pluripotent Stem Cells,” Cell Stem Cell 11, no. 2 (2012): 253-263.

[286]

N. Merienne, G. Vachey, L. de Longprez, et al., “The Self-Inactivating KamiCas9 System for the Editing of CNS Disease Genes,” Cell Reports 20, no. 12 (2017): 2980-2991.

[287]

J. Lopez, M. Bessou, J. S. Riley, et al., “Mito-Priming as a Method to Engineer Bcl-2 Addiction,” Nature Communications 7 (2016): 10538.

[288]

M. Hellman, U. Arumae, L. Y. Yu, et al., “Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Has a Unique Mechanism to Rescue Apoptotic Neurons,” Journal of Biological Chemistry 286, no. 4 (2011): 2675-2680.

[289]

X. Hu, Q. Song, X. Li, et al., “Neuroprotective Effects of Kukoamine A on Neurotoxin-Induced Parkinson's Model Through Apoptosis Inhibition and Autophagy Enhancement,” Neuropharmacology 117 (2017): 352-363.

[290]

T. P. Garner, D. Amgalan, D. E. Reyna, S. Li, R. N. Kitsis, and E. Gavathiotis, “Small-Molecule Allosteric Inhibitors of BAX,” Nature Chemical Biology 15, no. 4 (2019): 322-330.

[291]

A. Shteinfer-Kuzmine, S. Argueti, R. Gupta, et al., “A VDAC1-Derived N-Terminal Peptide Inhibits Mutant SOD1-VDAC1 Interactions and Toxicity in the SOD1 Model of ALS,” Frontiers in Cellular Neuroscience 13 (2019): 346.

[292]

K. Amarsanaa, H. J. Kim, E. A. Ko, J. Jo, and S. C. Jung, “Nobiletin Exhibits Neuroprotective Effects Against Mitochondrial Complex I Inhibition via Regulating Apoptotic Signaling,” Experimental Neurobiology 30, no. 1 (2021): 73-86.

[293]

M. Kumar and R. Sandhir, “Hydrogen Sulfide Attenuates Hyperhomocysteinemia-Induced Mitochondrial Dysfunctions in Brain,” Mitochondrion 50 (2020): 158-169.

[294]

X. Jiang, L. Li, Z. Ying, et al., “A Small Molecule That Protects the Integrity of the Electron Transfer Chain Blocks the Mitochondrial Apoptotic Pathway,” Molecular Cell 63, no. 2 (2016): 229-239.

[295]

A. Kam, S. Loo, B. Dutta, S. K. Sze, and J. P. Tam, “Plant-Derived Mitochondria-Targeting Cysteine-Rich Peptide Modulates Cellular Bioenergetics,” Journal of Biological Chemistry 294, no. 11 (2019): 4000-4011.

[296]

B. Yang, X. Dan, and Y. Hou, “NAD(+) Supplementation Prevents STING-Induced Senescence in Ataxia Telangiectasia by Improving Mitophagy,” Aging Cell 20, no. 4 (2021): e13329.

[297]

Q. Li, S. Gao, Z. Kang, et al., “Rapamycin Enhances Mitophagy and Attenuates Apoptosis after Spinal Ischemia-Reperfusion Injury,” Frontiers in Neuroscience 12 (2018): 865.

[298]

B. R. Underwood, Z. W. Green-Thompson, P. J. Pugh, et al., “An Open-Label Study to Assess the Feasibility and Tolerability of Rilmenidine for the Treatment of Huntington's Disease,” Journal of Neurology 264, no. 12 (2017): 2457-2463.

[299]

N. D. Perera, R. K. Sheean, C. L. Lau, et al., “Rilmenidine Promotes MTOR-Independent Autophagy in the Mutant SOD1 Mouse Model of Amyotrophic Lateral Sclerosis Without Slowing Disease Progression,” Autophagy 14, no. 3 (2018): 534-551.

[300]

Y. Wei, M. Lu, M. Mei, et al., “Pyridoxine Induces Glutathione Synthesis via PKM2-Mediated Nrf2 Transactivation and Confers Neuroprotection,” Nature Communications 11, no. 1 (2020): 941.

[301]

B. Panizzutti, D. Skvarc, S. Lin, et al., “Minocycline as Treatment for Psychiatric and Neurological Conditions: A Systematic Review and Meta-Analysis,” International Journal of Molecular Sciences 24, no. 6 (2023): 5250.

