The Biological Characteristics and Mouse Model of Lassa Virus From the First Imported Case in China

Yanan Zhou , Junbin Wang , Ranran Cao , Yun Yang , Yuliang Feng , Cong Tang , Hao Yang , Qing Huang , Wenhai Yu , Haixuan Wang , Jiandong Shi , Kaiyun Ding , Longhai Yuan , Qing Dai , Xingping Zhao , Haiyan Li , Mengli Yang , Fangyu Luo , Fanli Zhu , Yong Zhang , Daoju Wu , Xiaorong Yang , Shuaiyao Lu , Qiangming Sun , Li Zhang , Youchun Wang

MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70315

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70315 DOI: 10.1002/mco2.70315
ORIGINAL ARTICLE

The Biological Characteristics and Mouse Model of Lassa Virus From the First Imported Case in China

Author information +
History +
PDF

Abstract

Lassa fever (LF) is a fatal hemorrhagic disease caused by the Lassa virus (LASV), which mainly spreads in Africa. As China's interactions with Africa become more frequent, the risk of LF being imported into China also rises, making the study of LASV increasingly urgent. In this study, the Lineage IV LASV strain was successfully isolated from the first imported case in China. Compared with the LASV genome, the isolated strain may exhibit greater infectivity and interspecies transmission capabilities. We successfully established BALB/c, C57BL/6, and AG129 mouse infection models and found that intranasal inoculation was the most stable infection method. Select the anti-LASV drug LHF-535 for preliminary evaluation, further confirming the stability of the model. In summary, the isolated strain exhibits enhanced transmission capabilities and may spread between mice via the respiratory tract, meriting greater attention and emphasis. This study will bridge the gap in China's independent P4-level pathogen isolation, meet national biosafety and strategic needs, and provide certain support for LASV research.

Keywords

biological characteristics / Lassa virus / mouse infection model / virus isolation

Cite this article

Download citation ▾
Yanan Zhou, Junbin Wang, Ranran Cao, Yun Yang, Yuliang Feng, Cong Tang, Hao Yang, Qing Huang, Wenhai Yu, Haixuan Wang, Jiandong Shi, Kaiyun Ding, Longhai Yuan, Qing Dai, Xingping Zhao, Haiyan Li, Mengli Yang, Fangyu Luo, Fanli Zhu, Yong Zhang, Daoju Wu, Xiaorong Yang, Shuaiyao Lu, Qiangming Sun, Li Zhang, Youchun Wang. The Biological Characteristics and Mouse Model of Lassa Virus From the First Imported Case in China. MedComm, 2025, 6(8): e70315 DOI:10.1002/mco2.70315

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. P. Monath, V. F. Newhouse, G. E. Kemp, H. W. Setzer, and A. Cacciapuoti, “Lassa Virus Isolation From Mastomys natalensis Rodents During an Epidemic in Sierra Leone,” Science 185, no. 4147 (1974): 263-265.

[2]

A. Olayemi, D. Cadar, N. Magassouba, et al., “New Hosts of the Lassa Virus,” Scientific Reports 6 (2016): 25280.

[3]

G. O. Akpede, D. A. Asogun, S. A. Okogbenin, et al., “Caseload and Case Fatality of Lassa Fever in Nigeria, 2001-2018: A Specialist Center's Experience and Its Implications,” Frontiers in Public Health 7 (2019): 170.

[4]

M. I. Buba, M. M. Dalhat, P. M. Nguku, et al., “Mortality Among Confirmed Lassa Fever Cases During the 2015-2016 Outbreak in Nigeria,” American Journal of Public Health 108, no. 2 (2018): 262-264.

[5]

D. A. Asogun, S. Günther, G. O. Akpede, C. Ihekweazu, and A. Zumla, “Lassa Fever: Epidemiology, Clinical Features, Diagnosis, Management and Prevention,” Infectious Disease Clinics of North America 33, no. 4 (2019): 933-951.

[6]

A. Kofman, M. J. Choi, and P. E. Rollin, “Lassa Fever in Travelers From West Africa, 1969-2016,” Emerging Infectious Diseases 25, no. 2 (2019): 245-248.

[7]

About Lassa Fever, https://www.cdc.gov/lassa-fever/about/index.html.

