Combining Intramuscular and Intranasal Immunization With the MF59-Adjuvanted Respiratory Syncytial Virus Pre-Fusion Protein Subunit Vaccine Induces Potent Humoral and Cellular Immune Responses in Mice

Jie Shi , Hong Lei , Yu Zhang , Chunjun Ye , Xiya Huang , Yishan Lu , Yanyan Liu , Jian Liu , Danyi Ao , Yingqiong Zhou , Jiong Li , Guangwen Lu , Xiangrong Song , Xiawei Wei

MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70301

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70301 DOI: 10.1002/mco2.70301
ORIGINAL ARTICLE

Combining Intramuscular and Intranasal Immunization With the MF59-Adjuvanted Respiratory Syncytial Virus Pre-Fusion Protein Subunit Vaccine Induces Potent Humoral and Cellular Immune Responses in Mice

Author information +
History +
PDF

Abstract

Respiratory syncytial virus (RSV) ranks as the second leading cause of infant death globally and a significant contributor to morbidity and mortality among adults over 60 years old. The development of effective RSV vaccines and immunoprophylaxis remains a key focus. In our research, we formulated a protein-based vaccine known as MF59/preF, which combines the RSV pre-fusion (preF) antigen with an MF59-like oil-in-water adjuvant. Intramuscular (IM) or intranasal (IN) immunization of the MF59-adjuvanted preF protein vaccine elicited robust immune responses and neutralizing antibodies against both RSV A2 and RSV B strains, with the IM showing a particularly pronounced effect. Notably, IN immunization with MF59/preF demonstrated superior mucosal immunity, characterized by elevated levels of IgA antibodies and an increased frequency of tissue-resident memory T (TRM) cells locally. More importantly, the combined IM and IN delivery of the MF59/preF vaccine synergistically enhanced antigen-specific humoral and cellular immune responses at both systemic and mucosal sites. Our study highlights the crucial impact of the route of administration and adjuvanted-protein subunit vaccines on triggering strong humoral and cellular immunity in mice.

Keywords

intranasal immunization / MF59 adjuvant / mucosal immunity / respiratory syncytial virus (RSV) / RSV pre-fusion (preF) protein

Cite this article

Download citation ▾
Jie Shi, Hong Lei, Yu Zhang, Chunjun Ye, Xiya Huang, Yishan Lu, Yanyan Liu, Jian Liu, Danyi Ao, Yingqiong Zhou, Jiong Li, Guangwen Lu, Xiangrong Song, Xiawei Wei. Combining Intramuscular and Intranasal Immunization With the MF59-Adjuvanted Respiratory Syncytial Virus Pre-Fusion Protein Subunit Vaccine Induces Potent Humoral and Cellular Immune Responses in Mice. MedComm, 2025, 6(8): e70301 DOI:10.1002/mco2.70301

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

X. Wang, Y. Li, T. Shi, et al., “Global Disease Burden of and Risk Factors for Acute Lower Respiratory Infections Caused by Respiratory Syncytial Virus in Preterm Infants and Young Children in 2019: A Systematic Review and Meta-Analysis of Aggregated and Individual Participant Data,” Lancet 403, no. 10433 (2024): 1241-1253.

[2]

A. R. P. Rago, S. F. D'Arrigo, M. Osmani, C. M. Espinosa, C. M. Torres, “Respiratory Syncytial Virus: Epidemiology, Burden of Disease, and Clinical Update,” Advances in Pediatrics 71, no. 1 (2024): 107-118.

[3]

T. J. Ruckwardt, K. M. Morabito, B. S. Graham, “Immunological Lessons From Respiratory Syncytial Virus Vaccine Development,” Immunity 51, no. 3 (2019): 429-442.

[4]

S. R. Dalziel, L. Haskell, S. O'Brien, et al., “Bronchiolitis,” Lancet 400, no. 10349 (2022): 392-406.

[5]

Y. Li, X. Wang, D. M. Blau, et al., “Global, Regional, and National Disease Burden Estimates of Acute Lower Respiratory Infections due to Respiratory Syncytial Virus in Children Younger Than 5 Years in 2019: A Systematic Analysis,” Lancet 399, no. 10340 (2022): 2047-2064.

