Peptide Drug: Design and Clinical Applications

Yaqi Han , YunKui Zhang , Han Li , Zhongliang Ma , Yanmao Wang

MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70287

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70287 DOI: 10.1002/mco2.70287
REVIEW

Peptide Drug: Design and Clinical Applications

Author information +
History +
PDF

Abstract

Peptide drugs possess superior biocompatibility and excellent specificity, making them a reliable choice in clinical treatment. They exert critical roles in disease-associated metabolic reprogramming and immune modulation by activating cell signaling pathways, regulating metabolic processes, and immune cell functions. Notably, circular RNAs (circRNAs) have been shown to encode functional polypeptides. This finding offers new avenues for peptide drugs development. However, a summary of circRNA-encoded polypeptides as peptide drug applications is relatively lacking. Therefore, we summarize the latest scientific advances in peptide drugs in the realm of diseases, with the focus on circRNA-encoded polypeptides. We first delve into the functional mechanisms of peptide drugs within disease-associated metabolic reprogramming and immune response. Subsequently, we provide an overview of the delivery and modification strategies of peptide drugs. Additionally, we summarize the encoding mechanisms of circRNAs and review the drug-like applications of the polypeptides. We also highlight the potential challenges in the future development of circRNA-based polypeptide drugs. In summary, we offer a systematic review of the research progress on circRNA-encoded polypeptides, with the aim of providing novel perspective and ideas for the design and development of peptide drugs.

Keywords

circRNA-encoded polypeptides / delivery strategy / immune performance / metabolic reprogramming / peptide drug

Cite this article

Download citation ▾
Yaqi Han, YunKui Zhang, Han Li, Zhongliang Ma, Yanmao Wang. Peptide Drug: Design and Clinical Applications. MedComm, 2025, 6(8): e70287 DOI:10.1002/mco2.70287

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Bliss, “The History of Insulin,” Diabetes Care 16 Suppl 3 (1993): 4-7.

[2]

E. K. Sims, A. L. J. Carr, R. A. Oram, L. A. DiMeglio, and C. Evans-Molina, “100 years of Insulin: Celebrating the Past, Present and Future of Diabetes Therapy,” Nature Medicine 27 (2021): 1154-1164.

[3]

K. Sharma, K. K. Sharma, A. Sharma, and R. Jain, “Peptide-based Drug Discovery: Current Status and Recent Advances,” Drug Discov Today 28 (2023): 103464.

[4]

J. Boström, D. G. Brown, R. J. Young, and G. M. Keserü, “Expanding the Medicinal Chemistry Synthetic Toolbox,” Nat Rev Drug Discovery 17 (2018): 922.

[5]

A. Eskandari, T. C. Leow, M. B. A. Rahman, and S. N. Oslan, “Utilization and Prospect of Purification Technologies in Natural Proteins, Peptides and Recombinant Proteins,” Journal of Proteins and Proteomics 15 (2024): 233-257.

[6]

M. Muttenthaler, G. F. King, D. J. Adams, and P. F. Alewood, “Trends in Peptide Drug Discovery,” Nat Rev Drug Discovery 20 (2021): 309-325.

[7]

I. R. Singh, N. Aggarwal, S. Srivastava, J. J. Panda, and J. Mishra, “Small Peptide-Based Nanodelivery Systems for Cancer Therapy and Diagnosis,” Journal of Pharmacology and Experimental Therapeutics 390 (2024): 30-44.

[8]

L. Wang, N. Wang, W. Zhang, et al., “Therapeutic Peptides: Current Applications and Future Directions,” Signal Transduct Target Ther 7 (2022): 48.

[9]

A. Henninot, J. C. Collins, and J. M. Nuss, “The Current State of Peptide Drug Discovery: Back to the Future?,” Journal of Medicinal Chemistry 61 (2018): 1382-1414.

[10]

D. J. Craik, D. P. Fairlie, S. Liras, and D. Price, “The Future of Peptide-based Drugs,” Chemical Biology and Drug Design 81 (2013): 136-147.

[11]

Z. Cong, Q. Zhou, Y. Li, et al., “Structural Basis of Peptidomimetic Agonism Revealed by Small- molecule GLP-1R Agonists Boc5 and WB4-24,” PNAS 119 (2022): e2200155119.

[12]

M. J. Demma, C. Mapelli, A. Sun, et al., “Omomyc Reveals New Mechanisms To Inhibit the MYC Oncogene,” Molecular and Cellular Biology (2019): 39.

[13]

H. Zakaryan, G. Chilingaryan, E. Arabyan, A. Serobian, and G. Wang, “Natural Antimicrobial Peptides as a Source of New Antiviral Agents,” Journal of General Virology 102 (2021): 001661.

[14]

J. Zhao, H. Fu, J. Yu, et al., “Prospect of Acromegaly Therapy: Molecular Mechanism of Clinical Drugs Octreotide and Paltusotine,” Nature Communications 14 (2023): 962.

[15]

Z. Y. Liu, M. L. Tang, J. F. Ning, Y. P. Hao, L. Zhou, and X. Sun, Novel octapeptide-DTX prodrugs targeting MMP-7 as effective agents for the treatment of colorectal cancer with lower systemic toxicity.

[16]

C. S. Brian Chia, “A Review on the Metabolism of 25 Peptide Drugs,” International Journal of Peptide Research and Therapeutics 27 (2021): 1397-1418.

[17]

X. H. Pan, B. Tan, Y. H. Chin, et al., “Efficacy and Safety of Tirzepatide, GLP-1 Receptor Agonists, and Other Weight Loss Drugs in Overweight and Obesity: a Network Meta-analysis,” Obesity (Silver Spring) 32 (2024): 840-856.

[18]

T. Robinson, J. Escara-Wilke, J. Dai, J. Zimmermann, and E. T. Keller, “A CXCR4 Inhibitor (balixafortide) Enhances Docetaxel-mediated Antitumor Activity in a Murine Model of Prostate Cancer Bone Metastasis,” Prostate 83 (2023): 1247-1254.

