Applications of Artificial Intelligence in Biotech Drug Discovery and Product Development

Yuan-Tao Liu , Le-Le Zhang , Zi-Ying Jiang , Xian-Shu Tian , Peng-Lin Li , Pei-Huang Wu , Wen-Ting Du , Bo-Yu Yuan , Chu Xie , Guo-Long Bu , Lan-Yi Zhong , Yan-Lin Yang , Ting Li , Mu-Sheng Zeng , Cong Sun

MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70317

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70317 DOI: 10.1002/mco2.70317
REVIEW

Applications of Artificial Intelligence in Biotech Drug Discovery and Product Development

Author information +
History +
PDF

Abstract

Artificial intelligence (AI) is revolutionizing biotechnology by transforming the landscape of therapeutic development. Traditional drug discovery faces persistent challenges, including high attrition rates, billion-dollar costs, and timelines exceeding a decade. Recent advances in AI—particularly generative models such as generative adversarial networks, variational autoencoders, and diffusion models—have introduced data-driven, iterative workflows that dramatically accelerate and enhance pharmaceutical R&D. However, a comprehensive synthesis of how AI technologies reshape each key modality of drug discovery remains lacking. This review systematically examines AI-enabled breakthroughs across four major therapeutic platforms: small-molecule drug design, protein binder discovery, antibody engineering, and nanoparticle-based delivery systems. It highlights AI's ability to achieve >75% hit validation in virtual screening, design protein binders with sub-Ångström structural fidelity, enhancing antibody binding affinity to the picomolar range, and optimize nanoparticles to achieve over 85% functionalization efficiency. We further discuss the integration of high-throughput experimentation, closed-loop validation, and AI-guided optimization in expanding the druggable proteome and enabling precision medicine. By consolidating cross-domain advances, this review provides a roadmap for leveraging machine learning to overcome current biopharmaceutical bottlenecks and accelerate next-generation therapeutic innovation.

Keywords

artificial intelligence / drug discovery / protein engineering

Cite this article

Download citation ▾
Yuan-Tao Liu, Le-Le Zhang, Zi-Ying Jiang, Xian-Shu Tian, Peng-Lin Li, Pei-Huang Wu, Wen-Ting Du, Bo-Yu Yuan, Chu Xie, Guo-Long Bu, Lan-Yi Zhong, Yan-Lin Yang, Ting Li, Mu-Sheng Zeng, Cong Sun. Applications of Artificial Intelligence in Biotech Drug Discovery and Product Development. MedComm, 2025, 6(8): e70317 DOI:10.1002/mco2.70317

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Chakravarthi G, R. Babu V, R. DSVNM, G. Rahul, and P. SVGVA, “AI and Machine Learning in Biotechnology: A Paradigm Shift in Biochemical Innovation,” Int J Plant Anim Environ Sci 14, no. 4 (2024), https://doi.org/10.26502/ijpaes.4490166.

[2]

H. Decheng, Y. Mingxuan, W. Xin, X. Siwei, and Y. Bo, “AI-Driven Drug Discovery: Accelerating the Development of Novel Therapeutics in Biopharmaceuticals,” Int Med Sci Res J 4, no. 8 (2024): 882-899.

[3]

M. Rashid, “Artificial Intelligence Effecting a Paradigm Shift in Drug Development,” SLAS Technol 26, no. 1 (2021): 3-15.

[4]

P. Suriyaamporn, B. Pamornpathomkul, P. Patrojanasophon, T. Ngawhirunpat, T. Rojanarata, and P. Opanasopit, “The Artificial Intelligence-Powered New Era in Pharmaceutical Research and Development: A Review,” Aaps Pharmscitech [Electronic Resource] 25, no. 6 (2024): 188.

[5]

R. Dhudum, A. Ganeshpurkar, and A. Pawar, “Revolutionizing Drug Discovery: A Comprehensive Review of AI Applications,” Drugs Drug Candidates 3, no. 1 (2024): 148-171.

[6]

S. Bechelli and J. Delhommelle, “AI's Role in Pharmaceuticals: Assisting Drug Design From Protein Interactions to Drug Development,” Artif Intell Chem 2, no. 1 (2024): 100038.

[7]

P. Arora, M. Behera, S. A. Saraf, and R. Shukla, “Leveraging Artificial Intelligence for Synergies in Drug Discovery: From Computers to Clinics,” Current Pharmaceutical Design 30, no. 28 (2024): 2187-2205.

[8]

M. Ali, K. Shabbir, and S. Ali, “A New Era of Discovery: How Artificial Intelligence Has Revolutionized the Biotechnology,” Nepal Journal of Biotechnology 12, no. 1 (2024): 1-11.

[9]

Q. Vanhaelen, Y.-C. Lin, and A. Zhavoronkov, “The Advent of Generative Chemistry,” Acs Medicinal Chemistry Letters 11, no. 8 (2020): 1496-1505.

[10]

B. Tang, J. Ewalt, and H.-L. Ng, “Generative AI Models for Drug Discovery,” in Topics in Medicinal Chemistry (Springer International Publishing, 2021): 221-243, https://doi.org/10.1007/7355_2021_124.

[11]

E. Lin, C.-H. Lin, and H.-Y. Lane, “Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular De Novo Design, Dimensionality Reduction, and De Novo Peptide and Protein Design,” Molecules (Basel, Switzerland) 25, no. 14 (2020): 3250.

[12]

I. Wallach, et al., “AI Is a Viable Alternative to High Throughput Screening: A 318-target Study,” Scientific Reports 14, no. 1 (2024): 7526.

[13]

Y. A. Ivanenkov, D. Polykovskiy, and D. Bezrukov, “Chemistry42: An AI-Driven Platform for Molecular Design and Optimization,” Journal of Chemical Information and Modeling 63, no. 3 (2023): 695-701.

[14]

X. Yang, Y. Wang, R. Byrne, G. Schneider, and S. Yang, “Concepts of Artificial Intelligence for Computer-Assisted Drug Discovery,” Chem. Rev. 119, no. 18 (2019): 10520-10594.

[15]

S. Tripathi, A. I Augustin, A. Dunlop, et al., “Recent Advances and Application of Generative Adversarial Networks in Drug Discovery, Development, and Targeting,” Artif Intell Life Sci 2 (2022): 100045.

[16]

J. Jumper, R. Evans, and A. Pritzel, “Highly Accurate Protein Structure Prediction With AlphaFold,” Nature 596, no. 7873 (2021): 583-589.

[17]

M. Baek, F. Dimaio, and I. Anishchenko, “Accurate Prediction of Protein Structures and Interactions Using a Three-track Neural Network,” Science 373, no. 6557 (2021): 871-876.

