Prognostic Value of Coronary Angiography-Derived Index of Microvascular Resistance in Patients With Hypertrophic Cardiomyopathy

Yuxuan Zhang , Rui Ji , Shuxin Lei , Jingnan Pan , Zining Chen , Shitian Guo , Delong Chen , Abuduwufuer Yidilisi , Jiacheng Fang , Yiyue Zheng , Xinyi Zhang , Chi Liu , Jiniu Huang , Yumeng Hu , Jianping Xiang , Xiaojie Xie , Jian'an Wang , Jun Jiang

MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70289

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70289 DOI: 10.1002/mco2.70289
ORIGINAL ARTICLE

Prognostic Value of Coronary Angiography-Derived Index of Microvascular Resistance in Patients With Hypertrophic Cardiomyopathy

Author information +
History +
PDF

Abstract

Assessing coronary microcirculation is crucial in the progression of hypertrophic cardiomyopathy (HCM), but it's often inadequate in clinical practice. This study investigates the role of coronary microcirculation, assessed via angiography-derived index of microvascular resistance (angio-IMR), in predicting clinical outcomes in HCM patients. We retrospectively measured angio-IMR in 422 HCM patients across two sites. The primary endpoint was major advance cardiovascular event (MACE), including cardiovascular death, heart failure readmission, life-threatening ventricular arrhythmias, septal reduction therapy or new-onset stroke. Over a mean follow-up of 43 ± 23 months, 63 patients (14.93%) experienced MACE. The mean angio-IMR value for the left anterior descending artery (LAD) was 22 ± 8. Using maximally selected log-rank statistic, 123 patients were stratified into the high LAD angio-IMR group, indicating microvascular dysfunction. Patients with LAD angio-IMR > 25 exhibited a higher incidence of MACE than those with LAD angio-IMR ≤ 25 (25.4% vs. 13.3%, p = 0.035). After adjusting for risk factors, elevated LAD angio-IMR remained an independent predictor of MACE (HR 1.779, 95% CI, 1.053–3.007, p = 0.031). Subgroup analysis showed consistent results. Our findings underscore that elevated LAD angio-IMR is a robust, independent indicator of adverse prognosis in HCM patients, highlighting the importance of evaluating LAD angio-IMR during coronary angiography for these patients.

Keywords

coronary angiography / hypertrophic cardiomyopathy / index of microcirculatory resistance / microcirculation / prognosis

Cite this article

Download citation ▾
Yuxuan Zhang, Rui Ji, Shuxin Lei, Jingnan Pan, Zining Chen, Shitian Guo, Delong Chen, Abuduwufuer Yidilisi, Jiacheng Fang, Yiyue Zheng, Xinyi Zhang, Chi Liu, Jiniu Huang, Yumeng Hu, Jianping Xiang, Xiaojie Xie, Jian'an Wang, Jun Jiang. Prognostic Value of Coronary Angiography-Derived Index of Microvascular Resistance in Patients With Hypertrophic Cardiomyopathy. MedComm, 2025, 6(8): e70289 DOI:10.1002/mco2.70289

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

S. R. Ommen, C. Y. Ho, I. M. Asif, et al., “2024 AHA/ACC/AMSSM/HRS/PACES/SCMR Guideline for the Management of Hypertrophic Cardiomyopathy: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines,” Circulation 149, no. 23 (2024): e1239-e1311.

[2]

B. J. Maron, “Clinical Course and Management of Hypertrophic Cardiomyopathy,” New England Journal of Medicine 379, no. 7 (2018): 655-668. Published online.

[3]

B. J. Maron, E. J. Rowin, S. A. Casey, and M. S. Maron, “How Hypertrophic Cardiomyopathy Became a Contemporary Treatable Genetic Disease With Low Mortality: Shaped by 50 Years of Clinical Research and Practice,” JAMA Cardiology 1, no. 1 (2016): 98-105.

[4]

E. J. Rowin, M. S. Maron, R. H. Chan, et al., “Interaction of Adverse Disease Related Pathways in Hypertrophic Cardiomyopathy,” American Journal of Cardiology 120, no. 12 (2017): 2256-2264.

