Immune Surveillance and Immune Escape in Cancer: Mechanisms and Immunotherapy

Ying Peng , Linsheng Zhan , Jianxiang Shi , Jie Wang , Yueying Li , Xiangdong Sun , Jie Lv , Huiyu Yang , Zan Qiu , Xingzhao Liu , Chenyan Li , Shanshan Gong , Wen Jia , Huiying Wang , Yuqi Zhao , Bin Zhang , Wei Guo , Jiancheng Guo , Jian Shang , Qianqian Zhou , Yanan Yang , Feng Gao

MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70321

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (10) : e70321 DOI: 10.1002/mco2.70321
REVIEW

Immune Surveillance and Immune Escape in Cancer: Mechanisms and Immunotherapy

Author information +
History +
PDF

Abstract

Despite the tremendous amount of basic knowledge in cancer immunity gained and many transitional approaches attempted, current cancer immunotherapies are still far from reaching universal effectiveness. Therefore, next-generation cancer immunotherapies would emerge from deepened mechanistic insights on the full spectrum of cellular and molecular interactions between cancer cells and their immune sentinels. This review embarks on an exhaustive exploration of the cardinal immunological principles that catalyze robust cancer surveillance and their potential escapes and recapitulate the state-of-art understanding of both receptors and corresponding immune cell types involved. Both tumor intrinsic and tumor microenvironmental mediators of immune escapes are outlined in the context of current clinic applications. Following emphasizing the exceptional requisites that effective cancer immunity cycle must meet, specific cellular subsets crucial for igniting tumor immunity, notably effector and helper T cells alongside antigen presentation cells are examined, focusing on their close interactions in both antigen-dependent and -independent manners. Such intricate interactions form dynamic immune hubs at the tumor site, holding promising key functionality in rendering effective cancer retreat. Grounded on these recent insights, refined immunotherapeutic strategies, especially those bolstering priming based anticancer effector functions are advocated.

Keywords

antigen cross-presentation / cancer immunosurveillance / cancer vaccine / conventional dendrite cell type I / immune escape / immune hub

Cite this article

Download citation ▾
Ying Peng, Linsheng Zhan, Jianxiang Shi, Jie Wang, Yueying Li, Xiangdong Sun, Jie Lv, Huiyu Yang, Zan Qiu, Xingzhao Liu, Chenyan Li, Shanshan Gong, Wen Jia, Huiying Wang, Yuqi Zhao, Bin Zhang, Wei Guo, Jiancheng Guo, Jian Shang, Qianqian Zhou, Yanan Yang, Feng Gao. Immune Surveillance and Immune Escape in Cancer: Mechanisms and Immunotherapy. MedComm, 2025, 6(10): e70321 DOI:10.1002/mco2.70321

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. A. Janeway, P. Travers, M. Walport, et al., Immunobiology. 5th ed. (Garland Science, 2001).

[2]

D. S. Pisetsky, “Pathogenesis of Autoimmune Disease,” Nature Reviews Nephrology 19, no. 8 (2023): 509-524.

[3]

P. Ehrlich, Studies in Immunity (J. Wiley & sons, 1910).

[4]

H. Takeshima, T. Ushijima, “Accumulation of Genetic and Epigenetic Alterations in Normal Cells and Cancer Risk,” NPJ Precision Oncology 3 (2019): 7.

[5]

F. M. Burnet, “The Concept of Immunological Surveillance,” Progress in Experimental Tumor Research 13 (1970): 1-27.

[6]

T. Fan, M. Zhang, J. Yang, Z. Zhu, W. Cao, C. Dong, “Therapeutic Cancer Vaccines: Advancements, Challenges, and Prospects,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 450.

[7]

P. Berraondo, M. F. Sanmamed, M. C. Ochoa, et al., “Cytokines in Clinical Cancer Immunotherapy,” British Journal of Cancer 120, no. 1 (2019): 6-15.

[8]

A. D. Waldman, J. M. Fritz, M. J. Lenardo, “A Guide to Cancer Immunotherapy: From T Cell Basic Science to Clinical Practice,” Nature Reviews Immunology 20, no. 11 (2020): 651-668.

[9]

D. Ribatti, “The Concept of Immune Surveillance Against Tumors. The First Theories,” Oncotarget 8, no. 4 (2017): 7175-7180.

[10]

L. G. Meza Guzman, N. Keating, S. E. Nicholson, “Natural Killer Cells: Tumor Surveillance and Signaling,” Cancers 12, no. 4 (2020): 952.

[11]

M. E. Cruz-Muñoz, L. Valenzuela-Vázquez, J. Sánchez-Herrera, J. Santa-Olalla Tapia, “From the “Missing Self” Hypothesis to Adaptive NK Cells: Insights of NK Cell-mediated Effector Functions in Immune Surveillance,” Journal of Leukocyte Biology 105, no. 5 (2019): 955-971.

[12]

E. O. Long, H. S. Kim, D. Liu, M. E. Peterson, S. Rajagopalan, “Controlling Natural Killer Cell Responses: Integration of Signals for Activation and Inhibition,” Annual Review of Immunology 31 (2013): 227-58.

[13]

J. R. Hwang, Y. Byeon, D. Kim, S. G. Park, “Recent Insights of T Cell Receptor-mediated Signaling Pathways for T Cell Activation and Development,” Experimental & Molecular Medicine 52, no. 5 (2020): 750-761.

[14]

K. Shah, A. Al-Haidari, J. Sun, J. U. Kazi, “T Cell Receptor (TCR) Signaling in Health and Disease,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 412.

[15]

J. M. Grolman, P. Weinand, D. J. Mooney, “Extracellular Matrix Plasticity as a Driver of Cell Spreading,” Proceedings of the National Academy of Sciences of the United States of America 117, no. 42 (2020): 25999-26007.

[16]

R. S. Ganti, W. L. Lo, D. B. McAffee, J. T. Groves, A. Weiss, A. K. Chakraborty, “How the T Cell Signaling Network Processes Information to Discriminate Between Self and Agonist Ligands,” Proceedings of the National Academy of Sciences of the United States of America 117, no. 42 (2020): 26020-26030.

[17]

D. B. McAffee, M. K. O'Dair, J. J. Lin, et al., “Discrete LAT Condensates Encode Antigen Information From Single pMHC:TCR Binding Events,” Nature Communications 13, no. 1 (2022): 7446.

[18]

J. Pettmann, A. Huhn, E. Abu Shah, et al., “The Discriminatory Power of the T Cell Receptor,” Elife 10 (2021): e67092.

[19]

M. S. Krangel, “Mechanics of T Cell Receptor Gene Rearrangement,” Current Opinion in Immunology 21, no. 2 (2009): 133-9.

[20]

Y. Shi, A. Strasser, D. R. Green, E. Latz, A. Mantovani, G. Melino, “Legacy of the Discovery of the T-cell Receptor: 40 Years of Shaping Basic Immunology and Translational Work to Develop Novel Therapies,” Cellular & Molecular Immunology 21, no. 7 (2024): 790-797.

[21]

N. Porciello, O. Franzese, L. D'Ambrosio, B. Palermo, P. Nisticò, “T-cell Repertoire Diversity: Friend or Foe for Protective Antitumor Response?,” Journal of Experimental & Clinical Cancer Research : CR 41, no. 1 (2022): 356.

[22]

T. Mora, A. M. Walczak, “How Many Different Clonotypes Do Immune Repertoires Contain?,” Current Opinion in Systems Biology 18 (2019): 104-110.

[23]

Q. Qi, Y. Liu, Y. Cheng, et al., “Diversity and Clonal Selection in the human T-cell Repertoire,” Proceedings of the National Academy of Sciences of the United States of America 111, no. 36 (2014): 13139-44.

[24]

D. R. Leach, M. F. Krummel, J. P. Allison, “Enhancement of Antitumor Immunity by CTLA-4 Blockade,” Science (New York, NY) 271, no. 5256 (1996): 1734-6.

[25]

D. Mittal, M. M. Gubin, R. D. Schreiber, M. J. Smyth, “New Insights Into Cancer Immunoediting and Its Three Component Phases-elimination, Equilibrium and Escape,” Current Opinion in Immunology 27 (2014): 16-25.

[26]

S. A. Quezada, T. R. Simpson, K. S. Peggs, et al., “Tumor-reactive CD4(+) T Cells Develop Cytotoxic Activity and Eradicate Large Established Melanoma After Transfer Into Lymphopenic Hosts,” The Journal of Experimental Medicine 207, no. 3 (2010): 637-50.

[27]

Y. Xie, A. Akpinarli, C. Maris, et al., “Naive Tumor-specific CD4(+) T Cells Differentiated in Vivo Eradicate Established Melanoma,” The Journal of Experimental Medicine 207, no. 3 (2010): 651-67.

[28]

A. Takeuchi, S. Badr Mel, K. Miyauchi, et al., “CRTAM Determines the CD4+ Cytotoxic T Lymphocyte Lineage,” The Journal of Experimental Medicine 213, no. 1 (2016): 123-38.

[29]

J. Matsuzaki, T. Tsuji, I. F. Luescher, et al., “Direct Tumor Recognition by a human CD4(+) T-cell Subset Potently Mediates Tumor Growth Inhibition and Orchestrates Anti-tumor Immune Responses,” Scientific Reports 5 (2015): 14896.

[30]

M. H. Spitzer, Y. Carmi, N. E. Reticker-Flynn, “Systemic Immunity Is Required for Effective Cancer Immunotherapy,” Cell 168, no. 3 (2017): 487-502. e15.

[31]

M. Liu, F. Kuo, K. J. Capistrano, et al., “TGF-β Suppresses Type 2 Immunity to Cancer,” Nature 587, no. 7832 (2020): 115-120.

[32]

S. Li, M. Liu, M. H. Do, et al., “Cancer Immunotherapy via Targeted TGF-β Signalling Blockade in T(H) Cells,” Nature 587, no. 7832 (2020): 121-125.

[33]

L. Zhang, X. Yu, L. Zheng, et al., “Lineage Tracking Reveals Dynamic Relationships of T Cells in Colorectal Cancer,” Nature 564, no. 7735 (2018): 268-272.

[34]

S. Valpione, P. A. Mundra, E. Galvani, et al., “The T Cell Receptor Repertoire of Tumor Infiltrating T Cells Is Predictive and Prognostic for Cancer Survival,” Nature Communications 12, no. 1 (2021): 4098.

[35]

H. S. Lawrence, Cellular and Humoral Aspects of the Hypersensitive States: A Symposium Held at the New York Academy of Medicine (P.B. Hoeber, 1959): 696.

[36]

M. J. W. Sim, P. D. Sun, “T Cell Recognition of Tumor Neoantigens and Insights into T Cell Immunotherapy,” Frontiers in Immunology 13 (2022): 833017.