[18]

M.-J. Blanco, M. J. Buskes, R. G. Govindaraj, J. J. Ipsaro, J. E. Prescott-Roy, and A. K. Padyana, “Allostery Illuminated: Harnessing AI and Machine Learning for Drug Discovery,” Acs Medicinal Chemistry Letters 15, no. 9 (2024): 1449-1455.

[19]

X. Qiu, H. Li, G. Ver Steeg, and A. Godzik, “Advances in AI for Protein Structure Prediction: Implications for Cancer Drug Discovery and Development,” Biomolecules 14, no. 3 (2024): 339.

[20]

L. Duo, Y. Liu, J. Ren, B. Tang, and J. D. Hirst, “Artificial Intelligence for Small Molecule Anticancer Drug Discovery,” Expert Opin Drug Discov 19, no. 8 (2024): 933-948.

[21]

D. N. Kim, A. D. McNaughton, and N. Kumar, “Leveraging Artificial Intelligence to Expedite Antibody Design and Enhance Antibody-Antigen Interactions,” Bioengineering 11, no. 2 (2024): 185.

[22]

S. Bachas, G., Rakocevic, D. Spencer, et al., “Antibody Optimization Enabled by Artificial Intelligence Predictions of Binding Affinity and Naturalness,” BioRxiv (2022), https://doi.org/10.1101/2022.08.16.504181.

[23]

G. Bai, C. Sun, and Z. Guo, “Accelerating Antibody Discovery and Design With Artificial Intelligence: Recent Advances and Prospects,” Seminars in Cancer Biology 95 (2023): 13-24.

[24]

M. F. Chungyoun and J. J. Gray, “AI Models for Protein Design Are Driving Antibody Engineering,” Curr Opin Biomed Eng 28 (2023): 100473.

[25]

J. Kim, M. McFee, Q. Fang, O. Abdin, and P. M. Kim, “Computational and Artificial Intelligence-based Methods for Antibody Development,” Trends in Pharmacological Sciences 44, no. 3 (2023): 175-189.

[26]

R. Batra, T. D. Loeffler, and H. Chan, “Machine Learning Overcomes human Bias in the Discovery of Self-assembling Peptides,” Nature Chemistry 14, no. 12 (2022): 1427-1435.

[27]

S. Vázquez Torres, M. Benard Valle, and S. P. Mackessy, “De Novo Designed Proteins Neutralize Lethal Snake Venom Toxins,” Nature 639, no. 8053 (2025): 225-231.

[28]

A. Fallah, S. A. Havaei, H. Sedighian, and R. Kachuei, and A. A. I. Fooladi, “Prediction of Aptamer Affinity Using an Artificial Intelligence Approach,” J Mater Chem B 12, no. 36 (2024): 8825-8842.

[29]

Z. Chen, L. Hu, and B.-T. Zhang, “Artificial Intelligence in Aptamer-Target Binding Prediction,” International Journal of Molecular Sciences 22, no. 7 (2021): 3605.

[30]

H. Stärk, O.-E. Ganea, L. Pattanaik, R. Barzilay, and T. Jaakkola, “EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction,” Int Conf Mach Learn (2022).

[31]

W. Wang, K. Chen, and T. Jiang, “Artificial Intelligence-driven Rational Design of Ionizable Lipids for mRNA Delivery,” Nature Communications 15, no. 1 (2024), https://doi.org/10.1038/s41467-024-55072-6.

[32]

P. Gao, “Advancements in Lipid Nanoparticle Technologies for Precision Targeting in Therapeutic Delivery,” Precis Nanomedicine 7, no. 3 (2024), https://doi.org/10.33218/001c.121633.

[33]

D. U. Kapoor, J. B. Sharma, and S. M. Gandhi, “AI-driven Design and Optimization of Nanoparticle-based Drug Delivery Systems,” Sci Eng Health Stud (2024): 24010003, https://doi.org/10.69598/sehs.18.24010003.

[34]

Z. Chen, X. Ren, Y. Zhou, and N. Huang, “Exploring Structure-based Drug Discovery of GPCRs Beyond the Orthosteric Binding Site,” Hlife 2, no. 5 (2024): 211-226.

[35]

Y. Li, H. Zhang, C. Sun, et al., “R9AP is a Common Receptor for EBV Infection in Epithelial Cells and B Cells,” Nature (2025): 1-9, https://doi.org/10.1038/s41586-025-09166-w.

[36]

J. A. DiMasi, H. G. Grabowski, and R. W. Hansen, “Innovation in the Pharmaceutical Industry: New Estimates of R&D Costs,” Journal of Health Economics 47 (2016): 20-33.

[37]

R. Gómez-Bombarelli, J. N. Wei, and D. Duvenaud, “Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules,” ACS Cent Sci 4, no. 2 (2018): 268-276.

[38]

D. D. Martinelli, “Generative Machine Learning for De Novo Drug Discovery: A Systematic Review,” Computers in Biology and Medicine 145 (2022): 105403.

[39]

M. Olivecrona, T. Blaschke, O. Engkvist, and H. Chen, “Molecular De-novo Design Through Deep Reinforcement Learning,” J Cheminformatics 9, no. 1 (2017): 48.

[40]

X. Liu, K. Ye, H. W. T. van Vlijmen, M. T. M. Emmerich, A. P. IJzerman, and G. J. P. van Westen, “DrugEx v2: De Novo Design of Drug Molecules by Pareto-based Multi-objective Reinforcement Learning in Polypharmacology,” J Cheminformatics 13, no. 1 (2021): 85.

[41]

P. Drotár, A. R. Jamasb, B. Day, C. Cangea, and P. Liò, “Structure-aware Generation of Drug-Like Molecules,” Arxiv (2021), https://doi.org/10.48550/arXiv.2111.04107. arXiv:2111.04107.

[42]

V. Romanelli, D. Annunziata, C. Cerchia, D. Cerciello, F. Piccialli, and A. Lavecchia, “Enhancing De Novo Drug Design Across Multiple Therapeutic Targets With CVAE Generative Models,” ACS Omega 9, no. 43 (2024): 43963-43976.

[43]

B. Sanchez-Lengeling, C. Outeiral, G. L. Guimaraes, and A. Aspuru-Guzik, “Optimizing Distributions Over Molecular Space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC,” ChemRxiv (2017), https://doi.org/10.26434/chemrxiv.5309668.v3.

[44]

Ł. Maziarka, A. Pocha, J. Kaczmarczyk, K. Rataj, T. Danel, and M. Warchoł, “Mol-CycleGAN: A Generative Model for Molecular Optimization,” J Cheminformatics 12, no. 1 (2020): 2.