[6]

J. A. Coultas, R. Smyth, P. J. Openshaw, “Respiratory Syncytial Virus (RSV): A Scourge From Infancy to Old Age,” Thorax 74, no. 10 (2019): 986-993.

[7]

T. Shi, S. Vennard, F. Jasiewicz, R. Brogden, H. Nair, “Disease Burden Estimates of Respiratory Syncytial Virus Related Acute Respiratory Infections in Adults With Comorbidity: A Systematic Review and Meta-Analysis,” Journal of Infectious Diseases 226, no. S1 (2022): S17-S21.

[8]

E. A. Simões, J. P. DeVincenzo, M. Boeckh, et al., “Challenges and Opportunities in Developing Respiratory Syncytial Virus Therapeutics,” Journal of Infectious Diseases 211, no. S1 (2015): S1-S20.

[9]

S. Jares Baglivo, F. P. Polack, “The Long Road to Protect Infants Against Severe RSV Lower Respiratory Tract Illness,” F1000Res 8 (2019): F1000.

[10]

A. Young, A. Isaacs, C. A. P. Scott, et al., “A Platform Technology for Generating Subunit Vaccines Against Diverse Viral Pathogens,” Frontiers in Immunology 13 (2022): 963023.

[11]

T. J. Ruckwardt, K. M. Morabito, E. Phung, et al., “Safety, Tolerability, and Immunogenicity of the Respiratory Syncytial Virus Prefusion F Subunit Vaccine DS-Cav1: A Phase 1, Randomised, Open-Label, Dose-Escalation Clinical Trial,” Lancet Respiratory Medicine 9, no. 10 (2021): 1111-1120.

[12]

M. Mukhamedova, D. Wrapp, C. H. Shen, et al., “Vaccination With Prefusion-Stabilized Respiratory Syncytial Virus Fusion Protein Induces Genetically and Antigenically Diverse Antibody Responses,” Immunity 54, no. 4 (2021): 769-780.e6.

[13]

A. Gennattasio, “Adjuvanted Vaccine to Prevent Respiratory Syncytial Virus in Adults Ages 60 Years and Older,” Nursing for Women's Health 28, no. 3 (2024): 242-246.

[14]

Y. Y. Syed, “Respiratory Syncytial Virus Prefusion F Subunit Vaccine: First Approval of a Maternal Vaccine to Protect Infants,” Paediatric Drugs 25, no. 6 (2023): 729-734.

[15]

A New RSV Vaccine (mResvia) for Adults ≥60 Years Old. Medical Letter on Drugs and Therapeutics 66, no. 1713 (2024): 166-168.

[16]

P. Brandtzaeg, “Induction of Secretory Immunity and Memory at Mucosal Surfaces,” Vaccine 25, no. 30 (2007): 5467-5484.

[17]

A. Vartak, S. J. Sucheck, “Recent Advances in Subunit Vaccine Carriers,” Vaccines 4, no. 2 (2016): 12.

[18]

D. Baxter, “Active and Passive Immunity, Vaccine Types, Excipients and Licensing,” Occupational Medicine 57, no. 8 (2007): 552-556.

[19]

R. Bastola, G. Noh, T. Keum, et al., “Vaccine Adjuvants: Smart Components to Boost the Immune System,” Archives of Pharmacal Research 40, no. 11 (2017): 1238-1248.

[20]

S. K. Verma, P. Mahajan, N. K. Singh, et al., “New-Age Vaccine Adjuvants, Their Development, and Future Perspective,” Frontiers in Immunology 14 (2023): 1043109.

[21]

M. Knuf, G. Leroux-Roels, H. Rümke, et al., “Immunogenicity and Safety of Cell-Derived MF59-Adjuvanted A/H1N1 Influenza Vaccine for Children,” Human Vaccines & Immunotherapeutics 11, no. 2 (2015): 358-376.

