Macrophages: Subtypes, Distribution, Polarization, Immunomodulatory Functions, and Therapeutics

Mengyuan Peng , Niannian Li , Hongbo Wang , Yaxu Li , Hui Liu , Yanhua Luo , Bao Lang , Weihang Zhang , Shilong Li , Liujun Tian , Bin Liu

MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70304

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70304 DOI: 10.1002/mco2.70304
REVIEW

Macrophages: Subtypes, Distribution, Polarization, Immunomodulatory Functions, and Therapeutics

Author information +
History +
PDF

Abstract

Macrophages are heterogeneous immune cells with diverse subtypes and tissue-specific distributions, displaying dynamic polarization states that critically govern their immunomodulatory functions and responses to environmental cues. As key regulators of innate and adaptive immunity, they originate from either embryonic progenitors or bone marrow-derived monocytes and exhibit remarkable plasticity in response to microenvironmental cues. Tissue-resident macrophages (e.g., Langerhans cells, Kupffer cells, microglia) display unique organ-specific functions, while inflammatory stimuli drive their polarization into proinflammatory (M1) or anti-inflammatory (M2) phenotypes along a functional continuum. This review systematically examines macrophage subtypes, their anatomical distribution, and the signaling pathways (e.g., NF-κB, STATs, PPARγ) underlying polarization shifts in acute and chronic inflammation. We highlight how polarization imbalances contribute to pathologies including neuroinflammation, liver fibrosis, and impaired tissue repair, particularly in aging contexts. Furthermore, we discuss emerging therapeutic strategies targeting macrophage plasticity, such as cytokine modulation, metabolic reprogramming, and subtype-specific interventions. By integrating recent advances in macrophage biology, this work provides a comprehensive framework for understanding their dual roles in immune regulation and tissue homeostasis, offering insights for treating inflammatory and age-related diseases through macrophage-centered immunomodulation.

Keywords

inflammation / immune / macrophages / polarization / therapeutics / tissue-resident macrophages

Cite this article

Download citation ▾
Mengyuan Peng, Niannian Li, Hongbo Wang, Yaxu Li, Hui Liu, Yanhua Luo, Bao Lang, Weihang Zhang, Shilong Li, Liujun Tian, Bin Liu. Macrophages: Subtypes, Distribution, Polarization, Immunomodulatory Functions, and Therapeutics. MedComm, 2025, 6(8): e70304 DOI:10.1002/mco2.70304

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Guilliams, F. Ginhoux, C. Jakubzick, et al., “Dendritic Cells, Monocytes and Macrophages: A Unified Nomenclature Based on Ontogeny,” Nature Reviews Immunology 14 (2014): 571-578.

[2]

M. Rosas, L. C. Davies, P. J. Giles, et al., “The Transcription Factor Gata6 Links Tissue Macrophage Phenotype and Proliferative Renewal,” Science 344 (2014): 645-648.

[3]

R. van Furth, Z. A. Cohn, J. G. Hirsch, J. H. Humphrey, W. G. Spector, H. L. Langevoort, “[Mononuclear Phagocytic System: New Classification of Macrophages, Monocytes and of Their Cell Line],” Bulletin of the World Health Organization 47, no. 5 (1972): 651-658.

[4]

J. M. Austyn, S. Gordon, “F4/80, a Monoclonal Antibody Directed Specifically Against the Mouse Macrophage,” European Journal of Immunology 11 (1981): 805-815.

[5]

Z. M. Howard, C. K. Gomatam, C. P. Rabolli, et al., “Mineralocorticoid Receptor Antagonists and Glucocorticoids Differentially Affect Skeletal Muscle Inflammation and Pathology in Muscular Dystrophy,” JCI Insight 7, no. 19 (2022): e159875.

[6]

J. Hettinger, D. M Richards, J. Hansson, et al., “Origin of Monocytes and Macrophages in a Committed Progenitor,” Nature Immunology 14 (2013): 821-830.

[7]

B. Simell, A. Vuorela, N. Ekström, et al., “Aging Reduces the Functionality of Anti-Pneumococcal Antibodies and the Killing of Streptococcus Pneumoniae by Neutrophil Phagocytosis,” Vaccine 29 (2011): 1929-1934.

[8]

L. Keane, I. Antignano, S. Riechers, et al., “mTOR-Dependent Translation Amplifies Microglia Priming in Aging Mice,” Journal of Clinical Investigation 131, no. 1 (2021): e132727.

[9]

C. J. Henry, Y. Huang, A. M. Wynne & J. P. Godbout, “Peripheral Lipopolysaccharide (LPS) Challenge Promotes Microglial Hyperactivity in Aged Mice That Is Associated With Exaggerated Induction of Both Pro-Inflammatory IL-1beta and Anti-Inflammatory IL-10 Cytokines,” Brain, Behavior, and Immunity 23 (2009): 309-317.

[10]

A. M. Wynne, C. J. Henry, Y. Huang, A. Cleland & J. P. Godbout, “Protracted Downregulation of CX3CR1 on Microglia of Aged Mice After Lipopolysaccharide Challenge,” Brain, Behavior, and Immunity 24 (2010): 1190-1201.

[11]

A. I. Medeiros, C. H. Serezani, S. P. Lee & M. Peters-Golden, “Efferocytosis Impairs Pulmonary Macrophage and Lung Antibacterial Function via PGE2/EP2 Signaling,” Journal of Experimental Medicine 206 (2009): 61-68.

[12]

W. J Janssen, L. Barthel, A. Muldrow, et al., “Fas Determines Differential Fates of Resident and Recruited Macrophages During Resolution of Acute Lung Injury,” American Journal of Respiratory and Critical Care Medicine 184 (2011): 547-560.

[13]

M. Rath, I. Müller, P. Kropf, E. I. Closs & M. Munder, “Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages,” Frontiers in Immunology 5 (2014): 532.

[14]

D. Zhou, C. Huang, Z. Lin, et al., “Macrophage Polarization and Function With Emphasis on the Evolving Roles of Coordinated Regulation of Cellular Signaling Pathways,” Cellular Signalling 26 (2014): 192-197.

[15]

R. Maeso-Diaz, J. Gracia-Sancho, “Aging and Chronic Liver Disease,” Seminars in Liver Disease 40 (2020): 373-384.

[16]

D. Sanfeliu-Redondo, A. Gibert-Ramos, J. Gracia-Sancho, “Cell Senescence in Liver Diseases: Pathological Mechanism and Theranostic Opportunity,” Nature Reviews Gastroenterology & Hepatology 21, no. 7 (2024): 477-492.

[17]

Aging Biomarker Consortium, H. Bao, J. Cao, et al., Aging Biomarker Consortium, “Biomarkers of Aging,” Science China Life Sciences 66, no. 5 (2023): 893-1066.

[18]

Y. Cai, M. Xiong, Z. Xin, et al., “Decoding Aging-Dependent Regenerative Decline Across Tissues at Single-Cell Resolution,” Cell Stem Cell 30 (2023): 1674-1691.e1678.

[19]

E. Gomez Perdiguero, K. Klapproth, C. Schulz, et al., “Tissue-Resident Macrophages Originate From Yolk-Sac-Derived Erythro-Myeloid Progenitors,” Nature 518 (2015): 547-551.

[20]

T. A. Wynn, A. Chawla, J. W. Pollard, “Macrophage Biology in Development, Homeostasis and Disease,” Nature 496 (2013): 445-455.

[21]

D. Hashimoto, A. Chow, C. Noizat, et al., “Tissue-Resident Macrophages Self-Maintain Locally Throughout Adult Life With Minimal Contribution From Circulating Monocytes,” Immunity 38 (2013): 792-804.

[22]

C. Schulz, E. G. Perdiguero, L. Chorro, et al., “A Lineage of Myeloid Cells Independent of Myb and Hematopoietic Stem Cells,” Science 336 (2012): 86-90.

[23]

M. Naito, G. Hasegawa, K. Takahashi, “Development, Differentiation, and Maturation of Kupffer Cells,” Microscopy Research and Technique 39 (1997): 350-364.

[24]

G. Hoeffel, Y. Wang, M. Greter, et al., “Adult Langerhans Cells Derive Predominantly From Embryonic Fetal Liver Monocytes With a Minor Contribution of Yolk Sac-Derived Macrophages,” Journal of Experimental Medicine 209 (2012): 1167-1181.

[25]

S. B. Yee, M. Bourdi, M. J. Masson & L. R. Pohl, “Hepatoprotective Role of Endogenous Interleukin-13 in a Murine Model of Acetaminophen-Induced Liver Disease,” Chemical Research in Toxicology 20 (2007): 734-744.

[26]

K. J. Brempelis, I. N. Crispe, “Infiltrating Monocytes in Liver Injury and Repair,” Clinical & Translational Immunology 5 (2016): e113.

[27]

D. Dal-Secco, J. Wang, Z. Zeng, et al., “A Dynamic Spectrum of Monocytes Arising From the in Situ Reprogramming of CCR2+ Monocytes at a Site of Sterile Injury,” Journal of Experimental Medicine 212 (2015): 447-456.

[28]

M. A. Ingersoll, R. Spanbroek, C. Lottaz, et al., “Comparison of Gene Expression Profiles Between Human and Mouse Monocyte Subsets,” Blood 115 (2010): e10-e19.

[29]

A. A. Patel, Y. Zhang, J. N. Fullerton, et al., “The Fate and Lifespan of Human Monocyte Subsets in Steady State and Systemic Inflammation,” Journal of Experimental Medicine 214 (2017): 1913-1923.

[30]

Z. Liu, Y. Gu, S. Chakarov, et al., “Fate Mapping via Ms4a3-Expression History Traces Monocyte-Derived Cells,” Cell 178 (2019): 1509-1525.e1519.

[31]

J. Buchrieser, W. James, M. D. Moore, “Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny With MYB-Independent Tissue-Resident Macrophages,” Stem Cell Reports 8 (2017): 334-345.

[32]

A. Silvin, S. Uderhardt, C. Piot, et al., “Dual Ontogeny of Disease-Associated Microglia and Disease Inflammatory Macrophages in Aging and Neurodegeneration,” Immunity 55 (2022): 1448-1465.e1446.

[33]

C. Z. Han, R. Z. Li, E. Hansen, et al., “Human Microglia Maturation Is Underpinned by Specific Gene Regulatory Networks,” Immunity 56 (2023): 2152-2171.e2113.

[34]

J. Xu, H. Dong, Q. Qian, et al., “Astrocyte-Derived CCL2 Participates in Surgery-Induced Cognitive Dysfunction and Neuroinflammation via Evoking Microglia Activation,” Behavioural Brain Research 332 (2017): 145-153.

[35]

S. Yona, K. Kim, Y. Wolf, et al., “Fate Mapping Reveals Origins and Dynamics of Monocytes and Tissue Macrophages Under Homeostasis,” Immunity 38 (2013): 79-91.

[36]

C. E. Olingy, C. L. San Emeterio, M. E. Ogle, et al., “Non-Classical Monocytes Are Biased Progenitors of Wound Healing Macrophages During Soft Tissue Injury,” Scientific Reports 7 (2017): 447.

[37]

G. Hoeffel, J. Chen, Y. Lavin, et al., “C-Myb(+) Erythro-Myeloid Progenitor-Derived Fetal Monocytes Give Rise to Adult Tissue-Resident Macrophages,” Immunity 42 (2015): 665-678.

[38]

C. L. Scott, F. Zheng, P. De Baetselier, et al., “Bone Marrow-Derived Monocytes Give Rise to Self-Renewing and Fully Differentiated Kupffer Cells,” Nature Communications 7 (2016): 10321.

[39]

E. Mass, I. Ballesteros, M. Farlik, et al., “Specification of Tissue-Resident Macrophages During Organogenesis,” Science 353, no. 6304 (2016): aaf4238.

[40]

E. Linehan, Y. Dombrowski, R. Snoddy, P. G. Fallon, A. Kissenpfennig, D. C. Fitzgerald, “Aging Impairs Peritoneal but Not Bone Marrow-Derived Macrophage Phagocytosis,” Aging Cell 13 (2014): 699-708.

[41]

P. M. Ryan, M. Bourdi, M. C. Korrapati, et al., “Endogenous Interleukin-4 Regulates Glutathione Synthesis Following Acetaminophen-Induced Liver Injury in Mice,” Chemical Research in Toxicology 25 (2012): 83-93.

[42]

R. M. Ransohoff, B. Engelhardt, “The Anatomical and Cellular Basis of Immune Surveillance in the Central Nervous System,” Nature Reviews Immunology 12 (2012): 623-635.

[43]

D. Mrdjen, A. Pavlovic, F. J. Hartmann, et al., “High-Dimensional Single-Cell Mapping of Central Nervous System Immune Cells Reveals Distinct Myeloid Subsets in Health, Aging, and Disease,” Immunity 48 (2018): 380-395.e386.

[44]

K. Kierdorf, T. Masuda, M. J. C. Jordão & M. Prinz, “Macrophages at CNS Interfaces: Ontogeny and Function in Health and Disease,” Nature Reviews Neuroscience 20 (2019): 547-562.

[45]

M. Guilliams, A. Mildner, S. Yona, “Developmental and Functional Heterogeneity of Monocytes,” Immunity 49 (2018): 595-613.

