Aortic aneurysm: pathophysiology and therapeutic options

Guang Yang , Abbas Khan , Wei Liang , Zibo Xiong , Johannes Stegbauer

MedComm ›› 2024, Vol. 5 ›› Issue (9) : e703

PDF
MedComm ›› 2024, Vol. 5 ›› Issue (9) : e703 DOI: 10.1002/mco2.703
REVIEW

Aortic aneurysm: pathophysiology and therapeutic options

Author information +
History +
PDF

Abstract

Aortic aneurysm (AA) is an aortic disease with a high mortality rate, and other than surgery no effective preventive or therapeutic treatment have been developed. The renin–angiotensin system (RAS) is an important endocrine system that regulates vascular health. The ACE2/Ang-(1–7)/MasR axis can antagonize the adverse effects of the activation of the ACE/Ang II/AT1R axis on vascular dysfunction, atherosclerosis, and the development of aneurysms, thus providing an important therapeutic target for the prevention and treatment of AA. However, products targeting the Ang-(1–7)/MasR pathway still lack clinical validation. This review will outline the epidemiology of AA, including thoracic, abdominal, and thoracoabdominal AA, as well as current diagnostic and treatment strategies. Due to the highest incidence and most extensive research on abdominal AA (AAA), we will focus on AAA to explain the role of the RAS in its development, the protective function of Ang-(1–7)/MasR, and the mechanisms involved. We will also describe the roles of agonists and antagonists, suggest improvements in engineering and drug delivery, and provide evidence for Ang-(1–7)/MasR’s clinical potential, discussing risks and solutions for clinical use. This study will enhance our understanding of AA and offer new possibilities and promising targets for therapeutic intervention.

Keywords

aortic aneurysm / aortic lesion / inflammation / oxidative stress / renin–angiotensin system

Cite this article

Download citation ▾
Guang Yang, Abbas Khan, Wei Liang, Zibo Xiong, Johannes Stegbauer. Aortic aneurysm: pathophysiology and therapeutic options. MedComm, 2024, 5(9): e703 DOI:10.1002/mco2.703

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Krafcik BM, Stone DH, Cai M, et al. Changes in global mortality from aortic aneurysm. J Vasc Surg. 2024; 80(1): 81-88.

[2]

Sakalihasan N, Michel JB, Katsargyris A, et al. Abdominal aortic aneurysms. Nat Rev Dis Primers. 2018; 4(1): 34.

[3]

Umebayashi R, Uchida HA, Wada J. Abdominal aortic aneurysm in aged population. Aging (Albany NY). 2018; 10(12): 3650-3651.

[4]

Bossone E, Eagle KA. Epidemiology and management of aortic disease: aortic aneurysms and acute aortic syndromes. Nat Rev Cardiol. 2021; 18(5): 331-348.

[5]

Altobelli E, Rapacchietta L, Profeta VF, Fagnano R. Risk factors for abdominal aortic aneurysm in population-based studies: a systematic review and meta-analysis. Int J Environ Res Public Health. 2018; 15(12): 2805.

[6]

Sharples L, Sastry P, Freeman C, et al. Aneurysm growth, survival, and quality of life in untreated thoracic aortic aneurysms: the effective treatments for thoracic aortic aneurysms study. Eur Heart J. 2022; 43(25): 2356-2369.

[7]

Lo RC, Schermerhorn ML. Abdominal aortic aneurysms in women. J Vasc Surg. 2016; 63(3): 839-844.

[8]

Shuai T, Kan Y, Si Y, Fu W. High-risk factors related to the occurrence and development of abdominal aortic aneurysm. J Interv Med. 2020; 3(2): 80-82.

[9]

Sörelius K, Prendergast B, Fosbøl E, Søndergaard L. Recommendations on securing microbiological specimens to guide the multidisciplinary management of infective native aortic aneurysms. Ann Vasc Surg. 2020; 68: 536-541.

[10]

Gené Mola A, Casasa A, Puig Reixach T, et al. Normal infrarenal aortic diameter in men and women in a Mediterranean area. Ann Vasc Surg. 2023; 92: 163-171.

[11]

Dordonne S, Mergeayfabre M, Hafsi N, et al. Impact of lipoprotein(a) on macrovascular complications of diabetes in a multiethnic population in the French Amazon. J Diabetes Res. 2023; 2023: 8111521.

[12]

Liu R, Li L, Shao C, Cai H, Wang Z. The impact of diabetes on vascular disease: progress from the perspective of epidemics and treatments. J Diabet Res. 2022; 2022: 1531289.

[13]

Cuozzo S, Martinelli O, Brizzi V, et al. Early experience with ovation alto stent-graft. Ann Vasc Surg. 2023; 88: 346-353.

[14]

Olmstead C, Wakabayashi AT, Freeman TR, Cejic SS. Abdominal aortic aneurysm screening in an academic family practice: short-term impact of guideline changes. Can Fam Physician. 2022; 68(12): 899-904.

[15]

Thanigaimani S, Iyer V, Bingley J, et al. Association of serum microRNAs with abdominal aortic aneurysm diagnosis and growth. Eur J Vasc Endovasc Surg. 2022; 65(4): 573-581.

[16]

Kaladji A, Steintmetz E, Gouëffic Y, Bartoli M, Cardon A. Long-term results of large stent grafts to treat abdominal aortic aneurysms. Ann Vasc Surg. 2015; 29(7): 1416-1425.

[17]

Argyriou C, Georgiadis GS, Kontopodis N, et al. Screening for abdominal aortic aneurysm during transthoracic echocardiography: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg. 2018; 55(4): 475-491.

[18]

Isselbacher EM, Preventza O. 2022 ACC/AHA guideline for the diagnosis and management of aortic disease: a report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation. 2022; 146(24): e334-e482.

[19]

Lindholt JS, Norman P. Screening for abdominal aortic aneurysm reduces overall mortality in men. A meta-analysis of the mid-and long-term effects of screening for abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2008; 36(2): 167-171.

[20]

Hammer A, Yang G, Friedrich J, et al. Role of the receptor Mas in macrophage-mediated inflammation in vivo. Proc Natl Acad Sci USA. 2016; 113(49): 14109-14114.

[21]

Yang G, Chu PL, Rump LC, Le TH, Stegbauer J. ACE2 and the homolog collectrin in the modulation of nitric oxide and oxidative stress in blood pressure homeostasis and vascular injury. Antioxid Redox Signal. 2017; 26(12): 645-659.

[22]

Stegbauer J, Thatcher SE, Yang G, et al. Mas receptor deficiency augments angiotensin II-induced atherosclerosis and aortic aneurysm ruptures in hypercholesterolemic male mice. J Vasc Surg. 2019; 70(5): 1658-1668. e1.

[23]

Yang G, Istas G, Höges S, et al. Angiotensin-(1-7)-induced Mas receptor activation attenuates atherosclerosis through a nitric oxide-dependent mechanism in apolipoproteinE-KO mice. Pflugers Arch. 2018; 470(4): 661-667.

[24]

Temme S, Yakoub M, Bouvain P, et al. Beyond vessel diameters: non-invasive monitoring of flow patterns and immune cell recruitment in murine abdominal aortic disorders by multiparametric MRI. Front Cardiovasc Med. 2021; 8: 750251.

[25]

Isselbacher EM. Thoracic and abdominal aortic aneurysms. Circulation. 2005; 111(6): 816-828.

[26]

Aggarwal S, Qamar A, Sharma V, Sharma A. Abdominal aortic aneurysm: a comprehensive review. Exp Clin Cardiol. 2011; 16(1): 11-15.

[27]

Hirsch AT, Haskal ZJ, Hertzer NR, et al. ACC/AHA 2005 Practice Guidelines for the management of patients with peripheral arterial disease (lower extremity, renal, mesenteric, and abdominal aortic): a collaborative report from the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation. Circulation. 2006; 113(11): e463-e654.