[302]

G. Amore, M. Romagnoli, M. Carbonelli, P. Barboni, V. Carelli, and C. La Morgia, “Therapeutic Options in Hereditary Optic Neuropathies,” Drugs 81, no. 1 (2021): 57-86.

[303]

S. Salloway, M. Farlow, E. McDade, et al., “A Trial of Gantenerumab or Solanezumab in Dominantly Inherited Alzheimer's Disease,” Nature Medicine 27, no. 7 (2021): 1187-1196.

[304]

S. Gauthier, H. H. Feldman, L. S. Schneider, et al., “Efficacy and Safety of Tau-Aggregation Inhibitor Therapy in Patients With Mild or Moderate Alzheimer's Disease: A Randomised, Controlled, Double-Blind, Parallel-Arm, Phase 3 Trial,” Lancet 388, no. 10062 (2016): 2873-2884.

[305]

C. Kondak, M. Leith, T. C. Baddeley, et al., “Mitochondrial Effects of Hydromethylthionine, Rivastigmine and Memantine in Tau-Transgenic Mice,” International Journal of Molecular Sciences 24, no. 13 (2023): 10810.

[306]

S. E. O'Bryant, F. Zhang, M. Petersen, L. Johnson, J. Hall, and R. A. Rissman, “A Precision Medicine Approach to Treating Alzheimer's Disease Using Rosiglitazone Therapy: A Biomarker Analysis of the REFLECT Trials,” Journal of Alzheimer's Disease 81, no. 2 (2021): 557-568.

[307]

P. R. Gehrman, D. J. Connor, J. L. Martin, T. Shochat, J. Corey-Bloom, and S. Ancoli-Israel, “Melatonin Fails to Improve Sleep or Agitation in Double-Blind Randomized Placebo-Controlled Trial of Institutionalized Patients With Alzheimer Disease,” American Journal of Geriatric Psychiatry 17, no. 2 (2009): 166-169.

[308]

S. N. Austad, S. Ballinger, T. W. Buford, et al., “Targeting Whole Body Metabolism and Mitochondrial Bioenergetics in the Drug Development for Alzheimer's Disease,” Acta Pharmaceutica Sinica B 12, no. 2 (2022): 511-531.

[309]

P. Soares, C. Silva, D. Chavarria, F. S. G. Silva, P. J. Oliveira, and F. Borges, “Drug Discovery and Amyotrophic Lateral Sclerosis: Emerging Challenges and Therapeutic Opportunities,” Ageing Research Reviews 83 (2023): 101790.

[310]

R. Acin-Perez, I. Y. Benador, A. Petcherski, et al., “A Novel Approach to Measure Mitochondrial Respiration in Frozen Biological Samples,” EMBO Journal 39, no. 13 (2020): e104073.

[311]

B. K. Chacko, D. Zhi, V. M. Darley-Usmar, and T. Mitchell, “The Bioenergetic Health Index Is a Sensitive Measure of Oxidative Stress in Human Monocytes,” Redox Biology 8 (2016): 43-50.

[312]

Y. M. Go, J. Fernandes, X. Hu, K. Uppal, and D. P. Jones, “Mitochondrial Network Responses in Oxidative Physiology and Disease,” Free Radical Biology and Medicine 116 (2018): 31-40.

[313]

B. K. Chacko, M. R. Smith, M. S. Johnson, et al., “Mitochondria in Precision Medicine; Linking Bioenergetics and Metabolomics in Platelets,” Redox Biology 22 (2019): 101165.

[314]

M. R. Smith, B. K. Chacko, M. S. Johnson, et al., “A Precision Medicine Approach to Defining the Impact of Doxorubicin on the Bioenergetic-Metabolite Interactome in Human Platelets,” Redox Biology 28 (2020): 101311.

[315]

J. Xu, W. Du, Y. Zhao, et al., “Mitochondria Targeting Drugs for Neurodegenerative Diseases—Design, Mechanism and Application,” Acta Pharmaceutica Sinica B 12, no. 6 (2022): 2778-2789.

[316]

D. M. Wilson, M. R. Cookson, L. Van Den Bosch, H. Zetterberg, D. M. Holtzman, and I. Dewachter, “Hallmarks of Neurodegenerative Diseases,” Cell 186, no. 4 (2023): 693-714.