[37]

J. Schmidt, J. Chiffelle, M. A. S. Perez, et al., “Neoantigen-specific CD8 T Cells With High Structural Avidity Preferentially Reside in and Eliminate Tumors,” Nature Communications 14, no. 1 (2023): 3188.

[38]

P. J. Bjorkman, M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger, D. C. Wiley, “Structure of the human Class I Histocompatibility Antigen, HLA-A2,” Nature 329, no. 6139 (1987): 506-512.

[39]

P. J. Bjorkman, M. A. Saper, B. Samraoui, W. S. Bennett, J. L. Strominger, D. C. Wiley, “The Foreign Antigen Binding Site and T Cell Recognition Regions of Class I Histocompatibility Antigens,” Nature 329, no. 6139 (1987): 512-8.

[40]

K. C. Garcia, M. Degano, R. L. Stanfield, et al., “An Alphabeta T Cell Receptor Structure at 2.5 A and Its Orientation in the TCR-MHC Complex,” Science (New York, NY) 274, no. 5285 (1996): 209-219.

[41]

L. Klein, B. Kyewski, P. M. Allen, K. A. Hogquist, “Positive and Negative Selection of the T Cell Repertoire: What Thymocytes See (and don't see),” Nature Reviews Immunology 14, no. 6 (2014): 377-391.

[42]

A. H. Capietto, R. Hoshyar, L. Delamarre, “Sources of Cancer Neoantigens Beyond Single-Nucleotide Variants,” International Journal of Molecular Sciences 23, no. 17 (2022): 10131.

[43]

A. Peri, N. Salomon, Y. Wolf, S. Kreiter, M. Diken, Y. Samuels, “The Landscape of T Cell Antigens for Cancer Immunotherapy,” Nature Cancer 4, no. 7 (2023): 937-954.

[44]

A. Kacen, A. Javitt, M. P. Kramer, et al., “Post-translational Modifications Reshape the Antigenic Landscape of the MHC I Immunopeptidome in Tumors,” Nature Biotechnology 41, no. 2 (2023): 239-251.

[45]

W. Yang, K. W. Lee, R. M. Srivastava, et al., “Immunogenic Neoantigens Derived From Gene Fusions Stimulate T Cell Responses,” Nature Medicine 25, no. 5 (2019): 767-775.

[46]

H. Kumar, R. Luo, J. Wen, C. Yang, X. Zhou, P. Kim, “FusionNeoAntigen: A Resource of Fusion Gene-specific Neoantigens,” Nucleic Acids Res. 52, no. D1 (2024): D1276-D1288.

[47]

G. Li, S. Mahajan, S. Ma, et al., “Splicing Neoantigen Discovery With SNAF Reveals Shared Targets for Cancer Immunotherapy,” Science Translational Medicine 16, no. 730 (2024): eade2886.

[48]

D. W. Kwok, N. O. Stevers, T. Nejo, et al., “Tumor-wide RNA Splicing Aberrations Generate Immunogenic Public Neoantigens,” BioRxiv (2023).

[49]

M. Ji, Q. Yu, X. Z. Yang, et al., “Long-range Alternative Splicing Contributes to Neoantigen Specificity in Glioblastoma,” Brief Bioinform 25, no. 6 (2024): bbae503.

[50]

M. Zhang, J. Fritsche, J. Roszik, et al., “RNA Editing Derived Epitopes Function as Cancer Antigens to Elicit Immune Responses,” Nature Communications 9, no. 1 (2018): 3919.

[51]

P. Bonaventura, V. Alcazer, V. Mutez, et al., “Identification of Shared Tumor Epitopes From Endogenous Retroviruses Inducing High-avidity Cytotoxic T Cells for Cancer Immunotherapy,” Science Advances 8, no. 4 (2022): eabj3671.

[52]

A. Ivancevic, D. M. Simpson, O. M. Joyner, et al., “Endogenous Retroviruses Mediate Transcriptional Rewiring in Response to Oncogenic Signaling in Colorectal Cancer,” Science Advances 10, no. 29 (2024): eado1218.

[53]

R. Levy, T. Alter Regev, W. Paes, et al., “Large-Scale Immunopeptidome Analysis Reveals Recurrent Posttranslational Splicing of Cancer- and Immune-Associated Genes,” Molecular & Cellular Proteomics: MCP 22, no. 4 (2023): 100519.

[54]

C. Chong, G. Coukos, M. Bassani-Sternberg, “Identification of Tumor Antigens With Immunopeptidomics,” Nature Biotechnology 40, no. 2 (2022): 175-188.

[55]

E. Kina, J. P. Laverdure, C. Durette, et al., “Breast Cancer Immunopeptidomes Contain Numerous Shared Tumor Antigens,” The Journal of Clinical Investigation 134, no. 1 (2024): e166740.

[56]

S. Kalaora, A. Nagler, D. Nejman, et al., “Identification of Bacteria-derived HLA-bound Peptides in Melanoma,” Nature 592, no. 7852 (2021): 138-143.

[57]

S. Stevanović, A. Pasetto, S. R. Helman, et al., “Landscape of Immunogenic Tumor Antigens in Successful Immunotherapy of Virally Induced Epithelial Cancer,” Science (New York, NY) 356, no. 6334 (2017): 200-205.

[58]

S. L. Doran, S. Stevanović, S. Adhikary, et al., “T-Cell Receptor Gene Therapy for Human Papillomavirus-Associated Epithelial Cancers: A First-in-Human, Phase I/II Study,” Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology 37, no. 30 (2019): 2759-2768.

[59]

F. Huguet, S. Chevret, T. Leguay, et al., “Intensified Therapy of Acute Lymphoblastic Leukemia in Adults: Report of the Randomized GRAALL-2005 Clinical Trial,” Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology 36, no. 24 (2018): 2514-2523.

[60]

A. Pal, R. Kundu, “Human Papillomavirus E6 and E7: The Cervical Cancer Hallmarks and Targets for Therapy,” Frontiers in Microbiology 10 (2019): 3116.

[61]

Y. Wolf, Y. Samuels, “Intratumor Heterogeneity and Antitumor Immunity Shape One another Bidirectionally,” Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 28, no. 14 (2022): 2994-3001.

[62]

C. Aggarwal, R. Ben-Shachar, Y. Gao, et al., “Assessment of Tumor Mutational Burden and Outcomes in Patients with Diverse Advanced Cancers Treated with Immunotherapy,” JAMA Network Open 6, no. 5 (2023): e2311181.

[63]

A. M. Goodman, S. Kato, L. Bazhenova, et al., “Tumor Mutational Burden as an Independent Predictor of Response to Immunotherapy in Diverse Cancers,” Molecular Cancer Therapeutics 16, no. 11 (2017): 2598-2608.

[64]

R. M. Samstein, C. H. Lee, A. N. Shoushtari, et al., “Tumor Mutational Load Predicts Survival After Immunotherapy Across Multiple Cancer Types,” Nature Genetics 51, no. 2 (2019): 202-206.

[65]

A. Marabelle, M. Fakih, J. Lopez, et al., “Association of Tumour Mutational Burden With Outcomes in Patients With Advanced Solid Tumours Treated With pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-label, Phase 2 KEYNOTE-158 Study,” The Lancet Oncology 21, no. 10 (2020): 1353-1365.

[66]

A. M. Kirk, J. C. Crawford, C. H. Chou, et al., “DNAJB1-PRKACA Fusion Neoantigens Elicit Rare Endogenous T Cell Responses That Potentiate Cell Therapy for Fibrolamellar Carcinoma,” Cell Reports Medicine 5, no. 3 (2024): 101469.

[67]

Y. Wolf, Y. Sameuls, “Neoantigens in Cancer Immunotherapy: Quantity vs. quality,” Molecular Oncology 17, no. 8 (2023): 1457-1459.

[68]

S. S. Chandran, J. Ma, M. G. Klatt, et al., “Immunogenicity and Therapeutic Targeting of a Public Neoantigen Derived From Mutated PIK3CA,” Nature Medicine 28, no. 5 (2022): 946-957.

[69]

C. Puig-Saus, B. Sennino, S. Peng, et al., “Neoantigen-targeted CD8(+) T Cell Responses With PD-1 Blockade Therapy,” Nature 615, no. 7953 (2023): 697-704.

[70]

J. J. Y. Lin, S. T. Low-Nam, K. N. Alfieri, D. B. McAffee, N. C. Fay, J. T. Groves, “Mapping the Stochastic Sequence of Individual Ligand-receptor Binding Events to Cellular Activation: T Cells Act on the Rare Events,” Science Signaling 12, no. 564 (2019): eaat8715.

[71]

M. Shakiba, P. Zumbo, G. Espinosa-Carrasco, et al., “TCR Signal Strength Defines Distinct Mechanisms of T Cell Dysfunction and Cancer Evasion,” The Journal of Experimental Medicine 219, no. 2 (2022): e20201966.

[72]

C. Ragone, B. Cavalluzzo, A. Mauriello, M. Tagliamonte, L. Buonaguro, “Lack of Shared Neoantigens in Prevalent Mutations in Cancer,” Journal of Translational Medicine 22, no. 1 (2024): 344.

[73]

I. Milo, M. Bedora-Faure, Z. Garcia, et al., “The Immune System Profoundly Restricts Intratumor Genetic Heterogeneity,” Science Immunology 3, no. 29 (2018): eaat1435.

[74]

Y. H. Chien, C. Meyer, M. Bonneville, “γδ T Cells: First Line of Defense and Beyond,” Annual Review of Immunology 32 (2014): 121-55.

[75]

J. C. Ribot, N. Lopes, B. Silva-Santos, “γδ T Cells in Tissue Physiology and Surveillance,” Nature Reviews Immunology 21, no. 4 (2021): 221-232.

[76]

Y. Hu, Q. Hu, Y. Li, et al., “γδ T Cells: Origin and Fate, Subsets, Diseases and Immunotherapy,” Signal Transduction and Targeted Therapy 8, no. 1 (2023): 434.

[77]

J. Guo, R. R. Chowdhury, V. Mallajosyula, et al., “γδ T Cell Antigen Receptor Polyspecificity Enables T Cell Responses to a Broad Range of Immune Challenges,” Proceedings of the National Academy of Sciences of the United States of America 121, no. 4 (2024): e2315592121.

[78]

M. Deseke, I. Prinz, “Ligand Recognition by the Γδ TCR and Discrimination Between Homeostasis and Stress Conditions,” Cellular & Molecular Immunology 17, no. 9 (2020): 914-924.

[79]

S. Kalyan, D. Kabelitz, “Defining the Nature of human Γδ T Cells: A Biographical Sketch of the Highly Empathetic,” Cellular and Molecular Immunology 10, no. 1 (2013): 21.