[28]

Faluk M, Das JM, De Jesus O. Saccular aneurysm. StatPearls. StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.; 2024.

[29]

Levy D, Goyal A, Grigorova Y, Farci F, Le JK. Aortic dissection. StatPearls. StatPearls Publishing Copyright © 2024, StatPearls Publishing LLC.; 2024.

[30]

Daugherty A, Cassis L. Chronic angiotensin II infusion promotes atherogenesis in low density lipoprotein receptor -/-mice. Ann N Y Acad Sci. 1999; 892: 108-118.

[31]

Harky A, Sokal PA, Hasan K, Papaleontiou A. The aortic pathologies: how far we understand it and its implications on thoracic aortic surgery. Braz J Cardiovasc Surg. 2021; 36(4): 535-549.

[32]

Jubouri M, Hussain K, Saha P, et al. Endovascular solutions for abdominal aortic aneurysms: a comparative review of clinical outcomes with custom-made endografts. Asian Cardiovasc Thorac Ann. 2022:2184923221133956.

[33]

Wang G, Sun Y, Lin Z, Fei X. Elective endovascular vs open repair for elective abdominal aortic aneurysm in patients ≥80 years of age: a systematic review and meta-analysis. Vasc Endovascular Surg. 2023:15385744221149911.

[34]

Mao J, Behrendt CA, Falster MO, et al. Long-term mortality and reintervention after endovascular and open abdominal aortic aneurysm repairs in Australia, Germany, and the US. Ann Surg. 2022; 278(3): e626-e633.

[35]

Umebayashi R, Uchida HA, Kakio Y, Subramanian V, Daugherty A, Wada J. Cilostazol attenuates angiotensin II-induced abdominal aortic aneurysms but not atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2018; 38(4): 903-912.

[36]

Li R, Liu Y, Jiang J. Research advances in drug therapy for abdominal aortic aneurysms over the past five years: an updated narrative review. Int J Cardiol. 2023; 372: 93-100.

[37]

Itoga NK, Rothenberg KA, Suarez P, et al. Metformin prescription status and abdominal aortic aneurysm disease progression in the U.S. veteran population. J Vasc Surg. 2019; 69(3): 710-716.

[38]

Raffort J, Hassen-Khodja R, Jean-Baptiste E, Lareyre F. Relationship between metformin and abdominal aortic aneurysm. J Vasc Surg. 2020; 71(3): 1056-1062.

[39]

Niu W, Shao J, Yu B, et al. Association between metformin and abdominal aortic aneurysm: a meta-analysis. Front Cardiovasc Med. 2022; 9: 908747.

[40]

Yuan Z, Heng Z, Lu Y, Wei J, Cai Z. The protective effect of metformin on abdominal aortic aneurysm: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2021; 12: 721213.

[41]

Patel K, Zafar MA, Ziganshin BA, Elefteriades JA. Diabetes mellitus: is it protective against aneurysm? a narrative review. Cardiology. 2018; 141(2): 107-122.

[42]

Wang JC, Tsai SH, Tsai HY, Lin SJ, Huang PH. Hyperuricemia exacerbates abdominal aortic aneurysm formation through the URAT1/ERK/MMP-9 signaling pathway. BMC Cardiovasc Disord. 2023; 23(1): 55.

[43]

Howe KL, Fish JE. Transforming endothelial cells in atherosclerosis. Nat Metab. 2019; 1(9): 856-857.

[44]

Qiu L, Zhang M, Zhang S, Tang Y, Zheng JC. Activation of CXCR7 promotes endothelial repair and reduces the carotid atherosclerotic lesions through inhibition of pyroptosis signaling pathways. Aging Cell. 2020; 19(9): e13205.

[45]

Zhang M, Zhu Y, Zhu J, et al. circ_0086296 induced atherosclerotic lesions via the IFIT1/STAT1 feedback loop by sponging miR-576-3p. Cell Mol Biol Lett. 2022; 27(1): 80.

[46]

Pothineni NVK, Karathanasis SK, Ding Z, Arulandu A, Varughese KI, Mehta JL. LOX-1 in atherosclerosis and myocardial ischemia: biology, genetics, and modulation. J Am Coll Cardiol. 2017; 69(22): 2759-2768.

[47]

Li P, Xing J, Zhang J, et al. Inhibition of long noncoding RNA HIF1A-AS2 confers protection against atherosclerosis via ATF2 downregulation. J Adv Res. 2020; 26: 123-135.

[48]

In: Fitridge R, Thompson M, eds. Mechanisms of Vascular Disease: A Reference Book for Vascular Specialists. University of Adelaide Press © The Contributors 2011.; 2011.

[49]

Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and epigenetic mechanisms underlying vascular smooth muscle cell phenotypic modulation in abdominal aortic aneurysm. Int J Mol Sci. 2020; 21(17): 6334.

[50]

Da Eira D, Jani S, Stefanovic M, Ceddia RB. Obesogenic versus ketogenic diets in the regulation of the renin-angiotensin system in rat white and brown adipose tissues. Nutrition. 2023; 105: 111862.

[51]

Martínez-Montoro JI, Morales E, Cornejo-Pareja I, Tinahones FJ, Fernández-García JC. Obesity-related glomerulopathy: current approaches and future perspectives. Obes Rev. 2022; 23(7): e13450.

[52]

Li J, Liang M, Zeng T, et al. Silencing of central (pro)renin receptor ameliorates salt-induced renal injury in chronic kidney disease. Antioxid Redox Signal. 2021; 35(2): 93-112.

[53]

Cruz-López EO, Uijl E, Danser AHJ. Perivascular adipose tissue in vascular function: does locally synthesized angiotensinogen play a role? J Cardiovasc Pharmacol. 2021; 78(6): S53-s62.

[54]

Liu Y, Li L, Qiu M, et al. Renal and cerebral RAS interaction contributes to diabetic kidney disease. Am J Transl Res. 2019; 11(5): 2925-2939.

[55]

Qiu M, Li J, Tan L, et al. Targeted ablation of distal cerebrospinal fluid-contacting nucleus alleviates renal fibrosis in chronic kidney disease. Front Physiol. 2018; 9: 1640.

[56]

Kalupahana NS, Moustaid-Moussa N. The adipose tissue renin-angiotensin system and metabolic disorders: a review of molecular mechanisms. Crit Rev Biochem Mol Biol. 2012; 47(4): 379-390.

[57]

Kuba K, Imai Y, Penninger JM. Multiple functions of angiotensin-converting enzyme 2 and its relevance in cardiovascular diseases. Circ J. 2013; 77(2): 301-308.

[58]

Tan WSD, Liao W, Zhou S, Mei D, Wong WF. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol. 2018; 40: 9-17.

[59]

Perlot T, Penninger JM. ACE2 - from the renin-angiotensin system to gut microbiota and malnutrition. Microbes Infect. 2013; 15(13): 866-873.

[60]

Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: a peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther. 2010; 128(1): 119-128.

[61]

Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005; 436(7047): 112-116.

[62]

Bosnyak S, Jones ES, Christopoulos A, Aguilar MI, Thomas WG, Widdop RE. Relative affinity of angiotensin peptides and novel ligands at AT1 and AT2 receptors. Clin Sci (Lond). 2011; 121(7): 297-303.

[63]

Matysiak-Burzyńska ZE, Nowakowska M, Domińska K, Kowalska K, Płuciennik E, Piastowska-Ciesielska AW. Silencing of angiotensin receptor 1 interferes with angiotensin II oncogenic activity in endometrial cancer. J Cell Biochem. 2018; 119(11): 9110-9121.

[64]

Daugherty A, Manning MW, Cassis LA. Antagonism of AT2 receptors augments angiotensin II-induced abdominal aortic aneurysms and atherosclerosis. Br J Pharmacol. 2001; 134(4): 865-870.