[45]

W. Ahmad, E. Simon, S. Chithrananda, G. Grand, and B. Ramsundar, “ChemBERTa-2: Towards Chemical Foundation Models,” Arxiv: Arxiv (2022), https://doi.org/10.48550/arXiv.2209.01712. 2209.01712.

[46]

J. He, E. Nittinger, C. Tyrchan, et al., “Transformer-based Molecular Optimization Beyond Matched Molecular Pairs,” J Cheminformatics 14, no. 1 (2022): 18.

[47]

A. Qiao, H. Zhang, Q. Yuan, et al., “A 3D Pocket-aware and Evolutionary Conserved Interaction Guided Diffusion Model for Molecular Optimization,” Arxiv (2025), https://doi.org/10.48550/arXiv.2505.05874. arXiv:2505.05874.

[48]

M. Popova, O. Isayev, and A. Tropsha, “Deep Reinforcement Learning for De Novo Drug Design,” Science Advances 4, no. 7 (2018): eaap7885.

[49]

A. Noori, I. Arango, W. E. Byrd, and N. Amin, “Multi-objective Generative AI for Designing Novel Brain-targeting Small Molecules,” Arxiv (2024), https://doi.org/10.48550/arXiv.2407.00004. arXiv:2407.00004.

[50]

S. Tang, J. Ding, X. Zhu, Z. Wang, H. Zhao, and J. Wu, “Vina-GPU 2.1: Towards Further Optimizing Docking Speed and Precision of AutoDock Vina and Its Derivatives,” BioRxiv (2023), https://doi.org/10.1101/2023.11.04.565429.

[51]

Ji Ding, S. Tang, and Z. Mei, “Vina-GPU 2.0: Further Accelerating AutoDock Vina and Its Derivatives With Graphics Processing Units,” Journal of Chemical Information and Modeling 63, no. 7 (2023): 1982-1998.

[52]

D. K. Chebanov, V. A. Misyurin, and N. S. Tatevosova, “Abstract A014: Deep Learning-driven Drug Discovery: A Breakthrough Algorithm and Its Implication in Lung Cancer Therapy Development,” Molecular Cancer Therapeutics 22 (2023): A014-A014. 12_Supplement.

[53]

A. Noori, I. Arango, W. E. Byrd, and N. Amin, “Multi-objective Generative AI for Designing Novel Brain-targeting Small Molecules,” Arxivorg (2024), https://doi.org/10.48550/ARXIV.2407.00004.

[54]

G. Ramey, S. Vargas, D. De Alwis, A. N. Alexandrova, J. Distefano, and P. Bloomingdale, “An Artificial Intelligence Framework for Optimal Drug Design,” BioRxiv (2022), https://doi.org/10.1101/2022.10.29.514379.

[55]

R. A. Varikoti, K. J. Schultz, and C. J. Kombala, “Integrated Data-driven and Experimental Approaches to Accelerate Lead Optimization Targeting SARS-CoV-2 Main Protease,” J Comput Aided Mol Des 37, no. 8 (2023): 339-355.

[56]

B. K. Allen, M. Kulkarni, and B. Chamberlain, et al., “Design of a Systemic Small Molecule Clinical STING Agonist Using Physics-based Simulations and Artificial Intelligence,” BioRxiv (2022), https://doi.org/10.1101/2022.05.23.493001.

[57]

S. Srinivasan, R. Batra, H. Chan, G. Kamath, M. J. Cherukara, and S. Sankaranarayanan, “Artificial Intelligence-Guided De Novo Molecular Design Targeting COVID-19,” ACS Omega 6, no. 19 (2021): 12557-12566.

[58]

S. Tang, J. Ding, X. Zhu, Z. Wang, H. Zhao, and J. Wu, “Vina-GPU 2.1: Towards Further Optimizing Docking Speed and Precision of AutoDock Vina and Its Derivatives,” IEEE/ACM Trans Comput Biol Bioinform 21, no. 6 (2024): 2382-2393.

[59]

B. Overhoff, Z. Falls, W. Mangione, and R. Samudrala, “A Deep Learning Proteomic Scale Approach for Drug Design,” BioRxiv (2021), https://doi.org/10.1101/2021.10.05.463126.

[60]

B. Kaufman, E. C. Williams, and C. Underkoffler, “COATI: Multimodal Contrastive Pretraining for Representing and Traversing Chemical Space,” Journal of Chemical Information and Modeling 64, no. 4 (2024): 1145-1157.

[61]

“Articles in 2023 | Nature Reviews Drug Discovery.” Accessed: 2025. [Online]. Available: https://www.nature.com/nrd/articles?year=2023

[62]

A. V. Srivathsa, N. M. Sadashivappa, A. K. Hegde, et al., “A Review on Artificial Intelligence Approaches and Rational Approaches in Drug Discovery,” Current Pharmaceutical Design 29, no. 15: 1180-1192.

[63]

M. Karimi, A. Hasanzadeh, and Y. Shen, “Network-principled Deep Generative Models for Designing Drug Combinations as Graph Sets,” Bioinformatics 36 (2020): i445-i454. Supplement_1.

[64]

J. Wang, “A Roadmap for Exploring the Untouched Protein Space for Biology and Medicine,” Hlife 1, no. 2 (2023): 93-97.

[65]

B. Briney, A. Inderbitzin, C. Joyce, and D. R. Burton, “Commonality Despite Exceptional Diversity in the Baseline human Antibody Repertoire,” Nature 566, no. 7744 (2019): 393-397.

[66]

C. Sun, J.-W. Yang, and C. Xie, “The Structure of HSV-1 gB Bound to a Potent Neutralizing Antibody Reveals a Conservative Antigenic Domain Across Herpesviruses,” Hlife 2, no. 3 (2024): 141-146.

[67]

S. Joubbi, A. Micheli, and P. Milazzo, “Antibody Design Using Deep Learning: From Sequence and Structure Design to Affinity Maturation,” Brief Bioinform 25, no. 4 (2024), https://doi.org/10.1093/bib/bbae307.

[68]

W. Wilman, S. Wróbel, and W. Bielska, “Machine-designed Biotherapeutics: Opportunities, Feasibility and Advantages of Deep Learning in Computational Antibody Discovery,” Brief Bioinform 23, no. 4 (2022), https://doi.org/10.1093/bib/bbac267.

[69]

J. Cheng, T. Liang, X.-Q. Xie, Z. Feng, and L. Meng, “A New Era of Antibody Discovery: An in-depth Review of AI-driven Approaches,” Drug Discov Today 29, no. 6 (2024): 103984.