[80]

M. Eberl, M. Hintz, A. Reichenberg, A. K. Kollas, J. Wiesner, H. Jomaa, “Microbial Isoprenoid Biosynthesis and human Gammadelta T Cell Activation,” FEBS Letters 544, no. 1-3 (2003): 4-10.

[81]

H. J. Gober, M. Kistowska, L. Angman, P. Jenö, L. Mori, G. De Libero, “Human T Cell Receptor Gammadelta Cells Recognize Endogenous Mevalonate Metabolites in Tumor Cells,” The Journal of Experimental Medicine 197, no. 2 (2003): 163-8.

[82]

L. Yuan, X. Ma, Y. Yang, et al., “Phosphoantigens Glue Butyrophilin 3A1 and 2A1 to Activate Vγ9Vδ2 T Cells,” Nature 621, no. 7980 (2023): 840-848.

[83]

F. Galvez-Cancino, M. Navarrete, G. Beattie, et al., “Regulatory T Cell Depletion Promotes Myeloid Cell Activation and Glioblastoma Response to Anti-PD1 and Tumor-targeting Antibodies,” Immunity 58, no. 5 (2025): 1236-1253.

[84]

S. Dadi, S. Chhangawala, B. M. Whitlock, et al., “Cancer Immunosurveillance by Tissue-Resident Innate Lymphoid Cells and Innate-Like T Cells,” Cell 164, no. 3 (2016): 365-77.

[85]

C. Chou, X. Zhang, C. Krishna, et al., “Programme of Self-reactive Innate-Like T Cell-mediated Cancer Immunity,” Nature 605, no. 7908 (2022): 139-145.

[86]

E. R. Kansler, S. Dadi, C. Krishna, et al., “Cytotoxic Innate Lymphoid Cells Sense Cancer Cell-expressed Interleukin-15 to Suppress human and Murine Malignancies,” Nature Immunology 23, no. 6 (2022): 904-915.

[87]

J. Zhang, A. M. Li, E. R. Kansler, Li MO, “Cancer Immunity by Tissue-resident Type 1 Innate Lymphoid Cells and Killer Innate-Like T Cells,” Immunological Reviews 323, no. 1 (2024): 150-163.

[88]

A. Baessler, D. A. A. Vignali, “T Cell Exhaustion,” Annual Review of Immunology 42, no. 1 (2024): 179-206.

[89]

X. He, C. Xu, “Immune Checkpoint Signaling and Cancer Immunotherapy,” Cell Research 30, no. 8 (2020): 660-669.

[90]

E. J. Wherry, S. J. Ha, S. M. Kaech, et al., “Molecular Signature of CD8+ T Cell Exhaustion During Chronic Viral Infection,” Immunity 27, no. 4 (2007): 670-84.

[91]

D. T. Utzschneider, S. S. Gabriel, D. Chisanga, et al., “Early Precursor T Cells Establish and Propagate T Cell Exhaustion in Chronic Infection,” Nature Immunology 21, no. 10 (2020): 1256-1266.

[92]

P. Hammarström, X. Jiang, A. R. Hurshman, E. T. Powers, J. W. Kelly, “Sequence-dependent Denaturation Energetics: A Major Determinant in Amyloid Disease Diversity,” Proceedings of the National Academy of Sciences of the United States of America 99, no. Suppl 4 (2002): 16427-32.

[93]

A. Chow, K. Perica, C. A. Klebanoff, J. D. Wolchok, “Clinical Implications of T Cell Exhaustion for Cancer Immunotherapy,” Nature Reviews Clinical Oncology 19, no. 12 (2022): 775-790.

[94]

M. Sade-Feldman, K. Yizhak, S. L. Bjorgaard, et al., “Defining T Cell States Associated With Response to Checkpoint Immunotherapy in Melanoma,” Cell 175, no. 4 (2018): 998-1013. e20.

[95]

J. Nah, R. H. Seong, “Krüppel-Like Factor 4 Regulates the Cytolytic Effector Function of Exhausted CD8 T Cells,” Science Advances 8, no. 47 (2022): eadc9346.

[96]

C. S. Eberhardt, H. T. Kissick, M. R. Patel, et al., “Functional HPV-specific PD-1(+) Stem-Like CD8 T Cells in Head and Neck Cancer,” Nature 597, no. 7875 (2021): 279-284.

[97]

D. S. Thommen, “The First Shall (Be) Last: Understanding Durable T Cell Responses in Immunotherapy,” Immunity 50, no. 1 (2019): 6-8.

[98]

A. Kallies, D. Zehn, D. T. Utzschneider, “Precursor Exhausted T Cells: Key to Successful Immunotherapy?,” Nature Reviews Immunology 20, no. 2 (2020): 128-136.

[99]

B. C. Miller, D. R. Sen, R. Al Abosy, “Subsets of Exhausted CD8(+) T Cells Differentially Mediate Tumor Control and Respond to Checkpoint Blockade,” Nature Immunology 20, no. 3 (2019): 326-336.

[100]

R. Zander, W. Cui, “Exhausted CD8(+) T Cells Face a Developmental Fork in the Road,” Trends in Immunology 44, no. 4 (2023): 276-286.

[101]

T. Sekine, A. Perez-Potti, S. Nguyen, et al., “TOX Is Expressed by Exhausted and Polyfunctional human Effector Memory CD8(+) T Cells,” Science Immunology 5, no. 49 (2020): eaba7918.

[102]

P. Chatterjee, N. Patsoukis, G. J. Freeman, V. A. Boussiotis, “Distinct Roles of PD-1 Itsm and ITIM in Regulating Interactions with SHP-2, ZAP-70 and Lck, and PD-1-Mediated Inhibitory Function,” Blood 122, no. 21 (2013): 191-191.

[103]

E. Hui, J. Cheung, J. Zhu, et al., “T Cell Costimulatory Receptor CD28 Is a Primary Target for PD-1-mediated Inhibition,” Science (New York, NY) 355, no. 6332 (2017): 1428-1433.

[104]

G. Rota, C. Niogret, A. T. Dang, et al., “Shp-2 Is Dispensable for Establishing T Cell Exhaustion and for PD-1 Signaling in Vivo,” Cell Reports 23, no. 1 (2018): 39-49.

[105]

J. Celis-Gutierrez, P. Blattmann, Y. Zhai, et al., “Quantitative Interactomics in Primary T Cells Provides a Rationale for Concomitant PD-1 and BTLA Coinhibitor Blockade in Cancer Immunotherapy,” Cell Reports 27, no. 11 (2019): 3315-3330. e7.

[106]

T. Yokosuka, M. Takamatsu, W. Kobayashi-Imanishi, A. Hashimoto-Tane, M. Azuma, T. Saito, “Programmed Cell Death 1 Forms Negative Costimulatory Microclusters That Directly Inhibit T Cell Receptor Signaling by Recruiting Phosphatase SHP2,” The Journal of Experimental Medicine 209, no. 6 (2012): 1201-17.

[107]

K. A. Sheppard, L. J. Fitz, J. M. Lee, et al., “PD-1 Inhibits T-cell Receptor Induced Phosphorylation of the ZAP70/CD3zeta Signalosome and Downstream Signaling to PKCtheta,” FEBS Letters 574, no. 1-3 (2004): 37-41.

[108]

P. A. van der Merwe, D. L. Bodian, S. Daenke, P. Linsley, S. J. Davis, “CD80 (B7-1) binds both CD28 and CTLA-4 With a Low Affinity and Very Fast Kinetics,” The Journal of Experimental Medicine 185, no. 3 (1997): 393-403.

[109]

Y. Zhu, S. Yao, L. Chen, “Cell Surface Signaling Molecules in the Control of Immune Responses: A Tide Model,” Immunity 34, no. 4 (2011): 466-78.

[110]

T. Shiratori, S. Miyatake, H. Ohno, et al., “Tyrosine Phosphorylation Controls Internalization of CTLA-4 by Regulating Its Interaction With Clathrin-associated Adaptor Complex AP-2,” Immunity 6, no. 5 (1997): 583-9.

[111]

L. E. Marengère, P. Waterhouse, G. S. Duncan, H. W. Mittrücker, G. S. Feng, T. W. Mak, “Regulation of T Cell Receptor Signaling by Tyrosine Phosphatase SYP Association With CTLA-4,” Science (New York, NY) 272, no. 5265 (1996): 1170-3.

[112]

A. L. Mellor, P. Chandler, B. Baban, et al., “Specific Subsets of Murine Dendritic Cells Acquire Potent T Cell Regulatory Functions Following CTLA4-mediated Induction of Indoleamine 2,3 Dioxygenase,” International Immunology 16, no. 10 (2004): 1391-401.

[113]

K. L. Clayton, M. S. Haaland, M. B. Douglas-Vail, “T Cell Ig and Mucin Domain-containing Protein 3 Is Recruited to the Immune Synapse, Disrupts Stable Synapse Formation, and Associates With Receptor Phosphatases,” Journal of Immunology 192, no. 2 (2014): 782-91.

[114]

Y. H. Huang, C. Zhu, Y. Kondo, et al., “CEACAM1 regulates TIM-3-mediated Tolerance and Exhaustion,” Nature 517, no. 7534 (2015): 386-90.

[115]

S. Chen, J. Chen, Y. Kong, et al., “Knockdown of TIM3 Hampers Dendritic Cell Maturation and Induces Immune Suppression by Modulating T-Cell Responses,” International Journal of Molecular Sciences 26, no. 9 (2025): 4332.

[116]

M. Nakayama, H. Akiba, K. Takeda, et al., “Tim-3 Mediates Phagocytosis of Apoptotic Cells and Cross-presentation,” Blood 113, no. 16 (2009): 3821-30.

[117]

K. Wong, P. A. Valdez, C. Tan, S. Yeh, J. A. Hongo, W. Ouyang, “Phosphatidylserine Receptor Tim-4 Is Essential for the Maintenance of the Homeostatic state of Resident Peritoneal Macrophages,” Proceedings of the National Academy of Sciences of the United States of America 107, no. 19 (2010): 8712-7.

[118]

K. Chemin, C. Gerstner, V. Malmström, “Effector Functions of CD4+ T Cells at the Site of Local Autoimmune Inflammation-Lessons from Rheumatoid Arthritis,” Frontiers in Immunology 10 (2019): 353.

[119]

J. Wang, M. F. Sanmamed, I. Datar, et al., “Fibrinogen-Like Protein 1 Is a Major Immune Inhibitory Ligand of LAG-3,” Cell 176, no. 1-2 (2019): 334-347. e12.

[120]

Y. Jiang, A. Dai, Y. Huang, et al., “Ligand-induced Ubiquitination Unleashes LAG3 Immune Checkpoint Function by Hindering Membrane Sequestration of Signaling Motifs,” Cell 188, no. 9 (2025): 2354-2371. e18.