[65]

Speck D, Kleinau G, Szczepek M, et al. Angiotensin and endothelin receptor structures with implications for signaling regulation and pharmacological targeting. Front Endocrinol (Lausanne). 2022; 13: 880002.

[66]

Bian S, Yang L, Zhao D, Lv L, Wang T, Yuan H. HMGB1/TLR4 signaling pathway enhances abdominal aortic aneurysm progression in mice by upregulating necroptosis. Inflamm Res. 2023; 72(4): 703-713.

[67]

Dai M, Zhu X, Zeng S, et al. Dexmedetomidine protects cells from Angiotensin II-induced smooth muscle cell phenotype switch and endothelial cell dysfunction. Cell Cycle. 2023; 22(4): 450-463.

[68]

Zhao W, Yao M, Zhang Y, et al. Endothelial cyclin I reduces vulnerability to angiotensin II-induced vascular remodeling and abdominal aortic aneurysm risk. Microvasc Res. 2022; 142: 104348.

[69]

Chen G, Xu Y, Yao Y, et al. IKKϵ knockout alleviates angiotensin II-induced apoptosis and excessive autophagy in vascular smooth muscle cells by regulating the ERK1/2 pathway. Exp Ther Med. 2021; 22(4): 1051.

[70]

Zhou X, Zhang C, Xie F, et al. Allosteric activation of PP2A inhibits experimental abdominal aortic aneurysm. Clin Sci (Lond). 2021; 135(17): 2085-2097.

[71]

Wang L, Hu C, Dong Y, et al. Silencing IL12p35 promotes angiotensin II-mediated abdominal aortic aneurysm through activating the STAT4 pathway. Mediators Inflamm. 2021; 2021: 9450843.

[72]

Xie C, Ye F, Zhang N, Huang Y, Pan Y, Xie X. CCL7 contributes to angiotensin II-induced abdominal aortic aneurysm by promoting macrophage infiltration and pro-inflammatory phenotype. J Cell Mol Med. 2021; 25(15): 7280-7293.

[73]

Lu W, Zhou Y, Zeng S, et al. Loss of FoxO3a prevents aortic aneurysm formation through maintenance of VSMC homeostasis. Cell Death Dis. 2021; 12(4): 378.

[74]

Qi L, Wu K, Shi S, Ji Q, Miao H, Bin Q. Thrombospondin-2 is upregulated in patients with aortic dissection and enhances angiotensin II-induced smooth muscle cell apoptosis. Exp Ther Med. 2020; 20(6): 150.

[75]

Chang Z, Zhao G, Zhao Y, et al. BAF60a deficiency in vascular smooth muscle cells prevents abdominal aortic aneurysm by reducing inflammation and extracellular matrix degradation. Arterioscler Thromb Vasc Biol. 2020; 40(10): 2494-2507.

[76]

Shi X, Xu C, Li Y, et al. A novel role of VEPH1 in regulating AoSMC phenotypic switching. J Cell Physiol. 2020; 235(12): 9336-9346.

[77]

Wu QY, Cheng Z, Zhou YZ, et al. A novel STAT3 inhibitor attenuates angiotensin II-induced abdominal aortic aneurysm progression in mice through modulating vascular inflammation and autophagy. Cell Death Dis. 2020; 11(2): 131.

[78]

Le T, He X, Huang J, Liu S, Bai Y, Wu K. Knockdown of long noncoding RNA GAS5 reduces vascular smooth muscle cell apoptosis by inactivating EZH2-mediated RIG-I signaling pathway in abdominal aortic aneurysm. J Transl Med. 2021; 19(1): 466.

[79]

Hu M, Qiu H, He T, Zhong M. Effect of miRNA-218-5p on proliferation, migration, apoptosis and inflammation of vascular smooth muscle cells in abdominal aortic aneurysm and extracellular matrix protein. Iran J Public Health. 2022; 51(11): 2494-2503.

[80]

Yang P, Cai Z, Wu K, Hu Y, Liu L, Liao M. Identification of key microRNAs and genes associated with abdominal aortic aneurysm based on the gene expression profile. Exp Physiol. 2020; 105(1): 160-173.

[81]

Shi X, Ma W, Li Y, et al. MiR-144-5p limits experimental abdominal aortic aneurysm formation by mitigating M1 macrophage-associated inflammation: suppression of TLR2 and OLR1. J Mol Cell Cardiol. 2020; 143: 1-14.

[82]

Tang BL. ADAMTS: a novel family of extracellular matrix proteases. Int J Biochem Cell Biol. 2001; 33(1): 33-44.

[83]

Mougin Z, Huguet Herrero J, Boileau C, Le Goff C. ADAMTS proteins and vascular remodeling in aortic aneurysms. Biomolecules. 2021; 12(1): 12.

[84]

Vorkapic E, Folkesson M, Magnell K, Bohlooly YM, Länne T, Wågsäter D. ADAMTS-1 in abdominal aortic aneurysm. PLoS One. 2017; 12(6): e0178729.

[85]

Li L, Ma W, Pan S, et al. MiR-126a-5p limits the formation of abdominal aortic aneurysm in mice and decreases ADAMTS-4 expression. J Cell Mol Med. 2020; 24(14): 7896-7906.

[86]

Li Y, Wang W, Li L, Khalil RA. MMPs and ADAMs/ADAMTS inhibition therapy of abdominal aortic aneurysm. Life Sci. 2020; 253: 117659.

[87]

Tipnis SR, Hooper NM, Hyde R, Karran E, Christie G, Turner AJ. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem. 2000; 275(43): 33238-33243.

[88]

Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ Res. 2000; 87(5): E1-E9.

[89]

Nakagawasai O, Takahashi K, Koyama T, Yamagata R, Nemoto W, Tan-No K. Activation of angiotensin-converting enzyme 2 produces an antidepressant-like effect via MAS receptors in mice. Mol Brain. 2023; 16(1): 52.

[90]

Qaradakhi T, Gadanec LK, McSweeney KR, et al. The potential actions of angiotensin-converting enzyme II (ACE2) activator diminazene aceturate (DIZE) in various diseases. Clin Exp Pharmacol Physiol. 2020; 47(5): 751-758.

[91]

Rushworth CA, Guy JL, Turner AJ. Residues affecting the chloride regulation and substrate selectivity of the angiotensin-converting enzymes (ACE and ACE2) identified by site-directed mutagenesis. Febs J. 2008; 275(23): 6033-6042.

[92]

Hu Q, Xiong Y, Zhu GH, et al. The SARS-CoV-2 main protease (M(pro)): structure, function, and emerging therapies for COVID-19. Med Comm (2020). 2022; 3(3): e151.

[93]

Wang W, Shen M, Fischer C, et al. Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs. Proc Natl Acad Sci USA. 2019; 116(26): 13006-13015.

[94]

Hao Q, Dong X, Chen X, et al. Angiotensin-converting enzyme 2 inhibits angiotensin ii-induced abdominal aortic aneurysms in mice. Hum Gene Ther. 2018; 29(12): 1387-1395.

[95]

Moran CS, Biros E, Krishna SM, et al. Resveratrol inhibits growth of experimental abdominal aortic aneurysm associated with upregulation of angiotensin-converting enzyme 2. Arterioscler Thromb Vasc Biol. 2017; 37(11): 2195-2203.

[96]

Thatcher SE, Zhang X, Howatt DA, et al. Angiotensin-converting enzyme 2 decreases formation and severity of angiotensin II-induced abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2014; 34(12): 2617-2623.

[97]

Dong B, Zhang C, Feng JB, et al. Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol. 2008; 28(7): 1270-1276.

[98]

Lovren F, Pan Y, Quan A, et al. Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol. 2008; 295(4): H1377-H1384.