[19]

W. Tian, J. Li, Z. Wang, et al., “HYD-PEP06 Suppresses Hepatocellular Carcinoma Metastasis, Epithelial-mesenchymal Transition and Cancer Stem Cell-like Properties by Inhibiting PI3K/AKT and WNT/β-catenin Signaling Activation,” Acta Pharm Sin B 11 (2021): 1592-1606.

[20]

T. K. Pham, T. H. T. Nguyen, J. M. Yi, et al., “Evogliptin, a DPP-4 Inhibitor, Prevents Diabetic Cardiomyopathy by Alleviating Cardiac Lipotoxicity in db/db Mice,” Experimental & Molecular Medicine 55 (2023): 767-778.

[21]

Y. Hu, J. Xu, J. Wang, L. Zhu, J. Wang, and Q. Zhang, “DPP-4 Inhibitors Suppress Tau Phosphorylation and Promote Neuron Autophagy through the AMPK/mTOR Pathway to Ameliorate Cognitive Dysfunction in Diabetic Mellitus,” Acs Chemical Neuroscience 14 (2023): 3335-3346.

[22]

S. Urai, M. Yamamoto, N. Yamamoto, et al., “Newer Parameters of the Octreotide Test in Patients with Acromegaly,” Pituitary 27 (2024): 33-43.

[23]

I. Remba-Shapiro and L. B. Nachtigall, “Treatment of Acromegaly with Oral Octreotide,” Best Practice & Research. Clinical Endocrinology & Metabolism 38 (2024): 101888.

[24]

S. Verma, S. C. Bain, T. M. Fries, et al., “Duration of Diabetes and Cardiorenal Efficacy of Liraglutide and Semaglutide: a Post Hoc Analysis of the LEADER and SUSTAIN 6 Clinical Trials,” Diabetes, Obesity & Metabolism 21 (2019): 1745-1751.

[25]

Z. Zheng, M. Li, P. Jiang, N. Sun, and S. Lin, “Peptides Derived from Sea Cucumber Accelerate Cells Proliferation and Migration for Wound Healing by Promoting Energy Metabolism and Upregulating the ERK/AKT Pathway,” European Journal of Pharmacology 921 (2022): 174885.

[26]

Y. L. Ma, C. Y. Kong, Z. Guo, et al., “Semaglutide Ameliorates Cardiac Remodeling in Male Mice by Optimizing Energy Substrate Utilization through the Creb5/NR4a1 Axis,” Nature Communications 15 (2024): 4757.

[27]

J. Hu, S. G. Wang, Y. Hou, et al., “Multi-omic Profiling of Clear Cell Renal Cell Carcinoma Identifies Metabolic Reprogramming Associated with Disease Progression,” Nature Genetics 56 (2024): 442-457.

[28]

M. S. Lee and S. J. Bensinger, “Reprogramming Cholesterol Metabolism in Macrophages and Its Role in Host Defense against Cholesterol-dependent Cytolysins,” Cell Mol Immunol 19 (2022): 327-336.

[29]

K. Yang, X. Wang, C. Song, et al., “The Role of Lipid Metabolic Reprogramming in Tumor Microenvironment,” Theranostics 13 (2023): 1774-1808.

[30]

O. Chatzidoukaki, E. Goulielmaki, B. Schumacher, and G. A. Garinis, “DNA Damage Response and Metabolic Reprogramming in Health and Disease,” Trends in Genetics 36 (2020): 777-791.

[31]

B. Faubert, A. Solmonson, and R. J. DeBerardinis, “Metabolic Reprogramming and Cancer Progression,” Science 368 (2020): eaaw5473.

[32]

C. Adam, L. Paolini, N. Gueguen, et al., “Acetoacetate Protects Macrophages from Lactic Acidosis-induced Mitochondrial Dysfunction by Metabolic Reprograming,” Nature Communications 12 (2021): 7115.

[33]

I. V. Bogdanov, M. A. Streltsova, E. I. Kovalenko, A. M. Sapozhnikov, P. V. Panteleev, and T. V. Ovchinnikova, “Epithelial-Immune Cell Crosstalk Determines the Activation of Immune Cells in Vitro by the Human Cathelicidin LL-37 at Low Physiological Concentrations,” Biomolecules (2023): 13.

[34]

B. C. Wu, A. H. Lee, and R. E. W. Hancock, “Mechanisms of the Innate Defense Regulator Peptide-1002 Anti-Inflammatory Activity in a Sterile Inflammation Mouse Model,” Journal of Immunology 199 (2017): 3592-3603.

[35]

Z. Hu, W. Li, S. Chen, et al., “Design of a Novel Chimeric Peptide via Dual Blockade of CD47/SIRPα and PD-1/PD-L1 for Cancer Immunotherapy,” Sci China Life Sci 66 (2023): 2310-2328.

[36]

G. Chen, W. Kang, W. Li, S. Chen, and Y. Gao, “Oral Delivery of Protein and Peptide Drugs: from Non-specific Formulation Approaches to Intestinal Cell Targeting Strategies,” Theranostics 12 (2022): 1419-1439.

[37]

J. L. Duan, W. Chen, J. J. Xie, et al., “A Novel Peptide Encoded by N6-methyladenosine Modified circMAP3K4 Prevents Apoptosis in Hepatocellular Carcinoma,” Molecular Cancer 21 (2022): 93.

[38]

D. Huang, X. Zhu, S. Ye, et al., “Tumour Circular RNAs Elicit Anti-tumour Immunity by Encoding Cryptic Peptides,” Nature 625 (2024): 593-602.

[39]

Q. Yi, J. Feng, W. Lan, H. Shi, W. Sun, and W. Sun, “CircRNA and lncRNA-encoded Peptide in Diseases, an Update Review,” Molecular Cancer 23 (2024): 214.

[40]

J. Huang, P. Yang, W. Pan, F. Wu, J. Qiu, and Z. Ma, “The Role of Polypeptides Encoded by ncRNAs in Cancer,” Gene 928 (2024): 148817.

[41]

L. Xiong, H. S. Liu, C. Zhou, et al., “A Novel Protein Encoded by circINSIG1 Reprograms Cholesterol Metabolism by Promoting the Ubiquitin-dependent Degradation of INSIG1 in Colorectal Cancer,” Molecular Cancer 22 (2023): 72.