[317]

W. Wang, G. Karamanlidis, and R. Tian, “Novel Targets for Mitochondrial Medicine,” Science Translational Medicine 8, no. 326 (2016): 326rv3.

[318]

M. P. Murphy, “Targeting Lipophilic Cations to Mitochondria,” Biochimica et Biophysica Acta 1777, no. 7-8 (2008): 1028-1031.

[319]

K. Qian, H. Chen, C. Qu, et al., “Mitochondria-Targeted Delocalized Lipophilic Cation Complexed With Human Serum Albumin for Tumor Cell Imaging and Treatment,” Nanomedicine 23 (2020): 102087.

[320]

G. G. D'Souza, S. V. Boddapati, and V. Weissig, “Mitochondrial Leader Sequence-Plasmid DNA Conjugates Delivered Into Mammalian Cells by DQAsomes Co-Localize With Mitochondria,” Mitochondrion 5, no. 5 (2005): 352-358.

[321]

C. Zhang, R. Guan, X. Liao, et al., “A Mitochondria-Targeting Dinuclear Ir-Ru Complex as a Synergistic Photoactivated Chemotherapy and Photodynamic Therapy Agent Against Cisplatin-Resistant Tumour Cells,” Chemical Communications (Cambridge, England) 55, no. 83 (2019): 12547-12550.

[322]

A. T. Hoye, J. E. Davoren, P. Wipf, M. P. Fink, and V. E. Kagan, “Targeting Mitochondria,” Accounts of Chemical Research 41, no. 1 (2008): 87-97.

[323]

J. A. Chuah, T. Yoshizumi, Y. Kodama, and K. Numata, “Gene Introduction Into the Mitochondria of Arabidopsis thaliana via Peptide-Based Carriers,” Scientific Reports 5 (2015): 7751.

[324]

G. Appiah Kubi, Z. Qian, S. Amiar, A. Sahni, R. V. Stahelin, and D. Pei, “Non-Peptidic Cell-Penetrating Motifs for Mitochondrion-Specific Cargo Delivery,” Angewandte Chemie 130, no. 52 (2018): 17429-17434.

[325]

Y. Yamada and H. Harashima, “Delivery of Bioactive Molecules to the Mitochondrial Genome Using a Membrane-Fusing, Liposome-Based Carrier, DF-MITO-Porter,” Biomaterials 33, no. 5 (2012): 1589-1595.

[326]

Z. Xun, S. Rivera-Sanchez, S. Ayala-Pena, et al., “Targeting of XJB-5-131 to Mitochondria Suppresses Oxidative DNA Damage and Motor Decline in a Mouse Model of Huntington's Disease,” Cell Reports 2, no. 5 (2012): 1137-1142.

[327]

B. H. Varkuti, M. Kepiro, Z. Liu, et al., “Neuron-Based High-Content Assay and Screen for CNS Active Mitotherapeutics,” Science Advances 6, no. 2 (2020): eaaw8702.

[328]

D. Indira, S. N. Varadarajan, S. Subhasingh Lupitha, et al., “Strategies for Imaging Mitophagy in High-Resolution and High-Throughput,” European Journal of Cell Biology 97, no. 1 (2018): 1-14.

[329]

B. H. Varkuti, Z. Liu, M. Kepiro, et al., “High-Throughput Small Molecule Screen Identifies Modulators of Mitochondrial Function in Neurons,” Iscience 23, no. 3 (2020): 100931.

[330]

H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The Rise of Deep Learning in Drug Discovery,” Drug Discovery Today 23, no. 6 (2018): 1241-1250.

[331]

J. Vamathevan, D. Clark, P. Czodrowski, et al., “Applications of Machine Learning in Drug Discovery and Development,” Nature Reviews Drug Discovery 18, no. 6 (2019): 463-477.

[332]

C. Xie, X. X. Zhuang, Z. Niu, et al., “Amelioration of Alzheimer's Disease Pathology by Mitophagy Inducers Identified via Machine Learning and a Cross-Species Workflow,” Nature Biomedical Engineering 6, no. 1 (2022): 76-93.

[333]

A. Gaulton, A. Hersey, M. Nowotka, et al., “The ChEMBL Database in 2017,” Nucleic Acids Research. 45, no. D1 (2017): D945-D954.

[334]

T. Sterling and J. J. Irwin, “ZINC 15-Ligand Discovery for Everyone,” Journal of Chemical Information and Modeling 55, no. 11 (2015): 2324-2337.