[46]

A. Yáñez, S. G. Coetzee, A. Olsson, et al., “Granulocyte-Monocyte Progenitors and Monocyte-Dendritic Cell Progenitors Independently Produce Functionally Distinct Monocytes,” Immunity 47 (2017): 890-902.e894.

[47]

S. Trzebanski, J. Kim, N. Larossi, et al., “Classical Monocyte Ontogeny Dictates Their Functions and Fates as Tissue Macrophages,” Immunity 57 (2024): 1225-1242.e1226.

[48]

A. Yáñez, M. Y. Ng, N. Hassanzadeh-Kiabi & H. S. Goodridge, “IRF8 Acts in Lineage-Committed Rather Than Oligopotent Progenitors to Control Neutrophil vs Monocyte Production,” Blood 125 (2015): 1452-1459.

[49]

K. Suzuki-Inoue, N. Tsukiji, T. Shirai, M. Osada, O. Inoue, Y. Ozaki, “Platelet CLEC-2: Roles Beyond Hemostasis,” Seminars in Thrombosis and Hemostasis 44, no. 2 (2018): 126-134.

[50]

E. M. Golebiewska, A. W. Poole, “Platelet Secretion: From Haemostasis to Wound Healing and Beyond,” Blood Reviews 29 (2015): 153-162.

[51]

Y. Ishida, Y. Kuninaka, M. Nosaka, et al., “CCL2-Mediated Reversal of Impaired Skin Wound Healing in Diabetic Mice by Normalization of Neovascularization and Collagen Accumulation,” Journal of Investigative Dermatology 139 (2019): 2517-2527.e2515.

[52]

S. Wood, V. Jayaraman, E. J. Huelsmann, et al., “Pro-Inflammatory Chemokine CCL2 (MCP-1) Promotes Healing in Diabetic Wounds by Restoring the Macrophage Response,” PLoS ONE 9 (2014): e91574.

[53]

M. Rodrigues, N. Kosaric, C. A. Bonham & G. C. Gurtner, “Wound Healing: A Cellular Perspective,” Physiological Reviews 99 (2019): 665-706.

[54]

A. E. Boniakowski, A. S. Kimball, A. Joshi, et al., “Murine Macrophage Chemokine Receptor CCR2 Plays a Crucial Role in Macrophage Recruitment and Regulated Inflammation in Wound Healing,” European Journal of Immunology 48 (2018): 1445-1455.

[55]

J. A. Marwick, R. Mills, O. Kay, et al., “Neutrophils Induce Macrophage Anti-Inflammatory Reprogramming by Suppressing NF-κB Activation,” Cell Death & Disease 9 (2018): 665.

[56]

P. Ramachandran, A. Pellicoro, M. A. Vernon, et al., “Differential Ly-6C Expression Identifies the Recruited Macrophage Phenotype, Which Orchestrates the Regression of Murine Liver Fibrosis,” PNAS 109 (2012): E3186-3195.

[57]

L. Carlin, E. Stamatiades, C. Auffray, et al., “Nr4a1-Dependent Ly6C(low) Monocytes Monitor Endothelial Cells and Orchestrate Their Disposal,” Cell 153 (2013): 362-375.

[58]

E. Boada-Romero, J. Martinez, B. L. Heckmann & D. R. Green, “The Clearance of Dead Cells by Efferocytosis,” Nature Reviews Molecular Cell Biology 21 (2020): 398-414.

[59]

J. N. Fullerton, D. W. Gilroy, “Resolution of Inflammation: A New Therapeutic Frontier,” Nature Reviews Drug Discovery 15 (2016): 551-567.

[60]

S. L. Sim, S. Kumari, S. Kaur & K. Khosrotehrani, “Macrophages in Skin Wounds: Functions and Therapeutic Potential,” Biomolecules 12, no. 11 (2022): 1659.

[61]

C. C Bain, A. Bravo-Blas, C. L Scott, et al., “Constant Replenishment From Circulating Monocytes Maintains the Macrophage Pool in the Intestine of Adult Mice,” Nature Immunology 15 (2014): 929-937.

[62]

C. C. Bain, A. M. Mowat, “Macrophages in Intestinal Homeostasis and Inflammation,” Immunological Reviews 260 (2014): 102-117.

[63]

M. A. Evans, K. Walsh, “Clonal Hematopoiesis, Somatic Mosaicism, and Age-Associated Disease,” Physiological Reviews 103 (2023): 649-716.

[64]

S. Sano, K. Oshima, Y. Wang, Y. Katanasaka, M. Sano, K. Walsh, “CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease,” Circulation Research 123 (2018): 335-341.

[65]

S. Sano, K. Oshima, Y. Wang, et al., “Tet2-Mediated Clonal Hematopoiesis Accelerates Heart Failure Through a Mechanism Involving the IL-1β/NLRP3 Inflammasome,” Journal of the American College of Cardiology 71 (2018): 875-886.

[66]

J. J. Fuster, M. A. Zuriaga, V. Zorita, et al., “TET2-Loss-of-Function-Driven Clonal Hematopoiesis Exacerbates Experimental Insulin Resistance in Aging and Obesity,” Cell Reports 33 (2020): 108326.

[67]

Y. Wang, S. Sano, Y. Yura, et al., “Tet2-Mediated Clonal Hematopoiesis in Nonconditioned Mice Accelerates Age-Associated Cardiac Dysfunction,” JCI Insight 5, no. 6 (2020): e135204.

[68]

C. D. Mills, “Anatomy of a Discovery: M1 and m2 Macrophages,” Frontiers in Immunology 6 (2015): 212.

[69]

A. Sica, A. Mantovani, “Macrophage Plasticity and Polarization: In Vivo Veritas,” Journal of Clinical Investigation 122 (2012): 787-795.

[70]

C. D. Mills, “M1 and M2 Macrophages: Oracles of Health and Disease,” Critical Reviews in Immunology 32 (2012): 463-488.

[71]

A. Mantovani, S. Sozzani, M. Locati, P. Allavena & A. Sica, “Macrophage Polarization: Tumor-Associated Macrophages as a Paradigm for Polarized M2 Mononuclear Phagocytes,” Trends in Immunology 23 (2002): 549-555.

[72]

N. Wang, H. Liang, K. Zen, “Molecular Mechanisms That Influence the Macrophage m1-m2 Polarization Balance,” Frontiers in Immunology 5 (2014): 614.

[73]

H. E. Wasmuth, F. Lammert, M. M. Zaldivar, et al., “Antifibrotic Effects of CXCL9 and Its Receptor CXCR3 in Livers of Mice and Humans,” Gastroenterology 137, no. 1 (2009): 309-319.e3193.

[74]

A. Ikeda, N. Aoki, M. Kido, et al., “Progression of Autoimmune Hepatitis is Mediated by IL-18-Producing Dendritic Cells and Hepatic CXCL9 Expression in Mice,” Hepatology 60 (2014): 224-236.

[75]

X. Zhang, J. Han, K. Man, et al., “CXC Chemokine Receptor 3 Promotes Steatohepatitis in Mice Through Mediating Inflammatory Cytokines, Macrophages and Autophagy,” Journal of Hepatology 64 (2016): 160-170.

[76]

F. Heymann, L. Hammerich, D. Storch, et al., “Hepatic Macrophage Migration and Differentiation Critical for Liver Fibrosis Is Mediated by the Chemokine Receptor C-C Motif Chemokine Receptor 8 in Mice,” Hepatology 55 (2012): 898-909.

[77]

P. Italiani, E. M. C. Mazza, D. Lucchesi, et al., “Transcriptomic Profiling of the Development of the Inflammatory Response in Human Monocytes in Vitro,” PLoS ONE 9 (2014): e87680.

[78]

K. J. Mylonas, M. G. Nair, L. Prieto-Lafuente, D. Paape & J. E. Allen, “Alternatively Activated Macrophages Elicited by Helminth Infection Can be Reprogrammed to Enable Microbial Killing,” Journal of Immunology 182 (2009): 3084-3094.

[79]

R. Siebeler, M. P. J. de Winther, M. A. Hoeksema, “The Regulatory Landscape of Macrophage Interferon Signaling in Inflammation,” Journal of Allergy and Clinical Immunology 152 (2023): 326-337.

[80]

A. A. de Jesus, Y. Hou, S. Brooks, et al., “Distinct Interferon Signatures and Cytokine Patterns Define Additional Systemic Autoinflammatory Diseases,” Journal of Clinical Investigation 130 (2020): 1669-1682.

[81]

S. Oggero, C. Cecconello, R. Silva, et al., “Dorsal Root Ganglia CX3CR1 Expressing Monocytes/Macrophages Contribute to Arthritis Pain,” Brain, Behavior, and Immunity 106 (2022): 289-306.

[82]

S. Han, X. Bao, Y. Zou, et al., “d-Lactate Modulates M2 Tumor-Associated Macrophages and Remodels Immunosuppressive Tumor Microenvironment for Hepatocellular Carcinoma,” Science Advances 9 (2023): eadg2697.

[83]

M. Jiang, D. Wang, N. Su, et al., “TRIM65 Knockout Inhibits the Development of HCC by Polarization Tumor-Associated Macrophages Towards M1 Phenotype via JAK1/STAT1 Signaling Pathway,” International Immunopharmacology 128 (2024): 111494.

[84]

F. Alzaid, F. Lagadec, M. Albuquerque, et al., “IRF5 Governs Liver Macrophage Activation That Promotes Hepatic Fibrosis in Mice and Humans,” JCI Insight 1 (2016): e88689.

[85]

W. Xu, Y. Cheng, Y. Guo, W. Yao & H. Qian, “Targeting Tumor Associated Macrophages in Hepatocellular Carcinoma,” Biochemical Pharmacology 199 (2022): 114990.

[86]

K. Cheng, N. Cai, J. Zhu, X. Yang, H. Liang, W. Zhang, “Tumor-Associated Macrophages in Liver Cancer: From Mechanisms to Therapy,” Cancer Communications (Lond) 42 (2022): 1112-1140.

[87]

S. Chen, Y. Morine, K. Tokuda, et al., “Cancer‑Associated Fibroblast‑Induced M2‑Polarized Macrophages Promote Hepatocellular Carcinoma Progression via the Plasminogen Activator Inhibitor‑1 Pathway,” International Journal of Oncology 59, no. 2 (2021): 59.

[88]

Y. Komohara, M. Jinushi, M. Takeya, “Clinical Significance of Macrophage Heterogeneity in Human Malignant Tumors,” Cancer Science 105 (2014): 1-8.

[89]

A. Mantovani, M. Locati, “Tumor-Associated Macrophages as a Paradigm of Macrophage Plasticity, Diversity, and Polarization: Lessons and Open Questions,” Arteriosclerosis, Thrombosis, and Vascular Biology 33 (2013): 1478-1483.

[90]

J. M. Jaynes, R. Sable, M. Ronzetti, et al., “Mannose Receptor (CD206) Activation in Tumor-Associated Macrophages Enhances Adaptive and Innate Antitumor Immune Responses,” Science Translational Medicine 12, no. 530 (2020): eaax6337.

[91]

W. Wang, J. M. Marinis, A. M. Beal, et al., “RIP1 Kinase Drives Macrophage-Mediated Adaptive Immune Tolerance in Pancreatic Cancer,” Cancer Cell 34 (2018): 757-774.e757.

[92]

A. Ramesh, S. Kumar, D. Nandi & A. Kulkarni, “CSF1R- and SHP2-Inhibitor-Loaded Nanoparticles Enhance Cytotoxic Activity and Phagocytosis in Tumor-Associated Macrophages,” Advanced Materials 31 (2019): e1904364.

[93]

N. G. Ring, D. Herndler-Brandstetter, K. Weiskopf, et al., “Anti-SIRPα Antibody Immunotherapy Enhances Neutrophil and Macrophage Antitumor Activity,” PNAS 114 (2017): E10578-e10585.

[94]

M. A. Lauterbach, J. E. Hanke, M. Serefidou, et al., “Toll-Like Receptor Signaling Rewires Macrophage Metabolism and Promotes Histone Acetylation via ATP-Citrate Lyase,” Immunity 51 (2019): 997-1011.e1017.

[95]

A. R. Tall, L. Yvan-Charvet, “Cholesterol, Inflammation and Innate Immunity,” Nature Reviews Immunology 15 (2015): 104-116.

[96]

M. Pereira, D. F. Durso, C. E. Bryant, et al., “The IRAK4 Scaffold Integrates TLR4-Driven TRIF and MYD88 Signaling Pathways,” Cell Reports 40 (2022): 111225.

[97]

C. Griffin, L. Eter, N. Lanzetta, et al., “TLR4, TRIF, and MyD88 Are Essential for Myelopoiesis and CD11c(+) Adipose Tissue Macrophage Production in Obese Mice,” Journal of Biological Chemistry 293 (2018): 8775-8786.

[98]

J. S. Orr, M. J. Puglisi, K. L. Ellacott, C. N. Lumeng, D. H. Wasserman, A. H. Hasty, “Toll-Like Receptor 4 Deficiency Promotes the Alternative Activation of Adipose Tissue Macrophages,” Diabetes 61 (2012): 2718-2727.