[42]

Y. Fu, S. Liu, R. M. Rodrigues, et al., “Activation of VIPR1 Suppresses Hepatocellular Carcinoma Progression by Regulating Arginine and Pyrimidine Metabolism,” Int J Biol Sci 18 (2022): 4341-4356.

[43]

Z. Wang, W. Fu, M. Huo, et al., “Spatial-resolved Metabolomics Reveals Tissue-specific Metabolic Reprogramming in Diabetic Nephropathy by Using Mass Spectrometry Imaging,” Acta Pharm Sin B 11 (2021): 3665-3677.

[44]

H. Jeong, B. Lee, S. J. Han, and D. H. Sohn, “Glucose Metabolic Reprogramming in Autoimmune Diseases,” Anim Cells Syst (Seoul) 27 (2023): 149-158.

[45]

B. A. Borlaug, D. W. Kitzman, M. J. Davies, et al., “Semaglutide in HFpEF across Obesity Class and by Body Weight Reduction: a Prespecified Analysis of the STEP-HFpEF Trial,” Nature Medicine 29 (2023): 2358-2365.

[46]

J. L. Wang, X. D. Dou, J. Cheng, et al., “Functional Screening and Rational Design of Compounds Targeting GPR132 to Treat Diabetes,” Nat Metab 5 (2023): 1726-1746.

[47]

J. Wang, M. Zhu, J. Zhu, et al., “HES1 promotes Aerobic Glycolysis and Cancer Progression of Colorectal Cancer via IGF2BP2-mediated GLUT1 m6A Modification,” Cell Death Discov 9 (2023): 411.

[48]

X. Cai, C. P. Ng, O. Jones, et al., “Lactate Activates the Mitochondrial Electron Transport Chain Independently of Its Metabolism,” Molecular Cell 83 (2023): 3904-3920. e3907.

[49]

L. Xia, L. Oyang, J. Lin, et al., “The Cancer Metabolic Reprogramming and Immune Response,” Molecular Cancer 20 (2021): 28.

[50]

N. H. Kim, Y. H. Cha, J. Lee, et al., “Snail Reprograms Glucose Metabolism by Repressing Phosphofructokinase PFKP Allowing Cancer Cell Survival under Metabolic Stress,” Nature Communications 8 (2017): 14374.

[51]

C. R. Bartman, D. R. Weilandt, Y. Shen, et al., “Slow TCA Flux and ATP Production in Primary Solid Tumours but Not Metastases,” Nature 614 (2023): 349-357.

[52]

G. Keceli, A. Gupta, J. Sourdon, et al., “Mitochondrial Creatine Kinase Attenuates Pathologic Remodeling in Heart Failure,” Circulation Research 130 (2022): 741-759.

[53]

M. Fernandez-Caggiano, A. Kamynina, A. A. Francois, et al., “Mitochondrial Pyruvate Carrier Abundance Mediates Pathological Cardiac Hypertrophy,” Nat Metab 2 (2020): 1223-1231.

[54]

R. Mattioli, A. Ilari, B. Colotti, L. Mosca, F. Fazi, and G. Colotti, “Doxorubicin and Other Anthracyclines in Cancers: Activity, Chemoresistance and Its Overcoming,” Molecular Aspects of Medicine 93 (2023): 101205.

[55]

D. Cappetta, F. Rossi, E. Piegari, et al., “Doxorubicin Targets Multiple Players: a New View of an Old Problem,” Pharmacological Research 127 (2018): 4-14.

[56]

X. Li, W. Luo, Y. Tang, et al., “Semaglutide Attenuates Doxorubicin-induced Cardiotoxicity by Ameliorating BNIP3-Mediated Mitochondrial Dysfunction,” Redox Biology 72 (2024): 103129.

[57]

K. Majumder, S. Chakrabarti, J. S. Morton, et al., “Egg-derived Tri-peptide IRW Exerts Antihypertensive Effects in Spontaneously Hypertensive Rats,” PLoS ONE 8 (2013): e82829.

[58]

M. Son and J. Wu, “Egg White Hydrolysate and Peptide Reverse Insulin Resistance Associated with Tumor Necrosis Factor-α (TNF-α) Stimulated Mitogen-activated Protein Kinase (MAPK) Pathway in Skeletal Muscle Cells,” European Journal of Nutrition 58 (2019): 1961-1969.

[59]

M. Soga, A. Ohashi, M. Taniguchi, T. Matsui, and T. Tsuda, “The Di-peptide Trp-His Activates AMP-activated Protein Kinase and Enhances Glucose Uptake Independently of Insulin in L6 Myotubes,” FEBS Open Bio 4 (2014): 898-904.

[60]

Y. Chen, K. Chen, H. Zhu, H. Qin, J. Liu, and X. Cao, “Methyltransferase Setd2 Prevents T Cell-mediated Autoimmune Diseases via Phospholipid Remodeling,” PNAS 121 (2024): e2314561121.

[61]

J. Li, X. Wang, L. Shi, et al., “A Mammalian Conserved Circular RNA CircLARP1B Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism,” Adv Sci (Weinh) 11 (2024): e2305902.

[62]

X. Liu, C. L. Hartman, L. Li, et al., “Reprogramming Lipid Metabolism Prevents Effector T Cell Senescence and Enhances Tumor Immunotherapy,” Science Translational Medicine (2021): 13.

[63]

J. S. V. Lally, S. Ghoshal, D. K. DePeralta, et al., “Inhibition of Acetyl-CoA Carboxylase by Phosphorylation or the Inhibitor ND-654 Suppresses Lipogenesis and Hepatocellular Carcinoma,” Cell metabolism 29 (2019): 174-182.e175.

[64]

R. Tooyserkani, M. J. Rasaee, M. Bandehpour, and W. P. M. L. Lowik, “Novel Anti-PD-L1 Peptide Selected from Combinatorial Phage Library Inhibits Tumor Cell Growth and Restores T-cell Activity,” J Drug Target 29 (2021): 771-782.