[99]

Dong B, Zhang YH, Dong QL, et al. Overexpression of angiotensin converting enzyme 2 inhibits inflammatory response of atherosclerotic plaques in hypercholesterolemic rabbits. Zhonghua Xin Xue Guan Bing Za Zhi. 2009; 37(7): 622-625.

[100]

Sahara M, Ikutomi M, Morita T, et al. Deletion of angiotensin-converting enzyme 2 promotes the development of atherosclerosis and arterial neointima formation. Cardiovasc Res. 2014; 101(2): 236-246.

[101]

Zhang YH, Zhang YH, Dong XF, et al. ACE2 and Ang-(1-7) protect endothelial cell function and prevent early atherosclerosis by inhibiting inflammatory response. Inflamm Res. 2015; 64(3-4): 253-260.

[102]

Chen LJ, Xu YL, Song B, et al. Angiotensin-converting enzyme 2 ameliorates renal fibrosis by blocking the activation of mTOR/ERK signaling in apolipoprotein E-deficient mice. Peptides. 2016; 79: 49-57.

[103]

Ma H, Wang YL, Hei NH, et al. AVE0991, a nonpeptide angiotensin-(1-7) mimic, inhibits angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E knockout mice. J Mol Med (Berl). 2020; 98(4): 541-551.

[104]

Xue F, Yang J, Cheng J, et al. Angiotensin-(1-7) mitigated angiotensin II-induced abdominal aortic aneurysms in apolipoprotein E-knockout mice. Br J Pharmacol. 2020; 177(8): 1719-1734.

[105]

Santos RAS, Sampaio WO, Alzamora AC, et al. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1-7). Physiol Rev. 2018; 98(1): 505-553.

[106]

Santos RA, Ferreira AJ, Verano-Braga T, Bader M. Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system. J Endocrinol. 2013; 216(2): R1-r17.

[107]

Santos RA, Simoes e Silva AC, Maric C, et al. Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci U S A. 2003; 100(14): 8258-8263.

[108]

Ullah S, Imtiaz N, Ullah S, Fahad MS, Nisar U, Ibrahim N. Evaluation of normal diameter of infra-renal aorta in a pakistani population using contrast-enhanced computed tomography. J Ayub Med Coll Abbottabad. 2022; 34(4): 838-842.

[109]

Suleiman MN, Freilinger S, Meierhofer C, et al. The relation of aortic dimensions and obesity in adults with Marfan or Loeys-Dietz syndrome. Cardiovasc Diagn Ther. 2022; 12(6): 787-802.

[110]

Yang G, Chen H, Chen Q, et al. Injury-induced interleukin-1 alpha promotes Lgr5 hair follicle stem cells de novo regeneration and proliferation via regulating regenerative microenvironment in mice. Inflamm Regen. 2023; 43(1): 14.

[111]

Gallizioli M, Arbaizar-Rovirosa M, Brea D, Planas AM. Differences in the post-stroke innate immune response between young and old. Semin Immunopathol. 2023; 45(3): 367-376.

[112]

Cheng CK, Ding H, Jiang M, Yin H, Gollasch M, Huang Y. Perivascular adipose tissue: fine-tuner of vascular redox status and inflammation. Redox Biol. 2023; 62: 102683.

[113]

Cheng H, Zhong W, Wang L, et al. Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches. Biomed Pharmacother. 2023; 158: 114198.

[114]

Benincasa G, Coscioni E, Napoli C. Cardiovascular risk factors and molecular routes underlying endothelial dysfunction: novel opportunities for primary prevention. Biochem Pharmacol. 2022; 202: 115108.

[115]

Incalza MA, D’Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018; 100: 1-19.

[116]

Gkaliagkousi E, Lazaridis A, Dogan S, et al. Theories and molecular basis of vascular aging: a review of the literature from VascAgeNet group on pathophysiological mechanisms of vascular aging. Int J Mol Sci. 2022; 23(15): 8672.

[117]

Pezone A, Olivieri F, Napoli MV, Procopio A, Avvedimento EV, Gabrielli A. Inflammation and DNA damage: cause, effect or both. Nat Rev Rheumatol. 2023; 19(4): 200-211.

[118]

Aguilar VM, Paul A, Lazarko D, Levitan I. Paradigms of endothelial stiffening in cardiovascular disease and vascular aging. Front Physiol. 2022; 13: 1081119.

[119]

Wray DW, Nishiyama SK, Harris RA, Richardson RS. Angiotensin II in the elderly: impact of angiotensin II type 1 receptor sensitivity on peripheral hemodynamics. Hypertension. 2008; 51(6): 1611-1616.

[120]

Tsunoda K, Abe K, Goto T, et al. Effect of age on the renin-angiotensin-aldosterone system in normal subjects: simultaneous measurement of active and inactive renin, renin substrate, and aldosterone in plasma. J Clin Endocrinol Metab. 1986; 62(2): 384-389.

[121]

Duggan J, Nussberger J, Kilfeather S, O’Malley K. Aging and human hormonal and pressor responsiveness to angiotensin II infusion with simultaneous measurement of exogenous and endogenous angiotensin II. Am J Hypertens. 1993; 6(8): 641-647.

[122]

Duggan J, Kilfeather S, O’Brien E, O’Malley K, Nussberger J. Effects of aging and hypertension on plasma angiotensin II and platelet angiotensin II receptor density. Am J Hypertens. 1992; 5(10): 687-693.

[123]

Siebers MJ, Goodfriend TL, Ball D, Elliott ME. Analysis of angiotensin II binding to human platelets: differences in young and old subjects. J Gerontol. 1990; 45(2): B42-B47.

[124]

Hogikyan RV, Supiano MA. Arterial alpha-adrenergic responsiveness is decreased and SNS activity is increased in older humans. Am J Physiol. 1994; 266(5): E717-E724. Pt 1.

[125]

Jiang T, Zhang YD, Zhou JS, et al. Angiotensin-(1-7) is reduced and inversely correlates with tau hyperphosphorylation in animal models of Alzheimer’s disease. Mol Neurobiol. 2016; 53(4): 2489-2497.

[126]

Prasad T, Verma A, Li Q. Expression and cellular localization of the Mas receptor in the adult and developing mouse retina. Mol Vis. 2014; 20: 1443-1455.

[127]

Vasam G, SJ S, Miyat SY, Adam H, Jarajapu YP. Early onset of aging phenotype in vascular repair by Mas receptor deficiency. Geroscience. 2022; 44(1): 311-327.

[128]

Lederle FA, Johnson GR, Wilson SE, et al. The aneurysm detection and management study screening program: validation cohort and final results. Aneurysm detection and management veterans affairs cooperative study investigators. Arch Intern Med. 2000; 160(10): 1425-1430.

[129]

Jamrozik K, Norman PE, Spencer CA, et al. Screening for abdominal aortic aneurysm: lessons from a population-based study. Med J Aust. 2000; 173(7): 345-350.

[130]

Norman PE, Powell JT. Abdominal aortic aneurysm: the prognosis in women is worse than in men. Circulation. 2007; 115(22): 2865-2869.

[131]

Pleumeekers HJ, Hoes AW, van der Does E, et al. Aneurysms of the abdominal aorta in older adults. The Rotterdam Study. Am J Epidemiol. 1995; 142(12): 1291-1299.

[132]

Lederle FA, Johnson GR, Wilson SE. Abdominal aortic aneurysm in women. J Vasc Surg. 2001; 34(1): 122-126.

[133]

Svensjö S, Björck M, Gürtelschmid M, Djavani Gidlund K, Hellberg A, Wanhainen A. Low prevalence of abdominal aortic aneurysm among 65-year-old Swedish men indicates a change in the epidemiology of the disease. Circulation. 2011; 124(10): 1118-1123.