[99]

M. S. Hayden, S. Ghosh, “Shared Principles in NF-kappaB Signaling,” Cell 132 (2008): 344-362.

[100]

A. Kauppinen, T. Suuronen, J. Ojala, K. Kaarniranta & A. Salminen, “Antagonistic Crosstalk Between NF-kappaB and SIRT1 in the Regulation of Inflammation and Metabolic Disorders,” Cellular Signalling 25 (2013): 1939-1948.

[101]

M. Al Hamrashdi, G. Brady, “Regulation of IRF3 Activation in Human Antiviral Signaling Pathways,” Biochemical Pharmacology 200 (2022): 115026.

[102]

S. Liu, X. Cai, J. Wu, et al., “Phosphorylation of Innate Immune Adaptor Proteins MAVS, STING, and TRIF Induces IRF3 Activation,” Science 347 (2015): aaa2630.

[103]

C. Xie, B. Guo, C. Liu, et al., “[Endogenous IFN-β Maintains M1 Polarization Status and Inhibits Proliferation and Invasion of Hepatocellular Carcinoma Cells],” Chinese Journal of Cellular and Molecular Immunology 32 (2016): 865-869.

[104]

D. A. Chistiakov, V. A. Myasoedova, V. V. Revin, A. N. Orekhov & Y. V. Bobryshev, “The Impact of Interferon-Regulatory Factors to Macrophage Differentiation and Polarization Into M1 and M2,” Immunobiology 223 (2018): 101-111.

[105]

K. Sun, Qu J., Chen J., et al., “[Interferon Regulatory Factor 5(IRF5) Regulates the Differentiation of Bone Marrow-Derived Macrophages in Mice],” Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi = Chinese Journal of Cellular and Molecular Immunology 33, no. 2 (2017): 168-173.

[106]

T. Stein, A. Wollschlegel, H. Te, et al., “Interferon Regulatory Factor 5 and Nuclear Factor Kappa-B Exhibit Cooperating but Also Divergent Roles in the Regulation of Pro-Inflammatory Cytokines Important for the Development of TH1 and TH17 Responses,” The FEBS Journal 285 (2018): 3097-3113.

[107]

I. Ushach, A. Zlotnik, “Biological Role of Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF) and Macrophage Colony-Stimulating Factor (M-CSF) on Cells of the Myeloid Lineage,” Journal of Leukocyte Biology 100 (2016): 481-489.

[108]

R. Lindau, R. B. Mehta, G. E. Lash, et al., “Interleukin-34 Is Present at the Fetal-Maternal Interface and Induces Immunoregulatory Macrophages of a Decidual Phenotype in Vitro,” Human Reproduction 33 (2018): 588-599.

[109]

W. Y. Park, J. H. Ahn, R. A. Feldman & J. S. Seo, “c-Fes Tyrosine Kinase Binds to and Activates STAT3 After Granulocyte-Macrophage Colony-Stimulating Factor Stimulation,” Cancer Letters 129 (1998): 29-37.

[110]

A. Al-Shami, W. Mahanna, P. H. Naccache, “Granulocyte-Macrophage Colony-Stimulating Factor-Activated Signaling Pathways in Human Neutrophils. Selective Activation of Jak2, Stat3, and Stat5b,” Journal of Biological Chemistry 273 (1998): 1058-1063.

[111]

S. Watanabe, T. Itoh, K. Arai, “Roles of JAK Kinase in Human GM-CSF Receptor Signals,” Leukemia 11, no. 3 (1997): 76-78.

[112]

S. Watanabe, T. Itoh, K. Arai, “Roles of JAK Kinases in Human GM-CSF Receptor Signal Transduction,” Journal of Allergy and Clinical Immunology 98 (1996): S183-191.

[113]

M. F. Brizzi, M. G. Aronica, A. Rosso, G. P. Bagnara, Y. Yarden, L. Pegoraro, “Granulocyte-Macrophage Colony-Stimulating Factor Stimulates JAK2 Signaling Pathway and Rapidly Activates p93fes, STAT1 p91, and STAT3 p92 in Polymorphonuclear Leukocytes,” Journal of Biological Chemistry 271 (1996): 3562-3567.

[114]

C. Xue, G. Li, J. Lu & L. Li, “Crosstalk Between circRNAs and the PI3K/AKT Signaling Pathway in Cancer Progression,” Signal Transduction and Targeted Therapy 6 (2021): 400.

[115]

J. A. Hamilton, “GM-CSF-Dependent Inflammatory Pathways,” Frontiers in Immunology 10 (2019): 2055.

[116]

R. M. Rodriguez, B. Suarez-Alvarez, J. L. Lavín, et al., “Signal Integration and Transcriptional Regulation of the Inflammatory Response Mediated by the GM-/M-CSF Signaling Axis in Human Monocytes,” Cell Reports 29 (2019): 860-872.e865.

[117]

G. Dranoff, R. C. Mulligan, “Activities of Granulocyte-Macrophage Colony-Stimulating Factor Revealed by Gene Transfer and Gene Knockout Studies,” Stem Cells 12, no. 1 (1994): 173-182. discussion 182-174.

[118]

Y. D. Woo, D. Jeong, D. H. Chung, “Development and Functions of Alveolar Macrophages,” Molecules and Cells 44 (2021): 292-300.

[119]

C. McCarthy, B. C. Carey, B. C. Trapnell, “Autoimmune Pulmonary Alveolar Proteinosis,” American Journal of Respiratory and Critical Care Medicine 205 (2022): 1016-1035.

[120]

J. Plichta, P. Kuna, M. Panek, “Biologic Drugs in the Treatment of Chronic Inflammatory Pulmonary Diseases: Recent Developments and Future Perspectives,” Frontiers in Immunology 14 (2023): 1207641.

[121]

Y. Chen, F. Li, M. Hua, M. Liang & C. Song, “Role of GM-CSF in Lung Balance and Disease,” Frontiers in Immunology 14 (2023): 1158859.

[122]

van A. E. Nieuwenhuijze, van de Loo F. A., Walgreen B., et al., “Complementary Action of Granulocyte Macrophage Colony-Stimulating Factor and Interleukin-17A Induces Interleukin-23, Receptor Activator of Nuclear Factor-κB Ligand, and Matrix Metalloproteinases and Drives Bone and Cartilage Pathology in Experimental Arthritis: Rationale for Combination Therapy in Rheumatoid Arthritis,” Arthritis Research & Therapy 17, no. 1 (2015): 163.

[123]

C. Plater-Zyberk, L. A. B. Joosten, M. M. A. Helsen, M. I. Koenders, P. A. Baeuerle, van den W. B. Berg, “Combined Blockade of Granulocyte-Macrophage Colony Stimulating Factor and Interleukin 17 Pathways Potently Suppresses Chronic Destructive Arthritis in a Tumour Necrosis Factor Alpha-Independent Mouse Model,” Annals of the Rheumatic Diseases 68 (2009): 721-728.

[124]

X. Su, Y. Xu, G. C. Fox, et al., “Breast Cancer-Derived GM-CSF Regulates Arginase 1 in Myeloid Cells to Promote an Immunosuppressive Microenvironment,” Journal of Clinical Investigation 131, no. 20 (2021): e145296.

[125]

K. Nelms, A. D. Keegan, J. Zamorano, J. J. Ryan & W. E. Paul, “The IL-4 Receptor: Signaling Mechanisms and Biologic Functions,” Annual Review of Immunology 17 (1999): 701-738.

[126]

J. B. Spangler, I. Moraga, J. L. Mendoza & K. C. Garcia, “Insights Into Cytokine-Receptor Interactions From Cytokine Engineering,” Annual Review of Immunology 33 (2015): 139-167.

[127]

Z. J. Bernstein, A. Shenoy, A. Chen, N. M. Heller & J. B. Spangler, “Engineering the IL-4/IL-13 Axis for Targeted Immune Modulation,” Immunological Reviews 320 (2023): 29-57.

[128]

C. Berlato, M. A. Cassatella, I. Kinjyo, L. Gatto, A. Yoshimura, F. Bazzoni, “Involvement of Suppressor of Cytokine Signaling-3 as a Mediator of the Inhibitory Effects of IL-10 on Lipopolysaccharide-Induced Macrophage Activation,” Journal of Immunology 168 (2002): 6404-6411.

[129]

L. Williams, L. Bradley, A. Smith & B. Foxwell, “Signal Transducer and Activator of Transcription 3 Is the Dominant Mediator of the Anti-Inflammatory Effects of IL-10 in Human Macrophages,” Journal of Immunology 172 (2004): 567-576.

[130]

C. E. Arnold, C. S. Whyte, P. Gordon, R. N. Barker, A. J. Rees, H. M. Wilson, “A Critical Role for Suppressor of Cytokine Signalling 3 in Promoting M1 Macrophage Activation and Function in Vitro and in Vivo,” Immunology 141 (2014): 96-110.

[131]

K. Kang, S. M. Reilly, V. Karabacak, et al., “Adipocyte-Derived Th2 Cytokines and Myeloid PPARdelta Regulate Macrophage Polarization and Insulin Sensitivity,” Cell Metabolism 7 (2008): 485-495.

[132]

A. J. Guri, R. Hontecillas, G. Ferrer, et al., “Loss of PPAR Gamma in Immune Cells Impairs the Ability of Abscisic Acid to Improve Insulin Sensitivity by Suppressing Monocyte Chemoattractant Protein-1 Expression and Macrophage Infiltration Into White Adipose Tissue,” Journal of Nutritional Biochemistry 19 (2008): 216-228.

[133]

B. Desvergne, “PPARdelta/Beta: The Lobbyist Switching Macrophage Allegiance in Favor of Metabolism,” Cell Metabolism 7 (2008): 467-469.

[134]

J. I. Odegaard, R. R. Ricardo-Gonzalez, M. H. Goforth, et al., “Macrophage-Specific PPARgamma Controls Alternative Activation and Improves Insulin Resistance,” Nature 447 (2007): 1116-1120.

[135]

X. Liao, N. Sharma, F. Kapadia, et al., “Krüppel-Like Factor 4 Regulates Macrophage Polarization,” Journal of Clinical Investigation 121 (2011): 2736-2749.

[136]

P. Jha, H. Das, “KLF2 in Regulation of NF-κB-Mediated Immune Cell Function and Inflammation,” International Journal of Molecular Sciences 18, no. 11 (2017): 2383.

[137]

L. Nayak, L. Goduni, Y. Takami, et al., “Kruppel-Like Factor 2 Is a Transcriptional Regulator of Chronic and Acute Inflammation,” American Journal of Pathology 182 (2013): 1696-1704.

[138]

M. Kawata, T. Teramura, P. Ordoukhanian, et al., “Krüppel-Like Factor-4 and Krüppel-Like Factor-2 Are Important Regulators of Joint Tissue Cells and Protect Against Tissue Destruction and Inflammation in Osteoarthritis,” Annals of the Rheumatic Diseases 81, no. 8 (2022): 1179-1188.

[139]

G. Mahabeleshwar, D. Kawanami, N. Sharma, et al., “The Myeloid Transcription Factor KLF2 Regulates the Host Response to Polymicrobial Infection and Endotoxic Shock,” Immunity 34 (2011): 715-728.

[140]

M. Kawata, D. B. McClatchy, J. K. Diedrich, et al., “Mocetinostat Activates Krüppel-Like Factor 4 and Protects Against Tissue Destruction and Inflammation in Osteoarthritis,” JCI Insight 8, no. 17 (2023): e170513.

[141]

X. Gao, S. Jiang, Z. Du, A. Ke, Q. Liang, X. Li, “KLF2 Protects Against Osteoarthritis by Repressing Oxidative Response Through Activation of Nrf2/ARE Signaling in Vitro and in Vivo,” Oxidative Medicine and Cellular Longevity 2019 (2019): 8564681.

[142]

D. A. Hume, “Macrophages as APC and the Dendritic Cell Myth,” Journal of Immunology 181 (2008): 5829-5835.

[143]

E. Sierra-Filardi, A. Puig-Kröger, F. J. Blanco, et al., “Activin A Skews Macrophage Polarization by Promoting a Proinflammatory Phenotype and Inhibiting the Acquisition of Anti-Inflammatory Macrophage Markers,” Blood 117 (2011): 5092-5101.

[144]

J. Svensson, M. C Jenmalm, A. Matussek, R. Geffers, G. Berg, J. Ernerudh, “Macrophages at the Fetal-Maternal Interface Express Markers of Alternative Activation and Are Induced by M-CSF and IL-10,” Journal of Immunology 187 (2011): 3671-3682.

[145]

F. W. Quelle, Sato N., Witthuhn B. A., et al., “JAK2 Associates With the Beta c Chain of the Receptor for Granulocyte-Macrophage Colony-Stimulating Factor, and Its Activation Requires the Membrane-Proximal Region,” Molecular and Cellular Biology 14, no. 7 (1994): 4335-4341.

[146]

R. Jaster, Y. Zhu, M. Pless, S. Bhattacharya, B. Mathey-Prevot, A. D. D'Andrea, “JAK2 is Required for Induction of the Murine DUB-1 Gene,” Molecular and Cellular Biology 17 (1997): 3364-3372.