[121]

J. M. Chemnitz, A. R. Lanfranco, I. Braunstein, J. L. Riley, “B and T Lymphocyte Attenuator-mediated Signal Transduction Provides a Potent Inhibitory Signal to Primary human CD4 T Cells That Can be Initiated by Multiple Phosphotyrosine Motifs,” Journal of Immunology 176, no. 11 (2006): 6603-14.

[122]

X. Xu, B. Hou, A. Fulzele, et al., “PD-1 and BTLA Regulate T Cell Signaling Differentially and Only Partially Through SHP1 and SHP2,” Journal of Cell Biology 219, no. 6 (2020): e201905085.

[123]

X. Xu, T. Masubuchi, Q. Cai, Y. Zhao, E. Hui, “Molecular Features Underlying Differential SHP1/SHP2 Binding of Immune Checkpoint Receptors,” Elife 10 (2021): e74276.

[124]

S. Mélique, A. Vadel, N. Rouquié, et al., “THEMIS Promotes T Cell Development and Maintenance by Rising the Signaling Threshold of the Inhibitory Receptor BTLA,” Proceedings of the National Academy of Sciences of the United States of America 121, no. 20 (2024): e2318773121.

[125]

A. Kharel, J. Shen, R. Brown, et al., “Loss of PBAF Promotes Expansion and Effector Differentiation of CD8(+) T Cells During Chronic Viral Infection and Cancer,” Cell Reports 42, no. 6 (2023): 112649.

[126]

J. H. Cha, L. C. Chan, C. W. Li, J. L. Hsu, M. C. Hung, “Mechanisms Controlling PD-L1 Expression in Cancer,” Molecular Cell 76, no. 3 (2019): 359-370.

[127]

K. Kersten, K. H. Hu, A. J. Combes, et al., “Spatiotemporal co-dependency Between Macrophages and Exhausted CD8(+) T Cells in Cancer,” Cancer Cell 40, no. 6 (2022): 624-638. e9.

[128]

B. G. Nixon, F. Kuo, L. Ji, et al., “Tumor-associated Macrophages Expressing the Transcription Factor IRF8 Promote T Cell Exhaustion in Cancer,” Immunity 55, no. 11 (2022): 2044-2058.

[129]

N. Prokhnevska, M. A. Cardenas, R. M. Valanparambil, et al., “CD8(+) T Cell Activation in Cancer Comprises an Initial Activation Phase in Lymph Nodes Followed by Effector Differentiation Within the Tumor,” Immunity 56, no. 1 (2023): 107-124. e5.

[130]

D. Zehn, R. Thimme, E. Lugli, G. P. de Almeida, A. Oxenius, “‘Stem-Like’ precursors Are the Fount to Sustain Persistent CD8(+) T Cell Responses,” Nature Immunology 23, no. 6 (2022): 836-847.

[131]

X. Lan, T. Mi, S. Alli, et al., “Antitumor Progenitor Exhausted CD8(+) T Cells Are Sustained by TCR Engagement,” Nature Immunology 25, no. 6 (2024): 1046-1058.

[132]

K. Mittal, J. Ebos, B. Rini, “Angiogenesis and the Tumor Microenvironment: Vascular Endothelial Growth Factor and Beyond,” Seminars in Oncology 41, no. 2 (2014): 235-51.

[133]

U. Das, D. U. Kapoor, S. Singh, B. G. Prajapati, “Unveiling the Potential of chitosan-coated Lipid Nanoparticles in Drug Delivery for Management of Critical Illness: A Review,” Z Naturforsch C J Biosci 79, no. 5-6 (2024): 107-124.

[134]

J. Waibl Polania, A. Hoyt-Miggelbrink, W. H. Tomaszewski, et al., “Antigen Presentation by Tumor-associated Macrophages Drives T Cells From a Progenitor Exhaustion state to Terminal Exhaustion,” Immunity 58, no. 1 (2025): 232-246. e6.

[135]

J. L. Raynor, H. Chi, “Nutrients: Signal 4 in T Cell Immunity,” The Journal of Experimental Medicine 221, no. 3 (2024): e20221839.

[136]

S. K. Seo, B. Kwon, “Immune Regulation Through Tryptophan Metabolism,” Experimental & Molecular Medicine 55, no. 7 (2023): 1371-1379.

[137]

Y. Zheng, R. Xu, X. Chen, et al., “Metabolic Gatekeepers: Harnessing Tumor-derived Metabolites to Optimize T Cell-based Immunotherapy Efficacy in the Tumor Microenvironment,” Cell Death & Disease 15, no. 10 (2024): 775.

[138]

D. Vijayan, A. Young, M. W. L. Teng, M. J. Smyth, “Targeting Immunosuppressive Adenosine in Cancer,” Nature Reviews Cancer 17, no. 12 (2017): 709-724.

[139]

D. Sharma, J. D. Farrar, “Adrenergic Regulation of Immune Cell Function and Inflammation,” Seminars in immunopathology 42, no. 6 (2020): 709-717.

[140]

A. Shadboorestan, M. Koual, J. Dairou, X. Coumoul, “The Role of the Kynurenine/AhR Pathway in Diseases Related to Metabolism and Cancer,” Int J Tryptophan Res 16 (2023): 11786469231185102.

[141]

J. W. Dean, L. Zhou, “Cell-intrinsic View of the Aryl Hydrocarbon Receptor in Tumor Immunity,” Trends in Immunology 43, no. 3 (2022): 245-258.

[142]

S. Punyawatthananukool, R. Matsuura, T. Wongchang, et al., “Prostaglandin E(2)-EP2/EP4 Signaling Induces Immunosuppression in human Cancer by Impairing Bioenergetics and Ribosome Biogenesis in Immune Cells,” Nature Communications 15, no. 1 (2024): 9464.

[143]

J. P. Böttcher, E. Bonavita, P. Chakravarty, et al., “NK Cells Stimulate Recruitment of cDC1 Into the Tumor Microenvironment Promoting Cancer Immune Control,” Cell 172, no. 5 (2018): 1022-1037. e14.

[144]

F. Bayerl, P. Meiser, S. Donakonda, et al., “Tumor-derived Prostaglandin E2 Programs cDC1 Dysfunction to Impair Intratumoral Orchestration of Anti-cancer T Cell Responses,” Immunity 56, no. 6 (2023): 1341-1358. e11.

[145]

D. Schadendorf, F. S. Hodi, C. Robert, et al., “Pooled Analysis of Long-Term Survival Data from Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma,” Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology 33, no. 17 (2015): 1889-94.

[146]

J. S. Weber, “Current Perspectives on Immunotherapy,” Seminars in Oncology 41, no. Suppl 5 (2014): S14-S29.

[147]

S. L. Topalian, A. H. Sharpe, “Balance and Imbalance in the Immune System: Life on the Edge,” Immunity 41, no. 5 (2014): 682-4.

[148]

M. Yi, X. Zheng, M. Niu, S. Zhu, H. Ge, K. Wu, “Combination Strategies With PD-1/PD-L1 Blockade: Current Advances and Future Directions,” Molecular cancer 21, no. 1 (2022): 28.

[149]

D. S. Thommen, D. S. Peeper, “Rational Combination of Cancer Therapies With PD1 Axis Blockade,” Nature Reviews Cancer (2024).

[150]

T. Okazaki, I. M. Okazaki, J. Wang, et al., “PD-1 and LAG-3 Inhibitory co-receptors Act Synergistically to Prevent Autoimmunity in Mice,” The Journal of Experimental Medicine 208, no. 2 (2011): 395-407.

[151]

S. R. Woo, M. E. Turnis, M. V. Goldberg, et al., “Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-cell Function to Promote Tumoral Immune Escape,” Cancer Research 72, no. 4 (2012): 917-27.

[152]

T. J. Panella, S. S. Thomas, M. McKean, et al., “A Phase 3 Trial Comparing fianlimab (anti-LAG-3) plus cemiplimab (anti-PD-1) to pembrolizumab in Patients With Completely Resected High-risk Melanoma,” American Society of Clinical Oncology 41, no. 16 (2023).

[153]

A. Weiss, “Peeking into the Black Box of T Cell Receptor Signaling,” Annual Review of Immunology 42, no. 1 (2024): 1-20.

[154]

D. T. McManus, R. M. Valanparambil, C. B. Medina, et al., “An Early Precursor CD8(+) T Cell That Adapts to Acute or Chronic Viral Infection,” Nature 640, no. 8059 (2025): 772-781.

[155]

S. Kurtulus, A. Madi, G. Escobar, et al., “Checkpoint Blockade Immunotherapy Induces Dynamic Changes in PD-1(-)CD8(+) Tumor-Infiltrating T Cells,” Immunity 50, no. 1 (2019): 181-194. e6.

[156]

P. L. Chen, W. Roh, A. Reuben, et al., “Analysis of Immune Signatures in Longitudinal Tumor Samples Yields Insight Into Biomarkers of Response and Mechanisms of Resistance to Immune Checkpoint Blockade,” Cancer Discovery 6, no. 8 (2016): 827-37.

[157]

Y. Xie, F. Liu, Y. Wu, et al., “Inflammation in Cancer: Therapeutic Opportunities From New Insights,” Molecular cancer 24, no. 1 (2025): 51.

[158]

N. Shifrin, D. H. Raulet, M. Ardolino, “NK Cell Self Tolerance, Responsiveness and Missing Self Recognition,” Seminars in Immunology 26, no. 2 (2014): 138-44.

[159]

D. C. P. Wong, J. L. Ding, “The Mechanobiology of NK Cells- ‘Forcing NK to Sense’ target Cells,” Biochimica Et Biophysica Acta Reviews on Cancer 1878, no. 2 (2023): 188860.

[160]

T. J. Laskowski, A. Biederstädt, K. Rezvani, “Natural Killer Cells in Antitumour Adoptive Cell Immunotherapy,” Nature Reviews Cancer 22, no. 10 (2022): 557-575.

[161]

L. Peng, G. Sferruzza, L. Yang, L. Zhou, S. Chen, “CAR-T and CAR-NK as Cellular Cancer Immunotherapy for Solid Tumors,” Cellular & Molecular Immunology 21, no. 10 (2024): 1089-1108.

[162]

S. Guedan, M. Ruella, C. H. June, “Emerging Cellular Therapies for Cancer,” Annual Review of Immunology 37 (2019): 145-171.

[163]

W. Wang, Y. Liu, Z. He, et al., “Breakthrough of Solid Tumor Treatment: CAR-NK Immunotherapy,” Cell Death Discovery 10, no. 1 (2024): 40.