[70]

J. A. Ruffolo, C. Guerra, S. P. Mahajan, J. Sulam, and J. J. Gray, “Geometric Potentials From Deep Learning Improve Prediction of CDR H3 Loop Structures,” Bioinformatics 36, no. Suppl 1 (2020): i268-i275.

[71]

J. A. Ruffolo, J. Sulam, and J. J. Gray, “Antibody Structure Prediction Using Interpretable Deep Learning,” Patterns N Y N 3, no. 2 (2022): 100406.

[72]

J. A. Ruffolo, L.-S. Chu, S. P. Mahajan, and J. J. Gray, “Fast, Accurate Antibody Structure Prediction From Deep Learning on Massive Set of Natural Antibodies,” Nature Communications 14, no. 1 (2023): 2389.

[73]

F. Wu, Y. Zhao, J. Wu, et al., “Fast and Accurate Modeling and Design of Antibody-antigen Complex Using tFold,” BioRxiv (2024), https://doi.org/10.1101/2024.02.05.578892.

[74]

T. Cohen, M. Halfon, and D. Schneidman-Duhovny, “NanoNet: Rapid and Accurate End-to-end Nanobody Modeling by Deep Learning,” Frontiers in immunology 13 (2022): 958584.

[75]

E. Liberis, P. Veličković, P. Sormanni, M. Vendruscolo, and P. Liò, “Parapred: Antibody Paratope Prediction Using Convolutional and Recurrent Neural Networks,” Bioinforma Oxf Engl 34, no. 17 (2018): 2944-2950.

[76]

A. Deac, P. VeliČković, and P. Sormanni, “Attentive Cross-Modal Paratope Prediction,” J Comput Biol J Comput Mol Cell Biol 26, no. 6 (2019): 536-545.

[77]

C. Schneider, A. Buchanan, B. Taddese, and C. M. Deane, “DLAB: Deep Learning Methods for Structure-based Virtual Screening of Antibodies,” Bioinforma Oxf Engl 38, no. 2 (2022): 377-383.

[78]

J.-E. Shin, A. J. Riesselman, and A. W. Kollasch, “Protein Design and Variant Prediction Using Autoregressive Generative Models,” Nature Communications 12, no. 1 (2021): 2403.

[79]

T. Amimeur, J M. Shaver, R. R. Ketchem, et al., “Designing Feature-Controlled Humanoid Antibody Discovery Libraries Using Generative Adversarial Networks,” BioRxiv (2020), https://doi.org/10.1101/2020.04.12.024844.

[80]

R. W. Shuai, J. A. Ruffolo, and J. J. Gray, “IgLM: Infilling Language Modeling for Antibody Sequence Design,” Cell Systems 14, no. 11 (2023): 979-989. e4.

[81]

R. R. Eguchi, C. A. Choe, and P.-S. Huang, “Ig-VAE: Generative Modeling of Protein Structure by Direct 3D Coordinate Generation,” Plos Computational Biology 18, no. 6 (2022): e1010271.

[82]

B. D. Weitzner, J. R. Jeliazkov, and S. Lyskov, “Modeling and Docking of Antibody Structures With Rosetta,” Nature Protocols 12, no. 2 (2017): 401-416.

[83]

J. Wu, F. Wu, B. Jiang, W. Liu, and P. Zhao, “tFold-Ab: Fast and Accurate Antibody Structure Prediction Without Sequence Homologs,” BioRxiv (2022), https://doi.org/10.1101/2022.11.10.515918.

[84]

I. Sela-Culang, M. R. Benhnia, M. H. Matho, et al., “Using a Combined Computational-experimental Approach to Predict Antibody-specific B Cell Epitopes,” Struct Lond Engl 1993 22, no. 4 (2014): 646-657.

[85]

N. R. Bennett, J. L. Watson, R. J. Ragotte, et al., “Atomically Accurate De Novo Design of Antibodies With RFdiffusion,” BioRxiv (2024), https://doi.org/10.1101/2024.03.14.585103.

[86]

S. Seo, M. W. Kwak, E. Kang, et al., “Accelerating Antibody Design with Active Learning,” 2022. https://doi.org/10.1101/2022.09.12.507690.

[87]

E. Makdasi, A. Zvi, R. Alcalay, and T. Noy-Porat, “The Neutralization Potency of Anti-SARS-CoV-2 Therapeutic human Monoclonal Antibodies Is Retained Against Viral Variants,” Cell reports 36, no. 10 (2021), https://doi.org/10.1016/j.celrep.2021.109679.

[88]

H. Wu, C. Liu, and Q. Yuan, “A Novel Fc-enhanced Humanized Monoclonal Antibody Targeting B7-H3 Suppresses the Growth of ESCC,” Oncoimmunology 12, no. 1 (2023): 2282250.

[89]

B. Abanades, G. Georges, A. Bujotzek, and C. M. Deane, “ABlooper: Fast Accurate Antibody CDR Loop Structure Prediction With Accuracy Estimation,” BioRxiv (2021), https://doi.org/10.1101/2021.07.26.453747.

[90]

F. N. Hitawala and J. J. Gray, “What Does AlphaFold3 Learn About Antigen and Nanobody Docking, and What Remains Unsolved?,” BioRxiv (2024), https://doi.org/10.1101/2024.09.21.614257.

[91]

J. A. Ruffolo, C. Guerra, S. P. Mahajan, J. Sulam, and J. J. Gray, “Geometric Potentials From Deep Learning Improve Prediction of CDR H3 Loop Structures,” Bioinformatics 36, no. Supplement_1 (2020): i268-i275.

[92]

C. Peng, Z. Wang, P. Zhao, W. Ge, and C. Huang, “AbFold—an AlphaFold Based Transfer Learning Model for Accurate Antibody Structure Prediction,” BioRxiv (2023), https://doi.org/10.1101/2023.04.20.537598.

[93]

F. Gaudreault, T. Sulea, and C. R. Corbeil, “AI-Augmented Physics-Based Docking for Antibody-Antigen Complex Prediction,” BioRxiv (2024), https://doi.org/10.1101/2024.11.06.622293.

[94]

X. Zeng, G. Bai, C. Sun, and B. Ma, “Recent Progress in Antibody Epitope Prediction,” Antibodies 12, no. 3 (2023): 52.

[95]

J. Abramson and J. Adler, “Accurate Structure Prediction of Biomolecular Interactions With AlphaFold 3,” Nature 630, no. 8016 (2024): 493-500.