[22]

S. Esposito, L. Pugni, C. Daleno, et al., “Influenza A/H1N1 MF59-Adjuvanted Vaccine in Preterm and Term Children Aged 6 to 23 Months,” Pediatrics 127, no. 5 (2011): e1161-e1168.

[23]

A. Domnich, L. Arata, D. Amicizia, J. Puig-Barberà, R. Gasparini, D. Panatto, “Effectiveness of MF59-Adjuvanted Seasonal Influenza Vaccine in the Elderly: A Systematic Review and Meta-Analysis,” Vaccine 35, no. 4 (2017): 513-520.

[24]

C. He, J. Yang, W. Hong, et al., “A Self-Assembled Trimeric Protein Vaccine Induces Protective Immunity Against Omicron Variant,” Nature Communications 13, no. 1 (2022): 5459.

[25]

D. Peng, C. He, Z. Chen, et al., “XBB.1.16-RBD-Based Trimeric Protein Vaccine Can Effectively Inhibit XBB.1.16-Included XBB Subvariant Infection,” MedComm 5, no. 9 (2024): e687.

[26]

M. Jeyanathan, D. K. Fritz, S. Afkhami, et al., “Aerosol Delivery, but Not Intramuscular Injection, of Adenovirus-Vectored Tuberculosis Vaccine Induces Respiratory-Mucosal Immunity in Humans,” JCI Insight 7, no. 3 (2022): e155655.

[27]

S. Afkhami, A. Kang, V. Jeyanathan, Z. Xing, M. Jeyanathan, “Adenoviral-Vectored Next-Generation Respiratory Mucosal Vaccines Against COVID-19,” Current Opinion in Virology 61 (2023): 101334.

[28]

M. Cokarić Brdovčak, J. Materljan, M. Šustić, “ChAdOx1-S Adenoviral Vector Vaccine Applied Intranasally Elicits Superior Mucosal Immunity Compared to the Intramuscular Route of Vaccination,” European Journal of Immunology 52, no. 6 (2022): 936-945.

[29]

R. Rubin, “Trying to Block SARS-CoV-2 Transmission With Intranasal Vaccines,” JAMA 326, no. 17 (2021): 1661-1663.

[30]

D. Sinha, M. Yaugel-Novoa, L. Waeckel, S. Paul, S. Longet, “Unmasking the Potential of Secretory IgA and Its Pivotal Role in Protection From Respiratory Viruses,” Antiviral Research 223 (2024): 105823.

[31]

M. S. Habibi, A. Jozwik, S. Makris, et al., “Impaired Antibody-Mediated Protection and Defective IgA B-Cell Memory in Experimental Infection of Adults With Respiratory Syncytial Virus,” American Journal of Respiratory and Critical Care Medicine 191, no. 9 (2015): 1040-1049.

[32]

FluMist: An Intranasal Live Influenza Vaccine. Medical Letter on Drugs and Therapeutics 45, no. 1163 (2003): 65.

[33]

F. Zhu, S. Huang, X. Liu, et al., “Safety and Efficacy of the Intranasal Spray SARS-CoV-2 Vaccine dNS1-RBD: A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial,” Lancet Respiratory Medicine 11, no. 12 (2023): 1075-1088.

[34]

R. Sunagar, S. D. Prasad, R. Ella, K. M. Vadrevu, “Preclinical Evaluation of Safety and Immunogenicity of a Primary Series Intranasal COVID-19 Vaccine Candidate (BBV154) and Humoral Immunogenicity Evaluation of a Heterologous Prime-Boost Strategy With COVAXIN (BBV152),” Frontiers in Immunology 13 (2022): 1063679.

[35]

A. Khobragade, S. Bhate, V. Ramaiah, et al., “Efficacy, Safety, and Immunogenicity of the DNA SARS-CoV-2 Vaccine (ZyCoV-D): The Interim Efficacy Results of a Phase 3, Randomised, Double-Blind, Placebo-Controlled Study in India,” Lancet 399, no. 10332 (2022): 1313-1321.

