A φSa3int (NM3) Prophage Domestication in Staphylococcus aureus Leads to Increased Virulence Through Human Immune Evasion

Roshan Nepal , Ghais Houtak , George Bouras , Sholeh Feizi , Gohar Shaghayegh , Keith Shearwin , Mahnaz Ramezanpour , Alkis James Psaltis , Peter-John Wormald , Sarah Vreugde

MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70313

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70313 DOI: 10.1002/mco2.70313
ORIGINAL ARTICLE

A φSa3int (NM3) Prophage Domestication in Staphylococcus aureus Leads to Increased Virulence Through Human Immune Evasion

Author information +
History +
PDF

Abstract

Staphylococcus aureus with varying virulence is often isolated from chronic rhinosinusitis (CRS) patients and impacts disease severity. Prophage-mediated virulence, particularly encoded by φSa3int (NM3) prophages, which often encodes human immune-evasion cluster genes is well known, but how a new prophage domestication impacts overall expression of core bacterial genes, and the expression of resident prophages is understudied. To understand this, we transduced a φSa3int prophage recovered from hyper-biofilm forming mucoid S. aureus (SA333) into a high-biofilm forming non-mucoid S. aureus (SA222) recovered from same CRS patient but at different time points. Upon φSa3int prophage domestication, we observed a significant upregulation of 21 exoproteins including human immune-evasion toxins and an intercellular adhesion protein B (IcaB). Further, φSa3int prophage domestication led to reduced phagocytosis implying φSa3int prophage mediates escape of S. aureus from human innate immunity. Our data further show that in addition to adding novel prophage-encoded virulence, φSa3int prophage domestication also affects the expression of non-prophage (bacterial) genes and suppresses expression of structural proteins of resident prophages. Since strains without prophage or with specific prophages have varying virulence and pathogenicity, targeted identification virulence factors associated with mobile genetic elements (MGEs) in addition to species identification may lead to better personalized therapy, particularly in chronic infections.

Keywords

bacteriophage / chronic rhinosinusitis / microbe–host interaction / NM3 prophage / phage / Sa3int prophage

Cite this article

Download citation ▾
Roshan Nepal, Ghais Houtak, George Bouras, Sholeh Feizi, Gohar Shaghayegh, Keith Shearwin, Mahnaz Ramezanpour, Alkis James Psaltis, Peter-John Wormald, Sarah Vreugde. A φSa3int (NM3) Prophage Domestication in Staphylococcus aureus Leads to Increased Virulence Through Human Immune Evasion. MedComm, 2025, 6(8): e70313 DOI:10.1002/mco2.70313

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. Kondo, M. Kawano, M. Sugai, and M. Castanheira, “Distribution of Antimicrobial Resistance and Virulence Genes Within the Prophage-Associated Regions in Nosocomial Pathogens,” mSphere. 6, no. 4 (2021): e00452-21.

[2]

E. V. Davies, C. Winstanley, J. L. Fothergill, and C. E. James, “The Role of Temperate Bacteriophages in Bacterial Infection,” FEMS Microbiology Letters 363, no. 5 (2016).

[3]

C. Henrot and M. A. Petit, “Signals Triggering Prophage Induction in the Gut Microbiota,” Molecular Microbiology 118, no. 5 (2022): 494-502.

[4]

L. Gogokhia, K. Buhrke, R. Bell, et al., “Expansion of Bacteriophages Is Linked to Aggravated Intestinal Inflammation and Colitis,” Cell Host & Microbe 25, no. 2 (2019): 285-299. e8.

[5]

M. Popescu, J. D. Van Belleghem, A. Khosravi, and P. L. Bollyky, “Bacteriophages and the Immune System,” Annual Review of Virology 8, no. 1 (2021): 415-435.

[6]

C. Goerke, J. Koller, and C. Wolz, “Ciprofloxacin and Trimethoprim Cause Phage Induction and Virulence Modulation in Staphylococcus aureus,” Antimicrobial Agents and Chemotherapy 50, no. 1 (2006): 171-7.

[7]

H. K. Allen, T. Looft, D. O. Bayles, et al., “Antibiotics in Feed Induce Prophages in Swine Fecal Microbiomes,” MBio 2, no. 6 (2011): e00260-11.