[134]

Forsdahl SH, Singh K, Solberg S, Jacobsen BK. Risk factors for abdominal aortic aneurysms: a 7-year prospective study: the Tromsø Study, 1994–2001. Circulation. 2009; 119(16): 2202-2208.

[135]

Norman PE, Curci JA. Understanding the effects of tobacco smoke on the pathogenesis of aortic aneurysm. Arterioscler Thromb Vasc Biol. 2013; 33(7): 1473-1477.

[136]

Kent KC, Zwolak RM, Egorova NN, et al. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals. J Vasc Surg. 2010; 52(3): 539-548.

[137]

Nath D, Shivasekar M. Role of cigarette smoking on serum angiotensin-converting enzyme and its association with inflammation and lipid peroxidation. Cureus. 2022; 14(8): e27857.

[138]

Vyssoulis GP, Karpanou EA, Kyvelou SM, et al. Beneficial effect of angiotensin II type 1 receptor blocker antihypertensive treatment on arterial stiffness: the role of smoking. J Clin Hypertens (Greenwich). 2008; 10(3): 201-207.

[139]

Yuan YM, Luo L, Guo Z, Yang M, Ye RS, Luo C. Activation of renin-angiotensin-aldosterone system (RAAS) in the lung of smoking-induced pulmonary arterial hypertension (PAH) rats. J Renin Angiotensin Aldosterone Syst. 2015; 16(2): 249-253.

[140]

Stolle K, Berges A, Lietz M, Lebrun S, Wallerath T. Cigarette smoke enhances abdominal aortic aneurysm formation in angiotensin II-treated apolipoprotein E-deficient mice. Toxicol Lett. 2010; 199(3): 403-409.

[141]

Fried ND, Oakes JM, Whitehead AK, Lazartigues E, Yue X, Gardner JD. Nicotine and novel tobacco products drive adverse cardiac remodeling and dysfunction in preclinical studies. Front Cardiovasc Med. 2022; 9: 993617.

[142]

Golledge J, Clancy P, Jones GT, et al. Possible association between genetic polymorphisms in transforming growth factor beta receptors, serum transforming growth factor beta1 concentration and abdominal aortic aneurysm. Br J Surg. 2009; 96(6): 628-632.

[143]

Lucarini L, Sticchi E, Sofi F, et al. ACE and TGFBR1 genes interact in influencing the susceptibility to abdominal aortic aneurysm. Atherosclerosis. 2009; 202(1): 205-210.

[144]

Baas AF, Medic J, van ’t Slot R, et al. Association of the TGF-beta receptor genes with abdominal aortic aneurysm. Eur J Hum Genet. 2010; 18(2): 240-244.

[145]

Bertoli-Avella AM, Gillis E, Morisaki H, et al. Mutations in a TGF-β ligand, TGFB3, cause syndromic aortic aneurysms and dissections. J Am Coll Cardiol. 2015; 65(13): 1324-1336.

[146]

Zuo S, Xiong J, Wei Y, et al. Potential interactions between genetic polymorphisms of the transforming growth factor-β pathway and environmental factors in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2015; 50(1): 71-77.

[147]

Angelov SN, Hu JH, Wei H, Airhart N, Shi M, Dichek DA. TGF-β (transforming growth factor-β) signaling protects the thoracic and abdominal aorta from angiotensin II-induced pathology by distinct mechanisms. Arterioscler Thromb Vasc Biol. 2017; 37(11): 2102-2113.

[148]

Dai X, Shen J, Annam NP, et al. SMAD3 deficiency promotes vessel wall remodeling, collagen fiber reorganization and leukocyte infiltration in an inflammatory abdominal aortic aneurysm mouse model. Sci Rep. 2015; 5: 10180.

[149]

Regalado ES, Guo DC, Villamizar C, et al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ Res. 2011; 109(6): 680-686.

[150]

van de Luijtgaarden KM, Heijsman D, Maugeri A, et al. First genetic analysis of aneurysm genes in familial and sporadic abdominal aortic aneurysm. Hum Genet. 2015; 134(8): 881-893.

[151]

Kelly B, Petitt M, Sanchez R. Nephrogenic systemic fibrosis is associated with transforming growth factor beta and Smad without evidence of renin-angiotensin system involvement. J Am Acad Dermatol. 2008; 58(6): 1025-1030.

[152]

Zhou JP, Tang W, Feng Y, et al. Angiotensin-(1-7) decreases the expression of collagen I via TGF-β1/Smad2/3 and subsequently inhibits fibroblast-myofibroblast transition. Clin Sci (Lond). 2016; 130(21): 1983-1991.

[153]

Pannu H, Avidan N, Tran-Fadulu V, Milewicz DM. Genetic basis of thoracic aortic aneurysms and dissections: potential relevance to abdominal aortic aneurysms. Ann N Y Acad Sci. 2006; 1085: 242-255.

[154]

Yokoyama U, Arakawa N, Ishiwata R, et al. Proteomic analysis of aortic smooth muscle cell secretions reveals an association of myosin heavy chain 11 with abdominal aortic aneurysm. Am J Physiol Heart Circ Physiol. 2018; 315(4): H1012-h1018.

[155]

Okuno K, Torimoto K, Cicalese SM, et al. Angiotensin II type 1A receptor expressed in smooth muscle cells is required for hypertensive vascular remodeling in mice infused with angiotensin II. Hypertension. 2023; 80(3): 668-677.

[156]

Yokokawa T, Misaka T, Kimishima Y, et al. Crucial role of hematopoietic JAK2 V617F in the development of aortic aneurysms. Haematologica. 2021; 106(7): 1910-1922.

[157]

Regalado E, Medrek S, Tran-Fadulu V, et al. Autosomal dominant inheritance of a predisposition to thoracic aortic aneurysms and dissections and intracranial saccular aneurysms. Am J Med Genet A. 2011; 155a(9): 2125-2130.

[158]

Ware SM, Shikany A, Landis BJ, James JF, Hinton RB. Twins with progressive thoracic aortic aneurysm, recurrent dissection and ACTA2 mutation. Pediatrics. 2014; 134(4): e1218-e1223.

[159]

Shalata A, Mahroom M, Milewicz DM, et al. Fatal thoracic aortic aneurysm and dissection in a large family with a novel MYLK gene mutation: delineation of the clinical phenotype. Orphanet J Rare Dis. 2018; 13(1): 41.

[160]

Takahashi K, Aono J, Nakao Y, et al. LOX-1 deficiency increases ruptured abdominal aortic aneurysm via thinning of adventitial collagen. Hypertens Res. 2023; 46(1): 63-74.

[161]

Mogi M. LOX prevents abdominal aortic aneurysm ruptures. Hypertens Res. 2023; 46(3): 801-802.

[162]

Renard M, Francis C, Ghosh R, et al. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2018; 72(6): 605-615.

[163]

Jensen SA, Handford PA. New insights into the structure, assembly and biological roles of 10–12 nm connective tissue microfibrils from fibrillin-1 studies. Biochem J. 2016; 473(7): 827-838.

[164]

Chung AW, Au Yeung K, Sandor GG, Judge DP, Dietz HC, van Breemen C. Loss of elastic fiber integrity and reduction of vascular smooth muscle contraction resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in the thoracic aortic aneurysm in Marfan syndrome. Circ Res. 2007; 101(5): 512-522.

[165]

Li W, Li Q, Jiao Y, et al. Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J Clin Invest. 2014; 124(2): 755-767.

[166]

Wang C, Qian X, Sun X, Chang Q. Angiotensin II increases matrix metalloproteinase 2 expression in human aortic smooth muscle cells via AT1R and ERK1/2. Exp Biol Med (Maywood). 2015; 240(12): 1564-1571.

[167]

Safina A, Vandette E, Bakin AV. ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene. 2007; 26(17): 2407-2422.