[5]

B. J. Maron, E. J. Rowin, and M. S Maron, “Global Burden of Hypertrophic Cardiomyopathy,” JACC Heart Failure 6, no. 5 (2018): 376-378.

[6]

B. J. Maron, J. K. Wolfson, S. E. Epstein, and W. C. Roberts, “Intramural (“Small Vessel”) Coronary Artery Disease in Hypertrophic Cardiomyopathy,” Journal of the American College of Cardiology 8, no. 3 (1986): 545-557.

[7]

B. Schwartzkopff, M. Mundhenke, and B. E. Strauer, “Alterations of the Architecture of Subendocardial Arterioles in Patients With Hypertrophic Cardiomyopathy and Impaired Coronary Vasodilator Reserve: A Possible Cause for Myocardial Ischemia,” Journal of the American College of Cardiology 31, no. 5 (1998): 1089-1096.

[8]

S. Aguiar Rosa, L. Rocha Lopes, A. Fiarresga, R. C. Ferreira, and M. Mota Carmo, “Coronary Microvascular Dysfunction in Hypertrophic Cardiomyopathy: Pathophysiology, Assessment, and Clinical Impact,” Microcirculation 28, no. 1 (2021): e12656.

[9]

S. E. Petersen, M. Jerosch-Herold, L. E. Hudsmith, et al., “Evidence for Microvascular Dysfunction in Hypertrophic Cardiomyopathy: New Insights From Multiparametric Magnetic Resonance Imaging,” Circulation 115, no. 18 (2007): 2418-2425.

[10]

G. D. Aquaro, G. Todiere, A. Barison, et al., “Myocardial Blood Flow and Fibrosis in Hypertrophic Cardiomyopathy,” Journal of Cardiac Failure 17, no. 5 (2011): 384-391.

[11]

C. E. Raphael, F. Mitchell, G. S. Kanaganayagam, et al., “Cardiovascular Magnetic Resonance Predictors of Heart Failure in Hypertrophic Cardiomyopathy: The Role of Myocardial Replacement Fibrosis and the Microcirculation,” Journal of Cardiovascular Magnetic Resonance 23, no. 1 (2021): 26.

[12]

S. Jadam, A. Gaballa, A. Alashi, et al., “Association of Histologic Findings with Long-Term Outcomes in Symptomatic Obstructive Hypertrophic Cardiomyopathy Patients Undergoing Surgical Myectomy,” JACC Heart Failure 13, no. 4 (2025): 631-640.

[13]

F. Cecchi, I. Olivotto, R. Gistri, R. Lorenzoni, G. Chiriatti, and P. G. Camici, “Coronary Microvascular Dysfunction and Prognosis in Hypertrophic Cardiomyopathy,” New England Journal of Medicine 349, no. 11 (2003): 1027-1035.

[14]

S. Aguiar Rosa, M. Mota Carmo, L. Rocha Lopes, et al., “Index of Microcirculatory Resistance in the Assessment of Coronary Microvascular Dysfunction in Hypertrophic Cardiomyopathy,” Revista Portuguesa De Cardiologia 41, no. 9 (2022): 761-767.

[15]

G. Joy, C. I. Kelly, M. Webber, et al., “Microstructural and Microvascular Phenotype of Sarcomere Mutation Carriers and Overt Hypertrophic Cardiomyopathy,” Circulation 148, no. 10 (2023): 808-818.

[16]

E. K. Kim, S. C. Lee, S. A. Chang, et al., “Prevalence and Clinical Significance of Cardiovascular Magnetic Resonance Adenosine Stress-Induced Myocardial Perfusion Defect in Hypertrophic Cardiomyopathy,” Journal of Cardiovascular Magnetic Resonance 22, no. 1 (2020): 30.

[17]

W. Chen, M. Ni, H. Huang, et al., “Chinese Expert Consensus on the Diagnosis and Treatment of Coronary Microvascular Diseases (2023 Edition),” MedComm 4, no. 6 (2023): e438.