[147]

Y. Zhu, M. Pless, R. Inhorn, B. Mathey-Prevot & A. D. D'Andrea, “The Murine DUB-1 Gene Is Specifically Induced by the Betac Subunit of Interleukin-3 Receptor,” Molecular and Cellular Biology 16 (1996): 4808-4817.

[148]

K. Okuda, R. Foster, J. D. Griffin, “Signaling Domains of the Beta c Chain of the GM-CSF/IL-3/IL-5 Receptor,” Annals of the New York Academy of Sciences 872 (1999): 305-312. discussion 312-303.

[149]

M. N. Lioubin, G. M. Myles, K. Carlberg, D. Bowtell & L. R. Rohrschneider, “Shc, Grb2, Sos1, and a 150-Kilodalton Tyrosine-Phosphorylated Protein Form Complexes With Fms in Hematopoietic Cells,” Molecular and Cellular Biology 14 (1994): 5682-5691.

[150]

de J. Koning, A. Schelen, F. Dong, et al., “Specific Involvement of Tyrosine 764 of Human Granulocyte Colony-Stimulating Factor Receptor in Signal Transduction Mediated by p145/Shc/GRB2 or p90/GRB2 Complexes,” Blood 87 (1996): 132-140.

[151]

M. Reedijk, X. Liu, van der P. Geer, et al., “Tyr721 Regulates Specific Binding of the CSF-1 Receptor Kinase Insert to PI 3'-Kinase SH2 Domains: A Model for SH2-Mediated Receptor-Target Interactions,” Embo Journal 11 (1992): 1365-1372.

[152]

van der P. Geer, T. Hunter, “Mutation of Tyr697, a GRB2-Binding Site, and Tyr721, a PI 3-Kinase Binding Site, Abrogates Signal Transduction by the Murine CSF-1 Receptor Expressed in Rat-2 Fibroblasts,” Embo Journal 12 (1993): 5161-5172.

[153]

D. A. Hume, K. P. MacDonald, “Therapeutic Applications of Macrophage Colony-Stimulating Factor-1 (CSF-1) and Antagonists of CSF-1 Receptor (CSF-1R) Signaling,” Blood 119 (2012): 1810-1820.

[154]

K. A. Mouchemore, F. J. Pixley, “CSF-1 Signaling in Macrophages: Pleiotrophy Through Phosphotyrosine-Based Signaling Pathways,” Critical Reviews in Clinical Laboratory Sciences 49 (2012): 49-61.

[155]

E. R. Stanley, V. Chitu, “CSF-1 Receptor Signaling in Myeloid Cells,” Cold Spring Harbor Perspectives in Biology 6, no. 6 (2014): a021857.

[156]

F. Liang, C. Ren, J. Wang, et al., “The Crosstalk Between STAT3 and p53/RAS Signaling Controls Cancer Cell Metastasis and Cisplatin Resistance via the Slug/MAPK/PI3K/AKT-Mediated Regulation of EMT and Autophagy,” Oncogenesis 8 (2019): 59.

[157]

Y. Cheng, Y. Zhu, J. Xu, et al., “PKN2 in Colon Cancer Cells Inhibits M2 Phenotype Polarization of Tumor-Associated Macrophages via Regulating DUSP6-Erk1/2 Pathway,” Molecular Cancer 17 (2018): 13.

[158]

A. Barnwal, V. Gaur, A. Sengupta, W. Tyagi, S. Das, J. Bhattacharyya, “Tumor Antigen-Primed Dendritic Cell-Derived Exosome Synergizes With Colony Stimulating Factor-1 Receptor Inhibitor by Modulating the Tumor Microenvironment and Systemic Immunity,” ACS Biomaterials Science & Engineering 9 (2023): 6409-6424.

[159]

S. J Coniglio, E. Eugenin, K. Dobrenis, et al., “Microglial Stimulation of Glioblastoma Invasion Involves Epidermal Growth Factor Receptor (EGFR) and Colony Stimulating Factor 1 Receptor (CSF-1R) Signaling,” Molecular Medicine 18 (2012): 519-527.

[160]

M. W. Webb, J. Sun, M. A. Sheard, et al., “Colony Stimulating Factor 1 Receptor Blockade Improves the Efficacy of Chemotherapy Against Human Neuroblastoma in the Absence of T Lymphocytes,” International Journal of Cancer 143 (2018): 1483-1493.

[161]

C. Ries, M. Cannarile, S. Hoves, et al., “Targeting Tumor-Associated Macrophages With Anti-CSF-1R Antibody Reveals a Strategy for Cancer Therapy,” Cancer Cell 25 (2014): 846-859.

[162]

J. H. Stafford, T. Hirai, L. Deng, et al., “Colony Stimulating Factor 1 Receptor Inhibition Delays Recurrence of Glioblastoma After Radiation by Altering Myeloid Cell Recruitment and Polarization,” Neuro-Oncology 18 (2016): 797-806.

[163]

H. Gelderblom, A. A. Razak, M. H. Taylor, et al., “CSF1R Inhibition in Patients With Advanced Solid Tumors or Tenosynovial Giant Cell Tumor: A Phase I Study of Vimseltinib,” Clinical Cancer Research 30 (2024): 3996-4004.

[164]

B. D. Smith, M. D. Kaufman, S. C. Wise, et al., “Vimseltinib: A Precision CSF1R Therapy for Tenosynovial Giant Cell Tumors and Diseases Promoted by Macrophages,” Molecular Cancer Therapeutics 20 (2021): 2098-2109.

[165]

H. Gelderblom, V. Bhadri, S. Stacchiotti, et al., “Vimseltinib Versus Placebo for Tenosynovial Giant Cell Tumour (MOTION): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial,” Lancet 403 (2024): 2709-2719.

[166]

I. Wyrobnik, M. Steinberg, A. Gelfand, et al., “Decreased Melanoma CSF-1 Secretion by Cannabigerol Treatment Reprograms Regulatory Myeloid Cells and Reduces Tumor Progression,” Oncoimmunology 12 (2023): 2219164.

[167]

S. Horiba, R. Kami, T. Tsutsui & J. Hosoi, “IL-34 Downregulation‒Associated M1/M2 Macrophage Imbalance Is Related to Inflammaging in Sun-Exposed Human Skin,” JID Innovations 2 (2022): 100112.

[168]

A. Freuchet, A. Salama, S. Remy, C. Guillonneau & I. Anegon, “IL-34 and CSF-1, Deciphering Similarities and Differences at Steady State and in Diseases,” Journal of Leukocyte Biology 110 (2021): 771-796.

[169]

Y. Ge, M. Huang, Y. M. Yao, “Immunomodulation of Interleukin-34 and Its Potential Significance as a Disease Biomarker and Therapeutic Target,” International Journal of Biological Sciences 15 (2019): 1835-1845.

[170]

E. D. Foucher, S. Blanchard, L. Preisser, et al., “IL-34 Induces the Differentiation of Human Monocytes Into Immunosuppressive Macrophages. Antagonistic Effects of GM-CSF and IFNγ,” PLoS ONE 8 (2013): e56045.

[171]

Y. Nakamichi, N. Udagawa, N. Takahashi, “IL-34 and CSF-1: Similarities and Differences,” Journal of Bone and Mineral Metabolism 31 (2013): 486-495.

[172]

P. Mata-Martínez, M. Bergón-Gutiérrez, C. Del Fresno, “Dectin-1 Signaling Update: New Perspectives for Trained Immunity,” Frontiers in Immunology 13 (2022): 812148.

[173]

S. Zwicker, D. Bureik, M. Bosma, G. L. Martinez, S. Almer, E. A. Boström, “Receptor-Type Protein-Tyrosine Phosphatase ζ and Colony Stimulating Factor-1 Receptor in the Intestine: Cellular Expression and Cytokine- and Chemokine Responses by Interleukin-34 and Colony Stimulating Factor-1,” PLoS ONE 11 (2016): e0167324.

[174]

Z. Zhao, G. Pan, C. Tang, et al., “IL-34 Inhibits Acute Rejection of Rat Liver Transplantation by Inducing Kupffer Cell M2 Polarization,” Transplantation 102 (2018): e265-e274.

[175]

Z. Chen, K. Buki, J. Vääräniemi, G. Gu & H. K. Väänänen, “The Critical Role of IL-34 in Osteoclastogenesis,” PLoS ONE 6 (2011): e18689.

[176]

M. Baud'Huin, R. Renault, C. Charrier, et al., “Interleukin-34 Is Expressed by Giant Cell Tumours of Bone and Plays a Key Role in RANKL-Induced Osteoclastogenesis,” Journal of Pathology 221 (2010): 77-86.

[177]

T. Blondy, S. M. d'Almeida, T. Briolay, et al., “Involvement of the M-CSF/IL-34/CSF-1R Pathway in Malignant Pleural Mesothelioma,” Journal for ImmunoTherapy of Cancer 8, no. 1 (2020): e000182.

[178]

A. Chéné, S. d'Almeida, T. Blondy, et al., “Pleural Effusions From Patients With Mesothelioma Induce Recruitment of Monocytes and Their Differentiation Into M2 Macrophages,” Journal of Thoracic Oncology 11 (2016): 1765-1773.

[179]

I. Fiorilla, S. Martinotti, A. M. Todesco, et al., “Chronic Inflammation, Oxidative Stress and Metabolic Plasticity: Three Players Driving the Pro-Tumorigenic Microenvironment in Malignant Mesothelioma,” Cells 12, no. 16 (2023): 2048.

[180]

V. Chitu, E. R. Stanley, “Colony-Stimulating Factor-1 in Immunity and Inflammation,” Current Opinion in Immunology 18 (2006): 39-48.

[181]

J. Muñoz-Garcia, D. Cochonneau, S. Télétchéa, et al., “The Twin Cytokines Interleukin-34 and CSF-1: Masterful Conductors of Macrophage Homeostasis,” Theranostics 11 (2021): 1568-1593.

[182]

V. Chitu, Ş. Gokhan, S. Nandi, M. F. Mehler & E. R. Stanley, “Emerging Roles for CSF-1 Receptor and Its Ligands in the Nervous System,” Trends in Neuroscience (Tins) 39 (2016): 378-393.

[183]

M. D. Sanchez-Niño, A. B. Sanz, A. Ortiz, “Chronicity Following Ischaemia-Reperfusion Injury Depends on Tubular-Macrophage Crosstalk Involving Two Tubular Cell-Derived CSF-1R Activators: CSF-1 and IL-34,” Nephrology, Dialysis, Transplantation 31 (2016): 1409-1416.

[184]

J. Baek, R. Zeng, J. Weinmann-Menke, et al., “IL-34 Mediates Acute Kidney Injury and Worsens Subsequent Chronic Kidney Disease,” Journal of Clinical Investigation 125 (2015): 3198-3214.

[185]

S. Zwicker, G. Martinez, M. Bosma, et al., “Interleukin 34: A New Modulator of Human and Experimental Inflammatory Bowel Disease,” Clinical Science (London, England: 1979) 129 (2015): 281-290.

[186]

C. L. O'Brien, K. M. Summers, N. M. Martin, et al., “The Relationship Between Extreme Inter-Individual Variation in Macrophage Gene Expression and Genetic Susceptibility to Inflammatory Bowel Disease,” Human Genetics 143 (2024): 233-261.

[187]

C. Niemand, A. Nimmesgern, S. Haan, et al., “Activation of STAT3 by IL-6 and IL-10 in Primary Human Macrophages Is Differentially Modulated by Suppressor of Cytokine Signaling 3,” Journal of Immunology 170 (2003): 3263-3272.

[188]

J. Wehinger, F. Gouilleux, B. Groner, J. Finke, R. Mertelsmann, R. Maria Weber-Nordt, “IL-10 Induces DNA Binding Activity of Three STAT Proteins (Stat1, Stat3, and Stat5) and Their Distinct Combinatorial Assembly in the Promoters of Selected Genes,” FEBS Letters 394 (1996): 365-370.

[189]

D. S. Finbloom, K. D. Winestock, “IL-10 Induces the Tyrosine Phosphorylation of tyk2 and Jak1 and the Differential Assembly of STAT1 Alpha and STAT3 Complexes in Human T Cells and Monocytes,” Journal of Immunology 155 (1995): 1079-1090.

[190]

R. M. Weber-Nordt, J. K. Riley, A. C. Greenlund, K. W. Moore, J. E. Darnell, R. D. Schreiber, “Stat3 Recruitment by Two Distinct Ligand-Induced, Tyrosine-Phosphorylated Docking Sites in the Interleukin-10 Receptor Intracellular Domain,” Journal of Biological Chemistry 271 (1996): 27954-27961.

[191]

S. Kang, M. Narazaki, H. Metwally & T. Kishimoto, “Historical Overview of the Interleukin-6 Family Cytokine,” Journal of Experimental Medicine 217, no. 5 (2020): e20190347.

[192]

K. W. Moore, de R. Waal Malefyt, R. L. Coffman & A. O'Garra, “Interleukin-10 and the Interleukin-10 Receptor,” Annual Review of Immunology 19 (2001): 683-765.

[193]

A. M. Beebe, D. J. Cua, de R. Waal Malefyt, “The Role of Interleukin-10 in Autoimmune Disease: Systemic Lupus Erythematosus (SLE) and Multiple Sclerosis (MS),” Cytokine & Growth Factor Reviews 13 (2002): 403-412.