[65]

K. Su, B. Yi, B. Q. Yao, et al., “Liraglutide Attenuates Renal Tubular Ectopic Lipid Deposition in Rats with Diabetic Nephropathy by Inhibiting Lipid Synthesis and Promoting Lipolysis,” Pharmacological Research 156 (2020): 104778.

[66]

A. Nasri, M. Kowaluk, S. B. Widenmaier, and S. Unniappan, “Nesfatin-1 and Nesfatin-1-like Peptide Attenuate Hepatocyte Lipid Accumulation and Nucleobindin-1 Disruption Modulates Lipid Metabolic Pathways,” Communications Biology 7 (2024): 623.

[67]

Y. Guo, X. Luo, and W. Guo, “The Impact of Amino Acid Metabolism on Adult Neurogenesis,” Biochemical Society Transactions 51 (2023): 233-244.

[68]

F. Bacha, H. El-Ayash, M. Mohamad, et al., “Distinct Amino Acid Profile Characterizes Youth with or at Risk for Type 2 Diabetes,” Diabetes 73 (2024): 628-636.

[69]

F. Li, P. Liu, W. Mi, et al., “Blocking Methionine Catabolism Induces Senescence and Confers Vulnerability to GSK3 Inhibition in Liver Cancer,” Nat Cancer 5 (2024): 131-146.

[70]

B. Karno, D. N. Edwards, and J. Chen, “Metabolic Control of Cancer Metastasis: Role of Amino Acids at Secondary Organ Sites,” Oncogene 42 (2023): 3447-3456.

[71]

X. Wang, S. Zhang, D. Xue, D. Neculai, and J. Zhang, “Metabolic Reprogramming of Macrophages in Cancer Therapy,” Trends in Endocrinology and Metabolism (2024).

[72]

X. Xiang, Q. Li, J. Wan, et al., “The Role of Amino Acid Metabolism in Autoimmune hepatitis,” Biomedicine & Pharmacotherapy 173 (2024): 116452.

[73]

A. G. Cox, K. L. Hwang, K. K. Brown, et al., “Yap Reprograms Glutamine Metabolism to Increase Nucleotide Biosynthesis and Enable Liver Growth,” Nature Cell Biology 18 (2016): 886-896.

[74]

T. L. Nguyen, M. J. Nokin, S. Terés, et al., “Downregulation of Glutamine Synthetase, Not Glutaminolysis, Is Responsible for Glutamine Addiction in Notch1-driven Acute Lymphoblastic Leukemia,” Mol Oncol 15 (2021): 1412-1431.

[75]

T. Cai, P. L. Lorenzi, D. Rakheja, et al., “Gls Inhibitor CB-839 Modulates Cellular Metabolism in AML and Potently Suppresses AML Cell Growth When Combined with 5-Azacitidine,” Blood 128 (2016): 4064.

[76]

M. Usart, S. Rai, N. Hansen, et al., “Inhibiting Glutamine Metabolism with CB-839 Reduces Erythrocytosis in MPN Mice,” Blood 138 (2021): 3585.

[77]

J. J. Wang, M. K. Siu, Y. X. Jiang, et al., “A Combination of Glutaminase Inhibitor 968 and PD-L1 Blockade Boosts the Immune Response against Ovarian Cancer,” Biomolecules (2021): 11.

[78]

M. Rousseau, L. Lacerda Mariano, T. Canton, and M. A. Ingersoll, “Tissue-resident Memory T Cells Mediate Mucosal Immunity to Recurrent Urinary Tract Infection,” Science Immunology 8 (2023): eabn4332.

[79]

S. V. Gearty, F. Dündar, P. Zumbo, et al., “An Autoimmune Stem-like CD8 T Cell Population Drives Type 1 Diabetes,” Nature 602 (2022): 156-161.

[80]

M. D. Vesely, T. Zhang, and L. Chen, “Resistance Mechanisms to Anti-PD Cancer Immunotherapy,” Annual Review of Immunology 40 (2022): 45-74.

[81]

R. Diwanji, N. A. O'Brien, J. E. Choi, et al., “Targeting the IL1β Pathway for Cancer Immunotherapy Remodels the Tumor Microenvironment and Enhances Antitumor Immune Responses,” Cancer Immunology research 11 (2023): 777-791.

[82]

H. Liu, Z. Zhao, L. Zhang, et al., “Discovery of Low-Molecular Weight Anti-PD-L1 Peptides for Cancer Immunotherapy,” Journal for Immunotherapy of Cancer 7 (2019): 270

[83]

E. G. Novoselova, O. V. Glushkova, M. O. Khrenov, et al., “The Thymic Hormone Thymosin-1α Reduces the Pro-Inflammatory Response of Raw 264.7 Cells Induced by Endotoxin,” Molekuliarnaia Biologiia 57 (2023): 1006-1016.

[84]

Y. Zeng, M. Shen, A. Singhal, et al., “Enhanced Liposomal Drug Delivery via Membrane Fusion Triggered by Dimeric Coiled-Coil Peptides,” Small 19 (2023): e2301133.

[85]

J. Dai, M. Ashrafizadeh, A. R. Aref, G. Sethi, and Y. N. Ertas, “Peptide-functionalized, -assembled and -loaded Nanoparticles in Cancer Therapy,” Drug Discov Today 29 (2024): 103981.

[86]

C. Zhang, D. Pan, J. Li, et al., “Enzyme-responsive Peptide Dendrimer-gemcitabine Conjugate as a Controlled-release Drug Delivery Vehicle with Enhanced Antitumor Efficacy,” Acta Biomaterialia 55 (2017): 153-162.

[87]

J.-L. Zhou, Y.-Q. Liu, and Z.-K. Sun. LADA strategy for the synthesis of unnatural amino acids and direct modifications of peptides.

[88]

I. S. De Jesus, J. A. C. Vélez, E. F. Pissinati, J. T. M. Correia, D. G. Rivera, and M. W. Paixao, “Recent Advances in Photoinduced Modification of Amino Acids, Peptides, and Proteins,” Chemical Record 24 (2024): e202300322.