[18]

K. H. Choi, N. Dai, Y. Li, et al., “Functional Coronary Angiography-Derived Index of Microcirculatory Resistance in Patients with ST-Segment Elevation Myocardial Infarction,” JACC Cardiovascular Interventions 14, no. 15 (2021): 1670-1684.

[19]

Y. Zhang, J. Pu, T. Niu, et al., “Prognostic Value of Coronary Angiography-Derived Index of Microcirculatory Resistance in Non-ST-Segment Elevation Myocardial Infarction Patients,” JACC Cardiovascular Interventions 17, no. 16 (2024): 1874-1886.

[20]

F. A. Abdu, L. Liu, A. Q. Mohammed, et al., “Prognostic Impact of Coronary Microvascular Dysfunction in Patients With Myocardial Infarction With Non-Obstructive Coronary Arteries,” European Journal of Internal Medicine 92 (2021): 79-85.

[21]

A. Q. Mohammed, F. A. Abdu, Y. Su, et al., “Prognostic Significance of Coronary Microvascular Dysfunction in Patients with Heart Failure With Preserved Ejection Fraction,” Canadian Journal of Cardiology 39, no. 7 (2023): 971-980.

[22]

Y. Zheng, Y. Zhang, D. Chen, et al., “Prognostic Value of Coronary Angiography-Derived Index of Microcirculatory Resistance in Patients With Intermediate Coronary Stenosis,” JACC: Cardiovascular Interventions 18, no. 2 (2025): 171-183.

[23]

F. Pelliccia, F. Cecchi, I. Olivotto, and P Camici, “Microvascular Dysfunction in Hypertrophic Cardiomyopathy,” JCM 11, no. 21 (2022): 6560.

[24]

A. Güçlü, C. Happé, S. Eren, et al., “Left Ventricular Outflow Tract Gradient Is Associated With Reduced Capillary Density in Hypertrophic Cardiomyopathy Irrespective of Genotype,” European Journal of Clinical Investigation 45, no. 12 (2015): 1252-1259.

[25]

I. Olivotto, F. Girolami, R. Sciagrà, et al., “Microvascular Function Is Selectively Impaired in Patients with Hypertrophic Cardiomyopathy and Sarcomere Myofilament Gene Mutations,” Journal of the American College of Cardiology 58, no. 8 (2011): 839-848.

[26]

M. De Gaspari, C. Basso, M. Perazzolo Marra, et al., “Small Vessel Disease: Another Component of the Hypertrophic Cardiomyopathy Phenotype Not Necessarily Associated With Fibrosis,” JCM 10, no. 4 (2021): 575.

[27]

I. Olivotto, F. Cecchi, C. Poggesi, and M. H. Yacoub, “Developmental Origins of Hypertrophic Cardiomyopathy Phenotypes: A Unifying Hypothesis,” Nature Reviews Cardiology 6, no. 4 (2009): 317-321.

[28]

C. E. Raphael, R. Cooper, K. H. Parker, et al., “Mechanisms of Myocardial Ischemia in Hypertrophic Cardiomyopathy,” Journal of the American College of Cardiology 68, no. 15 (2016): 1651-1660.

[29]

S. L. Sellers, T. A. Fonte, R. Grover, et al., “Hypertrophic Cardiomyopathy (HCM): New Insights Into Coronary Artery Remodelling and Ischemia From FFRCT,” Journal of Cardiovascular Computed Tomography 12, no. 6 (2018): 467-471.

[30]

P. Camici, G. Chiriatti, R. Lorenzoni, et al., “Coronary Vasodilation Is Impaired in both Hypertrophied and Nonhypertrophied Myocardium of Patients With Hypertrophic Cardiomyopathy: A Study With Nitrogen-13 Ammonia and Positron Emission Tomography,” Journal of the American College of Cardiology 17, no. 4 (1991): 879-886.