[8]

L. Boling, D. A. Cuevas, J. A. Grasis, et al., “Dietary Prophage Inducers and Antimicrobials: Toward Landscaping the human Gut Microbiome,” Gut Microbes 11, no. 4 (2020): 721-734.

[9]

M. Carrolo, M. J. Frias, F. R. Pinto, J. Melo-Cristino, and M. Ramirez, “Prophage Spontaneous Activation Promotes DNA Release Enhancing Biofilm Formation in Streptococcus pneumoniae,” PLoS ONE 5, no. 12 (2010): e15678.

[10]

A. M. Nanda, K. Thormann, and J. Frunzke, “Impact of Spontaneous Prophage Induction on the Fitness of Bacterial Populations and Host-microbe Interactions,” Journal of Bacteriology 197, no. 3 (2015): 410-9.

[11]

A. Beceiro, M. Tomas, and G. Bou, “Antimicrobial Resistance and Virulence: A Successful or Deleterious Association in the Bacterial World?,” Clinical Microbiology Reviews 26, no. 2 (2013): 185-230.

[12]

J. Soni, S. Sinha, and R. Pandey, “Understanding Bacterial Pathogenicity: A Closer Look at the Journey of Harmful Microbes. Review,” Frontiers in Microbiology 15 (2024): 1370818.

[13]

S. Y. Tong, J. S. Davis, E. Eichenberger, T. L. Holland, and V. G. Fowler, “Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management,” Clinical Microbiology Reviews 28, no. 3 (2015): 603-61.

[14]

T. W. Vickery, V. R. Ramakrishnan, and J. D. Suh, “The Role of Staphylococcus aureus in Patients With Chronic Sinusitis and Nasal Polyposis,” Current Allergy and Asthma Reports 19, no. 4 (2019): 21.

[15]

J. J. Bardy, D. S. Sarovich, E. P. Price, et al., “Staphylococcus aureus From Patients With Chronic Rhinosinusitis Show Minimal Genetic Association Between Polyp and Non-polyp Phenotypes,” BMC Ear, Nose and Throat Disorders 18, no. 1 (2018): 16.

[16]

B. P. Howden, S. G. Giulieri, T. Wong Fok Lung, et al., “Staphylococcus aureus Host Interactions and Adaptation,” Nature Reviews Microbiology 21, no. 6 (2023): 380-395.

[17]

G. Houtak, G. Bouras, R. Nepal, et al., “The Intra-host Evolutionary Landscape and Pathoadaptation of Persistent Staphylococcus aureus in Chronic Rhinosinusitis,” Microb Genomics 9, no. 11 (2023): 001128.

[18]

W. J. van Wamel, S. H. Rooijakkers, M. Ruyken, K. P. van Kessel, and J. A. van Strijp, “The Innate Immune Modulators Staphylococcal Complement Inhibitor and Chemotaxis Inhibitory Protein of Staphylococcus aureus Are Located on Beta-hemolysin-converting Bacteriophages,” Journal of Bacteriology 188, no. 4 (2006): 1310-5.

[19]

R. Nepal, G. Houtak, P. J. Wormald, A. J. Psaltis, and S. Vreugde, “Prophage: A Crucial Catalyst in Infectious Disease Modulation,” The Lancet Microbe 3, no. 3 (2022): e162-e163.

[20]

R. Nepal, G. Houtak, G. Shaghayegh, et al., “Prophages Encoding human Immune Evasion Cluster Genes Are Enriched in Staphylococcus aureus Isolated From Chronic Rhinosinusitis Patients With Nasal Polyps,” Microb Genom 7, no. 12 (2021): 000726.

[21]

P. M. Tran, M. Feiss, K. J. Kinney, W. Salgado-Pabón, and V. J. DiRita, “φSa3mw Prophage as a Molecular Regulatory Switch of Staphylococcus aureus β-Toxin Production,” Journal of Bacteriology 201, no. 14 (2019): e00766-18.

[22]

C. S. Kim, S. Y. Jeon, Y. G. Min, et al., “Effects of Beta-toxin of Staphylococcus aureus on Ciliary Activity of Nasal Epithelial Cells,” Laryngoscope 110, no. 12 (2000): 2085-8.