[194]

A. Yoshimura, M. Ito, S. Mise-Omata & M. Ando, “SOCS: Negative Regulators of Cytokine Signaling for Immune Tolerance,” International Immunology 33 (2021): 711-716.

[195]

S. E. Nicholson, D. De Souza, L. J. Fabri, et al., “Suppressor of Cytokine Signaling-3 Preferentially Binds to the SHP-2-Binding Site on the Shared Cytokine Receptor Subunit gp130,” PNAS 97 (2000): 6493-6498.

[196]

L. Crepaldi, S. Gasperini, J. A. Lapinet, et al., “Up-Regulation of IL-10R1 Expression Is Required to Render Human Neutrophils Fully Responsive to IL-10,” Journal of Immunology 167 (2001): 2312-2322.

[197]

E. Fitsiou, T. Pulido, J. Campisi, F. Alimirah & M. Demaria, “Cellular Senescence and the Senescence-Associated Secretory Phenotype as Drivers of Skin Photoaging,” Journal of Investigative Dermatology 141 (2021): 1119-1126.

[198]

E. Rovillain, L. Mansfield, C. J. Lord, A. Ashworth & P. S. Jat, “An RNA Interference Screen for Identifying Downstream Effectors of the p53 and pRB Tumour Suppressor Pathways Involved in Senescence,” BMC Genomics 12 (2011): 355.

[199]

A. Salminen, A. Kauppinen, K. Kaarniranta, “Emerging Role of NF-kappaB Signaling in the Induction of Senescence-Associated Secretory Phenotype (SASP),” Cellular Signalling 24 (2012): 835-845.

[200]

F. Alimirah, T. Pulido, A. Valdovinos, et al., “Cellular Senescence Promotes Skin Carcinogenesis Through p38MAPK and p44/42MAPK Signaling,” Cancer Research 80 (2020): 3606-3619.

[201]

C. Kang, Q. Xu, T. D. Martin, et al., “The DNA Damage Response Induces Inflammation and Senescence by Inhibiting Autophagy of GATA4,” Science 349 (2015): aaa5612.

[202]

E. Rovillain, L. Mansfield, C. Caetano, et al., “Activation of Nuclear Factor-kappa B Signalling Promotes Cellular Senescence,” Oncogene 30 (2011): 2356-2366.

[203]

M. Du, C. K. Ea, Y. Fang & Z. J. Chen, “Liquid Phase Separation of NEMO Induced by Polyubiquitin Chains Activates NF-κB,” Molecular Cell 82 (2022): 2415-2426.e2415.

[204]

O. Harding, E. Holzer, J. F. Riley, S. Martens & E. L. F. Holzbaur, “Damaged Mitochondria Recruit the Effector NEMO to Activate NF-κB Signaling,” Molecular Cell 83 (2023): 3188-3204.e3187.

[205]

B. Ouvrier, S. Ismael, G. J. Bix, “Senescence and SASP Are Potential Therapeutic Targets for Ischemic Stroke,” Pharmaceuticals (Basel) 17, no. 3 (2024): 312.

[206]

A. Salminen, T. Suuronen, J. Huuskonen & K. Kaarniranta, “NEMO Shuttle: A Link Between DNA Damage and NF-kappaB Activation in Progeroid Syndromes?,” Biochemical and Biophysical Research Communications 367 (2008): 715-718.

[207]

X. Han, Q. Lei, J. Xie, et al., “Potential Regulators of the Senescence-Associated Secretory Phenotype During Senescence and Aging,” Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 77 (2022): 2207-2218.

[208]

T. Kuilman, D. S. Peeper, “Senescence-Messaging Secretome: SMS-Ing Cellular Stress,” Nature Reviews Cancer 9 (2009): 81-94.

[209]

I. Pantsulaia, W. M. Ciszewski, J. Niewiarowska, “Senescent Endothelial Cells: Potential Modulators of Immunosenescence and Ageing,” Ageing Research Reviews 29 (2016): 13-25.

[210]

F. Olivieri, M. R. Rippo, V. Monsurrò, et al., “MicroRNAs Linking Inflamm-Aging, Cellular Senescence and Cancer,” Ageing Research Reviews 12 (2013): 1056-1068.

[211]

T. Ogawa, M. Kitagawa, K. Hirokawa, “Age-Related Changes of Human Bone Marrow: A Histometric Estimation of Proliferative Cells, Apoptotic Cells, T Cells, B Cells and Macrophages,” Mechanisms of Ageing and Development 117 (2000): 57-68.

[212]

P. S. Minhas, L. Liu, P. K. Moon, et al., “Macrophage De Novo NAD(+) Synthesis Specifies Immune Function in Aging and Inflammation,” Nature Immunology 20 (2019): 50-63.

[213]

M. Renshaw, J. Rockwell, C. Engleman, A. Gewirtz, J. Katz, S. Sambhara, “Cutting Edge: Impaired Toll-Like Receptor Expression and Function in Aging,” Journal of Immunology 169 (2002): 4697-4701.

[214]

J. Nyugen, S. Agrawal, S. Gollapudi & S. Gupta, “Impaired Functions of Peripheral Blood Monocyte Subpopulations in Aged Humans,” Journal of Clinical Immunology 30 (2010): 806-813.

[215]

M. Mazzoni, G. Mauro, M. Erreni, et al., “Senescent Thyrocytes and Thyroid Tumor Cells Induce M2-Like Macrophage Polarization of Human Monocytes via a PGE2-Dependent Mechanism,” Journal of Experimental & Clinical Cancer Research 38 (2019): 208.

[216]

J. M. Albright, R. C. Dunn, J. A. Shults, D. M. Boe, M. Afshar, E. J. Kovacs, “Advanced Age Alters Monocyte and Macrophage Responses,” Antioxidants & Redox Signaling 25 (2016): 805-815.

[217]

C. Jackaman, H. G. Radley-Crabb, Z. Soffe, T. Shavlakadze, M. D. Grounds, D. J. Nelson, “Targeting Macrophages Rescues Age-Related Immune Deficiencies in C57BL/6J Geriatric Mice,” Aging Cell 12 (2013): 345-357.

[218]

R. D Stout, C. Jiang, B. Matta, I. Tietzel, S. K Watkins, J. Suttles, “Macrophages Sequentially Change Their Functional Phenotype in Response to Changes in Microenvironmental Influences,” Journal of Immunology 175 (2005): 342-349.

[219]

L. P. Rodrigues, V. R. Teixeira, T. Alencar-Silva, et al., “Hallmarks of Aging and Immunosenescence: Connecting the Dots,” Cytokine & Growth Factor Reviews 59 (2021): 9-21.

[220]

L. Hu, T. M. Mauro, E. Dang, et al., “Epidermal Dysfunction Leads to an Age-Associated Increase in Levels of Serum Inflammatory Cytokines,” Journal of Investigative Dermatology 137 (2017): 1277-1285.

[221]

L. Ye, T. Mauro, E. Dang, et al., “Topical Applications of an Emollient Reduce Circulating Pro-Inflammatory Cytokine Levels in Chronically Aged Humans: A Pilot Clinical Study,” Journal of the European Academy of Dermatology and Venereology 33 (2019): 2197-2201.

[222]

G. R. Guimarães, P. P. Almeida, de L. Oliveira Santos, L. P. Rodrigues, de J. L. Carvalho, M. Boroni, “Hallmarks of Aging in Macrophages: Consequences to Skin Inflammaging,” Cells 10, no. 6 (2021): 1323.

[223]

Y. Ogata, T. Yamada, S. Hasegawa, et al., “SASP-Induced Macrophage Dysfunction May Contribute to Accelerated Senescent Fibroblast Accumulation in the Dermis,” Experimental Dermatology 30 (2021): 84-91.

[224]

S. Mascharak, M. Griffin, H. E. Talbott, et al., “Inhibiting Mechanotransduction Prevents Scarring and Yields Regeneration in a Large Animal Model,” Science Translational Medicine 17 (2025): eadt6387.

[225]

Z. Liu, X. Bian, L. Luo, et al., “Spatiotemporal Single-Cell Roadmap of Human Skin Wound Healing,” Cell Stem Cell 32 (2025): 479-498.e478.

[226]

Y. Liang, Y. Hu, J. Zhang, et al., “Dynamic Pathological Analysis Reveals a Protective Role Against Skin Fibrosis for TREM2-Dependent Macrophages,” Theranostics 14 (2024): 2232-2245.

[227]

K. Miyake, J. Ito, K. Takahashi, et al., “Single-Cell Transcriptomics Identifies the Differentiation Trajectory From Inflammatory Monocytes to Pro-Resolving Macrophages in a Mouse Skin Allergy Model,” Nature Communications 15 (2024): 1666.

[228]

Q. Y. A. Wong, F. T. Chew, “Defining Skin Aging and Its Risk Factors: A Systematic Review and Meta-Analysis,” Scientific Reports 11 (2021): 22075.

[229]

A. Dańczak-Pazdrowska, J. Gornowicz-Porowska, A. Polańska, et al., “Cellular Senescence in Skin-Related Research: Targeted Signaling Pathways and Naturally Occurring Therapeutic Agents,” Aging Cell 22 (2023): e13845.

[230]

A. Zorina, V. Zorin, D. Kudlay & P. Kopnin, “Molecular Mechanisms of Changes in Homeostasis of the Dermal Extracellular Matrix: Both Involutional and Mediated by Ultraviolet Radiation,” International Journal of Molecular Sciences 23, no. 12 (2022): 6655.

[231]

M. A. Cole, T. Quan, J. J. Voorhees & G. J. Fisher, “Extracellular Matrix Regulation of Fibroblast Function: Redefining Our Perspective on Skin Aging,” Journal of Cell Communication and Signaling 12 (2018): 35-43.

[232]

Z. Qin, J. J. Voorhees, G. J. Fisher & T. Quan, “Age-Associated Reduction of Cellular Spreading/Mechanical Force Up-Regulates Matrix Metalloproteinase-1 Expression and Collagen Fibril Fragmentation via c-Jun/AP-1 in Human Dermal Fibroblasts,” Aging Cell 13 (2014): 1028-1037.

[233]

R. Agrawal, A. Hu, W. B. Bollag, “The Skin and Inflamm-Aging,” Biology (Basel) 12, no. 11 (2023): 1396.

[234]

J. S. Tilstra, C. L. Clauson, L. J. Niedernhofer & P. D. Robbins, “NF-κB in Aging and Disease,” Aging and Disease 2 (2011): 449-465.

[235]

J. F. Klement, N. R. Rice, B. D. Car, et al., “IkappaBalpha Deficiency Results in a Sustained NF-kappaB Response and Severe Widespread Dermatitis in Mice,” Molecular and Cellular Biology 16 (1996): 2341-2349.

[236]

F. Zanni, Vescovini R., Biasini C., et al., “Marked Increase With Age of Type 1 Cytokines Within Memory and Effector/Cytotoxic CD8+ T Cells in Humans: A Contribution to Understand the Relationship Between Inflammation and Immunosenescence,” Experimental Gerontology 38, no. 9 (2003): 981-987.

[237]

J. Pająk, D. Nowicka, J. C. Szepietowski, “Inflammaging and Immunosenescence as Part of Skin Aging-A Narrative Review,” International Journal of Molecular Sciences 24, no. 9 (2023): 7784.

[238]

P. K. Barman, T. J. Koh, “Macrophage Dysregulation and Impaired Skin Wound Healing in Diabetes,” Frontiers in Cell and Developmental Biology 8 (2020): 528.

[239]

H. O. Kim, H. S. Kim, J. C. Youn, E. C. Shin & S. Park, “Serum Cytokine Profiles in Healthy Young and Elderly Population Assessed Using Multiplexed Bead-Based Immunoassays,” Journal of translational medicine 9 (2011): 113.

[240]

T. Lin, M. Man, J. Santiago, et al., “Topical Antihistamines Display Potent Anti-Inflammatory Activity Linked in Part to Enhanced Permeability Barrier Function,” Journal of Investigative Dermatology 133 (2013): 469-478.

[241]

N. Katoh, S. Hirano, S. Kishimoto & H. Yasuno, “Acute Cutaneous Barrier Perturbation Induces Maturation of Langerhans' Cells in Hairless Mice,” Acta Dermato-Venereologica 77 (1997): 365-369.

[242]

S. Horiba, M. Kawamoto, R. Tobita, R. Kami, Y. Ogura, J. Hosoi, “M1/M2 Macrophage Skewing Is Related to Reduction in Types I, V, and VI Collagens With Aging in Sun-Exposed Human Skin,” JID Innovations 3 (2023): 100222.

[243]

Y. Xu, R. Qi, W. Chen, et al., “Aging Affects Epidermal Langerhans Cell Development and Function and Alters Their miRNA Gene Expression Profile,” Aging (Albany NY) 4 (2012): 742-754.

[244]

M. Kamata, Y. Tada, “Dendritic Cells and Macrophages in the Pathogenesis of Psoriasis,” Frontiers in Immunology 13 (2022): 941071.

[245]

L. Yang, J. Fu, X. Han, et al., “Hsa_circ_0004287 Inhibits Macrophage-Mediated Inflammation in an N(6)-Methyladenosine-Dependent Manner in Atopic Dermatitis and Psoriasis,” Journal of Allergy and Clinical Immunology 149 (2022): 2021-2033.