[89]

J. Li, J. Zhao, T. Tan, et al., “Nanoparticle Drug Delivery System for Glioma and Its Efficacy Improvement Strategies: a Comprehensive Review,” Int J Nanomedicine 15 (2020): 2563-2582.

[90]

Y. Li, D. R. Dautel, M. A. Gray, M. E. McKenna, and J. A. Champion, “Rational Design of Elastin-like Polypeptide Fusion Proteins to Tune Self-assembly and Properties of Protein Vesicles,” J Mater Chem B 11 (2023): 6443-6452.

[91]

X. Li, N. Yu, J. Li, et al., “Novel “Carrier-Free” Nanofiber Codelivery Systems with the Synergistic Antitumor Effect of Paclitaxel and Tetrandrine through the Enhancement of Mitochondrial Apoptosis,” ACS Appl Mater Interfaces 12 (2020): 10096-10106.

[92]

L. Shi, X. Wu, T. Li, et al., “An Esterase-activatable Prodrug Formulated Liposome Strategy: Potentiating the Anticancer Therapeutic Efficacy and Drug Safety,” Nanoscale Adv 4 (2022): 952-966.

[93]

Y. Mirchandani, V. B. Patravale, and S. Brijesh, “Solid Lipid Nanoparticles for Hydrophilic Drugs,” Journal Control Release 335 (2021): 457-464.

[94]

L. Jiang, S. Zhou, X. Zhang, et al., “Mitochondrion-specific Dendritic Lipopeptide Liposomes for Targeted Sub-cellular Delivery,” Nature Communications 12 (2021): 2390.

[95]

A. Deb, S. Gupta, and P. B. Mazumder, “Exosomes: a New Horizon in Modern Medicine,” Life Sciences 264 (2021): 118623.

[96]

R. Xu, A. Rai, M. Chen, W. Suwakulsiri, D. W. Greening, and R. J. Simpson, “Extracellular Vesicles in Cancer - implications for Future Improvements in Cancer Care,” Nature reviews Clinical oncology 15 (2018): 617-638.

[97]

Q. Huang, Z. Chu, Z. Wang, et al., “circCDK13-loaded Small Extracellular Vesicles Accelerate Healing in Preclinical Diabetic Wound Models,” Nature Communications 15 (2024): 3904.

[98]

A. Marki and K. Ley, “The Expanding family of Neutrophil-derived Extracellular Vesicles,” Immunological Reviews 312 (2022): 52-60.

[99]

Y. Geng, M. Wang, Z. Wu, J. Jia, T. Yang, and L. Yu, “Research Progress of circRNA in Malignant Tumour Metabolic Reprogramming,” RNA Biol 20 (2023): 641-651.

[100]

G. van Niel, G. D'Angelo, and G. Raposo, “Shedding Light on the Cell Biology of Extracellular Vesicles,” Nature Reviews Molecular Cell Biology 19 (2018): 213-228.

[101]

M. K. Jayasinghe, M. Pirisinu, H. Chen, et al., “Harnessing Extracellular Vesicles from Red Blood Cells for Targeted Delivery of Therapeutic Peptides and RNAs for Leukemia Treatment,” Blood 138 (2021): 3980-3980.

[102]

T. C. Pham, M. K. Jayasinghe, T. T. Pham, et al., “Covalent Conjugation of Extracellular Vesicles with Peptides and Nanobodies for Targeted Therapeutic Delivery,” Journal of Extracellular Vesicles 10 (2021): e12057.

[103]

Z. Miao, J. Li, Y. Wang, et al., “Hsa_circ_0136666 stimulates Gastric Cancer Progression and Tumor Immune Escape by Regulating the miR-375/PRKDC Axis and PD-L1 Phosphorylation,” Molecular Cancer 22 (2023): 205.

[104]

M. Zhou, Q. Jiang, Q. Wang, et al., “Exosome-transmitted circ_0004664 Suppresses the Migration and Invasion of Cadmium-transformed human Bronchial Epithelial Cells by Regulating PTEN Expression via miR-942-5p,” Chemico-Biological Interactions 403 (2024): 111221.

[105]

J. Lin, Z. Lyu, H. Feng, et al., “CircPDIA3/miR-449a/XBP1 Feedback Loop Curbs Pyroptosis by Inhibiting Palmitoylation of the GSDME-C Domain to Induce Chemoresistance of Colorectal Cancer,” Drug Resistance Updates 76 (2024): 101097.

[106]

L. Yang, J. E. Wilusz, and L. L. Chen, “Biogenesis and Regulatory Roles of Circular RNAs,” Annual Review of Cell and Developmental Biology 38 (2022): 263-289.

[107]

S. Y. Wen, J. Qadir, and B. B. Yang, “Circular RNA Translation: Novel Protein Isoforms and Clinical Significance,” Trends in Molecular Medicine 28 (2022): 405-420.

[108]

D. Barbagallo, A. Caponnetto, D. Brex, et al., “CircSMARCA5 Regulates VEGFA mRNA Splicing and Angiogenesis in Glioblastoma Multiforme through the Binding of SRSF1,” Cancers (Basel) 11 (2019): 194.

[109]

T. K. Shan, T. T. Yang, P. Jing, et al., “Circular RNA IGF1R Promotes Cardiac Repair via Activating β-Catenin Signaling by Interacting with DDX5 in Mice after Ischemic Insults,” Research (Wash D C) (2024): 0451.

[110]

Y. Xu, X. Li, S. Zhang, et al., “CircMMP2(6,7) Cooperates with β-Catenin and PRMT5 to Disrupt Bone Homeostasis and Promote Breast Cancer Bone Metastasis,” Cancer Research 84 (2024): 328-343.

[111]

Z. Lin, F. Xie, X. He, et al., “A Novel Protein Encoded by circKANSL1L Regulates Skeletal Myogenesis via the Akt-FoxO3 Signaling Axis,” International Journal of Biological Macromolecules 257 (2024): 128609.

[112]

X. Zhao, J. Guo, X. Wang, et al., “A New Circular RNA-encoded Protein BIRC6-236aa Inhibits Transmissible Gastroenteritis Virus (TGEV)-induced Mitochondrial Dysfunction,” Journal of Biological Chemistry 298 (2022): 102280.