[164]

A. S. Bear, J. A. Fraietta, V. K. Narayan, M. O'Hara, N. B. Haas, “Adoptive Cellular Therapy for Solid Tumors,” American Society of Clinical Oncology Educational Book American Society of Clinical Oncology Annual Meeting 41 (2021): 57-65.

[165]

M. Morotti, A. Albukhari, A. Alsaadi, et al., “Promises and Challenges of Adoptive T-cell Therapies for Solid Tumours,” British Journal of Cancer 124, no. 11 (2021): 1759-1776.

[166]

S. Secondino, C. Canino, D. Alaimo, et al., “Clinical Trials of Cellular Therapies in Solid Tumors,” Cancers 15, no. 14 (2023): 3667.

[167]

C. E. Brown, D. Alizadeh, R. Starr, et al., “Regression of Glioblastoma After Chimeric Antigen Receptor T-Cell Therapy,” New England Journal of Medicine 375, no. 26 (2016): 2561-2569.

[168]

C. E. Brown, D. Alizadeh, R. Starr, et al., “Regression of Glioblastoma After Chimeric Antigen Receptor T-Cell Therapy,” The New England Journal of Medicine 375, no. 26 (2016): 2561-9.

[169]

C. U. Louis, B. Savoldo, G. Dotti, et al., “Antitumor Activity and Long-term Fate of Chimeric Antigen Receptor-positive T Cells in Patients With Neuroblastoma,” Blood 118, no. 23 (2011): 6050-6056.

[170]

K. M. Cappell, J. N. Kochenderfer, “Long-term Outcomes Following CAR T Cell Therapy: What We Know so Far,” Nature Reviews Clinical Oncology 20, no. 6 (2023): 359-371.

[171]

G. Schett, A. Mackensen, D. Mougiakakos, “CAR T-cell Therapy in Autoimmune Diseases,” Lancet (London, England) 402, no. 10416 (2023): 2034-2044.

[172]

J. Zhang, J. Li, Y. Hou, et al., “Osr2 functions as a Biomechanical Checkpoint to Aggravate CD8+ T Cell Exhaustion in Tumor,” Cell 187, no. 13 (2024): 3409-3426. e24.

[173]

M. A. Postow, R. Sidlow, M. D. Hellmann, “Immune-Related Adverse Events Associated With Immune Checkpoint Blockade,” The New England Journal of Medicine 378, no. 2 (2018): 158-168.

[174]

Y. Jiang, Y. Li, B. Zhu, “T-cell Exhaustion in the Tumor Microenvironment,” Cell Death & Disease 6, no. 6 (2015): e1792.

[175]

C. C. Zebley, D. Zehn, S. Gottschalk, H. Chi, “T Cell Dysfunction and Therapeutic Intervention in Cancer,” Nature Immunology 25, no. 8 (2024): 1344-1354.

[176]

K. A. Connolly, M. Kuchroo, A. Venkat, et al., “A Reservoir of Stem-Like CD8(+) T Cells in the Tumor-draining Lymph Node Preserves the Ongoing Antitumor Immune Response,” Science Immunology 6, no. 64 (2021): eabg7836.

[177]

T. Gebhardt, S. L. Park, I. A. Parish, “Stem-Like Exhausted and Memory CD8(+) T Cells in Cancer,” Nature Reviews Cancer 23, no. 11 (2023): 780-798.

[178]

G. Oliveira, C. J. Wu, “Dynamics and Specificities of T Cells in Cancer Immunotherapy,” Nature Reviews Cancer 23, no. 5 (2023): 295-316.

[179]

Z. Liu, Y. Zhang, N. Ma, et al., “Progenitor-Like Exhausted SPRY1(+)CD8(+) T Cells Potentiate Responsiveness to Neoadjuvant PD-1 Blockade in Esophageal Squamous Cell Carcinoma,” Cancer Cell 41, no. 11 (2023): 1852-1870. e9.

[180]

I. Mellman, D. S. Chen, T. Powles, S. J. Turley, “The Cancer-immunity Cycle: Indication, Genotype, and Immunotype,” Immunity 56, no. 10 (2023): 2188-2205.

[181]

A. M. Starzer, M. Preusser, A. S. Berghoff, “Immune Escape Mechanisms and Therapeutic Approaches in Cancer: The Cancer-immunity Cycle,” Therapeutic Advances in Medical Oncology 14 (2022): 17588359221096219.

[182]

M. Cabeza-Cabrerizo, A. Cardoso, C. M. Minutti, M. Pereira da Costa, C. Reis e Sousa, “Dendritic Cells Revisited,” Annual Review of Immunology 39 (2021): 131-166.

[183]

A. Katsnelson, “Kicking off Adaptive Immunity: The Discovery of Dendritic Cells,” The Journal of Experimental Medicine 203, no. 7 (2006): 1622.

[184]

T. L. Murphy, G. E. Grajales-Reyes, X. Wu, et al., “Transcriptional Control of Dendritic Cell Development,” Annual Review of Immunology 34 (2016): 93-119.

[185]

T. L. Murphy, K. M. Murphy, “Dendritic Cells in Cancer Immunology,” Cellular & Molecular Immunology 19, no. 1 (2022): 3-13.

[186]

F. M. Cruz, J. D. Colbert, E. Merino, B. A. Kriegsman, K. L. Rock, “The Biology and Underlying Mechanisms of Cross-Presentation of Exogenous Antigens on MHC-I Molecules,” Annual Review of Immunology 35 (2017): 149-176.

[187]

J. M. Blander, “Regulation of the Cell Biology of Antigen Cross-Presentation,” Annual Review of Immunology 36 (2018): 717-753.

[188]

N. Pishesha, T. J. Harmand, H. L. Ploegh, “A Guide to Antigen Processing and Presentation,” Nature Reviews Immunology 22, no. 12 (2022): 751-764.

[189]

J. S. Blum, P. A. Wearsch, P. Cresswell, “Pathways of Antigen Processing,” Annual Review of Immunology 31 (2013): 443-73.

[190]

C. Moussion, L. Delamarre, “Antigen Cross-presentation by Dendritic Cells: A Critical Axis in Cancer Immunotherapy,” Seminars in Immunology 71 (2024): 101848.

[191]

T. Zhang, A. Aipire, Y. Li, C. Guo, J. Li, “Antigen Cross-presentation in Dendric Cells: From Bench to Bedside,” Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie 168 (2023): 115758.

[192]

P. Nair-Gupta, A. Baccarini, N. Tung, et al., “TLR Signals Induce Phagosomal MHC-I Delivery From the Endosomal Recycling Compartment to Allow Cross-presentation,” Cell 158, no. 3 (2014): 506-521.

[193]

I. Dingjan, D. R. Verboogen, L. M. Paardekooper, et al., “Lipid Peroxidation Causes Endosomal Antigen Release for Cross-presentation,” Scientific Reports 6 (2016): 22064.

[194]

E. Childs, C. M. Henry, J. Canton, C. Reis e Sousa, “Maintenance and Loss of Endocytic Organelle Integrity: Mechanisms and Implications for Antigen Cross-presentation,” Open Biology 11, no. 11 (2021): 210194.

[195]

M. Gros, E. Segura, D. C. Rookhuizen, et al., “Endocytic Membrane Repair by ESCRT-III Controls Antigen Export to the Cytosol During Antigen Cross-presentation,” Cell Reports 40, no. 7 (2022): 111205.

[196]

E. Alspach, D. M. Lussier, A. P. Miceli, et al., “MHC-II Neoantigens Shape Tumour Immunity and Response to Immunotherapy,” Nature 574, no. 7780 (2019): 696-701.

[197]

S. E. Brightman, A. Becker, R. R. Thota, et al., “Neoantigen-specific Stem Cell Memory-Like CD4+ T Cells Mediate CD8+ T Cell-dependent Immunotherapy of MHC Class II-negative Solid Tumors,” Nature Immunology 24, no. 8 (2023): 1345-1357.

[198]

A. L. Huff, G. Longway, J. T. Mitchell, et al., “CD4 T Cell-activating Neoantigens Enhance Personalized Cancer Vaccine Efficacy,” JCI Insight 8, no. 23 (2023): e174027.

[199]

R. Zander, D. Schauder, G. Xin, et al., “CD4+ T Cell Help Is Required for the Formation of a Cytolytic CD8+ T Cell Subset That Protects Against Chronic Infection and Cancer,” Immunity 51, no. 6 (2019): 1028-1042. e4.

[200]

A. Śledzińska, M. Vila de Mucha, K. Bergerhoff, et al., “Regulatory T Cells Restrain Interleukin-2- and Blimp-1-Dependent Acquisition of Cytotoxic Function by CD4(+) T Cells,” Immunity 52, no. 1 (2020): 151-166. e6.

[201]

J. A. Juno, D. van Bockel, S. J. Kent, A. D. Kelleher, J. J. Zaunders, C. M. Munier, “Cytotoxic CD4 T Cells-Friend or Foe During Viral Infection?,” Frontiers in Immunology 8 (2017): 19.

[202]

S. Kitano, T. Tsuji, C. Liu, et al., “Enhancement of Tumor-reactive Cytotoxic CD4+ T Cell Responses After ipilimumab Treatment in Four Advanced Melanoma Patients,” Cancer Immunology Research 1, no. 4 (2013): 235-44.

[203]

E. Laroche, S. L'Espérance, “Cancer Incidence and Mortality Among Firefighters: An Overview of Epidemiologic Systematic Reviews,” International Journal of Environmental Research and Public Health 18, no. 5 (2021): 2519.

[204]

G. Espinosa-Carrasco, E. Chiu, A. Scrivo, et al., “Intratumoral Immune Triads Are Required for Immunotherapy-mediated Elimination of Solid Tumors,” Cancer Cell 42, no. 7 (2024): 1202-1216. e8.

[205]

F. P. Legoux, J. B. Lim, A. W. Cauley, et al., “CD4+ T Cell Tolerance to Tissue-Restricted Self Antigens Is Mediated by Antigen-Specific Regulatory T Cells Rather than Deletion,” Immunity 43, no. 5 (2015): 896-908.

[206]

M. A. Morse, W. R. Gwin, D. A. Mitchell, “Vaccine Therapies for Cancer: Then and Now,” Targeted Oncology 16, no. 2 (2021): 121-152.

[207]

B. Q. Tay, Q. Wright, R. Ladwa, et al., “Evolution of Cancer Vaccines-Challenges, Achievements, and Future Directions,” Vaccines 9, no. 5 (2021): 535.

[208]

O. J. Finn, “The Dawn of Vaccines for Cancer Prevention,” Nature Reviews Immunology 18, no. 3 (2018): 183-194.

[209]

J. L. Gulley, P. M. Arlen, R. A. Madan, et al., “Immunologic and Prognostic Factors Associated With Overall Survival Employing a Poxviral-based PSA Vaccine in Metastatic Castrate-resistant Prostate Cancer,” Cancer Immunology, Immunotherapy : CII 59, no. 5 (2010): 663-74.