[96]

F. N. Hitawala and J. J. Gray, “What Has AlphaFold3 Learned About Antibody and Nanobody Docking, and What Remains Unsolved?,” BioRxiv (2024), https://doi.org/10.1101/2024.09.21.614257.

[97]

J. A. Ruffolo, J. J. Gray, and J. Sulam, “Deciphering Antibody Affinity Maturation With Language Models and Weakly Supervised Learning,” Arxiv 14(2021), https://doi.org/10.48550/arXiv.2112.07782. arXiv:2112.07782.

[98]

X. Chen, T. Dougherty, C. Hong, et al., “Predicting Antibody Developability From Sequence Using Machine Learning,” BioRxiv (2020), https://doi.org/10.1101/2020.06.18.159798.

[99]

R. Jin, Q. Ye, and J. Wang, “AttABseq: An Attention-based Deep Learning Prediction Method for Antigen-antibody Binding Affinity Changes Based on Protein Sequences,” Brief Bioinform 25, no. 4 (2024), https://doi.org/10.1093/bib/bbae304.

[100]

A. Villegas-Morcillo, J. M. Weber, and M. J. T. Reinders, “Guiding Diffusion Models for Antibody Sequence and Structure co-design With Developability Properties,” BioRxiv (2023), https://doi.org/10.1101/2023.11.22.568230.

[101]

R. Akbar, P. A. Robert, and C. R. Weber, “In Silico Proof of Principle of Machine Learning-based Antibody Design at Unconstrained Scale,” Mabs 14, no. 1 (2022), https://doi.org/10.1080/19420862.2022.2031482.

[102]

F. Wu and S. Z. Li, “A Hierarchical Training Paradigm for Antibody Structure-sequence Co-design,” Neural Inf Process Syst (2023), https://doi.org/10.48550/ARXIV.2311.16126.

[103]

I.-E. Wu, L. Kalejaye, and P.-K. Lai, “Machine Learning Models for Predicting Monoclonal Antibody Biophysical Properties From Molecular Dynamics Simulations and Deep Learning-Based Surface Descriptors,” Mol Pharm 22, no. 1 (2024): 142-153.

[104]

E. K. Makowski, L. Wu, P. Gupta, and P. M. Tessier, “Discovery-stage Identification of Drug-Like Antibodies Using Emerging Experimental and Computational Methods,” Mabs 13, no. 1 (2021), https://doi.org/10.1080/19420862.2021.1895540.

[105]

A. Musnier, C. Dumet, and S. Mitra, “Applying Artificial Intelligence to Accelerate and De-risk Antibody Discovery,” Front Drug Discov 4 (2024): 13-24.

[106]

A. Shanehsazzadeh, M. McPartlon, G. Kasun, et al., “Unlockingde Novoantibody Design With Generative Artificial Intelligence,” BioRxiv (2023), https://doi.org/10.1101/2023.01.08.523187.

[107]

X. Zhou, Q. Zhu, and A. Zheng, “De Novo Design of Covalent Bonding Peptides for Target Protein,” Hlife 2, no. 12 (2024): 641-652.

[108]

T. Chen, L. Hong, V. Yudistyra, S. Vincoff, and P. Chatterjee, “Generative Design of Therapeutics That Bind and Modulate Protein States,” Curr Opin Biomed Eng 28 (2023): 100496.

[109]

L. Cao, B. Coventry, and I. Goreshnik, “Design of Protein-binding Proteins From the Target Structure Alone,” Nature 605, no. 7910 (2022): 551-560.

[110]

J. Drzazgowska, B. Schmid, R. D. Süssmuth, and Z. Altintas, “Self-Assembled Monolayer Epitope Bridges for Molecular Imprinting and Cancer Biomarker Sensing,” Analytical Chemistry 92, no. 7 (2020): 4798-4806.

[111]

L. Cao, I. Goreshnik, and B. Coventry, “De Novo Design of Picomolar SARS-CoV-2 Miniprotein Inhibitors,” Science 370, no. 6515 (2020): 426-431.

[112]

L. Weißenborn, E. Richel, and H. Hüseman, “Smaller, Stronger, More Stable: Peptide Variants of a SARS-CoV-2 Neutralizing Miniprotein,” International Journal of Molecular Sciences 23, no. 11 (2022): 6309.

[113]

V. Singh, M. Bhutkar, S. Choudhary, et al., “Enhancing Affinity of Neutralizing SARS-CoV-2 Nanobody Through Facile Structure-guided Mutations in CDRs,” BioRxiv 734 (2024): 150746.

[114]

T. Li, H. Cai, H. Yao, et al., “A Synthetic Nanobody Targeting RBD Protects Hamsters From SARS-CoV-2 Infection,” Nature Communications 12, no. 1 (2021): 4635.

[115]

R. Chattaraj, C. Y. Kim, D. Lee, and D. A. Hammer, “Recombinant Protein Micelles to Block Transduction by SARS-CoV-2 Pseudovirus,” ACS Nano 16, no. 10 (2022): 17466-17477.

[116]

O. J. Goudy, A. Nallathambi, T. Kinjo, N. Randolph, and B. Kuhlman, “In Silicoevolution of Protein Binders With Deep Learning Models for Structure Prediction and Sequence Design,” BioRxiv (2023), https://doi.org/10.1101/2023.05.03.539278.

[117]

A. de Marco, “Methodologies for the Isolation of Alternative Binders With Improved Clinical Potentiality Over Conventional Antibodies,” Critical Reviews in Biotechnology 33, no. 1 (2012): 40-48.

[118]

S. Paul and S. Zhou, “Six Events That Shaped Antibody Approvals in Oncology,” Frontiers in immunology 16 (2025): 1533796.

[119]

T. Y. Kim, J. S. Cha, H. Kim, Y. Choi, H.-S. Cho, and H.-S. Kim, “Computationally-guided Design and Affinity Improvement of a Protein Binder Targeting a Specific Site on HER2,” Computational and Structural Biotechnology Journal 19 (2021): 1325-1334.

[120]

S. Yun, S. Lee, J. P. Park, J. Choo, and E. K. Lee, “Modification of Phage Display Technique for Improved Screening of High-affinity Binding Peptides,” Journal of Biotechnology 289 (2019): 88-92.

[121]

C. Qiao, M. Lv, and X. Li, “Affinity Maturation of antiHER2 Monoclonal Antibody MIL5 Using an Epitope-specific Synthetic Phage Library by Computational Design,” Journal of Biomolecular Structure & Dynamics 31, no. 5 (2013): 511-521.