[113]

X. Zheng, L. Chen, Y. Zhou, et al., “A Novel Protein Encoded by a Circular RNA circPPP1R12A Promotes Tumor Pathogenesis and Metastasis of Colon Cancer via Hippo-YAP Signaling,” Molecular Cancer 18 (2019): 47.

[114]

W. Zhao, Y. Xue, Y. Zhang, Y. Zhu, Z. Chen, and X. Zhao, “A Peptide Translated from circPPP1R12A Promotes the Malignancy of Non-small Cell Lung Cancer Cells through AKT Signaling Pathway,” Journal of Clinical Laboratory Analysis 36 (2022): e24644.

[115]

H. Liu, D. Fang, C. Zhang, et al., “Circular MTHFD2L RNA-encoded CM-248aa Inhibits Gastric Cancer Progression by Targeting the SET-PP2A Interaction,” Molecular Therapy 31 (2023): 1739-1755.

[116]

C. K. Chen, R. Cheng, J. Demeter, et al., “Structured Elements Drive Extensive Circular RNA Translation,” Molecular Cell 81 (2021): 4300-4318. e4313.

[117]

N. R. Pamudurti, O. Bartok, M. Jens, et al., “Translation of CircRNAs,” Molecular Cell 66 (2017): 9-21. e27.

[118]

Y. Zhang, Z. Liu, Z. Zhong, et al., “A Tumor Suppressor Protein Encoded by circKEAP1 Inhibits Osteosarcoma Cell Stemness and Metastasis by Promoting Vimentin Proteasome Degradation and Activating Anti-tumor Immunity,” Journal of Experimental & Clinical Cancer Research 43 (2024): 52.

[119]

Y. Liu, Z. Li, M. Zhang, et al., “Rolling-translated EGFR Variants Sustain EGFR Signaling and Promote Glioblastoma Tumorigenicity,” Neuro-oncol 23 (2021): 743-756.

[120]

S. Zhang, C. Wang, Y. Wang, et al., “A Novel Protein Encoded by circRsrc1 Regulates Mitochondrial Ribosome Assembly and Translation during Spermatogenesis,” BMC Biology 21 (2023): 94.

[121]

X. Fan, Y. Yang, C. Chen, and Z. Wang, “Pervasive Translation of Circular RNAs Driven by Short IRES-like Elements,” Nature Communications 13 (2022): 3751.

[122]

R. X. Chen, X. Chen, L. P. Xia, et al., “N(6)-methyladenosine Modification of circNSUN2 Facilitates Cytoplasmic Export and Stabilizes HMGA2 to Promote Colorectal Liver Metastasis,” Nature Communications 10 (2019): 4695.

[123]

W. Zheng, L. Wang, S. Geng, et al., “CircMIB2 therapy Can Effectively Treat Pathogenic Infection by Encoding a Novel Protein,” Cell death & disease 14 (2023): 578.

[124]

C. Chen and P. Sarnow, “Initiation of Protein Synthesis by the Eukaryotic Translational Apparatus on Circular RNAs,” Science 268 (1995): 415-417.

[125]

T. Yokoyama, K. Machida, W. Iwasaki, et al., “HCV IRES Captures an Actively Translating 80S Ribosome,” Molecular Cell 74 (2019): 1208.

[126]

L. Roberts and H. J. Wieden, “The Prokaryotic Activity of the IGR IRESs Is Mediated by Ribosomal Protein S1,” Nucleic Acids Research 50 (2022): 9355-9367.

[127]

H. Zhang, J. Zhou, J. Li, et al., “N6-Methyladenosine Promotes Translation of VEGFA to Accelerate Angiogenesis in Lung Cancer,” Cancer Research 83 (2023): 2208-2225.

[128]

J. Angulo, C. J. Cáceres, N. Contreras, et al., “Polypyrimidine-Tract-Binding Protein Isoforms Differentially Regulate the Hepatitis C Virus Internal Ribosome Entry Site,” Viruses. 15 (2022): 8.

[129]

J. Zhao, Y. Li, C. Wang, et al., “IRESbase: a Comprehensive Database of Experimentally Validated Internal Ribosome Entry Sites,” Genomics, Proteomics & Bioinformatics 18 (2020): 129-139.

[130]

M. Lyu, X. Li, Y. Shen, et al., “CircATRNL1 and circZNF608 Inhibit Ovarian Cancer by Sequestering miR-152-5p and Encoding Protein,” Frontiers in Genetics 13 (2022): 784089.

[131]

Y. Yang, X. Gao, M. Zhang, et al., “Novel Role of FBXW7 Circular RNA in Repressing Glioma Tumorigenesis,” JNCI: Journal of the National Cancer Institute 110 (2018): 304-315.

[132]

X. Xia, X. Li, F. Li, et al., “A Novel Tumor Suppressor Protein Encoded by Circular AKT3 RNA Inhibits Glioblastoma Tumorigenicity by Competing with Active Phosphoinositide-dependent Kinase-1,” Molecular Cancer 18 (2019): 131.

[133]

R. Song, S. Ma, J. Xu, et al., “A Novel Polypeptide Encoded by the Circular RNA ZKSCAN1 Suppresses HCC via Degradation of mTOR,” Molecular Cancer 22 (2023): 16.

[134]

J. Song, J. Zheng, X. Liu, et al., “A Novel Protein Encoded by ZCRB1-induced circHEATR5B Suppresses Aerobic Glycolysis of GBM through Phosphorylation of JMJD5,” Journal of Experimental & Clinical Cancer Research 41 (2022): 171.

[135]

Y. Peng, Y. Xu, X. Zhang, et al., “A Novel Protein AXIN1-295aa Encoded by circAXIN1 Activates the Wnt/β-catenin Signaling Pathway to Promote Gastric Cancer Progression,” Molecular Cancer 20 (2021): 158.

[136]

T. Wang, Z. Liu, Y. She, et al., “A Novel Protein Encoded by circASK1 Ameliorates Gefitinib Resistance in Lung Adenocarcinoma by Competitively Activating ASK1-dependent Apoptosis,” Cancer Letters 520 (2021): 321-331.