[210]

S. Kreiter, M. Vormehr, N. van de Roemer, et al., “Mutant MHC Class II Epitopes Drive Therapeutic Immune Responses to Cancer,” Nature 520, no. 7549 (2015): 692-6.

[211]

D. Sexauer, E. Gray, P. Zaenker, “Tumour- associated Autoantibodies as Prognostic Cancer Biomarkers- a Review,” Autoimmunity Reviews 21, no. 4 (2022): 103041.

[212]

D. Baumjohann, P. Brossart, “T Follicular Helper Cells: Linking Cancer Immunotherapy and Immune-related Adverse Events,” Journal for Immunotherapy of Cancer 9, no. 6 (2021): e002588.

[213]

T. N. Schumacher, D. S. Thommen, “Tertiary Lymphoid Structures in Cancer,” Science (New York, NY) 375, no. 6576 (2022): eabf9419.

[214]

R. D. Mazor, N. Nathan, A. Gilboa, et al., “Tumor-reactive Antibodies Evolve From Non-binding and Autoreactive Precursors,” Cell 185, no. 7 (2022): 1208-1222. e21.

[215]

Q. Zhang, S. Wu, “Tertiary Lymphoid Structures Are Critical for Cancer Prognosis and Therapeutic Response,” Frontiers in Immunology 13 (2022): 1063711.

[216]

A. M. Johnson, B. L. Bullock, A. J. Neuwelt, et al., “Cancer Cell-Intrinsic Expression of MHC Class II Regulates the Immune Microenvironment and Response to Anti-PD-1 Therapy in Lung Adenocarcinoma,” Journal of Immunology 204, no. 8 (2020): 2295-2307.

[217]

A. Kallingal, M. Olszewski, N. Maciejewska, W. Brankiewicz, M. Baginski, “Cancer Immune Escape: The Role of Antigen Presentation Machinery,” Journal of Cancer Research and Clinical Oncology 149, no. 10 (2023): 8131-8141.

[218]

A. B. Rodriguez, V. H. Engelhard, “Insights Into Tumor-Associated Tertiary Lymphoid Structures: Novel Targets for Antitumor Immunity and Cancer Immunotherapy,” Cancer Immunology Research 8, no. 11 (2020): 1338-1345.

[219]

P. S. Ohashi, A. L. DeFranco, “Making and Breaking Tolerance,” Current Opinion in Immunology 14, no. 6 (2002): 744-59.

[220]

A. Timón-Gómez, E. Nývltová, L. A. Abriata, A. J. Vila, J. Hosler, A. Barrientos, “Mitochondrial Cytochrome c Oxidase Biogenesis: Recent Developments,” Seminars in cell & developmental biology 76 (2018): 163-178.

[221]

E. Kvedaraite, F. Ginhoux, “Human Dendritic Cells in Cancer,” Science Immunology 7, no. 70 (2022): eabm9409.

[222]

A. C. Villani, R. Satija, G. Reynolds, et al., “Single-cell RNA-seq Reveals New Types of human Blood Dendritic Cells, Monocytes, and Progenitors,” Science (New York, NY) 356, no. 6335 (2017).

[223]

K. Shortman, P. Sathe, D. Vremec, S. Naik, M. O'Keeffe, “Plasmacytoid Dendritic Cell Development,” Advances in Immunology 120 (2013): 105-26.

[224]

P. F. Rodrigues, L. Alberti-Servera, A. Eremin, G. E. Grajales-Reyes, R. Ivanek, R. Tussiwand, “Distinct Progenitor Lineages Contribute to the Heterogeneity of Plasmacytoid Dendritic Cells,” Nature Immunology 19, no. 7 (2018): 711-722.

[225]

P. F. Rodrigues, R. Tussiwand, “Novel Concepts in Plasmacytoid Dendritic Cell (pDC) Development and Differentiation,” Molecular Immunology 126 (2020): 25-30.

[226]

D. P. Simmons, P. A. Wearsch, D. H. Canaday, et al., “Type I IFN Drives a Distinctive Dendritic Cell Maturation Phenotype That Allows Continued Class II MHC Synthesis and Antigen Processing,” Journal of Immunology 188, no. 7 (2012): 3116-26.

[227]

S. Zhang, C. Audiger, M. Chopin, S. L. Nutt, “Transcriptional Regulation of Dendritic Cell Development and Function,” Frontiers in Immunology 14 (2023): 1182553.

[228]

K. Shortman, W. R. Heath, “The CD8+ Dendritic Cell Subset,” Immunological Reviews 234, no. 1 (2010): 18-31.

[229]

M. Guilliams, C. A. Dutertre, C. L. Scott, et al., “Unsupervised High-Dimensional Analysis Aligns Dendritic Cells Across Tissues and Species,” Immunity 45, no. 3 (2016): 669-684.

[230]

E. Segura, J. Valladeau-Guilemond, M. H. Donnadieu, X. Sastre-Garau, V. Soumelis, S. Amigorena, “Characterization of Resident and Migratory Dendritic Cells in human Lymph Nodes,” The Journal of Experimental Medicine 209, no. 4 (2012): 653-60.

[231]

I. Sasaki, K. Hoshino, T. Sugiyama, et al., “Spi-B Is Critical for Plasmacytoid Dendritic Cell Function and Development,” Blood 120, no. 24 (2012): 4733-43.

[232]

M. Nagasawa, H. Schmidlin, M. G. Hazekamp, R. Schotte, B. Blom, “Development of human Plasmacytoid Dendritic Cells Depends on the Combined Action of the Basic Helix-loop-helix Factor E2-2 and the Ets Factor Spi-B,” European Journal of Immunology 38, no. 9 (2008): 2389-400.

[233]

N. Onai, K. Kurabayashi, M. Hosoi-Amaike, et al., “A Clonogenic Progenitor With Prominent Plasmacytoid Dendritic Cell Developmental Potential,” Immunity 38, no. 5 (2013): 943-57.

[234]

B. Reizis, A. Bunin, H. S. Ghosh, K. L. Lewis, V. Sisirak, “Plasmacytoid Dendritic Cells: Recent Progress and Open Questions,” Annual Review of Immunology 29 (2011): 163-83.

[235]

E. Segura, “Review of Mouse and Human Dendritic Cell Subsets,” Methods in Molecular Biology 1423 (2016): 3-15.

[236]

J. P. Böttcher, C. Reis e Sousa, “The Role of Type 1 Conventional Dendritic Cells in Cancer Immunity,” Trends in cancer 4, no. 11 (2018): 784-792.

[237]

S. T. Ferris, V. Durai, R. Wu, et al., “cDC1 prime and Are Licensed by CD4(+) T Cells to Induce Anti-tumour Immunity,” Nature 584, no. 7822 (2020): 624-629.

[238]

M. Binnewies, A. M. Mujal, J. L. Pollack, et al., “Unleashing Type-2 Dendritic Cells to Drive Protective Antitumor CD4(+) T Cell Immunity,” Cell 177, no. 3 (2019): 556-571. e16.

[239]

E. Segura, M. Touzot, A. Bohineust, et al., “Human Inflammatory Dendritic Cells Induce Th17 Cell Differentiation,” Immunity 38, no. 2 (2013): 336-48.

[240]

B. Reizis, “Plasmacytoid Dendritic Cells: Development, Regulation, and Function,” Immunity 50, no. 1 (2019): 37-50.

[241]

A. Thiel, R. Pries, S. Jeske, T. Trenkle, B. Wollenberg, “Effect of Head and Neck Cancer Supernatant and CpG-oligonucleotides on Migration and IFN-alpha Production of Plasmacytoid Dendritic Cells,” Anticancer Research 29, no. 8 (2009): 3019-25.

[242]

S. I. Labidi-Galy, V. Sisirak, P. Meeus, et al., “Quantitative and Functional Alterations of Plasmacytoid Dendritic Cells Contribute to Immune Tolerance in Ovarian Cancer,” Cancer Research 71, no. 16 (2011): 5423-34.

[243]

S. Demoulin, M. Herfs, P. Delvenne, P. Hubert, “Tumor Microenvironment Converts Plasmacytoid Dendritic Cells Into Immunosuppressive/Tolerogenic Cells: Insight Into the Molecular Mechanisms,” Journal of Leukocyte Biology 93, no. 3 (2013): 343-52.

[244]

T. Ito, M. Yang, Y. H. Wang, et al., “Plasmacytoid Dendritic Cells Prime IL-10-producing T Regulatory Cells by Inducible Costimulator Ligand,” The Journal of Experimental Medicine 204, no. 1 (2007): 105-15.

[245]

J. Canton, H. Blees, C. M. Henry, et al., “The Receptor DNGR-1 Signals for Phagosomal Rupture to Promote Cross-presentation of Dead-cell-associated Antigens,” Nature Immunology 22, no. 2 (2021): 140-153.

[246]

C. Huysamen, J. A. Willment, K. M. Dennehy, G. D. Brown, “CLEC9A is a Novel Activation C-type Lectin-Like Receptor Expressed on BDCA3+ Dendritic Cells and a Subset of Monocytes,” The Journal of Biological Chemistry 283, no. 24 (2008): 16693-701.

[247]

D. Sancho, O. P. Joffre, A. M. Keller, et al., “Identification of a Dendritic Cell Receptor That Couples Sensing of Necrosis to Immunity,” Nature 458, no. 7240 (2009): 899-903.

[248]

T. B. Geijtenbeek, “Actin' as a Death Signal,” Immunity 36, no. 4 (2012): 557-9.

[249]

J. G. Zhang, P. E. Czabotar, A. N. Policheni, et al., “The Dendritic Cell Receptor Clec9A Binds Damaged Cells via Exposed Actin filaments,” Immunity 36, no. 4 (2012): 646-57.

[250]

P. Hanč, T. Fujii, S. Iborra, et al., “Structure of the Complex of F-Actin and DNGR-1, a C-Type Lectin Receptor Involved in Dendritic Cell Cross-Presentation of Dead Cell-Associated Antigens,” Immunity 42, no. 5 (2015): 839-849.

[251]

R. Noubade, S. Majri-Morrison, K. V. Tarbell, “Beyond cDC1: Emerging Roles of DC Crosstalk in Cancer Immunity,” Frontiers in Immunology 10 (2019): 1014.

[252]

S. T. Ferris, R. A. Ohara, F. Ou, et al., “cDC1 Vaccines Drive Tumor Rejection by Direct Presentation Independently of Host cDC1,” Cancer Immunology Research 10, no. 8 (2022): 920-931.