[36]

L. Feng, Q. Wang, C. Shan, et al., “An Adenovirus-Vectored COVID-19 Vaccine Confers Protection From SARS-COV-2 Challenge in Rhesus Macaques,” Nature Communications 11, no. 1 (2020): 4207.

[37]

P. Zhang, S. Luo, P. Zou, et al., “A Novel Simian Adenovirus-Vectored COVID-19 Vaccine Elicits Effective Mucosal and Systemic Immunity in Mice by Intranasal and Intramuscular Vaccination Regimens,” Microbiology Spectrum 11, no. 6 (2023): e0179423.

[38]

W. Hong, H. Lei, D. Peng, et al., “A Chimeric Adenovirus-Vectored Vaccine Based on Beta Spike and Delta RBD Confers a Broad-Spectrum Neutralization Against Omicron-Included SARS-CoV-2 Variants,” MedComm 5, no. 5 (2024): e539.

[39]

Y. Lin, X. Liao, X. Cao, et al., “Sequential Intranasal Booster Triggers Class Switching From Intramuscularly Primed IgG to Mucosal IgA Against SARS-CoV-2,” Journal of Clinical Investigation 135, no. 5 (2025): e175233.

[40]

N. Jaberolansar, I. Toth, P. R. Young, M. Skwarczynski, “Recent Advances in the Development of Subunit-Based RSV Vaccines,” Expert Review of Vaccines 15, no. 1 (2016): 53-68.

[41]

M. Magro, V. Mas, K. Chappell, et al., “Neutralizing Antibodies Against the Preactive Form of Respiratory Syncytial Virus Fusion Protein Offer Unique Possibilities for Clinical Intervention,” PNAS 109, no. 8 (2012): 3089-3094.

[42]

J. S. McLellan, M. Chen, S. Leung, et al., “Structure of RSV Fusion Glycoprotein Trimer Bound to a Prefusion-Specific Neutralizing Antibody,” Science 340, no. 6136 (2013): 1113-1117.

[43]

L. A. Chang, E. Phung, M. C. Crank, et al., “A Prefusion-Stabilized RSV F Subunit Vaccine Elicits B Cell Responses With Greater Breadth and Potency Than a Postfusion F Vaccine,” Science Translational Medicine 14, no. 676 (2022): eade0424.

[44]

J. Luo, H. Qin, L. Lei, W. Lou, R. Li, Z. Pan, “Virus-Like Particles Containing a Prefusion-Stabilized F Protein Induce a Balanced Immune Response and Confer Protection Against Respiratory Syncytial Virus Infection in Mice,” Frontiers in Immunology 13 (2022): 1054005.

[45]

J. O. Ngwuta, M. Chen, K. Modjarrad, et al., “Prefusion F-Specific Antibodies Determine the Magnitude of RSV Neutralizing Activity in Human Sera,” Science Translational Medicine 7, no. 309 (2015): 309ra162.

[46]

A. J. Pollard, E. M. Bijker, “A Guide to Vaccinology: From Basic Principles to New Developments,” Nature Reviews Immunology 21, no. 2 (2021): 83-100.

[47]

Y. Chen, X. Zhao, H. Zhou, H. Zhu, S. Jiang, P. Wang, “Broadly Neutralizing Antibodies to SARS-CoV-2 and Other Human Coronaviruses,” Nature Reviews Immunology 23, no. 3 (2023): 189-199.

[48]

W. Luo, Q. Yin, “B Cell Response to Vaccination,” Immunological Investigations 50, no. 7 (2021): 780-801.

[49]

C. Chen, X. Wang, Z. Zhang, “Humoral and Cellular Immunity Against Diverse SARS-CoV-2 Variants,” Journal of Genetics and Genomics 50, no. 12 (2023): 934-947.

[50]

C. D. Russell, S. A. Unger, M. Walton, J. Schwarze, “The Human Immune Response to Respiratory Syncytial Virus Infection,” Clinical Microbiology Reviews 30, no. 2 (2017): 481-502.