[137]

K. Lei, R. Liang, J. Liang, et al., “CircPDE5A-encoded Novel Regulator of the PI3K/AKT Pathway Inhibits Esophageal Squamous Cell Carcinoma Progression by Promoting USP14-mediated De-ubiquitination of PIK3IP1,” Journal of Experimental & Clinical Cancer Research 43 (2024): 124.

[138]

B. Huang, J. Ren, Q. Ma, et al., “A Novel Peptide PDHK1-241aa Encoded by circPDHK1 Promotes ccRCC Progression via Interacting with PPP1CA to Inhibit AKT Dephosphorylation and Activate the AKT-mTOR Signaling Pathway,” Molecular Cancer 23 (2024): 34.

[139]

J. Li, M. Ma, X. Yang, et al., “Circular HER2 RNA Positive Triple Negative Breast Cancer Is Sensitive to Pertuzumab,” Molecular Cancer 19 (2020): 142.

[140]

Y. Li, Z. Wang, P. Su, et al., “circ-EIF6 Encodes EIF6-224aa to Promote TNBC Progression via Stabilizing MYH9 and Activating the Wnt/Beta-catenin Pathway,” Molecular Therapy 30 (2022): 415-430.

[141]

B. Jiang, M. Tian, G. Li, et al., “circEPS15 Overexpression in Hepatocellular Carcinoma Modulates Tumor Invasion and Migration,” Frontiers in Genetics 13 (2022): 804848.

[142]

F. Hu, Y. Peng, S. Chang, et al., “Vimentin Binds to a Novel Tumor Suppressor Protein, GSPT1-238aa, Encoded by circGSPT1 with a Selective Encoding Priority to Halt Autophagy in Gastric Carcinoma,” Cancer Letters 545 (2022): 215826.

[143]

M. Zhang, N. Huang, X. Yang, et al., “A Novel Protein Encoded by the Circular Form of the SHPRH Gene Suppresses Glioma Tumorigenesis,” Oncogene 37 (2018): 1805-1814.

[144]

S. Chang, D. Ren, L. Zhang, et al., “Therapeutic SHPRH-146aa Encoded by Circ-SHPRH Dynamically Upregulates P21 to Inhibit CDKs in Neuroblastoma,” Cancer Letters 598 (2024): 217120.

[145]

J. T. Saunders, S. Kumar, A. Benavides-Serrato, et al., “Translation of circHGF RNA Encodes an HGF Protein Variant Promoting Glioblastoma Growth through Stimulation of c-MET,” Journal of Neuro-Oncology 163 (2023): 207-218.

[146]

J. Guo, L. W. Chen, Z. Q. Huang, et al., “Suppression of the Inhibitory Effect of circ_0036176-Translated Myo9a-208 on Cardiac Fibroblast Proliferation by miR-218-5p,” J Cardiovasc Transl Res 15 (2022): 548-559.

[147]

R. Chen, T. Yang, B. Jin, et al., “CircTmeff1 Promotes Muscle Atrophy by Interacting with TDP-43 and Encoding a Novel TMEFF1-339aa Protein,” Adv Sci (Weinh) (2023): e2206732.

[148]

Y. Y. Liu, Y. Y. Zhang, L. Y. Ran, et al., “A Novel Protein FNDC3B-267aa Encoded by circ0003692 Inhibits Gastric Cancer Metastasis via Promoting Proteasomal Degradation of c-Myc,” Journal of translational medicine 22 (2024): 507.

[149]

Z. Pan, J. Cai, J. Lin, et al., “A Novel Protein Encoded by circFNDC3B Inhibits Tumor Progression and EMT through Regulating Snail in Colon Cancer,” Molecular cancer 19 (2020): 71.

[150]

S. Yu, S. Su, P. Wang, et al., “Tumor-associated Macrophage-induced circMRCKα Encodes a Peptide to Promote Glycolysis and Progression in Hepatocellular Carcinoma,” Cancer Letters 591 (2024): 216872.

[151]

N. Zhao, Y. Cao, R. Tao, et al., “The circMYBL2-encoded p185 Protein Suppresses Colorectal Cancer Progression by Inhibiting Serine Biosynthesis,” Cancer Research (2024).

[152]

W. Zheng, L. Wang, S. Geng, and T. Xu, “CircYthdc2 generates Polypeptides through Two Translation Strategies to Facilitate Virus Escape,” Cellular and Molecular Life Sciences 81 (2024): 91.

[153]

S. Wang, Y. Wang, Q. Li, X. Li, X. Feng, and K. Zeng, “The Novel β-TrCP Protein Isoform Hidden in Circular RNA Confers Trastuzumab Resistance in HER2-positive Breast Cancer,” Redox Biology 67 (2023): 102896.

[154]

Z. Song, J. Lin, R. Su, et al., “eIF3j inhibits Translation of a Subset of Circular RNAs in Eukaryotic Cells,” Nucleic Acids Research 50 (2022): 11529-11549.

[155]

I. Legnini, G. Di Timoteo, F. Rossi, et al., “Circ-ZNF609 Is a Circular RNA That Can Be Translated and Functions in Myogenesis,” Molecular Cell 66 (2017): 22-37.

[156]

G. Di Timoteo, D. Dattilo, A. Centrón-Broco, et al., “Modulation of circRNA Metabolism by M(6)A Modification,” Cell reports 31 (2020): 107641.

[157]

J. Zhong, X. Wu, Y. Gao, et al., “Circular RNA Encoded MET Variant Promotes Glioblastoma Tumorigenesis,” Nature Communications 14 (2023): 4467.

[158]

K. Zeng, J. Peng, Y. Xing, et al., “A Positive Feedback Circuit Driven by M(6)A-modified Circular RNA Facilitates Colorectal Cancer Liver Metastasis,” Molecular Cancer 22 (2023): 202.

[159]

Y. C. Yi, X. Y. Chen, J. Zhang, and J. S. Zhu, “Novel Insights into the Interplay between M(6)A Modification and Noncoding RNAs in Cancer,” Molecular Cancer 19 (2020): 121.