[253]

C. Lhuillier, N. P. Rudqvist, T. Yamazaki, et al., “Radiotherapy-exposed CD8+ and CD4+ Neoantigens Enhance Tumor Control,” The Journal of Clinical Investigation 131, no. 5 (2021): e138740.

[254]

L. Wang, C. Lynch, S. P. Pitroda, et al., “Radiotherapy and Immunology,” The Journal of Experimental Medicine 221, no. 7 (2024): e20232101.

[255]

R. Wu, K. M. Murphy, “DCs at the Center of Help: Origins and Evolution of the Three-cell-type Hypothesis,” The Journal of Experimental Medicine 219, no. 7 (2022): e20211519.

[256]

C. M. Henry, C. A. Castellanos, C. Reis e Sousa, “DNGR-1-mediated Cross-presentation of Dead Cell-associated Antigens,” Seminars in Immunology 66 (2023): 101726.

[257]

S. Jo, R. A. Ohara, D. J. Theisen, et al., “Shared Pathway of WDFY4-dependent Cross-presentation of Immune Complexes by cDC1 and cDC2,” The Journal of Experimental Medicine 222, no. 4 (2025): e20240955.

[258]

D. J. Theisen, D. JTt, C. G. Briseño, et al., “WDFY4 is Required for Cross-presentation in Response to Viral and Tumor Antigens,” Science (New York, NY) 362, no. 6415 (2018): 694-699.

[259]

J. H. Chen, L. T. Nieman, M. Spurrell, et al., “Human Lung Cancer Harbors Spatially Organized Stem-immunity Hubs Associated With Response to Immunotherapy,” Nature Immunology 25, no. 4 (2024): 644-658.

[260]

P. Meiser, M. A. Knolle, A. Hirschberger, et al., “A Distinct Stimulatory cDC1 Subpopulation Amplifies CD8(+) T Cell Responses in Tumors for Protective Anti-cancer Immunity,” Cancer Cell 41, no. 8 (2023): 1498-1515. e10.

[261]

X. Lei, I. Khatri, T. de Wit, et al., “CD4(+) helper T Cells Endow cDC1 With Cancer-impeding Functions in the human Tumor Micro-environment,” Nature Communications 14, no. 1 (2023): 217.

[262]

X. Lei, D. C. de Groot, M. J. P. Welters, et al., “CD4(+) T Cells Produce IFN-I to License cDC1s for Induction of Cytotoxic T-cell Activity in human Tumors,” Cellular & Molecular Immunology 21, no. 4 (2024): 374-392.

[263]

B. Maier, A. M. Leader, S. T. Chen, et al., “A Conserved Dendritic-cell Regulatory Program Limits Antitumour Immunity,” Nature 580, no. 7802 (2020): 257-262.

[264]

R. Zilionis, C. Engblom, C. Pfirschke, et al., “Single-Cell Transcriptomics of Human and Mouse Lung Cancers Reveals Conserved Myeloid Populations Across Individuals and Species,” Immunity 50, no. 5 (2019): 1317-1334. e10.

[265]

R. Wu, R. A. Ohara, S. Jo, et al., “Mechanisms of CD40-dependent cDC1 Licensing Beyond Costimulation,” Nature Immunology 23, no. 11 (2022): 1536-1550.

[266]

T. Warger, P. Osterloh, G. Rechtsteiner, et al., “Synergistic Activation of Dendritic Cells by Combined Toll-Like Receptor Ligation Induces Superior CTL Responses in Vivo,” Blood 108, no. 2 (2006): 544-50.

[267]

M. Hubo, B. Trinschek, F. Kryczanowsky, A. Tuettenberg, K. Steinbrink, H. Jonuleit, “Costimulatory Molecules on Immunogenic versus Tolerogenic human Dendritic Cells,” Frontiers in Immunology 4 (2013): 82.

[268]

S. Gou, S. Wang, W. Liu, et al., “Adjuvant-free Peptide Vaccine Targeting Clec9a on Dendritic Cells Can Induce Robust Antitumor Immune Response Through Syk/IL-21 Axis,” Theranostics 11, no. 15 (2021): 7308-7321.

[269]

B. Zeng, A. P. Middelberg, A. Gemiarto, et al., “Self-adjuvanting Nanoemulsion Targeting Dendritic Cell Receptor Clec9A Enables Antigen-specific Immunotherapy,” The Journal of Clinical Investigation 128, no. 5 (2018): 1971-1984.

[270]

D. Sancho, D. Mourão-Sá, O. P. Joffre, et al., “Tumor Therapy in Mice via Antigen Targeting to a Novel, DC-restricted C-type Lectin,” The Journal of Clinical Investigation 118, no. 6 (2008): 2098-2110.

[271]

I. Caminschi, A. I. Proietto, F. Ahmet, et al., “The Dendritic Cell Subtype-restricted C-type Lectin Clec9A Is a Target for Vaccine Enhancement,” Blood 112, no. 8 (2008): 3264-73.

[272]

J. Bourque, D. Hawiger, “Activation, Amplification, and Ablation as Dynamic Mechanisms of Dendritic Cell Maturation,” Biology 12, no. 5 (2023): 716.

[273]

S. Kim, J. Chen, S. Jo, et al., “IL-6 Selectively Suppresses cDC1 Specification via C/EBPβ,” The Journal of Experimental Medicine 220, no. 10 (2023): e20221757.

[274]

H. Tang, Z. Wei, B. Zheng, et al., “Rescuing Dendritic Cell Interstitial Motility Sustains Antitumour Immunity,” Nature (2025): 1-10.

[275]

N. A. Ivica, C. M. Young, “Tracking the CAR-T Revolution: Analysis of Clinical Trials of CAR-T and TCR-T Therapies for the Treatment of Cancer (1997-2020),” Healthcare (Basel, Switzerland) 9, no. 8 (2021): 1062.

[276]

H. de Jonge, L. Iamele, M. Maggi, G. Pessino, C. Scotti, “Anti-Cancer Auto-Antibodies: Roles, Applications and Open Issues,” Cancers 13, no. 4 (2021): 813.

[277]

O. J. Finn, “Cancer Vaccines: Between the Idea and the Reality,” Nature Reviews Immunology 3, no. 8 (2003): 630-41.

[278]

M. Xiao, L. Xie, G. Cao, et al., “CD4(+) T-cell Epitope-based Heterologous Prime-boost Vaccination Potentiates Anti-tumor Immunity and PD-1/PD-L1 Immunotherapy,” Journal for Immunotherapy of Cancer 10, no. 5 (2022): e004022.

[279]

S. Eschweiler, J. Clarke, C. Ramírez-Suástegui, et al., “Intratumoral Follicular Regulatory T Cells Curtail Anti-PD-1 Treatment Efficacy,” Nature Immunology 22, no. 8 (2021): 1052-1063.

[280]

H. Lam, L. K. McNeil, H. Starobinets, et al., “An Empirical Antigen Selection Method Identifies Neoantigens That either Elicit Broad Antitumor T-cell Responses or Drive Tumor Growth,” Cancer Discovery 11, no. 3 (2021): 696-713.

[281]

H. Sultan, Y. Takeuchi, J. P. Ward, et al., “Neoantigen-specific Cytotoxic Tr1 CD4 T Cells Suppress Cancer Immunotherapy,” Nature 632, no. 8023 (2024): 182-191.

[282]

Y. Li, M. Wang, X. Peng, et al., “mRNA Vaccine in Cancer Therapy: Current Advance and Future Outlook,” Clinical and Translational Medicine 13, no. 8 (2023): e1384.

[283]

H. O'Brien, M. Salm, L. T. Morton, et al., “Breaking the Performance Ceiling for Neoantigen Immunogenicity Prediction,” Nature Cancer 4, no. 12 (2023): 1618-1621.

[284]

L. A. Rojas, Z. Sethna, K. C. Soares, et al., “Personalized RNA Neoantigen Vaccines Stimulate T Cells in Pancreatic Cancer,” Nature 618, no. 7963 (2023): 144-150.

[285]

S. J. Szymura, L. Wang, T. Zhang, et al., “Personalized Neoantigen Vaccines as Early Intervention in Untreated Patients With Lymphoplasmacytic Lymphoma: A Non-randomized Phase 1 Trial,” Nature Communications 15, no. 1 (2024): 6874.

[286]

M. Yarchoan, E. J. Gane, T. U. Marron, et al., “Personalized Neoantigen Vaccine and Pembrolizumab in Advanced Hepatocellular Carcinoma: A Phase 1/2 Trial,” Nature Medicine 30, no. 4 (2024): 1044-1053.

[287]

E. J. Sayour, D. Boczkowski, D. A. Mitchell, S. K. Nair, “Cancer mRNA Vaccines: Clinical Advances and Future Opportunities,” Nature Reviews Clinical Oncology 21, no. 7 (2024): 489-500.

[288]

V. Anagnostou, K. N. Smith, P. M. Forde, et al., “Evolution of Neoantigen Landscape During Immune Checkpoint Blockade in Non-Small Cell Lung Cancer,” Cancer Discovery 7, no. 3 (2017): 264-276.

[289]

T. Sugawara, F. Miya, T. Ishikawa, et al., “Immune Subtypes and Neoantigen-related Immune Evasion in Advanced Colorectal Cancer,” Iscience 25, no. 2 (2022): 103740.

[290]

R. Rosenthal, E. L. Cadieux, R. Salgado, et al., “Neoantigen-directed Immune Escape in Lung Cancer Evolution,” Nature 567, no. 7749 (2019): 479-485.

[291]

T. Nejo, H. Matsushita, T. Karasaki, et al., “Reduced Neoantigen Expression Revealed by Longitudinal Multiomics as a Possible Immune Evasion Mechanism in Glioma,” Cancer Immunology Research 7, no. 7 (2019): 1148-1161.

[292]

A. H. Pearlman, M. S. Hwang, M. F. Konig, et al., “Targeting Public Neoantigens for Cancer Immunotherapy,” Nature Cancer 2, no. 5 (2021): 487-497.

[293]

T. Martinov, P. D. Greenberg, “Targeting Driver Oncogenes and Other Public Neoantigens Using T Cell Receptor-Based Cellular Therapy,” Annual Review of Cancer Biology 7, no. 1 (2023): 331-351.

[294]

M. Shen, S. Chen, X. Han, et al., “Identification of an HLA-A*11:01-restricted Neoepitope of Mutant PIK3CA and Its Specific T Cell Receptors for Cancer Immunotherapy Targeting Hotspot Driver Mutations,” Cancer Immunology, Immunotherapy : CII 73, no. 8 (2024): 150.

[295]

N. Levin, S. P. Kim, C. A. Marquardt, et al., “Neoantigen-specific Stimulation of Tumor-infiltrating Lymphocytes Enables Effective TCR Isolation and Expansion While Preserving Stem-Like Memory Phenotypes,” Journal for Immunotherapy of Cancer 12, no. 5 (2024): e008645.