[168]

Wang Y, Ait-Oufella H, Herbin O, et al. TGF-beta activity protects against inflammatory aortic aneurysm progression and complications in angiotensin II-infused mice. J Clin Invest. 2010; 120(2): 422-432.

[169]

Dinesh NEH, Reinhardt DP. Inflammation in thoracic aortic aneurysms. Herz. 2019; 44(2): 138-146.

[170]

Seim BE, Holt MF, Ratajska A, et al. Markers of extracellular matrix remodeling and systemic inflammation in patients with heritable thoracic aortic diseases. Front Cardiovasc Med. 2022; 9: 1073069.

[171]

Guido MC, Lopes NM, Albuquerque CI, et al. Treatment with methotrexate associated with lipid core nanoparticles prevents aortic dilation in a murine model of marfan syndrome. Front Cardiovasc Med. 2022; 9: 893774.

[172]

Baxter BT, Matsumura J, Curci JA, et al. Effect of doxycycline on aneurysm growth among patients with small infrarenal abdominal aortic aneurysms: a randomized clinical trial. Jama. 2020; 323(20): 2029-2038.

[173]

Franken R, Hibender S, den Hartog AW, et al. No beneficial effect of general and specific anti-inflammatory therapies on aortic dilatation in Marfan mice. PLoS One. 2014; 9(9): e107221.

[174]

Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science. 2006; 312(5770): 117-121.

[175]

Brooke BS, Habashi JP, Judge DP, Patel N, Loeys B. Angiotensin II blockade and aortic-root dilation in Marfan’s syndrome. N Engl J Med. 2008; 358(26): 2787-2795.

[176]

Bramel EE, Bagirzadeh R, Saqib M, et al. Distinct contribution of global and regional angiotensin II type 1a receptor inactivation to amelioration of aortopathy in Tgfbr1 (M318R/+) mice. Front Cardiovasc Med. 2022; 9: 936142.

[177]

Gallo EM, Loch DC, Habashi JP, et al. Angiotensin II-dependent TGF-β signaling contributes to Loeys-Dietz syndrome vascular pathogenesis. J Clin Invest. 2014; 124(1): 448-460.

[178]

Milleron O, Arnoult F, Ropers J, et al. Marfan Sartan: a randomized, double-blind, placebo-controlled trial. Eur Heart J. 2015; 36(32): 2160-2166.

[179]

Groenink M, den Hartog AW, Franken R, et al. Losartan reduces aortic dilatation rate in adults with Marfan syndrome: a randomized controlled trial. Eur Heart J. 2013; 34(45): 3491-3500.

[180]

Möberg K, De Nobele S, Devos D, et al. The Ghent Marfan Trial–a randomized, double-blind placebo controlled trial with losartan in Marfan patients treated with β-blockers. Int J Cardiol. 2012; 157(3): 354-358.

[181]

Forteza A, Evangelista A, Sánchez V, et al. Efficacy of losartan vs. atenolol for the prevention of aortic dilation in Marfan syndrome: a randomized clinical trial. Eur Heart J. 2016; 37(12): 978-985.

[182]

Pedicino D, Volpe M. Protection and delay of aortic complications in the Marfan syndrome: a new indication for angiotensin receptor blockers on top of β blockers. Eur Heart J. 2022.

[183]

Pitcher A, Spata E, Emberson J, et al. Angiotensin receptor blockers and β blockers in Marfan syndrome: an individual patient data meta-analysis of randomised trials. Lancet. 2022; 400(10355): 822-831.

[184]

Tomaz da Silva M, Santos AR, Koike TE, et al. The fibrotic niche impairs satellite cell function and muscle regeneration in mouse models of Marfan syndrome. Acta Physiol (Oxf). 2023; 237(1): e13889.

[185]

Sörelius K, Wanhainen A, Furebring M, Björck M, Gillgren P, Mani K. Nationwide study of the treatment of mycotic abdominal aortic aneurysms comparing open and endovascular repair. Circulation. 2016; 134(23): 1822-1832.

[186]

Dang Q, Statius van Eps RG, Wever JJ, Veger HTC. Nationwide study of the treatment of mycotic abdominal aortic aneurysms comparing open and endovascular repair in The Netherlands. J Vasc Surg. 2020; 72(2): 531-540.

[187]

Sörelius K, Budtz-Lilly J, Mani K, Wanhainen A. Systematic review of the management of mycotic aortic aneurysms. Eur J Vasc Endovasc Surg. 2019; 58(3): 426-435.

[188]

Sörelius K, Wanhainen A, Wahlgren CM, et al. Nationwide study on treatment of mycotic thoracic aortic aneurysms. Eur J Vasc Endovasc Surg. 2019; 57(2): 239-246.

[189]

Ceraudo M, Balestrino A, Cavelli M, Fasce I, Zona G, Fiaschi P. De novo intracranial aneurysm formation in SARS-CoV-2 infection: first report of a yet unknown complication. Int J Neurosci. 2022: 1-4.

[190]

Xie J, Lu W, Zhong L, et al. Alterations in gut microbiota of abdominal aortic aneurysm mice. BMC Cardiovasc Disord. 2020; 20(1): 32.

[191]

Ji L, Gu GC, Chen SL, et al. [Differences of gut microbiota diversity between patients with abdominal aortic aneurysm and atherosclerosis]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2021; 43(5): 677-684.

[192]

Watanabe N, Koyama S, Tabira M, et al. Infected aortic aneurysm caused by Streptococcus pyogenes: a case report. J Infect Chemother. 2021; 27(4): 647-649.

[193]

Marques da Silva R, Lingaas PS, Geiran O, Tronstad L, Olsen I. Multiple bacteria in aortic aneurysms. J Vasc Surg. 2003; 38(6): 1384-1389.

[194]

Kawabata S, Takagaki M, Nakamura H, et al. Dysbiosis of gut microbiome is associated with rupture of cerebral aneurysms. Stroke. 2022; 53(3): 895-903.

[195]

Jabłońska A, Neumayer C, Bolliger M, et al. Analysis of host Toll-like receptor 3 and RIG-I-like receptor gene expression in patients with abdominal aortic aneurysm. J Vasc Surg. 2018; 68(6s): 39s-46s.

[196]

Haase S, Haghikia A, Wilck N, Müller DN, Linker RA. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018; 154(2): 230-238.

[197]

Ling X, Jie W, Qin X, et al. Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Front Cardiovasc Med. 2022; 9: 1063683.

[198]

Bartolomaeus H, Balogh A, Yakoub M, et al. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation. 2019; 139(11): 1407-1421.

[199]

O’Donnell JA, Zheng T, Meric G, Marques FZ. The gut microbiome and hypertension. Nat Rev Nephrol. 2023; 19(3): 153-167.

[200]

Tazoe H, Otomo Y, Karaki S, et al. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed Res. 2009; 30(3): 149-156.

[201]

Kaye DM, Shihata WA, Jama HA, et al. Deficiency of prebiotic fiber and insufficient signaling through gut metabolite-sensing receptors leads to cardiovascular disease. Circulation. 2020; 141(17): 1393-1403.

[202]

Yan X, Li J, Wu D. The role of short-chain fatty acids in acute pancreatitis. Molecules. 2023; 28(13).

[203]

Li G, Lin J, Zhang C, et al. Microbiota metabolite butyrate constrains neutrophil functions and ameliorates mucosal inflammation in inflammatory bowel disease. Gut Microbes. 2021; 13(1): 1968257.

[204]

Imiela AM, Mikołajczyk TP, Siedliński M, et al. Th17/Treg imbalance in patients with primary hyperaldosteronism and resistant hypertension. Pol Arch Intern Med. 2022; 132(3).

[205]

Idris-Khodja N, Mian MO, Paradis P, Schiffrin EL. Dual opposing roles of adaptive immunity in hypertension. Eur Heart J. 2014; 35(19): 1238-1244.