[31]

A. D. M. Villa, E. Sammut, N. Zarinabad, et al., “Microvascular Ischemia in Hypertrophic Cardiomyopathy: New Insights From High-Resolution Combined Quantification of Perfusion and Late Gadolinium Enhancement,” Journal of Cardiovascular Magnetic Resonance 18, no. 1 (2016): 4.

[32]

P. Shridhar, M. S. Glennon, S. Pal, et al., “MDM2 Regulation of HIF Signaling Causes Microvascular Dysfunction in Hypertrophic Cardiomyopathy,” Circulation 148, no. 23 (2023): 1870-1886.

[33]

W. Chen, M. Ni, H. Huang, et al., “Chinese Expert Consensus on the Diagnosis and Treatment of Coronary Microvascular Diseases (2023 Edition),” MedComm 4, no. 6 (2023): e438.

[34]

A. M. Maznyczka, K. G. Oldroyd, P. McCartney, M. McEntegart, and C. Berry, “The Potential Use of the Index of Microcirculatory Resistance to Guide Stratification of Patients for Adjunctive Therapy in Acute Myocardial Infarction,” JACC: Cardiovascular Interventions 12, no. 10 (2019): 951-966.

[35]

N. Mileva, S. Nagumo, T. Mizukami, et al., “Prevalence of Coronary Microvascular Disease and Coronary Vasospasm in Patients With Nonobstructive Coronary Artery Disease: Systematic Review and Meta-Analysis,” Journal of the American Heart Association 11, no. 7 (2022): e023207.

[36]

A. Barioli and G. Tarantini, “Ischemia With Nonobstructive Coronary Artery Disease,” Journal of the American College of Cardiology (JACC) Asia 3, no. 4 (2023): 169-184.

[37]

M. K. Kyriakidis, J. M. Dernellis, A. E. Androulakis, et al., “Changes in Phasic Coronary Blood Flow Velocity Profile and Relative Coronary Flow Reserve in Patients with Hypertrophic Obstructive Cardiomyopathy,” Circulation 96, no. 3 (1997): 834-841.

[38]

L. Cortigiani, F. Rigo, S. Gherardi, M. Galderisi, R. Sicari, and E. Picano, “Prognostic Implications of Coronary Flow Reserve on Left Anterior Descending Coronary Artery in Hypertrophic Cardiomyopathy,” American Journal of Cardiology 102, no. 12 (2008): 1718-1723.

[39]

J. Jiang, C. Li, Y. Hu, et al., “A Novel CFD-based Computed Index of Microcirculatory Resistance (IMR) Derived From Coronary Angiography to Assess Coronary Microcirculation,” Computer Methods and Programs in Biomedicine 221 (2022): 106897.

[40]

Y. Fan, C. Li, Y. Hu, et al., “Angiography-Based Index of Microcirculatory Resistance (AccuIMR) for the Assessment of Microvascular Dysfunction in Acute Coronary Syndrome and Chronic Coronary Syndrome,” Quantitative Imaging in Medicine and Surgery 13, no. 6 (2023): 3556-3568.

[41]

M. Abbasi, K. C. Ong, D. B. Newman, J. A. Dearani, H. V. Schaff, and J. B. Geske, “Obstruction in Hypertrophic Cardiomyopathy: Many Faces,” Journal of the American Society of Echocardiography 37, no. 6 (2024): 613-625.

[42]

E. Arbelo, A. Protonotarios, J. R. Gimeno, et al., “2023 ESC Guidelines for the Management of Cardiomyopathies,” European Heart Journal 44, no. 37 (2023): 3503-3626.

[43]

D. E. Cutlip, S. Windecker, R. Mehran, et al., “Clinical End Points in Coronary Stent Trials: A Case for Standardized Definitions,” Circulation 115, no. 17 (2007): 2344-2351.

[44]

T. Hothorn and B Lausen, “On the Exact Distribution of Maximally Selected Rank Statistics,” Computational Statistics & Data Analysis 43, no. 2 (2003): 121-137.

[45]

P. C. Austin, D. S. Lee, and J. P. Fine, “Introduction to the Analysis of Survival Data in the Presence of Competing Risks,” Circulation 133, no. 6 (2016): 601-609.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/