[296]

J. Choi, S. P. Goulding, B. P. Conn, et al., “Systematic Discovery and Validation of T Cell Targets Directed Against Oncogenic KRAS Mutations,” Cell Reports Methods 1, no. 5 (2021): 100084.

[297]

D. C. Deniger, A. Pasetto, P. F. Robbins, et al., “T-cell Responses to TP53 “Hotspot” Mutations and Unique Neoantigens Expressed by Human Ovarian Cancers,” Clinical Cancer Research: An Official Journal of the American Association for Cancer Research 24, no. 22 (2018): 5562-5573.

[298]

P. Malekzadeh, A. Pasetto, P. F. Robbins, et al., “Neoantigen Screening Identifies Broad TP53 Mutant Immunogenicity in Patients With Epithelial Cancers,” The Journal of Clinical Investigation 129, no. 3 (2019): 1109-1114.

[299]

R. Foà, S. Chiaretti, “Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia,” The New England Journal of Medicine 386, no. 25 (2022): 2399-2411.

[300]

A. S. Bear, T. Blanchard, J. Cesare, et al., “Biochemical and Functional Characterization of Mutant KRAS Epitopes Validates this Oncoprotein for Immunological Targeting,” Nature Communications 12, no. 1 (2021): 4365.

[301]

S. L. Meijer, A. Dols, W. J. Urba, et al., “Adoptive Cellular Therapy With Tumor Vaccine Draining Lymph Node Lymphocytes After Vaccination With HLA-B7/beta2-microglobulin Gene-modified Autologous Tumor Cells,” Journal of Immunotherapy (Hagerstown, Md : 1997) 25, no. 4 (2002): 359-72.

[302]

S. Pant, Z. A. Wainberg, C. D. Weekes, et al., “Lymph-node-targeted, mKRAS-specific Amphiphile Vaccine in Pancreatic and Colorectal Cancer: The Phase 1 AMPLIFY-201 Trial,” Nature Medicine 30, no. 2 (2024): 531-542.

[303]

X. Wang, W. Wang, S. Zou, et al., “Combination Therapy of KRAS G12V mRNA Vaccine and Pembrolizumab: Clinical Benefit in Patients With Advanced Solid Tumors,” Cell Research 34, no. 9 (2024): 661-664.

[304]

A. R. Rappaport, C. Kyi, M. Lane, et al., “A Shared Neoantigen Vaccine Combined With Immune Checkpoint Blockade for Advanced Metastatic Solid Tumors: Phase 1 Trial Interim Results,” Nature Medicine 30, no. 4 (2024): 1013-1022.

[305]

N. I. Ho, L. G. M. Huis In 't Veld, T. K. Raaijmakers, G. J. Adema, “Adjuvants Enhancing Cross-Presentation by Dendritic Cells: The Key to More Effective Vaccines?,” Frontiers in Immunology 9 (2018): 2874.

[306]

J. Chen, Z. Li, H. Huang, et al., “Improved Antigen Cross-presentation by Polyethyleneimine-based Nanoparticles,” International Journal of Nanomedicine 6 (2011): 77-84.

[307]

L. M. P. Vermeulen, S. C. De Smedt, K. Remaut, K. Braeckmans, “The Proton Sponge Hypothesis: Fable or Fact?,” European Journal of Pharmaceutics and Biopharmaceutics : Official Journal of Arbeitsgemeinschaft Fur Pharmazeutische Verfahrenstechnik eV 129 (2018): 184-190.

[308]

J. T. Wilson, S. Keller, M. J. Manganiello, et al., “pH-Responsive Nanoparticle Vaccines for Dual-delivery of Antigens and Immunostimulatory Oligonucleotides,” ACS Nano 7, no. 5 (2013): 3912-25.

[309]

F. C. Knight, P. Gilchuk, A. Kumar, et al., “Mucosal Immunization With a pH-Responsive Nanoparticle Vaccine Induces Protective CD8(+) Lung-Resident Memory T Cells,” ACS Nano 13, no. 10 (2019): 10939-10960.

[310]

J. P. Bost, M. Ojansivu, M. J. Munson, et al., “Novel Endosomolytic Compounds Enable Highly Potent Delivery of Antisense Oligonucleotides,” Communications Biology 5, no. 1 (2022): 185.

[311]

C. Li, Y. Hou, M. He, et al., “Laponite Lights Calcium Flickers by Reprogramming Lysosomes to Steer DC Migration for an Effective Antiviral CD8(+) T-Cell Response,” Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 10, no. 30 (2023): e2303006.

[312]

D. Jeon, E. Hill, D. G. McNeel, “Toll-Like Receptor Agonists as Cancer Vaccine Adjuvants,” Human Vaccines & Immunotherapeutics 20, no. 1 (2024): 2297453.

[313]

J. M. den Haan, S. M. Lehar, M. J. Bevan, “CD8(+) but Not CD8(-) Dendritic Cells Cross-prime Cytotoxic T Cells in Vivo,” The Journal of Experimental Medicine 192, no. 12 (2000): 1685-96.

[314]

A. Bachem, S. Güttler, E. Hartung, et al., “Superior Antigen Cross-presentation and XCR1 Expression Define human CD11c+CD141+ Cells as Homologues of Mouse CD8+ Dendritic Cells,” The Journal of Experimental Medicine 207, no. 6 (2010): 1273-81.

[315]

Y. Ding, Z. Guo, Y. Liu, et al., “The Lectin Siglec-G Inhibits Dendritic Cell Cross-presentation by Impairing MHC Class I-peptide Complex Formation,” Nature Immunology 17, no. 10 (2016): 1167-75.

[316]

J. Munkley, “Aberrant Sialylation in Cancer: Therapeutic Opportunities,” Cancers 14, no. 17 (2022): 4248.

[317]

C. Dobie, D. Skropeta, “Insights Into the Role of Sialylation in Cancer Progression and Metastasis,” British Journal of Cancer 124, no. 1 (2021): 76-90.

[318]

N. Y. Z. Cheang, K. S. Tan, P. S. Tan, et al., “Single-shot Dendritic Cell Targeting SARS-CoV-2 Vaccine Candidate Induces Broad, Durable and Protective Systemic and Mucosal Immunity in Mice,” Molecular Therapy: the Journal of the American Society of Gene Therapy 32, no. 7 (2024): 2299-2315.

[319]

E. S. Clark, A. P. Benaduce, W. N. Khan, O. Martinez, E. Gilboa, “Vaccination Against Neoantigens Induced in Cross-priming cDC1 in Vivo,” Cancer Immunology, Immunotherapy : CII 73, no. 1 (2024): 9.

[320]

R. Kavishna, T. Y. Kang, M. Vacca, et al., “A Single-shot Vaccine Approach for the Universal Influenza A Vaccine Candidate M2e,” Proceedings of the National Academy of Sciences of the United States of America 119, no. 13 (2022): e2025607119.

[321]

K. A. Masterman, O. L. Haigh, K. M. Tullett, et al., “Human CLEC9A Antibodies Deliver NY-ESO-1 Antigen to CD141(+) Dendritic Cells to Activate Naïve and Memory NY-ESO-1-specific CD8(+) T Cells,” Journal for Immunotherapy of Cancer 8, no. 2 (2020): e000691.

[322]

Y. Zhang, J. Chen, L. Shi, F. Ma, “Polymeric Nanoparticle-based Nanovaccines for Cancer Immunotherapy,” Mater Horiz 10, no. 2 (2023): 361-392.

[323]

S. Morales-Hernández, N. Ugidos-Damboriena, J. López-Sagaseta, “Self-Assembling Protein Nanoparticles in the Design of Vaccines: 2022 Update,” Vaccines (Basel) 10, no. 9 (2022): 1447.

[324]

F. T. Hsu, C. L. Tsai, I. T. Chiang, et al., “Synergistic Effect of Abraxane That Combines human IL15 Fused With an Albumin-binding Domain on Murine Models of Pancreatic Ductal Adenocarcinoma,” Journal of Cellular and Molecular Medicine 26, no. 7 (2022): 1955-1968.

[325]

S. Gou, W. Liu, S. Wang, et al., “Engineered Nanovaccine Targeting Clec9a(+) Dendritic Cells Remarkably Enhances the Cancer Immunotherapy Effects of STING Agonist,” Nano Letters 21, no. 23 (2021): 9939-9950.

[326]

Q. Zhou, Y. Zhou, T. Li, Z. Ge, “Nanoparticle-Mediated STING Agonist Delivery for Enhanced Cancer Immunotherapy,” Macromolecular Bioscience 21, no. 8 (2021): e2100133.

[327]

P. Liu, L. Zhao, G. Kroemer, O. Kepp, “Conventional Type 1 Dendritic Cells (cDC1) in Cancer Immunity,” Biology Direct 18, no. 1 (2023): 71.

[328]

M. Saxena, N. Bhardwaj, “Turbocharging Vaccines: Emerging Adjuvants for Dendritic Cell Based Therapeutic Cancer Vaccines,” Current Opinion in Immunology 47 (2017): 35-43.

[329]

J. Liu, X. Zhang, Y. Cheng, X. Cao, “Dendritic Cell Migration in Inflammation and Immunity,” Cellular & Molecular Immunology 18, no. 11 (2021): 2461-2471.

[330]

F. Y. Huang, J. Y. Wang, S. Z. Dai, et al., “A Recombinant Oncolytic Newcastle Virus Expressing MIP-3α Promotes Systemic Antitumor Immunity,” Journal for Immunotherapy of Cancer 8, no. 2 (2020): e000330.

[331]

E. Ascic, F. Åkerström, M. Sreekumar Nair, “In Vivo Dendritic Cell Reprogramming for Cancer Immunotherapy,” Science (New York, NY) 386, no. 6719 (2024): eadn9083.

[332]

T. Gao, S. Yuan, S. Liang, et al., “In Situ Hydrogel Modulates cDC1-Based Antigen Presentation and Cancer Stemness to Enhance Cancer Vaccine Efficiency,” Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 11, no. 20 (2024): e2305832.

[333]

M. Ashayeripanah, J. Vega-Ramos, D. Fernandez-Ruiz, et al., “Systemic Inflammatory Response Syndrome Triggered by Blood-borne Pathogens Induces Prolonged Dendritic Cell Paralysis and Immunosuppression,” Cell Reports 43, no. 2 (2024): 113754.

[334]

A. Ghasemi, A. Martinez-Usatorre, L. Li, et al., “Cytokine-armed Dendritic Cell Progenitors for Antigen-agnostic Cancer Immunotherapy,” Nature Cancer 5, no. 2 (2024): 240-261.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/