[23]

W. Salgado-Pabon, A. Herrera, B. G. Vu, et al., “Staphylococcus aureus Beta-toxin Production Is Common in Strains With the Beta-toxin Gene Inactivated by Bacteriophage,” Journal of Infectious Diseases 210, no. 5 (2014): 784-92.

[24]

C. Chaguza, J. T. Smith, S. A. Bruce, R. Gibson, I. W. Martin, and C. P. Andam, “Prophage-encoded Immune Evasion Factors Are Critical for Staphylococcus aureus Host Infection, Switching, and Adaptation,” Cell Genomics 2, no. 11 (2022): 100194.

[25]

M. A. Thabet, J. R. Penadés, and A. F. Haag, “The ClpX Protease Is Essential for Removing the CI Master Repressor and Completing Prophage Induction in Staphylococcus aureus,” Cold Spring Harbor Laboratory (2022).

[26]

R. C. Matos, N. Lapaque, L. Rigottier-Gois, et al., “Enterococcus faecalis Prophage Dynamics and Contributions to Pathogenic Traits,” PLoS Genetics 9, no. 6 (2013): e1003539.

[27]

S. G. Sutcliffe, M. Shamash, A. P. Hynes, and C. F. Maurice, “Common Oral Medications Lead to Prophage Induction in Bacterial Isolates From the Human Gut,” Viruses. 13, no. 3 (2021): 455.

[28]

L. Fernandez, S. Gonzalez, N. Quiles-Puchalt, et al., “Lysogenization of Staphylococcus aureus RN450 by Phages varphi11 and varphi80alpha Leads to the Activation of the SigB Regulon,” Scientific Reports 8, no. 1 (2018): 12662.

[29]

R. S. Naorem, G. Goswami, S. Gyorgy, and C. Fekete, “Comparative Analysis of Prophages Carried by human and Animal-associated Staphylococcus aureus Strains Spreading Across the European Regions,” Scientific Reports 11, no. 1 (2021): 18994.

[30]

T. Bae, T. Baba, K. Hiramatsu, and O. Schneewind, “Prophages of Staphylococcus aureus Newman and Their Contribution to Virulence. Article,” Molecular Microbiology 62, no. 4 (2006): 1035-47.

[31]

F. S. Rossmann, T. Racek, D. Wobser, et al., “Phage-mediated Dispersal of Biofilm and Distribution of Bacterial Virulence Genes Is Induced by Quorum Sensing,” PLoS Pathogens 11, no. 2 (2015): e1004653.

[32]

D. Li, W. Liang, Q. Hu, et al., “The Effect of a Spontaneous Induction Prophage, phi458, on Biofilm Formation and Virulence in avian Pathogenic Escherichia coli. Original Research,” Frontiers in Microbiology 13 (2022): 1049341.

[33]

Z. Liu, Y. DENG, M. JI, W. SUN, and X. FAN, “Prophages Domesticated by Bacteria Promote the Adaptability of Bacterial Cells,” Biocell 44, no. 2 (2020): 157-166.

[34]

G. Resch, P. François, D. Morisset, et al., “Human-to-Bovine Jump of Staphylococcus aureus CC8 Is Associated With the Loss of a β-Hemolysin Converting Prophage and the Acquisition of a New Staphylococcal Cassette Chromosome,” PLoS ONE 8, no. 3 (2013): e58187.

[35]

L. M. Bobay, E. P. Rocha, and M. Touchon, “The Adaptation of Temperate Bacteriophages to Their Host Genomes,” Molecular Biology and Evolution 30, no. 4 (2013): 737-51.

[36]

R. Nepal, G. Houtak, G. Shaghayegh, et al., “Prophages Encoding human Immune Evasion Cluster Genes Are Enriched in Staphylococcus aureus Isolated From Chronic Rhinosinusitis Patients With Nasal Polyps,” Microb Genomics 7, no. 12 (2021): 000726.

[37]

Y. Katayama, T. Baba, M. Sekine, M. Fukuda, and K. Hiramatsu, “Beta-hemolysin Promotes Skin Colonization by Staphylococcus aureus,” Journal of Bacteriology 195, no. 6 (2013): 1194-203.