[122]

S. Das, A. Nag, and J. Liang, “A General Synthetic Approach for Designing Epitope Targeted Macrocyclic Peptide Ligands,” Angewandte Chemie International Edition 54, no. 45 (2015): 13219-13224.

[123]

C. Eigenbrot, M. Ultsch, A. Dubnovitsky, L. Abrahmsén, and T. Härd, “Structural Basis for High-affinity HER2 Receptor Binding by an Engineered Protein,” Pnas 107, no. 34 (2010): 15039-15044.

[124]

A. Bonadio and J. M. Shifman, “Computational Design and Experimental Optimization of Protein Binders With Prospects for Biomedical Applications,” Protein Engineering, Design & Selection 34 (2021): gzab020.

[125]

W. Torng, I. Biancofiore, and S. Oehler, “Deep Learning Approach for the Discovery of Tumor-Targeting Small Organic Ligands From DNA-Encoded Chemical Libraries,” ACS Omega 8, no. 28 (2023): 25090-25100.

[126]

N. R. Bennett, B. Coventry, and I. Goreshnik, “Improving De Novo Protein Binder Design With Deep Learning,” Nature Communications 14, no. 1 (2023): 2625.

[127]

J. L. Watson, D. Juergens, and N. R. Bennett, “De Novo Design of Protein Structure and Function With RFdiffusion,” Nature 620, no. 7976 (2023): 1089-1100.

[128]

J. Dauparas, I. Anishchenko, and N. Bennett, “Robust Deep Learning-based Protein Sequence Design Using ProteinMPNN,” Science (2022), https://doi.org/10.1126/science.add2187.

[129]

Y. Cho, M. Pacesa, Z. Zhang, B. E. Correia, and S. Ovchinnikov, “Boltzdesign1: Inverting all-Atom Structure Prediction Model for Generalized Biomolecular Binder Design,” BioRxiv (2025), https://doi.org/10.1101/2025.04.06.647261.

[130]

F. Xue, A. Kubaney, Z. Guo, et al., “Improving Protein Sequence Design Through Designability Preference Optimization,” Arxiv (2025), https://doi.org/10.48550/arXiv.2506.00297. arXiv:2506.00297.

[131]

C. D. Team, J. Boitreaud, J. Dent, et al., “Chai-1: Decoding the Molecular Interactions of Life,” BioRxiv (2024), https://doi.org/10.1101/2024.10.10.615955.

[132]

J. Wohlwend, G. Corso, S. Passaro, et al., “Boltz-1 Democratizing Biomolecular Interaction Modeling,” BioRxiv (2024), https://doi.org/10.1101/2024.11.19.624167.

[133]

V. Zambaldi, La David, E. Alexander, et al., “De Novo Design of High-affinity Protein Binders With AlphaProteo,” Arxiv (2024), https://doi.org/10.48550/arXiv.2409.08022. arXiv:2409.08022.

[134]

M. Pacesa, L. Nickel, J. Schmidt, et al., “BindCraft: One-shot Design of Functional Protein Binders,” BioRxiv (2024), https://doi.org/10.1101/2024.09.30.615802.

[135]

J. Dauparas, G. R. Lee, and R. Pecoraro, “Atomic Context-conditioned Protein Sequence Design Using LigandMPNN,” Nature Methods 22, no. 4 (2025): 717-723.

[136]

F. Ren, X. Ding, and M. Zheng, “AlphaFold Accelerates Artificial Intelligence Powered Drug Discovery: Efficient Discovery of a Novel CDK20 Small Molecule Inhibitor,” Chemical Science 14, no. 6 (2023): 1443-1452.

[137]

“Targeting GPCRs Via Multi-Platform Arrays and AI,” . 135-162, 2022, https://doi.org/10.1016/B978-0-12-820472-6.00048-7.

[138]

C.-L. Chou, C.-T. Lin, C.-T. Kao, and C.-C. Lin, “A Novel Rational PROTACs Design and Validation via AI-Driven Drug Design Approach,” ACS Omega 9, no. 37 (2024): 38371-38384.

[139]

M. Glögl, A. Krishnakumar, R. J. Ragotte, et al., “Target-conditioned Diffusion Generates Potent TNFR Superfamily Antagonists and Agonists,” Science 386, no. 6726 (2024): 1154-1161.

[140]

P. Penner, W. Guba, R. Schmidt, A. Meyder, M. Stahl, and M. Rarey, “The Torsion Library: Semiautomated Improvement of Torsion Rules With SMARTScompare,” Journal of Chemical Information and Modeling 62, no. 7 (2022): 1644-1653.

[141]

K. Shiota, A. Suma, and H. Ogawa, “AQDnet: Deep Neural Network for Protein-Ligand Docking Simulation,” ACS Omega 8, no. 26 (2023): 23925-23935.

[142]

O. I. Ogidi, D. Alfred-Ugbenbo, and B. E. Poripo, “AI-Driven Drug Discovery, Design, and Development in Immunological Disorders,” AI-Assisted Computational Approaches for Immunological Disorders (IGI Global Scientific Publishing, 2025): 143-180, https://doi.org/10.4018/979-8-3693-9725-1.ch005.

[143]

J. Kim, R. Kusko, B. Zeskind, J. Zhang, and R. Escalante-Chong, “A Primer on Applying AI Synergistically With Domain Expertise to Oncology,” Biochim Biophys Acta BBA—Rev Cancer 1876, no. 1 (2021): 188548.

[144]

P. Moingeon, M. Kuenemann, M. Guedj, “Artificial Intelligence-enhanced Drug Design and Development: Toward a Computational Precision Medicine,” Drug Discov Today 27, no. 1 (2022): 215-222.

[145]

K. B. Johnson, W-Qi Wei, D. Weeraratne, “Precision Medicine, AI, and the Future of Personalized Health Care,” Clin Transl Sci 14, no. 1 (2020): 86-93.

[146]

A. Bulashevska, Z. Nacsa, and F. Lang, “Artificial Intelligence and Neoantigens: Paving the Path for Precision Cancer Immunotherapy,” Frontiers in immunology 15 (2024): 1394003.

[147]

M. Mergen, D. Abele, and N. Koleci, “Engineering De Novo Binder CAR-T Cell Therapies With Generative AI,” BioRxiv (2024), https://doi.org/10.1101/2024.11.25.625151.

[148]

F. V. Filipp, “Opportunities for Artificial Intelligence in Advancing Precision Medicine,” Curr Genet Med Rep 7, no. 4 (2019): 208-213.

[149]

C. Sun, Y.-F. Kang, and X.-Y. Fang, “A gB Nanoparticle Vaccine Elicits a Protective Neutralizing Antibody Response Against EBV,” Cell Host & Microbe 31, no. 11 (2023): 1882-1897. e10.