[8]

A. J. Basinski, E. Fichet-Calvet, A. R. Sjodin, et al., “Bridging the Gap: Using Reservoir Ecology and Human Serosurveys to Estimate Lassa Virus Spillover in West Africa,” Plos Computational Biology 17, no. 3 (2021): e1008811.

[9]

L. Ehlkes, M. George, G. Samosny, et al., “Management of a Lassa Fever Outbreak, Rhineland-Palatinate, Germany, 2016,” Euro Surveillance 22, no. 39 (2017): 16-00728.

[10]

C. Njuguna, M. Vandi, E. Liyosi, et al., “A Challenging Response to a Lassa Fever Outbreak in a Non Endemic Area of Sierra Leone in 2019 With Export of Cases to The Netherlands,” International Journal of Infectious Diseases 117 (2022): 295-301.

[11]

Disease Outbreak News/Item/Lassa Fever-Nigeria, www.who.int/zh/emergencies/disease-outbreak-news/item/2023-DON463.

[12]

An update of Lassa fever outbreak in Nigeria, https://ncdc.gov.ng/diseases/sitreps/?cat=5&name=An%20update%20of%20Lassa%20fever%20outbreak%20in%20Nigeria.

[13]

F. I. Ibukun, “Inter-Lineage Variation of Lassa Virus Glycoprotein Epitopes: A Challenge to Lassa Virus Vaccine Development,” Viruses 12, no. 4 (2020): 386.

[14]

R. F. Garry, “Lassa Fever—The Road Ahead,” Nature Reviews Microbiology 21, no. 2 (2023): 87-96.

[15]

D. G. Bausch, C. M. Hadi, S. H. Khan, and J. J. Lertora, “Review of the Literature and Proposed Guidelines for the Use of Oral Ribavirin as Postexposure Prophylaxis for Lassa Fever,” Clinical Infectious Diseases 51, no. 12 (2010): 1435-1441.

[16]

B. M. Warner, V. Siragam, and D. R. Stein, “Assessment of Antiviral Therapeutics in Animal Models of Lassa Fever,” Current Opinion in Virology 37 (2019): 84-90.

[17]

K. Rosenke, H. Feldmann, J. B. Westover, et al., “Use of Favipiravir to Treat Lassa Virus Infection in Macaques,” Emerging Infectious Diseases 24, no. 9 (2018): 1696-1699.

[18]

L. Oestereich, T. Rieger, A. Lüdtke, et al., “Efficacy of Favipiravir Alone and in Combination With Ribavirin in a Lethal, Immunocompetent Mouse Model of Lassa Fever,” Journal of Infectious Diseases 213, no. 6 (2016): 934-938.

[19]

I. G. Madu, M. Files, D. N. Gharaibeh, et al., “A Potent Lassa Virus Antiviral Targets an Arenavirus Virulence Determinant,” Plos Pathogens 14, no. 12 (2018): e1007439.

[20]

K. A. Cashman, E. R. Wilkinson, J. Posakony, et al., “Lassa Antiviral LHF-535 Protects Guinea Pigs From Lethal Challenge,” Scientific Reports 12, no. 1 (2022): 19911.

[21]

S. M. Amberg, B. Snyder, P. A. Vliet-Gregg, et al., “Safety and Pharmacokinetics of LHF-535, a Potential Treatment for Lassa Fever, in Healthy Adults,” Antimicrobial Agents and Chemotherapy 66, no. 11 (2022): e0095122.

[22]

T. L. Tang-Huau, H. Feldmann, and K. Rosenke, “Animal Models for Lassa Virus Infection,” Current Opinion in Virology 37 (2019): 112-117.

[23]

R. A. Sattler, S. Paessler, H. Ly, and C. Huang, “Animal Models of Lassa Fever,” Pathogens 9, no. 3 (2020): 197.

[24]

I. S. Lukashevich, S. V. Orlova, R. F. Mar'iankova, and N. D. Barkar, “Pathogenicity of the Lassa Virus for Laboratory mice [in Russia],” Voprosy Virusologii 30, no. 5 (1985): 595-599.

[25]

S. Tang, S. Hu, J. Xiao, et al., “Monitoring the Process and Characterizing Symptoms of Suckling Mouse Inoculation Promote Isolating Viruses From Ticks,” Zoonoses 3, no. 1 (2023): 965.