[246]

J. Chen, W. Guo, P. Du, et al., “MIF Inhibition Alleviates Vitiligo Progression by Suppressing CD8(+) T Cell Activation and Proliferation,” Journal of Pathology 260 (2023): 84-96.

[247]

W. Liu, N. E. Sharpless, “Senescence-Escape in Melanoma,” Pigment Cell & Melanoma Research 25 (2012): 408-409.

[248]

C. Weber, S. B. Telerman, A. S. Reimer, et al., “Macrophage Infiltration and Alternative Activation During Wound Healing Promote MEK1-Induced Skin Carcinogenesis,” Cancer Research 76 (2016): 805-817.

[249]

T. Liu, Z. Wang, X. Xue, et al., “Single-Cell Transcriptomics Analysis of Bullous Pemphigoid Unveils Immune-Stromal Crosstalk in Type 2 Inflammatory Disease,” Nature Communications 15 (2024): 5949.

[250]

Y. Hong, Y. Lin, T. Cheng, et al., “TEM1/endosialin/CD248 Promotes Pathologic Scarring and TGF-β Activity Through Its Receptor Stability in Dermal Fibroblasts,” Journal of Biomedical Science 31 (2024): 12.

[251]

H. Li, M. Kuhn, R. A. Kelly, et al., “Targeting YAP/TAZ Mechanosignaling to Ameliorate Stiffness-Induced Schlemm's Canal Cell Pathobiology,” American Journal of Physiology. Cell Physiology 326 (2024): C513-C528.

[252]

M. Furue, “Regulation of Skin Barrier Function via Competition Between AHR Axis Versus IL-13/IL-4‒JAK‒STAT6/STAT3 Axis: Pathogenic and Therapeutic Implications in Atopic Dermatitis,” Journal of Clinical Medicine 9, no. 11 (2020): 3741.

[253]

J. Lee, M. Kim, S. Ochiai, et al., “Tonic Type 2 Immunity Is a Critical Tissue Checkpoint Controlling Autoimmunity in the Skin,” Cell Reports 43 (2024): 114364.

[254]

R. Chovatiya, A. S. Paller, “JAK Inhibitors in the Treatment of Atopic Dermatitis,” Journal of Allergy and Clinical Immunology 148 (2021): 927-940.

[255]

Y. Zhang, G. Jiang, “Application of JAK Inhibitors in Paradoxical Reaction Through Immune-Related Dermatoses,” Frontiers in Immunology 15 (2024): 1341632.

[256]

S. C. Johnson, P. S. Rabinovitch, M. Kaeberlein, “mTOR Is a Key Modulator of Ageing and Age-Related Disease,” Nature 493 (2013): 338-345.

[257]

C. Chen, Y. Liu, Y. Liu & P. Zheng, “mTOR Regulation and Therapeutic Rejuvenation of Aging Hematopoietic Stem Cells,” Science Signaling 2 (2009): ra75.

[258]

C. C. Liu, C. L. Wu, M. X. Lin, C. I. Sze & P. W. Gean, “Disulfiram Sensitizes a Therapeutic-Resistant Glioblastoma to the TGF-β Receptor Inhibitor,” International Journal of Molecular Sciences 22, no. 19 (2021): 10496.

[259]

M. Zhang, S. Kleber, M. Röhrich, et al., “Blockade of TGF-β Signaling by the TGFβR-I Kinase Inhibitor LY2109761 Enhances Radiation Response and Prolongs Survival in Glioblastoma,” Cancer Research 71 (2011): 7155-7167.

[260]

B. Rani, A. Malfettone, F. Dituri, et al., “Galunisertib Suppresses the Staminal Phenotype in Hepatocellular Carcinoma by Modulating CD44 Expression,” Cell Death & Disease 9 (2018): 373.

[261]

D. L. Marvin, R. Heijboer, P. Ten Dijke & L. Ritsma, “TGF-β Signaling in Liver Metastasis,” Clinical and Translational Medicine 10 (2020): e160.

[262]

T. Yamazaki, A. J Gunderson, M. Gilchrist, et al., “Galunisertib Plus Neoadjuvant Chemoradiotherapy in Patients With Locally Advanced Rectal Cancer: A Single-Arm, Phase 2 Trial,” The Lancet Oncology 23 (2022): 1189-1200.

[263]

M. Saclier, G. Angelini, C. Bonfanti, G. Mura, G. Temponi, G. Messina, “Selective Ablation of Nfix in Macrophages Attenuates Muscular Dystrophy by Inhibiting Fibro-Adipogenic Progenitor-Dependent Fibrosis,” Journal of Pathology 257 (2022): 352-366.

[264]

Q. Wang, Song L. J., Ding Z. B., et al., “Advantages of Rho-Associated Kinases and Their Inhibitor Fasudil for the Treatment of Neurodegenerative Diseases,” Neural Regeneration Research 17, no. 12 (2022): 2623-2631.

[265]

L. Lage, A. I. Rodriguez-Perez, J. L. Labandeira-Garcia & A. Dominguez-Meijide, “Fasudil Inhibits α-Synuclein Aggregation Through ROCK-Inhibition-Mediated Mechanisms,” Neurotherapeutics 22 (2025): e00544.

[266]

J. B. Choi, D. Seol, H. Do, et al., “Fasudil Alleviates the Vascular Endothelial Dysfunction and Several Phenotypes of Fabry Disease,” Molecular Therapy 31 (2023): 1002-1016.

[267]

Z. Li, T. Wang, S. Du, et al., “Tgm2-Catalyzed Covalent Cross-Linking of IκBα Drives NF-κB Nuclear Translocation to Promote SASP in Senescent Microglia,” Aging Cell 24, no. 5 (2025): e14463.

[268]

M. Elmore, A. Najafi, M. Koike, et al., “Colony-Stimulating Factor 1 Receptor Signaling Is Necessary for Microglia Viability, Unmasking a Microglia Progenitor Cell in the Adult Brain,” Neuron 82 (2014): 380-397.

[269]

M. Greter, I. Lelios, P. Pelczar, et al., “Stroma-Derived Interleukin-34 Controls the Development and Maintenance of Langerhans Cells and the Maintenance of Microglia,” Immunity 37 (2012): 1050-1060.

[270]

Y. Wang, M. Bugatti, T. K. Ulland, W. Vermi, S. Gilfillan, M. Colonna, “Nonredundant Roles of Keratinocyte-Derived IL-34 and Neutrophil-Derived CSF1 in Langerhans Cell Renewal in the Steady State and During Inflammation,” European Journal of Immunology 46 (2016): 552-559.

[271]

T. Mizuno, Y. Doi, H. Mizoguchi, et al., “Interleukin-34 Selectively Enhances the Neuroprotective Effects of Microglia to Attenuate Oligomeric Amyloid-β Neurotoxicity,” American Journal of Pathology 179 (2011): 2016-2027.

[272]

F. Ginhoux, M. Greter, M. Leboeuf, et al., “Fate Mapping Analysis Reveals That Adult Microglia Derive From Primitive Macrophages,” Science 330 (2010): 841-845.

[273]

S. M Pyonteck, L. Akkari, A. J Schuhmacher, et al., “CSF-1R Inhibition Alters Macrophage Polarization and Blocks Glioma Progression,” Nature Medicine 19 (2013): 1264-1272.

[274]

R. M. Ransohoff, V. H. Perry, “Microglial Physiology: Unique Stimuli, Specialized Responses,” Annual Review of Immunology 27 (2009): 119-145.

[275]

D. G. Walker, L. F. Lue, “Immune Phenotypes of Microglia in Human Neurodegenerative Disease: Challenges to Detecting Microglial Polarization in Human Brains,” Alzheimer's Research & Therapy 7 (2015): 56.

[276]

R. M. Ransohoff, M. A. Brown, “Innate Immunity in the Central Nervous System,” Journal of Clinical Investigation 122 (2012): 1164-1171.

[277]

M. M. Varnum, T. Ikezu, “The Classification of Microglial Activation Phenotypes on Neurodegeneration and Regeneration in Alzheimer's Disease Brain,” Archivum Immunologiae Et Therapiae Experimentalis 60 (2012): 251-266.

[278]

H. S. Kwon, S. H. Koh, “Neuroinflammation in Neurodegenerative Disorders: The Roles of Microglia and Astrocytes,” Translational Neurodegeneration 9 (2020): 42.

[279]

D. C. Wraith, L. B. Nicholson, “The Adaptive Immune System in Diseases of the Central Nervous System,” Journal of Clinical Investigation 122 (2012): 1172-1179.

[280]

E. D. Ponomarev, L. P. Shriver, K. Maresz & B. N. Dittel, “Microglial Cell Activation and Proliferation Precedes the Onset of CNS Autoimmunity,” Journal of Neuroscience Research 81 (2005): 374-389.

[281]

V. Chhor, T. Le Charpentier, S. Lebon, et al., “Characterization of Phenotype Markers and Neuronotoxic Potential of Polarised Primary Microglia in Vitro,” Brain, Behavior, and Immunity 32 (2013): 70-85.

[282]

R. W. Freilich, M. E. Woodbury, T. Ikezu, “Integrated Expression Profiles of mRNA and miRNA in Polarized Primary Murine Microglia,” PLoS ONE 8 (2013): e79416.

[283]

S. Gordon, F. O. Martinez, “Alternative Activation of Macrophages: Mechanism and Functions,” Immunity 32 (2010): 593-604.

[284]

B. A. Durafourt, C. S. Moore, D. A. Zammit, et al., “Comparison of Polarization Properties of Human Adult Microglia and Blood-Derived Macrophages,” Glia 60 (2012): 717-727.

[285]

H. Neumann, M. R. Kotter, R. J. Franklin, “Debris Clearance by Microglia: An Essential Link Between Degeneration and Regeneration,” Brain 132 (2009): 288-295.

[286]

A. Buonfiglioli, D. Hambardzumyan, “Macrophages and Microglia: The Cerberus of Glioblastoma,” Acta Neuropathologica Communications 9 (2021): 54.

[287]

N. Zhu, S. Chen, Y. Jin, et al., “Enhancing Glioblastoma Immunotherapy With Integrated Chimeric Antigen Receptor T Cells Through the Re-Education of Tumor-Associated Microglia and Macrophages,” ACS Nano 18 (2024): 11165-11182.

[288]

G. Hutter, J. Theruvath, C. M. Graef, et al., “Microglia Are Effector Cells of CD47-SIRPα Antiphagocytic Axis Disruption Against Glioblastoma,” PNAS 116 (2019): 997-1006.

[289]

F. Cignarella, F. Filipello, B. Bollman, et al., “TREM2 Activation on Microglia Promotes Myelin Debris Clearance and Remyelination in a Model of Multiple Sclerosis,” Acta Neuropathologica 140 (2020): 513-534.

[290]

Y. Dong, C. D'Mello, W. Pinsky, et al., “Oxidized Phosphatidylcholines Found in Multiple Sclerosis Lesions Mediate Neurodegeneration and Are Neutralized by Microglia,” Nature Neuroscience 24 (2021): 489-503.

[291]

J. Cooper-Knock, C. Green, G. Altschuler, et al., “A Data-Driven Approach Links Microglia to Pathology and Prognosis in Amyotrophic Lateral Sclerosis,” Acta Neuropathologica Communications 5 (2017): 23.

[292]

E. Martin, C. Boucher, B. Fontaine & C. Delarasse, “Distinct Inflammatory Phenotypes of Microglia and Monocyte-Derived Macrophages in Alzheimer's Disease Models: Effects of Aging and Amyloid Pathology,” Aging Cell 16 (2017): 27-38.

[293]

C. Claes, E. P. Danhash, J. Hasselmann, et al., “Plaque-Associated Human Microglia Accumulate Lipid Droplets in a Chimeric Model of Alzheimer's Disease,” Molecular Neurodegeneration 16 (2021): 50.

[294]

M. A. Michell-Robinson, H. Touil, L. M. Healy, et al., “Roles of Microglia in Brain Development, Tissue Maintenance and Repair,” Brain 138 (2015): 1138-1159.

[295]

A. Niraula, J. F. Sheridan, J. P. Godbout, “Microglia Priming With Aging and Stress,” Neuropsychopharmacology 42 (2017): 318-333.

[296]

T. R. Hammond, C. Dufort, L. Dissing-Olesen, et al., “Single-Cell RNA Sequencing of Microglia Throughout the Mouse Lifespan and in the Injured Brain Reveals Complex Cell-State Changes,” Immunity 50 (2019): 253-271.e256.

[297]

C. Sala Frigerio, L. Wolfs, N. Fattorelli, et al., “The Major Risk Factors for Alzheimer's Disease: Age, Sex, and Genes Modulate the Microglia Response to Aβ Plaques,” Cell Reports 27 (2019): 1293-1306.e1296.

[298]

B. G. Childs, M. Durik, D. J. Baker & van J. M. Deursen, “Cellular Senescence in Aging and Age-Related Disease: From Mechanisms to Therapy,” Nature Medicine 21 (2015): 1424-1435.