[150]

M. Sheikh and P. S. Jirvankar, “Harnessing Artificial Intelligence for Enhanced Nanoparticle Design in Precision Oncology,” AIMS Bioeng 11, no. 4 (2024): 574-597.

[151]

H. Hayat, A. Nukala, A. Nyamira, J. Fan, and P. Wang, “A Concise Review: The Synergy Between Artificial Intelligence and Biomedical Nanomaterials That Empowers Nanomedicine,” Biomedical Materials 16, no. 5 (2021): 052001.

[152]

M. K. Jayasinghe, CYu Lee, and T. T. T. Tran, “The Role of in Silico Research in Developing Nanoparticle-Based Therapeutics,” Front Digit Health 4 (2022): 838590.

[153]

D. E. Jones, H. Ghandehari, and J. C. Facelli, “A Review of the Applications of Data Mining and Machine Learning for the Prediction of Biomedical Properties of Nanoparticles,” Computer Methods and Programs in Biomedicine 132 (2016): 93-103.

[154]

O. Adir, M. Poley, G. Chen, et al., “Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine,” Advanced Materials 32, no. 13 (2019), https://doi.org/10.1002/adma.201901989.

[155]

S. Heydari, N. Masoumi, E. Esmaeeli, S. M. Ayyoubzadeh, F. Ghorbani-Bidkorpeh, and M. Ahmadi, “Artificial Intelligence in Nanotechnology for Treatment of Diseases,” J Drug Target 32, no. 10 (2024): 1247-1266.

[156]

D. Ho, P. Wang, and T. Kee, “Artificial Intelligence in Nanomedicine,” Nanoscale Horiz 4, no. 2 (2019): 365-377.

[157]

Z. Lin, W.-C. Chou, Y.-H. Cheng, C. He, N. A. Monteiro-Riviere, and J. E. Riviere, “Predicting Nanoparticle Delivery to Tumors Using Machine Learning and Artificial Intelligence Approaches,” Int J Nanomedicine 17 (2022): 1365-1379.

[158]

R. Martinez-Borrajo, P. Diaz-Rodriguez, and M. Landin, “Engineering Mannose-functionalized Nanostructured Lipid Carriers by Sequential Design Using Hybrid Artificial Intelligence Tools,” Drug Deliv Transl Res 15, no. 1 (2024): 343-354.

[159]

H. Rouco, P. Diaz-Rodriguez, S. Rama-Molinos, C. Remuñán-López, and M. Landin, “Delimiting the Knowledge Space and the Design Space of Nanostructured Lipid Carriers Through Artificial Intelligence Tools,” International Journal of Pharmaceutics 553 (2018): 1-2.

[160]

Y. He, F. Liu, and W. Min, “De Novo Design of Biocompatible Nanomaterials Using Quasi-SMILES and Recurrent Neural Networks,” ACS Appl Mater Interfaces 16, no. 48 (2024): 66367-66376.

[161]

W.-C. Chou, Q. Chen, and L. Yuan, “An Artificial Intelligence-Assisted Physiologically-Based Pharmacokinetic Model to Predict Nanoparticle Delivery to Tumors in Mice,” J Control Release Off J Control Release Soc 361 (2023): 53-63, https://doi.org/10.1016/j.jconrel.2023.07.040.

[162]

R. Martinez-Borrajo, P. Diaz-Rodriguez, and M. Landin, “Engineering Mannose-functionalized Nanostructured Lipid Carriers by Sequential Design Using Hybrid Artificial Intelligence Tools,” Drug Deliv Transl Res 15, no. 1 (2025): 343-354.

[163]

W. Wang, K. Chen, and T. Jiang, “Artificial Intelligence-driven Rational Design of Ionizable Lipids for mRNA Delivery,” Nature Communications 15, no. 1 (2024): 10804.

[164]

S. A. Damiati, D. Rossi, H. N. Joensson, and S. Damiati, “Artificial Intelligence Application for Rapid Fabrication of Size-tunable PLGA Microparticles in Microfluidics,” Scientific Reports 10, no. 1 (2020): 19517.

[165]

A. F. Shahiwala, S. S. Qawoogha, and N. Faruqui, “Designing Optimum Drug Delivery Systems Using Machine Learning Approaches: A Prototype Study of Niosomes,” Aaps Pharmscitech [Electronic Resource] 24, no. 4 (2023): 94.

[166]

S. He, A. Barón, and C. R. Munteanu, “Drug Release Nanoparticle System Design: Data Set Compilation and Machine Learning Modeling,” ACS Appl Mater Interfaces 17, no. 3 (2025): 5290-5306.

[167]

X. Dong, X. Hu, F. Yu, P. Deng, and Y. Jia, “Interpretable Causal System Optimization Framework for the Advancement of Biological Effect Prediction and Redesign of Nanoparticles,” Journal of the American Chemical Society 146, no. 32 (2024): 22747-22758.

[168]

I. Lynch, P. Nymark, and P. Doganis, “Methods, Models, Mechanisms and Metadata: Introducing the Nanotoxicology Collection at F1000Research,” F1000Research 10 (2021): 1196.

[169]

A. Hiszpanski, B. Gallagher, K. Chellappan, et al., “Nanomaterials Synthesis Insights From Machine Learning of Scientific Articles by Extracting, Structuring, and Visualizing Knowledge,” Journal of Chemical Information and Modeling 60, no. 6 (2019), https://doi.org/10.26434/chemrxiv.10278164.v1.

[170]

A. V. Singh, M. H. D. Ansari, and D. Rosenkranz, “Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine,” Adv Healthc Mater 9, no. 17 (2020), https://doi.org/10.1002/adhm.201901862.

[171]

S. Deng, C. Li, and J. Cao, “Organ-on-a-chip Meets Artificial Intelligence in Drug Evaluation,” Theranostics 13, no. 13 (2023): 4526-4558.

[172]

F. De Chiara, A. Ferret-Miñana, and J. Ramón-Azcón, “The Synergy Between Organ-on-a-Chip and Artificial Intelligence for the Study of NAFLD: From Basic Science to Clinical Research,” Biomedicines 9, no. 3 (2021): 248.

[173]

S. K. Saikin, C. Kreisbeck, D. Sheberla, J. S. Becker, and A. Aspuru-Guzik, “Closed-loop Discovery Platform Integration Is Needed for Artificial Intelligence to Make an Impact in Drug Discovery,” Expert Opin Drug Discov 14, no. 1 (2018): 1-4.