[335]

S. Jaeger, S. Fulle, and S. Turk, “Mol2vec: Unsupervised Machine Learning Approach With Chemical Intuition,” Journal of Chemical Information and Modeling 58, no. 1 (2018): 27-35.

[336]

C. Z. Cai, H. F. Zhou, N. N. Yuan, et al., “Natural Alkaloid Harmine Promotes Degradation of Alpha-Synuclein via PKA-Mediated Ubiquitin-Proteasome System Activation,” Phytomedicine 61 (2019): 152842.

[337]

Y. Min, L. Weiming, Y. Yunru, et al., “Deep Learning Large-Scale Drug Discovery and Repurposing,” Nature Computational Science 4, no. 8 (2024): 600-614. https://doi.org/10.1038/s43588-024-00679-4.

[338]

C. Savojardo, N. Bruciaferri, G. Tartari, P. L. Martelli, and R. Casadio, “DeepMito: Accurate Prediction of Protein Sub-Mitochondrial Localization Using Convolutional Neural Networks,” Bioinformatics 36, no. 1 (2020): 56-64.

[339]

AI-Recognized Mitochondrial Phenotype Enables Identification of Drug Targets. Nature Computational Science 4, no. 8 (2024): 563-564.

[340]

A. G. Boob, S. I. Tan, A. Zaidi, et al., “Design of Diverse, Functional Mitochondrial Targeting Sequences Across Eukaryotic Organisms Using Variational Autoencoder,” Nature Communications 16, no. 1 (2025): 4151.

[341]

Y. Li, X. M. Li, L. S. Wei, and J. F. Ye, “Advancements in Mitochondrial-Targeted Nanotherapeutics: Overcoming Biological Obstacles and Optimizing Drug Delivery,” Frontiers in Immunology 15 (2024): 1451989.

[342]

J. Yao, R. W. Irwin, L. Zhao, J. Nilsen, R. T. Hamilton, and R. D. Brinton, “Mitochondrial Bioenergetic Deficit Precedes Alzheimer's Pathology in Female Mouse Model of Alzheimer's Disease,” PNAS 106, no. 34 (2009): 14670-14675.

[343]

J. P. Blass, R. K. Sheu, and G. E. Gibson, “Inherent Abnormalities in Energy Metabolism in Alzheimer Disease. Interaction With Cerebrovascular Compromise,” Annals of the New York Academy of Sciences 903 (2000): 204-221.

[344]

M. A. Smith, X. Zhu, M. Tabaton, et al., “Increased Iron and Free Radical Generation in Preclinical Alzheimer Disease and Mild Cognitive Impairment,” Journal of Alzheimer's Disease 19, no. 1 (2010): 363-372.

[345]

A. Salminen, A. Haapasalo, A. Kauppinen, K. Kaarniranta, H. Soininen, and M. Hiltunen, “Impaired Mitochondrial Energy Metabolism in Alzheimer's Disease: Impact on Pathogenesis via Disturbed Epigenetic Regulation of Chromatin Landscape,” Progress in Neurobiology 131 (2015): 1-20.

[346]

Y. C. Wong, N. D. Jayaraj, T. B. Belton, et al., “Misregulation of Mitochondria-Lysosome Contact Dynamics in Charcot-Marie-Tooth Type 2B Disease Rab7 Mutant Sensory Peripheral Neurons,” PNAS 120, no. 44 (2023): e2313010120.

[347]

L. Zhang, Y. Zhou, Z. Yang, et al., “Lipid Droplets in Central Nervous System and Functional Profiles of Brain Cells Containing Lipid Droplets in Various Diseases,” Journal of Neuroinflammation 22, no. 1 (2025): 7.

[348]

I. Ralhan, C. L. Chang, J. Lippincott-Schwartz, and M. S. Ioannou, “Lipid Droplets in the Nervous System,” Journal of Cell Biology 220, no. 7 (2021): e202102136.

[349]

Y. Dong, X. X. Zhuang, Y. T. Wang, et al., “Chemical Mitophagy Modulators: Drug Development Strategies and Novel Regulatory Mechanisms,” Pharmacological Research 194 (2023): 106835.

[350]

A. Mary, F. Eysert, F. Checler, and M. Chami, “Mitophagy in Alzheimer's Disease: Molecular Defects and Therapeutic Approaches,” Molecular Psychiatry 28, no. 1 (2023): 202-216.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/