[299]

A. M. Fenn, J. C. Hall, J. C. Gensel, P. G. Popovich & J. P. Godbout, “IL-4 Signaling Drives a Unique Arginase+/IL-1β+ Microglia Phenotype and Recruits Macrophages to the Inflammatory CNS: Consequences of Age-Related Deficits in IL-4Rα After Traumatic Spinal Cord Injury,” Journal of Neuroscience 34 (2014): 8904-8917.

[300]

A. M. Fenn, C. J. Henry, Y. Huang, A. Dugan & J. P. Godbout, “Lipopolysaccharide-Induced Interleukin (IL)-4 Receptor-α Expression and Corresponding Sensitivity to the M2 Promoting Effects of IL-4 Are Impaired in Microglia of Aged Mice,” Brain, Behavior, and Immunity 26 (2012): 766-777.

[301]

S. Krasemann, C. Madore, R. Cialic, et al., “The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases,” Immunity 47 (2017): 566-581.e569.

[302]

Q. Shi, C. Chang, A. Saliba & M. A. Bhat, “Microglial mTOR Activation Upregulates Trem2 and Enhances β-Amyloid Plaque Clearance in the 5XFAD Alzheimer's Disease Model,” Journal of Neuroscience 42 (2022): 5294-5313.

[303]

S. Parhizkar, T. Arzberger, M. Brendel, et al., “Loss of TREM2 Function Increases Amyloid Seeding but Reduces Plaque-Associated ApoE,” Nature Neuroscience 22 (2019): 191-204.

[304]

T. K. Ulland, Song W. M., Huang S. C., et al., “TREM2 Maintains Microglial Metabolic Fitness in Alzheimer's Disease,” Cell 170, no. 4 (2017): 649-663.e613.

[305]

X. X. Li, F. Zhang, “Targeting TREM2 for Parkinson's Disease: Where to Go?,” Frontiers in Immunology 12 (2021): 795036.

[306]

A. Döring, S. Sloka, L. Lau, et al., “Stimulation of Monocytes, Macrophages, and Microglia by Amphotericin B and Macrophage Colony-Stimulating Factor Promotes Remyelination,” Journal of Neuroscience 35 (2015): 1136-1148.

[307]

V. Boissonneault, M. Filali, M. Lessard, J. Relton, G. Wong, S. Rivest, “Powerful Beneficial Effects of Macrophage Colony-Stimulating Factor on Beta-Amyloid Deposition and Cognitive Impairment in Alzheimer's Disease,” Brain 132 (2009): 1078-1092.

[308]

I. Choi, M. Wang, S. Yoo, et al., “Autophagy Enables Microglia to Engage Amyloid Plaques and Prevents Microglial Senescence,” Nature Cell Biology 25 (2023): 963-974.

[309]

K. Hitpass Romero, T. J. Stevenson, L. C. D. Smyth, et al., “Age-Related Meningeal Extracellular Matrix Remodeling Compromises CNS Lymphatic Function,” Journal of Neuroinflammation 22 (2025): 109.

[310]

A. L. French, C. T. Evans, D. M. Agniel, et al., “Microbial Translocation and Liver Disease Progression in Women Coinfected With HIV and Hepatitis C Virus,” Journal of Infectious Diseases 208 (2013): 679-689.

[311]

N. G. Sandler, C. Koh, A. Roque, et al., “Host Response to Translocated Microbial Products Predicts Outcomes of Patients With HBV or HCV Infection,” Gastroenterology 141, no. 4 (2011): 1220-1230.

[312]

M. Holub, C. Cheng, S. Mott, P. Wintermeyer, van N. Rooijen, S. H. Gregory, “Neutrophils Sequestered in the Liver Suppress the Proinflammatory Response of Kupffer Cells to Systemic Bacterial Infection,” Journal of Immunology 183 (2009): 3309-3316.

[313]

W. Zhong, Z. Rao, J. Rao, et al., “Aging Aggravated Liver Ischemia and Reperfusion Injury by Promoting STING-Mediated NLRP3 Activation in Macrophages,” Aging Cell 19 (2020): e13186.

[314]

D. L. Laskin, V. R. Sunil, C. R. Gardner & J. D. Laskin, “Macrophages and Tissue Injury: Agents of Defense or Destruction?,” Annual Review of Pharmacology and Toxicology 51 (2011): 267-288.

[315]

P. Ma, C. Gao, J. Yi, et al., “Cytotherapy With M1-Polarized Macrophages Ameliorates Liver Fibrosis by Modulating Immune Microenvironment in Mice,” Journal of Hepatology 67 (2017): 770-779.

[316]

N. Hosseini, J. Shor, G. Szabo, “Alcoholic Hepatitis: A Review,” Alcohol and Alcoholism 54 (2019): 408-416.

[317]

J. Wan, M. Benkdane, F. Teixeira-Clerc, et al., “M2 Kupffer Cells Promote M1 Kupffer Cell Apoptosis: A Protective Mechanism Against Alcoholic and Nonalcoholic Fatty Liver Disease,” Hepatology 59 (2014): 130-142.

[318]

C. Ju, F. Tacke, “Hepatic Macrophages in Homeostasis and Liver Diseases: From Pathogenesis to Novel Therapeutic Strategies,” Cellular & Molecular Immunology 13 (2016): 316-327.

[319]

E. C. Stahl, M. J. Haschak, B. Popovic & B. N. Brown, “Macrophages in the Aging Liver and Age-Related Liver Disease,” Frontiers in Immunology 9 (2018): 2795.

[320]

Y. Wen, J. Lambrecht, C. Ju & F. Tacke, “Hepatic Macrophages in Liver Homeostasis and Diseases-Diversity, Plasticity and Therapeutic Opportunities,” Cellular & Molecular Immunology 18 (2021): 45-56.

[321]

C. Yang, S. Xia, W. Zhang, H. M. Shen & J. Wang, “Modulation of Atg Genes Expression in Aged Rat Liver, Brain, and Kidney by Caloric Restriction Analyzed via Single-Nucleus/Cell RNA Sequencing,” Autophagy 19 (2023): 706-715.

[322]

S. Ma, S. Sun, L. Geng, et al., “Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging,” Cell 180 (2020): 984-1001.e1022.

[323]

L. Fontana, E. Zhao, M. Amir, H. Dong, K. Tanaka, M. J. Czaja, “Aging Promotes the Development of Diet-Induced Murine Steatohepatitis but Not Steatosis,” Hepatology 57 (2013): 995-1004.

[324]

J. Yan, T. Horng, “Lipid Metabolism in Regulation of Macrophage Functions,” Trends in Cell Biology 30 (2020): 979-989.

[325]

K. A. Harford, C. M. Reynolds, F. C. McGillicuddy & H. M. Roche, “Fats, Inflammation and Insulin Resistance: Insights to the Role of Macrophage and T-Cell Accumulation in Adipose Tissue,” Proceedings of the Nutrition Society 70 (2011): 408-417.

[326]

T. Tchkonia, D. E. Morbeck, T. Von Zglinicki, et al., “Fat Tissue, Aging, and Cellular Senescence,” Aging Cell 9 (2010): 667-684.

[327]

P. Hou, J. Fang, Z. Liu, et al., “Macrophage Polarization and Metabolism in Atherosclerosis,” Cell Death & Disease 14 (2023): 691.

[328]

A. J. Stranks, A. L. Hansen, I. Panse, et al., “Autophagy Controls Acquisition of Aging Features in Macrophages,” Journal of Innate Immunity 7 (2015): 375-391.

[329]

Y. Aman, T. Schmauck-Medina, M. Hansen, et al., “Autophagy in Healthy Aging and Disease,” Nature Aging 1 (2021): 634-650.

[330]

S. Kaushik, I. Tasset, E. Arias, et al., “Autophagy and the Hallmarks of Aging,” Ageing Research Reviews 72 (2021): 101468.

[331]

S. Q. Wong, A. V. Kumar, J. Mills & L. R. Lapierre, “Autophagy in Aging and Longevity,” Human Genetics 139 (2020): 277-290.

[332]

K. Sayaf, S. Battistella, F. P. Russo, “NLRP3 Inflammasome in Acute and Chronic Liver Diseases,” International Journal of Molecular Sciences 25, no. 8 (2024): 4537.

[333]

S. N. Hilmer, V. C. Cogger, D. G. L. Couteur, “Basal Activity of Kupffer Cells Increases With Old Age,” Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 62 (2007): 973-978.

[334]

T. Yamano, L. A. DeCicco, L. E. Rikans, “Attenuation of Cadmium-Induced Liver Injury in Senescent Male Fischer 344 Rats: Role of Kupffer Cells and Inflammatory Cytokines,” Toxicology and Applied Pharmacology 162 (2000): 68-75.

[335]

L. Bai, M. Kong, Z. Duan, S. Liu, S. Zheng, Y. Chen, “M2-Like Macrophages Exert Hepatoprotection in Acute-on-Chronic Liver Failure Through Inhibiting Necroptosis-S100A9-Necroinflammation Axis,” Cell Death & Disease 12 (2021): 93.

[336]

L. Zeng, Y. Wang, Y. Huang, et al., “IRG1/itaconate Enhances Efferocytosis by Activating Nrf2-TIM4 Signaling Pathway to Alleviate Con A Induced Autoimmune Liver Injury,” Cell Communication and Signaling 23 (2025): 63.

[337]

O. Krenkel, T. Puengel, O. Govaere, et al., “Therapeutic Inhibition of Inflammatory Monocyte Recruitment Reduces Steatohepatitis and Liver Fibrosis,” Hepatology 67 (2018): 1270-1283.

[338]

J. Zhang, Y. Wang, M. Fan, et al., “Reactive Oxygen Species Regulation by NCF1 Governs Ferroptosis Susceptibility of Kupffer Cells to MASH,” Cell Metabolism 36 (2024): 1745-1763.e1746.

[339]

D. Wilson, T. Jackson, E. Sapey & J. M. Lord, “Frailty and Sarcopenia: The Potential Role of an Aged Immune System,” Ageing Research Reviews 36 (2017): 1-10.

[340]

J. Angulo, M. El Assar, L. Rodríguez-Mañas, “Frailty and Sarcopenia as the Basis for the Phenotypic Manifestation of Chronic Diseases in Older Adults,” Molecular Aspects of Medicine 50 (2016): 1-32.

[341]

A. Patsalos, P. Tzerpos, X. Wei & L. Nagy, “Myeloid Cell Diversification During Regenerative Inflammation: Lessons From Skeletal Muscle,” Seminars in Cell & Developmental Biology 119 (2021): 89-100.

[342]

A. Patsalos, L. Halasz, D. Oleksak, et al., “Spatiotemporal Transcriptomic Mapping of Regenerative Inflammation in Skeletal Muscle Reveals a Dynamic Multilayered Tissue Architecture,” Journal of Clinical Investigation 134, no. 20 (2024): e173858.

[343]

L. K Krasniewski, P. Chakraborty, C. Cui, et al., “Single-Cell Analysis of Skeletal Muscle Macrophages Reveals Age-Associated Functional Subpopulations,” Elife 11 (2022): e77974.

[344]

A. Xiong, J. Zhang, Y. Chen, Y. Zhang & F. Yang, “Integrated Single-Cell Transcriptomic Analyses Reveal That GPNMB-High Macrophages Promote PN-MES Transition and Impede T Cell Activation in GBM,” EBioMedicine 83 (2022): 104239.

[345]

R. A. Franklin, W. Liao, A. Sarkar, et al., “The Cellular and Molecular Origin of Tumor-Associated Macrophages,” Science 344 (2014): 921-925.

[346]

W. Zou, J. D. Wolchok, L. Chen, “PD-L1 (B7-H1) and PD-1 Pathway Blockade for Cancer Therapy: Mechanisms, Response Biomarkers, and Combinations,” Science Translational Medicine 8 (2016): 328rv324.

[347]

H. Lu, D. Huang, R. M. Ransohoff & L. Zhou, “Acute Skeletal Muscle Injury: CCL2 Expression by Both Monocytes and Injured Muscle Is Required for Repair,” FASEB Journal 25 (2011): 3344-3355.

[348]

H. Lu, D. Huang, N. Saederup, I. F. Charo, R. M. Ransohoff, L. Zhou, “Macrophages Recruited via CCR2 Produce Insulin-Like Growth Factor-1 to Repair Acute Skeletal Muscle Injury,” FASEB Journal 25 (2011): 358-369.

[349]

L. Cassetta, J. W. Pollard, “Targeting Macrophages: Therapeutic Approaches in Cancer,” Nature Reviews Drug Discovery 17 (2018): 887-904.

[350]

M. Saclier, M. Lapi, C. Bonfanti, G. Rossi, S. Antonini, G. Messina, “The Transcription Factor Nfix Requires RhoA-ROCK1 Dependent Phagocytosis to Mediate Macrophage Skewing During Skeletal Muscle Regeneration,” Cells 9, no. 3 (2020): 708.

[351]

X. Wang, A. A. Sathe, G. R. Smith, et al., “Heterogeneous Origins and Functions of Mouse Skeletal Muscle-Resident Macrophages,” PNAS 117 (2020): 20729-20740.

[352]

D. R Lemos, F. Babaeijandaghi, M. Low, et al., “Nilotinib Reduces Muscle Fibrosis in Chronic Muscle Injury by Promoting TNF-Mediated Apoptosis of Fibro/Adipogenic Progenitors,” Nature Medicine 21 (2015): 786-794.