[51]

L. Mesin, J. Ersching, G. D. Victora, “Germinal Center B Cell Dynamics,” Immunity 45, no. 3 (2016): 471-482.

[52]

S. Crotty, “T Follicular Helper Cell Differentiation, Function, and Roles in Disease,” Immunity 41, no. 4 (2014): 529-542.

[53]

H. Lei, A. Alu, J. Yang, et al., “Cationic Crosslinked Carbon Dots-Adjuvanted Intranasal Vaccine Induces Protective Immunity Against Omicron-Included SARS-CoV-2 Variants,” Nature Communications 14, no. 1 (2023): 2678.

[54]

A. Egli, D. Santer, K. Barakat, et al., “Vaccine Adjuvants-Understanding Molecular Mechanisms to Improve Vaccines,” Swiss Medical Weekly 144 (2014): w13940.

[55]

B. J. Lee, H. I. Kwon, E. H. Kim, et al., “Assessment of mOMV Adjuvant Efficacy in the Pathogenic H1N1 Influenza Virus Vaccine,” Clinical and Experimental Vaccine Research 3, no. 2 (2014): 194-201.

[56]

T. G. Boyce, H. H. Hsu, E. C. Sannella, et al., “Safety and Immunogenicity of Adjuvanted and Unadjuvanted Subunit Influenza Vaccines Administered Intranasally to Healthy Adults,” Vaccine 19, no. 2-3 (2000): 217-226.

[57]

P. Yang, C. Tang, D. Luo, et al., “Cross-Clade Protection Against HPAI H5N1 Influenza Virus Challenge in BALB/c Mice Intranasally Administered Adjuvant-Combined Influenza Vaccine,” Veterinary Microbiology 146, no. 1-2 (2010): 17-23.

[58]

H. Lei, W. Hong, J. Yang, et al., “Intranasal Delivery of a Subunit Protein Vaccine Provides Protective Immunity Against JN.1 and XBB-Lineage Variants,” Signal Transduction and Targeted Therapy 9, no. 1 (2024): 311.

[59]

A. Alu, L. Chen, H. Lei, Y. Wei, X. Tian, X. Wei, “Intranasal COVID-19 Vaccines: From Bench to Bed,” eBioMedicine 76 (2022): 103841.

[60]

P. A. Szabo, M. Miron, D. L. Farber, “Location, Location, Location: Tissue Resident Memory T Cells in Mice and Humans,” Science Immunology 4, no. 34 (2019): eaas9673.

[61]

K. Rakhra, W. Abraham, C. Wang, et al., “Exploiting Albumin as a Mucosal Vaccine Chaperone for Robust Generation of Lung-Resident Memory T Cells,” Science Immunology 6, no. 57 (2021): eabd8003.

[62]

H. C. Bergeron, R. A. Tripp, “Immunopathology of RSV: An Updated Review,” Viruses 13, no. 12 (2021): 2478.

[63]

N. I. Mazur, M. T. Caballero, M. C. Nunes, “Severe Respiratory Syncytial Virus Infection in Children: Burden, Management, and Emerging Therapies,” Lancet 404, no. 10458 (2024): 1143-1156.

[64]

H. Nair, D. J. Nokes, B. D. Gessner, et al., “Global Burden of Acute Lower Respiratory Infections due to Respiratory Syncytial Virus in Young Children: A Systematic Review and Meta-Analysis,” Lancet 375, no. 9725 (2010): 1545-1555.

[65]

N. I. Mazur, J. Terstappen, R. Baral, et al., “Respiratory Syncytial Virus Prevention Within Reach: The Vaccine and Monoclonal Antibody Landscape,” Lancet Infectious Diseases 23, no. 1 (2023): e2-e21.

[66]

J. Terstappen, S. F. Hak, A. Bhan, et al., “The Respiratory Syncytial Virus Vaccine and Monoclonal Antibody Landscape: The Road to Global Access,” Lancet Infectious Diseases 24, no. 12 (2024): e747-e761.