[206]

Ferreira NS, Tostes RC, Paradis P, Schiffrin EL. Aldosterone, inflammation, immune system, and hypertension. Am J Hypertens. 2021; 34(1): 15-27.

[207]

Herrada AA, Contreras FJ, Marini NP, et al. Aldosterone promotes autoimmune damage by enhancing Th17-mediated immunity. J Immunol. 2010; 184(1): 191-202.

[208]

Luo S, Zhao Y, Zhu S, et al. Flavonifractor plautii protects against elevated arterial stiffness. Circ Res. 2022.

[209]

Zhu H, Xu C, Dong Y, Lu S, Chai-Gui GuoL. Decoction and its representative components ameliorate spontaneous hypertension rats by modulating lipid metabolism and gut microbiota. J Ethnopharmacol. 2023:116116.

[210]

Chittimalli K, Jahan J, Sakamuri A, McAdams ZL, Ericsson AC, Jarajapu YPR. Restoration of the gut barrier integrity and restructuring of the gut microbiome in aging by angiotensin-(1-7). Clin Sci (Lond). 2023; 137(11): 913-930.

[211]

Accarino G, Giordano AN, Falcone M, et al. Abdominal aortic aneurysm: natural history, pathophysiology and translational perspectives. Transl Med UniSa. 2022; 24(2): 30-40.

[212]

Hollander W. Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol. 1976; 38(6): 786-800.

[213]

van Rijn MJ, Bos MJ, Isaacs A, et al. Polymorphisms of the renin-angiotensin system are associated with blood pressure, atherosclerosis and cerebral white matter pathology. J Neurol Neurosurg Psychiatry. 2007; 78(10): 1083-1087.

[214]

Renna NF, de Las Heras N, Miatello RM. Pathophysiology of vascular remodeling in hypertension. Int J Hypertens. 2013; 2013: 808353.

[215]

Li JJ, Chen JL. Inflammation may be a bridge connecting hypertension and atherosclerosis. Med Hypotheses. 2005; 64(5): 925-929.

[216]

Xiao L, Harrison DG. Inflammation in hypertension. Can J Cardiol. 2020; 36(5): 635-647.

[217]

Sun P, Dwyer KM, Merz CN, et al. Blood pressure, LDL cholesterol, and intima-media thickness: a test of the “response to injury” hypothesis of atherosclerosis. Arterioscler Thromb Vasc Biol. 2000; 20(8): 2005-2010.

[218]

Agbaje AO, Barker AR, Tuomainen TP. Effects of arterial stiffness and carotid intima-media thickness progression on the risk of overweight/obesity and elevated blood pressure/hypertension: a cross-lagged cohort study. Hypertension. 2022; 79(1): 159-169.

[219]

Thieme M, Sivritas SH, Mergia E, et al. Phosphodiesterase 5 inhibition ameliorates angiotensin II-dependent hypertension and renal vascular dysfunction. Am J Physiol Renal Physiol. 2017; 312(3): F474-F481.

[220]

Rašiová M, Koščo M, Moščovič M, et al. Factors associated with all-cause mortality following endovascular abdominal aortic aneurysm repair. Vasa. 2023.

[221]

Peña Silva RA, Kung DK, Mitchell IJ, et al. Angiotensin 1–7 reduces mortality and rupture of intracranial aneurysms in mice. Hypertension. 2014; 64(2): 362-368.

[222]

Shimada K, Furukawa H, Wada K, et al. Angiotensin-(1-7) protects against the development of aneurysmal subarachnoid hemorrhage in mice. J Cereb Blood Flow Metab. 2015; 35(7): 1163-1168.

[223]

Annoni F, Moro F, Caruso E, Zoerle T, Taccone FS, Zanier ER. Angiotensin-(1-7) as a potential therapeutic strategy for delayed cerebral ischemia in subarachnoid hemorrhage. Front Immunol. 2022; 13: 841692.

[224]

Jadli AS, Ballasy NN, Gomes KP, et al. Attenuation of smooth muscle cell phenotypic switching by angiotensin 1–7 protects against thoracic aortic aneurysm. Int J Mol Sci. 2022; 23(24).

[225]

Wiemer G, Dobrucki LW, Louka FR, Malinski T, Heitsch H. AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1-7) on the endothelium. Hypertension. 2002; 40(6): 847-852.

[226]

Pinheiro SV, Simões e Silva AC, Sampaio WO, et al. Nonpeptide AVE 0991 is an angiotensin-(1-7) receptor Mas agonist in the mouse kidney. Hypertension. 2004; 44(4): 490-496.

[227]

Ferreira AJ, Jacoby BA, Araújo CA, et al. The nonpeptide angiotensin-(1-7) receptor Mas agonist AVE-0991 attenuates heart failure induced by myocardial infarction. Am J Physiol Heart Circ Physiol. 2007; 292(2): H1113-H1119.

[228]

Mo J, Enkhjargal B, Travis ZD, et al. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarachnoid hemorrhage in rats. Redox Biol. 2019; 20: 75-86.

[229]

Zhang M, Zhu X, Tong H, et al. AVE 0991 attenuates pyroptosis and liver damage after heatstroke by inhibiting the ROS-NLRP3 inflammatory signalling pathway. Biomed Res Int. 2019; 2019: 1806234.

[230]

Rodrigues-Machado MG, Magalhães GS, Cardoso JA, et al. AVE 0991, a non-peptide mimic of angiotensin-(1-7) effects, attenuates pulmonary remodelling in a model of chronic asthma. Br J Pharmacol. 2013; 170(4): 835-846.

[231]

Jiang T, Xue LJ, Yang Y, et al. AVE0991, a nonpeptide analogue of Ang-(1-7), attenuates aging-related neuroinflammation. Aging (Albany NY). 2018; 10(4): 645-657.

[232]

Suski M, Olszanecki R, Stachowicz A, et al. The influence of angiotensin-(1-7) Mas receptor agonist (AVE 0991) on mitochondrial proteome in kidneys of apoE knockout mice. Biochim Biophys Acta. 2013; 1834(12): 2463-2469.

[233]

Skiba DS, Nosalski R, Mikolajczyk TP, et al. Anti-atherosclerotic effect of the angiotensin 1–7 mimetic AVE0991 is mediated by inhibition of perivascular and plaque inflammation in early atherosclerosis. Br J Pharmacol. 2017; 174(22): 4055-4069.

[234]

Hong L, Wang Q, Chen M, et al. Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment. Biomed Pharmacother. 2021; 137: 111365.

[235]

Tanrıverdi LH, Özhan O, Ulu A, et al. Activation of the Mas receptors by AVE0991 and MrgD receptor using alamandine to limit the deleterious effects of Ang II-induced hypertension. Fundam Clin Pharmacol. 2023; 37(1): 60-74.

[236]

Chatterjee A, Barnard J, Moravec C, Desnoyer R, Tirupula K, Karnik SS. Connective tissue growth factor dependent collagen gene expression induced by MAS agonist AR234960 in human cardiac fibroblasts. PLoS One. 2017; 12(12): e0190217.

[237]

Wu W, Cheng L, Wang J, Yang C, Shang Y. [miRNA-26a reduces vascular smooth muscle cell calcification by regulating connective tissue growth factor]. Nan Fang Yi Ke Da Xue Xue Bao. 2022; 42(9): 1303-1308.

[238]

Liu Y, Ho C, Wen D, et al. Targeting the stem cell niche: role of collagen XVII in skin aging and wound repair. Theranostics. 2022; 12(15): 6446-6454.

[239]

Wang M, Yao S, He D, et al. Type 2 diabetic mellitus inhibits skin renewal through inhibiting WNT-dependent Lgr5+ hair follicle stem cell activation in C57BL/6 mice. Journal of Diabetes Research. 2022; 2022: 8938276.