[174]

Y. S. Zhang, J. Aleman, S. R. Shin, et al., “Multisensor-integrated Organs-on-chips Platform for Automated and Continual in Situ Monitoring of Organoid Behaviors,” Proc. Natl. Acad. Sci.. 114. 12, 2017. E2293-E2302,.

[175]

H. Azizgolshani, J. R. Coppeta, and E. M. Vedula, “High-throughput Organ-on-chip Platform With Integrated Programmable Fluid Flow and Real-time Sensing for Complex Tissue Models in Drug Development Workflows,” Lab on A Chip 21, no. 8 (2021): 1454-1474.

[176]

F. Grisoni, B. J. H. Huisman, A. L. Button, et al., “Combining Generative Artificial Intelligence and on-chip Synthesis for De Novo Drug Design,” Science Advances 7, no. 24 (2021): eabg3338.

[177]

B. A. Koscher, R. B. Canty, and M. A. Mcdonald, “Autonomous, Multiproperty-driven Molecular Discovery: From Predictions to Measurements and Back,” Science 382, no. 6677 (2023): eadi1407.

[178]

R. P. Joshi and N. Kumar, “Artificial Intelligence for Autonomous Molecular Design: A Perspective,” Molecules (Basel, Switzerland) 26, no. 22 (2021): 6761.

[179]

H. Liu, Q. Chen and Y. Liu, “Artificial Intelligence Is Transforming the Study of Proteins: Structures and Beyond,” Hlife 3, no. 4 (2025): 162-163.

[180]

Decheng Huang, Mingxuan Yang, Xin Wen, Siwei Xia, and Bo Yuan, “AI-Driven Drug Discovery: Accelerating the Development of Novel Therapeutics in Biopharmaceuticals,” Int Med Sci Res J 4, no. 8 (2024): 882-899.

[181]

M. Lu, J. Yin, and Qi Zhu, “Artificial Intelligence in Pharmaceutical Sciences,” Engineering 27 (2023): 37-69.

[182]

A. Crouzet, N. Lopez, B. Riss Yaw, Y. Lepelletier, and L. Demange, “The Millennia-Long Development of Drugs Associated With the 80-Year-Old Artificial Intelligence Story: The Therapeutic Big Bang?,” Molecules (Basel, Switzerland) 29, no. 12 (2024): 2716.

[183]

Q. Lv, F. Zhou, X. Liu, and L. Zhi, “Artificial Intelligence in Small Molecule Drug Discovery From 2018 to 2023: Does It Really Work?,” Bioorganic Chem 141 (2023): 106894.

[184]

M. Kp Jayatunga, M. Ayers, L. Bruens, D. Jayanth, and C. Meier, “How Successful Are AI-discovered Drugs in Clinical Trials? A First Analysis and Emerging Lessons,” Drug Discov Today 29, no. 6 (2024): 104009.

[185]

R. Krishna, J. Wang, and W. Ahern, “Generalized Biomolecular Modeling and Design With RoseTTAFold All-Atom,” Science 384, no. 6693 (2024), https://doi.org/10.1126/science.adl2528.

[186]

Q. Li, T. Cheng, Y. Wang, and S. H. Bryant, “Characterizing Protein Domain Associations by Small-molecule Ligand Binding,” J Proteome Sci Comput Biol 1, no. 1 (2012): 6.

[187]

W.-C. Chou and Z. Lin, “Machine Learning and Artificial Intelligence in Physiologically Based Pharmacokinetic Modeling,” Toxicological Sciences 191, no. 1 (2022): 1-14.

[188]

B. Kaufman, E. C. Williams, C. Underkoffler, et al., “COATI: Multimodal Contrastive Pretraining for Representing and Traversing Chemical Space,” Journal of Chemical Information and Modeling 64, no. 4 (2024): 1145-1157.

[189]

G. Ghislat, S. Hernandez-Hernandez, C. Piyawajanusorn, and P. J. Ballester, “Data-centric Challenges With the Application and Adoption of Artificial Intelligence for Drug Discovery,” Expert Opin Drug Discov 19, no. 11 (2024): 1297-1307.

[190]

W. Gao and C. W. Coley, “The Synthesizability of Molecules Proposed by Generative Models,” Journal of Chemical Information and Modeling 60, no. 12 (2020): 5714-5723.

[191]

K. Park, “The Beginning of the End of the Nanomedicine Hype,” Journal of Controlled Release 305 (2019): 221-222.

[192]

Y. Zou, J. Ewalt, and H.-L. Ng, “Recent Insights From Molecular Dynamics Simulations for G Protein-Coupled Receptor Drug Discovery,” International Journal of Molecular Sciences 20, no. 17 (2019): 4237.

[193]

X. Yan, T. Yue, D. A. Winkler, et al., “Converting Nanotoxicity Data to Information Using Artificial Intelligence and Simulation,” Chem. Rev. 123, no. 13 (2023): 8575-8637.

[194]

R. P. Joshi and N. Kumar, “Artificial Intelligence for Autonomous Molecular Design: A Perspective,” Mol Basel Switz 26, no. 22 (2021): 6761.

[195]

S. K. Saikin, C. Kreisbeck, D. Sheberla, J. S. Becker, and A. Aspuru-Guzik, “Closed-loop Discovery Platform Integration Is Needed for Artificial Intelligence to Make an Impact in Drug Discovery,” Expert Opin Drug Discov 14, no. 1 (2018): 1-4.

[196]

A. Zielinski, “AI and the Future of Pharmaceutical Research,” Arxivorg (2021).

[197]

S. S. Dong, W. A. Goddard III, and R. Abrol, “Identifying Multiple Active Conformations in the G Protein-coupled Receptor Activation Landscape Using Computational Methods,” in Methods in Cell Biology (Elsevier, 2017): 173-186, https://doi.org/10.1016/bs.mcb.2017.07.009.

[198]

L. Salas-Estrada, B. Fiorillo, and M. Filizola, “Metadynamics Simulations Leveraged by Statistical Analyses and Artificial Intelligence-based Tools to Inform the Discovery of G Protein-coupled Receptor Ligands,” Front Endocrinol 13 (2022): 1099715.

[199]

J. P. Santa Maria, Y. Wang, and L. M. Camargo, “Perspective on the Challenges and Opportunities of Accelerating Drug Discovery With Artificial Intelligence,” Front Bioinforma 3 (2023), https://doi.org/10.3389/fbinf.2023.1121591.

[200]

H. C. S. Chan, H. Shan, T. Dahoun, H. Vogel, and S. Yuan, “Advancing Drug Discovery via Artificial Intelligence,” Trends in Pharmacological Sciences 40, no. 8 (2019): 592-604.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

18

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/