[38]

C. Seop Kim, S.-Y. Jeon, Y.-G. Min, et al., “Effects of ??-Toxin of Staphylococcus aureus on Ciliary Activity of Nasal Epithelial Cells,” The Laryngoscope 110, no. 12 (2000): 2085-2088.

[39]

M. Huseby, K. Shi, C. K. Brown, et al., “Structure and Biological Activities of Beta Toxin From Staphylococcus aureus,” Journal of Bacteriology 189, no. 23 (2007): 8719-26.

[40]

M. J. Huseby, A. C. Kruse, J. Digre, et al., “Beta Toxin Catalyzes Formation of Nucleoprotein Matrix in Staphylococcal Biofilms,” PNAS 107, no. 32 (2010): 14407-12.

[41]

P. Jung, M. M. H. Abdelbary, B. Kraushaar, et al., “Impact of Bacteriophage Saint3 Carriage on the Immune Evasion Capacity and Hemolytic Potential of Staphylococcus aureus CC398,” Veterinary Microbiology 200 (2017): 46-51.

[42]

C. Rohmer and C. Wolz, “The Role of Hlb-Converting Bacteriophages in Staphylococcus aureus Host Adaption,” Microb Physiol 31, no. 2 (2021): 109-122.

[43]

C. Goerke, S. Matias y Papenberg, S. Dasbach, et al., “Increased Frequency of Genomic Alterations in Staphylococcus aureus During Chronic Infection Is in Part due to Phage Mobilization,” Journal of Infectious Diseases 189, no. 4 (2004): 724-34.

[44]

Z. Guan, Y. Liu, C. Liu, H. Wang, J. Feng, and G. Yang, “Staphylococcus aureus β-Hemolysin Up-Regulates the Expression of IFN-γ by Human CD56bright NK Cells. Original Research,” Frontiers in Cellular and Infection Microbiology 11 (2021): 658141.

[45]

M. Peetermans, T. Vanassche, L. Liesenborghs, et al., “Plasminogen Activation by Staphylokinase Enhances Local Spreading of S. aureus in Skin Infections,” BMC Microbiology 14, no. 1 (2014): 310.

[46]

B. Postma, M. J. Poppelier, J. C. van Galen, et al., “Chemotaxis Inhibitory Protein of Staphylococcus aureus Binds Specifically to the C5a and Formylated Peptide Receptor,” Journal of Immunology, no. 11 (2004): 6994-7001.

[47]

N. W. M. de Jong, M. Vrieling, B. L. Garcia, et al., “Identification of a Staphylococcal Complement Inhibitor With Broad Host Specificity in Equid Staphylococcus aureus Strains,” Journal of Biological Chemistry 293, no. 12 (2018): 4468-4477.

[48]

S. V. Owen, N. Wenner, C. L. Dulberger, et al., “Prophages Encode Phage-defense Systems With Cognate Self-immunity,” Cell Host & Microbe 29, no. 11 (2021): 1620-1633. e8.

[49]

G. Shaghayegh, C. Cooksley, G. S. Bouras, et al., “Chronic Rhinosinusitis Patients Display an Aberrant Immune Cell Localization With Enhanced S aureus Biofilm Metabolic Activity and Biomass,” Journal of Allergy and Clinical Immunology 151, no. 3 (2023): 723-736. e16.

[50]

G. Bouras, G. Houtak, R. R. Wick, et al., “Hybracter: Enabling Scalable, Automated, Complete and Accurate Bacterial Genome Assemblies,” Microb Genomics 10, no. 5 (2024).

[51]

G. Bouras, S. R. Grigson, B. Papudeshi, V. Mallawaarachchi, and M. J. Roach, “Dnaapler: A Tool to Reorient Circular Microbial Genomes,” Journal of Open Source Software 9, no. 93 (2024): 5968.

[52]

O. Schwengers, L. Jelonek, M. A. Dieckmann, S. Beyvers, J. Blom, and A. Goesmann, “Bakta: Rapid and Standardized Annotation of Bacterial Genomes via Alignment-free Sequence Identification,” Microb Genom 7, no. 11 (2021): 000685.