[26]

S. K. Fehling, F. Lennartz, and T. Strecker, “Multifunctional Nature of the Arenavirus RING Finger Protein Z,” Viruses 4, no. 11 (2012): 2973-3011.

[27]

D. U. Ehichioya, S. Dellicour, M. Pahlmann, et al., “Phylogeography of Lassa Virus in Nigeria,” Journal of Virology 93, no. 21 (2019): e00929-19.

[28]

C. R. Carr, K. H. D. Crawford, M. Murphy, et al., “Deep Mutational Scanning Reveals Functional Constraints and Antibody-Escape Potential of Lassa Virus Glycoprotein Complex,” Immunity 57, no. 9 (2024): 2061-2076.e11.

[29]

J. Abramson, J. Adler, J. Dunger, et al., “Accurate Structure Prediction of Biomolecular Interactions With AlphaFold 3,” Nature 630, no. 8016 (2024): 493-500.

[30]

W. Ye, Y. Wang, Y. Lei, and F. Zhang, “Persistent Viral Shedding After Acute Lassa Fever: Thorough Evidence Arouses More Noteworthy Concerns,” Lancet Microbe 3, no. 5 (2022): e329.

[31]

N. D. Kayem, S. Okogbenin, J. Okoeguale, et al., “Seroepidemiology of Lassa Virus in Pregnant Women in Southern Nigeria: A Prospective Hospital-Based Cohort Study,” PLOS Neglected Tropical Diseases 17, no. 5 (2023): e0011354.

[32]

D. Safronetz, J. E. Lopez, N. Sogoba, et al., “Detection of Lassa Virus, Mali,” Emerging Infectious Diseases 16, no. 7 (2010): 1123-1126.

[33]

H. N. Pennington, and J. Lee, “Lassa Virus Glycoprotein Complex Review: Insights Into Its Unique Fusion Machinery,” Bioscience Reports 42, no. 2 (2022): BSR20211930.

[34]

J. Cao, G. Zhang, M. Zhou, Y. Liu, G. Xiao, and W. Wang, “Characterizing the Lassa Virus Envelope Glycoprotein Membrane Proximal External Region for Its Role in Fusogenicity,” Virologica Sinica 36, no. 2 (2021): 273-280.

[35]

L. M. Branco, J. N. Grove, F. J. Geske, et al., “Lassa Virus-Like Particles Displaying all Major Immunological Determinants as a Vaccine Candidate for Lassa Hemorrhagic Fever,” Virology Journal 7 (2010): 279.

[36]

R. Sommerstein, L. Flatz, M. M. Remy, et al., “Arenavirus Glycan Shield Promotes Neutralizing Antibody Evasion and Protracted Infection,” Plos Pathogens 11, no. 11 (2015): e1005276.

[37]

X. Zuo, H. Li, S. Xie, et al., “A Prognostic Model of 8-T/B Cell Receptor-Related Signatures for Hepatocellular Carcinoma,” Discover Oncology 16, no. 1 (2025): 105.

[38]

H. Nakagami, H. Hayashi, and R. Morishita, “Therapeutic Vaccines and Nucleic Acid Drugs for Cardiovascular Disease,” Journal of Lipid and Atherosclerosis 13, no. 3 (2024): 328-337.

[39]

P. Baral, E. Pavadai, B. S. Gerstman, and P. P. Chapagain, “In-silico Identification of the Vaccine Candidate Epitopes Against the Lassa Virus Hemorrhagic Fever,” Scientific Reports 10, no. 1 (2020): 7667.

[40]

K. F. Azim, T. Lasker, R. Akter, et al., “Combination of Highly Antigenic Nucleoproteins to Inaugurate a Cross-Reactive Next Generation Vaccine Candidate Against Arenaviridae family,” Heliyon 7 (2021): 5.e07022.

[41]

K. M. Hastie, M. A. Zandonatti, L. M. Kleinfelter, et al., “Structural Basis for Antibody-Mediated Neutralization of Lassa Virus,” Science 356, no. 6341 (2017): 923-928.

[42]

S. Igonet, M. C. Vaney, C. Vonrhein, et al., “X-Ray Structure of the Arenavirus Glycoprotein GP2 in Its Postfusion Hairpin Conformation,” PNAS 108, no. 50 (2011): 19967-19972.