[353]

P. Sousa-Victor, S. Gutarra, L. García-Prat, et al., “Geriatric Muscle Stem Cells Switch Reversible Quiescence Into Senescence,” Nature 506 (2014): 316-321.

[354]

P. Jiang, L. Wang, M. Zhang, et al., “Cannabinoid Type 2 Receptor Manipulates Skeletal Muscle Regeneration Partly by Regulating Macrophage M1/M2 Polarization in IR Injury in Mice,” Life Sciences 256 (2020): 117989.

[355]

M. Zhang, M. Zhang, L. Wang, et al., “Activation of Cannabinoid Type 2 Receptor Protects Skeletal Muscle From Ischemia-Reperfusion Injury Partly via Nrf2 Signaling,” Life Sciences 230 (2019): 55-67.

[356]

S. N. Oprescu, F. Yue, J. Qiu, L. F. Brito & S. Kuang, “Temporal Dynamics and Heterogeneity of Cell Populations During Skeletal Muscle Regeneration,” IScience 23 (2020): 100993.

[357]

B. D Cosgrove, P. M Gilbert, E. Porpiglia, et al., “Rejuvenation of the Muscle Stem Cell Population Restores Strength to Injured Aged Muscles,” Nature Medicine 20 (2014): 255-264.

[358]

A. J. Cruz-Jentoft, J. P. Baeyens, J. M. Bauer, et al., “Sarcopenia: European Consensus on Definition and Diagnosis: Report of the European Working Group on Sarcopenia in Older People,” Age and Ageing 39 (2010): 412-423.

[359]

M. J. Jackson, A. McArdle, “Age-Related Changes in Skeletal Muscle Reactive Oxygen Species Generation and Adaptive Responses to Reactive Oxygen Species,” The Journal of Physiology 589 (2011): 2139-2145.

[360]

A. S. Brack, M. J. Conboy, S. Roy, et al., “Increased Wnt Signaling During Aging Alters Muscle Stem Cell Fate and Increases Fibrosis,” Science 317 (2007): 807-810.

[361]

I. M. Conboy, M. J. Conboy, A. J. Wagers, E. R. Girma, I. L. Weissman, T. A. Rando, “Rejuvenation of Aged Progenitor Cells by Exposure to a Young Systemic Environment,” Nature 433 (2005): 760-764.

[362]

Y. Wang, M. Wehling-Henricks, S. S. Welc, A. L. Fisher, Q. Zuo, J. G. Tidball, “Aging of the Immune System Causes Reductions in Muscle Stem Cell Populations, Promotes Their Shift to a Fibrogenic Phenotype, and Modulates Sarcopenia,” FASEB Journal 33 (2019): 1415-1427.

[363]

Y. Wang, M. Wehling-Henricks, G. Samengo & J. G. Tidball, “Increases of M2a Macrophages and Fibrosis in Aging Muscle Are Influenced by Bone Marrow Aging and Negatively Regulated by Muscle-Derived Nitric Oxide,” Aging Cell 14 (2015): 678-688.

[364]

E. Jo, S. R. Lee, B. S. Park & J. S. Kim, “Potential Mechanisms Underlying the Role of Chronic Inflammation in Age-Related Muscle Wasting,” Aging Clinical and Experimental Research 24 (2012): 412-422.

[365]

L. Li, Li D., Zhu J., et al., “Downregulation of TGF-β1 in Fibro-Adipogenic Progenitors Initiates Muscle Ectopic Mineralization,” Journal of Bone and Mineral Research 39, no. 8 (2024): 1147-1161.

[366]

F. Szulzewsky, A. Pelz, X. Feng, et al., “Glioma-Associated Microglia/Macrophages Display an Expression Profile Different From M1 and M2 Polarization and Highly Express Gpnmb and Spp1,” PLoS ONE 10 (2015): e0116644.

[367]

C. Sloas, S. Gill, M. Klichinsky, “Engineered CAR-Macrophages as Adoptive Immunotherapies for Solid Tumors,” Frontiers in Immunology 12 (2021): 783305.

[368]

L. Zhang, L. Tian, X. Dai, et al., “Pluripotent Stem Cell-Derived CAR-Macrophage Cells With Antigen-Dependent Anti-Cancer Cell Functions,” Journal of hematology & oncology 13 (2020): 153.

[369]

Z. Niu, G. Chen, W. Chang, et al., “Chimeric Antigen Receptor-Modified Macrophages Trigger Systemic Anti-Tumour Immunity,” Journal of Pathology 253 (2021): 247-257.

[370]

Z. Duan, Z. Li, Z. Wang, C. Chen & Y. Luo, “Chimeric Antigen Receptor Macrophages Activated Through TLR4 or IFN-γ Receptors Suppress Breast Cancer Growth by Targeting VEGFR2,” Cancer Immunology, Immunotherapy 72 (2023): 3243-3257.

[371]

X. Wang, S. Su, Y. Zhu, et al., “Metabolic Reprogramming via ACOD1 Depletion Enhances Function of Human Induced Pluripotent Stem Cell-Derived CAR-Macrophages in Solid Tumors,” Nature Communications 14 (2023): 5778.

[372]

M. Klichinsky, M. Ruella, O. Shestova, et al., “Human Chimeric Antigen Receptor Macrophages for Cancer Immunotherapy,” Nature Biotechnology 38 (2020): 947-953.

[373]

N. R. Anderson, N. G. Minutolo, S. Gill & M. Klichinsky, “Macrophage-Based Approaches for Cancer Immunotherapy,” Cancer Research 81 (2021): 1201-1208.

[374]

Y. Chen, X. Zhu, H. Liu, et al., “The Application of HER2 and CD47 CAR-Macrophage in Ovarian Cancer,” Journal of translational medicine 21 (2023): 654.

[375]

Z. Shah, L. Tian, Z. Li, et al., “Human Anti-PSCA CAR Macrophages Possess Potent Antitumor Activity Against Pancreatic Cancer,” Cell Stem Cell 31 (2024): 803-817.e806.

[376]

Z. Yang, Y. Liu, K. Zhao, et al., “Dual mRNA Co-Delivery for in Situ Generation of Phagocytosis-Enhanced CAR Macrophages Augments Hepatocellular Carcinoma Immunotherapy,” Journal of Controlled Release 360 (2023): 718-733.

[377]

K. A. Reiss, M. G. Angelos, E. C. Dees, et al., “CAR-Macrophage Therapy for HER2-Overexpressing Advanced Solid Tumors: A Phase 1 Trial,” Nature Medicine 31 (2025): 1171-1182.

[378]

M. T. Islam, E. Tuday, S. Allen, et al., “Senolytic Drugs, Dasatinib and Quercetin, Attenuate Adipose Tissue Inflammation, and Ameliorate Metabolic Function in Old Age,” Aging Cell 22 (2023): e13767.

[379]

V. A. Pullarkat, N. J. Lacayo, E. Jabbour, et al., “Venetoclax and Navitoclax in Combination With Chemotherapy in Patients With Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma,” Cancer Discovery 11 (2021): 1440-1453.

[380]

M. J. Yousefzadeh, Y. Zhu, S. J. McGowan, et al., “Fisetin Is a Senotherapeutic That Extends Health and Lifespan,” EBioMedicine 36 (2018): 18-28.

[381]

J. Aguado, A. A. Amarilla, A. Taherian Fard, et al., “Senolytic Therapy Alleviates Physiological Human Brain Aging and COVID-19 Neuropathology,” Nature Aging 3 (2023): 1561-1575.

[382]

M. M. Gonzales, V. R. Garbarino, T. F. Kautz, et al., “Senolytic Therapy in Mild Alzheimer's Disease: A Phase 1 Feasibility Trial,” Nature Medicine 29 (2023): 2481-2488.

[383]

L. J. Hickson, L. G. Langhi Prata, S. A. Bobart, et al., “Senolytics Decrease Senescent Cells in Humans: Preliminary Report From a Clinical Trial of Dasatinib Plus Quercetin in Individuals With Diabetic Kidney Disease,” EBioMedicine 47 (2019): 446-456.

[384]

S. Crespo-Garcia, F. Fournier, R. Diaz-Marin, et al., “Therapeutic Targeting of Cellular Senescence in Diabetic Macular Edema: Preclinical and Phase 1 Trial Results,” Nature Medicine 30 (2024): 443-454.

[385]

J. N. Justice, A. M. Nambiar, T. Tchkonia, et al., “Senolytics in Idiopathic Pulmonary Fibrosis: Results From a First-in-Human, Open-Label, Pilot Study,” EBioMedicine 40 (2019): 554-563.

[386]

A. Nambiar, D. Kellogg, J. Justice, et al., “Senolytics Dasatinib and Quercetin in Idiopathic Pulmonary Fibrosis: Results of a Phase I, Single-Blind, Single-Center, Randomized, Placebo-Controlled Pilot Trial on Feasibility and Tolerability,” EBioMedicine 90 (2023): 104481.

[387]

J. N. Farr, E. J. Atkinson, S. J. Achenbach, et al., “Effects of Intermittent Senolytic Therapy on Bone Metabolism in Postmenopausal Women: A Phase 2 Randomized Controlled Trial,” Nature Medicine 30 (2024): 2605-2612.

[388]

S. Lee, S. Kivimäe, A. Dolor & F. C. Szoka, “Macrophage-Based Cell Therapies: The Long and Winding Road,” Journal of Controlled Release 240 (2016): 527-540.

[389]

Q. Cao, Y. Wang, D. Zheng, et al., “Failed Renoprotection by Alternatively Activated Bone Marrow Macrophages Is Due to a Proliferation-Dependent Phenotype Switch in Vivo,” Kidney International 85 (2014): 794-806.

[390]

V. Quillien, A. Moisan, T. Lesimple, C. Leberre & L. Toujas, “Biodistribution of 111indium-Labeled Macrophages Infused Intravenously in Patients With Renal Carcinoma,” Cancer Immunology, Immunotherapy 50 (2001): 477-482.

[391]

B. Duan, Y. Liu, X. Li, et al., “An Autologous Macrophage-Based Phenotypic Transformation-Collagen Degradation System Treating Advanced Liver Fibrosis,” Advanced Science (Weinh) 11 (2024): e2306899.

[392]

P. N. Brennan, M. MacMillan, T. Manship, et al., “Autologous Macrophage Therapy for Liver Cirrhosis: A Phase 2 Open-Label Randomized Controlled Trial,” Nature Medicine 31 (2025): 979-987.

[393]

F. Moroni, B. J. Dwyer, C. Graham, et al., “Safety Profile of Autologous Macrophage Therapy for Liver Cirrhosis,” Nature Medicine 25 (2019): 1560-1565.

[394]

P. N. Brennan, M. MacMillan, T. Manship, et al., “Study Protocol: A Multicentre, Open-Label, Parallel-Group, Phase 2, Randomised Controlled Trial of Autologous Macrophage Therapy for Liver Cirrhosis (MATCH),” BMJ Open 11 (2021): e053190.

[395]

B. Ruffell, N. I. Affara, L. M. Coussens, “Differential Macrophage Programming in the Tumor Microenvironment,” Trends in Immunology 33 (2012): 119-126.

[396]

O. Kan, Day D., Iqball S., et al., “Genetically Modified Macrophages Expressing Hypoxia Regulated Cytochrome P450 and P450 Reductase for the Treatment of Cancer,” International Journal of Molecular Medicine 27, no. 2 (2011): 173-180.

[397]

C. Koba, M. Haruta, Y. Matsunaga, et al., “Therapeutic Effect of Human iPS-Cell-Derived Myeloid Cells Expressing IFN-β Against Peritoneally Disseminated Cancer in Xenograft Models,” PLoS ONE 8 (2013): e67567.

[398]

S. Subramanian, C. J. Busch, K. Molawi, et al., “Long-Term Culture-Expanded Alveolar Macrophages Restore Their Full Epigenetic Identity After Transfer in Vivo,” Nature Immunology 23 (2022): 458-468.

[399]

C. Happle, N. Lachmann, J. Škuljec, et al., “Pulmonary Transplantation of Macrophage Progenitors as Effective and Long-Lasting Therapy for Hereditary Pulmonary Alveolar Proteinosis,” Science Translational Medicine 6 (2014): 250ra113.

[400]

T. Suzuki, P. Arumugam, T. Sakagami, et al., “Pulmonary Macrophage Transplantation Therapy,” Nature 514 (2014): 450-454.

[401]

J. Herold, F. Pipp, B. Fernandez, et al., “Transplantation of Monocytes: A Novel Strategy for in Vivo Augmentation of Collateral Vessel Growth,” Human Gene Therapy 15 (2004): 1-12.

[402]

M. Honda, M. Kadohisa, D. Yoshii, Y. Komohara & T. Hibi, “Directly Recruited GATA6 + Peritoneal Cavity Macrophages Contribute to the Repair of Intestinal Serosal Injury,” Nature Communications 12 (2021): 7294.

[403]

B. Kühnemuth, L. Mühlberg, M. Schipper, et al., “CUX1 Modulates Polarization of Tumor-Associated Macrophages by Antagonizing NF-κB Signaling,” Oncogene 34 (2015): 177-187.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

11

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/