[53]

T. Seemann. mlst. https://github.com/tseemann/mlst

[54]

K. A. Jolley, J. E. Bray, and M. C. J. Maiden, “Open-access Bacterial Population Genomics: BIGSdb Software, the PubMLST.Org Website and Their Applications,” Wellcome Open Res 3 (2018): 124.

[55]

D. Arndt, J. R. Grant, A. Marcu, et al., “PHASTER: A Better, Faster Version of the PHAST Phage Search Tool,” Nucleic Acids Res. 44 (2016): W16-21. W1.

[56]

S. Akhter, R. K. Aziz, and R. A. Edwards, “PhiSpy: A Novel Algorithm for Finding Prophages in Bacterial Genomes That Combines Similarity- and Composition-based Strategies,” Nucleic Acids Res. 40, no. 16 (2012): e126.

[57]

D. S. Wishart, S. Han, S. Saha, et al.. PHASTEST: Faster than PHASTER, Better than PHAST. Submitted to Nucleic Acids Research. 2023; 2023 Web Server Issue

[58]

G. Bouras, R. Nepal, G. Houtak, A. J. Psaltis, P. J. Wormald, and S. Vreugde, “Pharokka: A Fast Scalable Bacteriophage Annotation Tool,” Bioinformatics 39, no. 1 (2023): btac776.

[59]

G. Dhungana, R. Nepal, G. Houtak, G. Bouras, S. Vreugde, and R. Malla, “Preclinical Characterization and in Silico Safety Assessment of Three Virulent Bacteriophages Targeting Carbapenem-resistant Uropathogenic Escherichia coli,” International Microbiology 27, no. 6 (2024): 1747-1763.

[60]

J. T. Robinson, H. Thorvaldsdóttir, W. Winckler, et al., “Integrative Genomics Viewer,” Nature Biotechnology 29, no. 1 (2011): 24-26.

[61]

D. J. Freeman, F. R. Falkiner, and C. T. Keane, “New Method for Detecting Slime Production by Coagulase Negative staphylococci,” Journal of Clinical Pathology 42, no. 8 (1989): 872-4.

[62]

G. Shaghayegh, C. Cooksley, G. Bouras, et al., “Staphylococcus aureus Biofilm Properties and Chronic Rhinosinusitis Severity Scores Correlate Positively With Total CD4+ T-cell Frequencies and Inversely With Its Th1, Th17 and Regulatory Cell Frequencies,” Immunology 170, no. 1 (2023): 120-133.

[63]

J. Yang and Y. Ji. Investigation of Staphylococcus aureus Adhesion and Invasion of Host Cells. In: Ji Y, ed. “Methicillin-Resistant Staphylococcus Aureus (MRSA) Protocols” (Humana Press, 2014): 187-194.

[64]

O. Schwengers, L. Jelonek, M. A. Dieckmann, S. Beyvers, J. Blom, and A. Goesmann, “Bakta: Rapid and Standardized Annotation of Bacterial Genomes via Alignment-free Sequence Identification,” Microb Genomics 7, no. 11 (2021): 000685.

[65]

X. Zhang, A. H. Smits, G. B. Van Tilburg, H. Ovaa, W. Huber, and M. Vermeulen, “Proteome-wide Identification of Ubiquitin Interactions Using UbIA-MS,” Nature Protocols 13, no. 3 (2018): 530-550.

[66]

C. Jain, R. L. Rodriguez, A. M. Phillippy, K. T. Konstantinidis, and S. Aluru, “High Throughput ANI Analysis of 90K Prokaryotic Genomes Reveals Clear Species Boundaries,” Nature Communications 9, no. 1 (2018): 5114.

[67]

R. Nepal. Role of prophages in Staphylococcus aureus virulence and pathogenicity. The University of Adelaide; 2023. https://hdl.handle.net/2440/139725

[68]

R. Nepal, G. Houtak, G. Bouras, et al., “Prophage Acquisition by Staphylococcus aureus Contributes to the Expansion of Staphylococcal Immune Evasion,” BioRxiv (2023). 2023.04.27.538627.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/