[67]

M. W. Russell, Z. Moldoveanu, P. L. Ogra, J. Mestecky, “Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection,” Frontiers in Immunology 11 (2020): 611337.

[68]

P. J. Watt, B. S. Robinson, C. R. Pringle, D. A. Tyrrell, “Determinants of Susceptibility to Challenge and the Antibody Response of Adult Volunteers Given Experimental Respiratory Syncytial Virus Vaccines,” Vaccine 8, no. 3 (1990): 231-236.

[69]

K. D. Zens, J. K. Chen, D. L. Farber, “Vaccine-Generated Lung Tissue-Resident Memory T Cells Provide Heterosubtypic Protection to Influenza Infection,” JCI Insight 1, no. 10 (2016): e85832.

[70]

J. R. Baker, M. Farazuddin, P. T. Wong, J. J. O'Konek, “The Unfulfilled Potential of Mucosal Immunization,” Journal of Allergy and Clinical Immunology 150, no. 1 (2022): 1-11.

[71]

S. C. Park, M. J. Wiest, V. Yan, P. T. Wong, M. Schotsaert, “Induction of Protective Immune Responses at Respiratory Mucosal Sites,” Human Vaccines & Immunotherapeutics 20, no. 1 (2024): 2368288.

[72]

J. Tang, J. Sun, “Lung Tissue-Resident Memory T Cells: The Gatekeeper to Respiratory Viral (Re)-Infection,” Current Opinion in Immunology 80 (2023): 102278.

[73]

C. J. Y. Tsai, J. M. S. Loh, K. Fujihashi, H. Kiyono, “Mucosal Vaccination: Onward and Upward,” Expert Review of Vaccines 22, no. 1 (2023): 885-899.

[74]

E. C. Lavelle, R. W. Ward, “Mucosal Vaccines—Fortifying the Frontiers,” Nature Reviews Immunology 22, no. 4 (2022): 236-250.

[75]

M. Ugozzoli, D. T. O'Hagan, G. S. Ott, “Intranasal Immunization of Mice With Herpes Simplex Virus Type 2 Recombinant gD2: The Effect of Adjuvants on Mucosal and Serum Antibody Responses,” Immunology 93, no. 4 (1998): 563-571.

[76]

A. M. W. Malloy, Z. Lu, M. Kehl, J. Pena DaMata, A. W. Lau-Kilby, M. Turfkruyer, “Increased Innate Immune Activation Induces Protective RSV-Specific Lung-Resident Memory T Cells in Neonatal Mice,” Mucosal Immunology 16, no. 5 (2023): 593-605.

[77]

E. Kinnear, L. Lambert, J. U. McDonald, H. M. Cheeseman, L. J. Caproni, J. S. Tregoning, “Airway T Cells Protect Against RSV Infection in the Absence of Antibody,” Mucosal Immunology 11, no. 1 (2018): 249-256.

[78]

A. Pires, A. Fortuna, G. Alves, A. Falcão, “Intranasal Drug Delivery: How, Why and What for?,” Journal of Pharmacy & Pharmaceutical Sciences 12, no. 3 (2009): 288-311.

[79]

M. Tiboni, L. Casettari, L. Illum, “Nasal Vaccination Against SARS-CoV-2: Synergistic or Alternative to Intramuscular Vaccines?,” International Journal of Pharmaceutics 603 (2021): 120686.

[80]

E. J. Ko, S. M. Kang, “Immunology and Efficacy of MF59-Adjuvanted Vaccines,” Human Vaccines & Immunotherapeutics 14, no. 12 (2018): 3041-3045.

[81]

Y. Zheng, L. Bian, H. Zhao, et al., “Respiratory Syncytial Virus F Subunit Vaccine With AS02 Adjuvant Elicits Balanced, Robust Humoral and Cellular Immunity in BALB/c Mice,” Frontiers in Immunology 11 (2020): 526965.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/