[240]

Zhu M, Zhu M, Wu X, et al. Porcine acellular dermal matrix increases fat survival rate after fat grafting in nude mice. Aesthetic Plast Surg. 2021.

[241]

Basu P, Sen U, Tyagi N, Tyagi SC. Blood flow interplays with elastin: collagen and MMP: tIMP ratios to maintain healthy vascular structure and function. Vasc Health Risk Manag. 2010; 6: 215-228.

[242]

Xiong J, Wang F, Yang Y, Yang Y, Liu Z. Preventive effect of human umbilical cord mesenchymal stem cells on skin aging in rats. Heliyon. 2024; 10(2): e24342.

[243]

van Twist DJ, Houben AJ, de Haan MW, Mostard GJ, Kroon AA, de Leeuw PW. Angiotensin-(1-7)-induced renal vasodilation in hypertensive humans is attenuated by low sodium intake and angiotensin II co-infusion. Hypertension. 2013; 62(4): 789-793.

[244]

Ueda S, Masumori-Maemoto S, Wada A, Ishii M, Brosnihan KB, Umemura S. Angiotensin(1-7) potentiates bradykinin-induced vasodilatation in man. J Hypertens. 2001; 19(11): 2001-2009.

[245]

Davie AP, McMurray JJ. Effect of angiotensin-(1-7) and bradykinin in patients with heart failure treated with an ACE inhibitor. Hypertension. 1999; 34(3): 457-460.

[246]

Becker LK, Totou N, Moura S, et al. Eccentric overload muscle damage is attenuated by a novel angiotensin-(1-7) treatment. Int J Sports Med. 2018; 39(10): 743-748.

[247]

Carter CS, Morgan D, Verma A, et al. Therapeutic delivery of Ang(1-7) via genetically modified probiotic: a dosing study. J Gerontol A Biol Sci Med Sci. 2020; 75(7): 1299-1303.

[248]

Hernandez A, Sun Y, Banerjee A, et al. Angiotensin (1-7) delivered orally via probiotic in combination with exercise: sex dependent influence on healthspan. J Gerontol A Biol Sci Med Sci. 2022.

[249]

Buford TW, Sun Y, Roberts LM, et al. Angiotensin (1-7) delivered orally via probiotic, but not subcutaneously, benefits the gut-brain axis in older rats. Geroscience. 2020; 42(5): 1307-1321.

[250]

Verma A, Zhu P, Xu K, et al. Angiotensin-(1-7) expressed from lactobacillus bacteria protect diabetic retina in mice. Transl Vis Sci Technol. 2020; 9(13): 20.

[251]

Smith CA, Smith H, Roberts L, et al. Probiotic releasing angiotensin (1-7) in a drosophila model of Alzheimer’s disease produces sex-specific effects on cognitive function. J Alzheimers Dis. 2022; 85(3): 1205-1217.

[252]

Hernandez AR, Banerjee A, Carter CS, Buford TW. Angiotensin (1-7) expressing probiotic as a potential treatment for dementia. Front Aging. 2021; 2.

[253]

Yang K, Xiao Q, Niu M, Pan X, Zhu X. Exosomes in atherosclerosis: convergence on macrophages. Int J Biol Sci. 2022; 18(8): 3266-3281.

[254]

Morioka C, Komaki M, Taki A, et al. Neuroprotective effects of human umbilical cord-derived mesenchymal stem cells on periventricular leukomalacia-like brain injury in neonatal rats. Inflamm Regen. 2017; 37: 1.

[255]

Kurosawa S, Iwama A. Aging and leukemic evolution of hematopoietic stem cells under various stress conditions. Inflamm Regen. 2020; 40(1): 29.

[256]

Zhao W, He X, Liu R, Ruan Q. Accelerating corneal wound healing using exosome-mediated targeting of NF-κB c-Rel. Inflamm Regen. 2023; 43(1): 6.

[257]

Tsuchiya A, Takeuchi S, Iwasawa T, et al. Therapeutic potential of mesenchymal stem cells and their exosomes in severe novel coronavirus disease 2019 (COVID-19) cases. Inflamm Regen. 2020; 40: 14.

[258]

Imanishi Y, Hata M, Matsukawa R, et al. Efficacy of extracellular vesicles from dental pulp stem cells for bone regeneration in rat calvarial bone defects. Inflamm Regen. 2021; 41(1): 12.

[259]

Glady A, Vandebroek A, Yasui M. Human keratinocyte-derived extracellular vesicles activate the MAPKinase pathway and promote cell migration and proliferation in vitro. Inflamm Regen. 2021; 41(1): 4.

[260]

Yang G, Waheed S, Wang C, Shekh M, Li Z, Wu J. Exosomes and their bioengineering strategies in the cutaneous wound healing and related complications: current knowledge and future perspectives. review. Int J Biol Sci. 2023; 19(5): 1430-1454.

[261]

Baier SR, Nguyen C, Xie F, Wood JR, Zempleni J. MicroRNAs are absorbed in biologically meaningful amounts from nutritionally relevant doses of cow milk and affect gene expression in peripheral blood mononuclear cells, HEK-293 kidney cell cultures, and mouse livers. J Nutr. 2014; 144(10): 1495-1500.

[262]

Young D, O’Neill K, Jessell T, Wigler M. Characterization of the rat mas oncogene and its high-level expression in the hippocampus and cerebral cortex of rat brain. Proc Natl Acad Sci USA. 1988; 85(14): 5339-5342.

[263]

Zohn IE, Symons M, Chrzanowska-Wodnicka M, Westwick JK, Der CJ. Mas oncogene signaling and transformation require the small GTP-binding protein Rac. Mol Cell Biol. 1998; 18(3): 1225-1235.

[264]

Rabin M, Birnbaum D, Young D, Birchmeier C, Wigler M, Ruddle FH. Human ros1 and mas1 oncogenes located in regions of chromosome 6 associated with tumor-specific rearrangements. Oncogene Res. 1987; 1(2): 169-178.

[265]

Chen S, Lu Z, Jia H, et al. Hepatocyte-specific Mas activation enhances lipophagy and fatty acid oxidation to protect against acetaminophen-induced hepatotoxicity in mice. J Hepatol. 2022.

[266]

Ciechanowicz AK, Lay WX, Prado Paulino J, et al. Angiotensin 1–7 stimulates proliferation of lung bronchoalveolar progenitors-implications for SARS-CoV-2 infection. Cells. 2022; 11(13).

[267]

AlSiraj Y, Thatcher SE, Blalock E, et al. Monosomy X in female mice influences the regional formation and augments the severity of angiotensin II-induced aortopathies. Arterioscler Thromb Vasc Biol. 2021; 41(1): 269-283.

[268]

Alsiraj Y, Thatcher SE, Blalock E, Fleenor B, Daugherty A, Cassis LA. Sex chromosome complement defines diffuse versus focal angiotensin II-induced aortic pathology. Arterioscler Thromb Vasc Biol. 2018; 38(1): 143-153.

[269]

Zhang X, Thatcher S, Wu C, Daugherty A, Cassis LA. Castration of male mice prevents the progression of established angiotensin II-induced abdominal aortic aneurysms. J Vasc Surg. 2015; 61(3): 767-776.

[270]

Henriques T, Zhang X, Yiannikouris FB, Daugherty A, Cassis LA. Androgen increases AT1a receptor expression in abdominal aortas to promote angiotensin II-induced AAAs in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 2008; 28(7): 1251-1256.

[271]

Henriques TA, Huang J, D’Souza SS, Daugherty A, Cassis LA. Orchidectomy, but not ovariectomy, regulates angiotensin II-induced vascular diseases in apolipoprotein E-deficient mice. Endocrinology. 2004; 145(8): 3866-3872.

RIGHTS & PERMISSIONS

2024 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/