[43]

S. Baize, J. Kaplon, C. Faure, D. Pannetier, M. C. Georges-Courbot, and V. Deubel, “Lassa Virus Infection of human Dendritic Cells and Macrophages Is Productive but Fails to Activate Cells,” Journal of Immunology 172, no. 5 (2004): 2861-2869.

[44]

I. S. Lukashevich, J. D. Rodas, I. I. Tikhonov, et al., “LCMV-Mediated Hepatitis in Rhesus Macaques: WE but Not ARM Strain Activates Hepatocytes and Induces Liver Regeneration,” Archives of Virology 149, no. 12 (2004): 2319-2336.

[45]

S. Mahanty, K. Hutchinson, S. Agarwal, M. McRae, P. E. Rollin, and B. Pulendran, “Cutting Edge: Impairment of Dendritic Cells and Adaptive Immunity by Ebola and Lassa Viruses,” Journal of Immunology 170, no. 6 (2003): 2797-2801.

[46]

D. Pannetier, S. Reynard, M. Russier, X. Carnec, and S. Baize, “Production of CXC and CC Chemokines by Human Antigen-Presenting Cells in Response to Lassa Virus or Closely Related Immunogenic Viruses, and in Cynomolgus Monkeys With Lassa Fever,” PLOS Neglected Tropical Diseases 8, no. 1 (2014): e2637.

[47]

R. T. Callis, P. B. Jahrling, and A. DePaoli, “Pathology of Lassa Virus Infection in the Rhesus Monkey,” American Journal of Tropical Medicine and Hygiene 31, no. 5 (1982): 1038-1045.

[48]

D. Cummins, J. B. McCormick, D. Bennett, et al., “Acute Sensorineural Deafness in Lassa Fever,” JAMA 264, no. 16 (1990): 2093-2096.

[49]

A. N. Happi, T. J. Olumade, O. A. Ogunsanya, et al., “Increased Prevalence of Lassa Fever Virus-Positive Rodents and Diversity of Infected Species Found During Human Lassa Fever Epidemics in Nigeria,” Microbiology Spectrum 10, no. 4 (2022): e0036622.

[50]

Y. Wang, C. Huang, J. Tang, et al., “Salmonella Pullorum spiC Mutant Is a Desirable LASV Candidate With Proper Virulence, High Immune Protection and Easy-to-Use Oral Administration,” Vaccine 39, no. 9 (2021): 1383-1391.

[51]

L. Flatz, T. Rieger, D. Merkler, et al., “T Cell-Dependence of Lassa Fever Pathogenesis,” Plos Pathogens 6, no. 3 (2010): e1000836.

[52]

H. Ly, “Differential Immune Responses to New World and Old World Mammalian Arenaviruses,” International Journal of Molecular Sciences 18, no. 5 (2017): 1040.

[53]

S. P. Fisher-Hoch, S. W. Mitchell, D. R. Sasso, J. V. Lange, R. Ramsey, and J. B. McCormick, “Physiological and Immunologic Disturbances Associated With Shock in a Primate Model of Lassa Fever,” Journal of Infectious Diseases 155, no. 3 (1987): 465-474.

[54]

J. G. Shaffer, D. S. Grant, J. S. Schieffelin, et al., “Lassa Fever in Post-Conflict Sierra Leone,” PLOS Neglected Tropical Diseases 8, no. 3 (2014): e2748.

[55]

C. Hoffmann, S. Krasemann, S. Wurr, et al., “Lassa Virus Persistence With High Viral Titers Following Experimental Infection in Its Natural Reservoir Host, Mastomys natalensis,” Nature Communications 15, no. 1 (2024): 9319.

[56]

V. G. Dedkov, N'. Magassouba, M. V. Safonova, et al., “Development and Evaluation of a One-Step Quantitative RT-PCR Assay for Detection of Lassa Virus,” Journal of Virological Methods 271 (2019): 113674.

[57]

Q. Huang, R. An, H. Wang, et al., “Aggravated Pneumonia and Diabetes in SARS-CoV-2 Infected Diabetic Mice,” Emerging Microbes & Infections 12, no. 1 (2023): 2203782.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

12

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/