[160]

H. Liu, O. Begik, M. C. Lucas, et al., “Accurate Detection of M(6)A RNA Modifications in Native RNA Sequences,” Nature Communications 10 (2019): 4079.

[161]

Y. Wang, Y. Wang, H. Patel, et al., “Epigenetic Modification of M(6)A Regulator Proteins in Cancer,” Molecular Cancer 22 (2023): 102.

[162]

Y. Fu, D. Dominissini, G. Rechavi, and C. He, “Gene Expression Regulation Mediated through Reversible m⁶A RNA Methylation,” Nature Reviews Genetics 15 (2014): 293-306.

[163]

X. Wang, J. Feng, Y. Xue, et al., “Structural Basis of N(6)-adenosine Methylation by the METTL3-METTL14 Complex,” Nature 534 (2016): 575-578.

[164]

G. Li, L. Ma, S. He, et al., “WTAP-mediated M(6)A Modification of lncRNA NORAD Promotes Intervertebral Disc Degeneration,” Nature Communications 13 (2022): 1469.

[165]

J. Choe, S. Lin, W. Zhang, et al., “mRNA Circularization by METTL3-eIF3h Enhances Translation and Promotes Oncogenesis,” Nature 561 (2018): 556-560.

[166]

B. Li, W. Xi, Y. Bai, et al., “FTO-dependent M(6)A Modification of Plpp3 in circSCMH1-regulated Vascular Repair and Functional Recovery Following Stroke,” Nature Communications 14 (2023): 489.

[167]

B. B. Hu, X. Y. Wang, X. Y. Gu, et al., “N(6)-methyladenosine (m(6)A) RNA Modification in Gastrointestinal Tract Cancers: Roles, Mechanisms, and Applications,” Molecular Cancer 18 (2019): 178.

[168]

F. Yu, J. Wei, X. Cui, et al., “Post-translational Modification of RNA m6A Demethylase ALKBH5 Regulates ROS-induced DNA Damage Response,” Nucleic Acids Research 49 (2021): 5779-5797.

[169]

J. Zhou, L. Yao, Y. Su, and L. Tian, “IGF2BP3 loss Inhibits Cell Progression by Upregulating has_circRNA_103820, and hsa_circRNA_103820-encoded Peptide Inhibits Cell Progression by Inactivating the AKT Pathway in Lung Cancer,” Chemical Biology and Drug Design 103 (2024): e14473.

[170]

T. Liu, Q. Wei, J. Jin, et al., “The m6A Reader YTHDF1 Promotes Ovarian Cancer Progression via Augmenting EIF3C Translation,” Nucleic Acids Research 48 (2020): 3816-3831.

[171]

Y. Yang, Y. Zhang, G. Chen, et al., “KAP1 stabilizes MYCN mRNA and Promotes Neuroblastoma Tumorigenicity by Protecting the RNA M(6)A Reader YTHDC1 Protein Degradation,” Journal of Experimental & Clinical Cancer Research 43 (2024): 141.

[172]

Y. Gu, S. Niu, Y. Wang, et al., “DMDRMR-Mediated Regulation of m(6)A-Modified CDK4 by m(6)A Reader IGF2BP3 Drives ccRCC Progression,” Cancer Research 81 (2021): 923-934.

[173]

A. Shen, K. Hencel, M. T. Parker, et al., “U6 snRNA m6A Modification Is Required for Accurate and Efficient Splicing of C. elegans and human Pre-mRNAs,” Nucleic Acids Research 52 (2024): 9139-9160.

[174]

K. I. Zhou, H. Shi, R. Lyu, et al., “Regulation of Co-transcriptional Pre-mRNA Splicing by M(6)A through the Low-Complexity Protein hnRNPG,” Molecular Cell 76 (2019): 70-81. e79.

[175]

L. Chen, C. Zhang, W. Ma, J. Huang, Y. Zhao, and H. Liu, “METTL3-mediated m6A Modification Stabilizes TERRA and Maintains Telomere Stability,” Nucleic Acids Research 50 (2022): 11619-11634.

[176]

Z. Dai, W. Zhu, Y. Hou, et al., “METTL5-mediated 18S rRNA M(6)A Modification Promotes Oncogenic mRNA Translation and Intrahepatic Cholangiocarcinoma Progression,” Molecular Therapy 31 (2023): 3225-3242.

[177]

L. Zhang, C. Hou, C. Chen, et al., “The Role of N(6)-methyladenosine (m(6)A) Modification in the Regulation of circRNAs,” Molecular Cancer 19 (2020): 105.

[178]

Y. Lee, J. Choe, O. H. Park, and Y. K. Kim, “Molecular Mechanisms Driving mRNA Degradation by M(6)A Modification,” Trends in Genetics 36 (2020): 177-188.

[179]

K. Boulias and E. L. Greer, “Biological Roles of Adenine Methylation in RNA,” Nature Reviews Genetics 24 (2023): 143-160.

[180]

R. Kumari, P. Ranjan, Z. G. Suleiman, et al., “mRNA Modifications in Cardiovascular Biology and Disease: with a Focus on m6A Modification,” Cardiovascular Research 118 (2022): 1680-1692.

[181]

Y. Qin, Y. Qiao, L. Li, et al., “The M(6)A Methyltransferase METTL3 Promotes Hypoxic Pulmonary Arterial Hypertension,” Life Sciences 274 (2021): 119366.

[182]

K. Tzelepis, E. De Braekeleer, E. Yankova, et al., “Pharmacological Inhibition of the RNA m6a Writer METTL3 as a Novel Therapeutic Strategy for Acute Myeloid Leukemia,” Blood 134 (2019): 403-403.

[183]

L. P. Vu, B. F. Pickering, Y. Cheng, et al., “m6a Regulates Differentiation State and mRNA Translation in Myeloid Leukemia,” Blood 130 (2017): 791-791.

[184]

A. Paramasivam, J. V. Priyadharsini, and S. Raghunandhakumar, “Implications of m6A Modification in Autoimmune Disorders,” Cell Mol Immunol 17 (2020): 550-551.

[185]

R. Li, C. Zhu, Y. Wang, et al., “The Relationship between the Network of Non-coding RNAs-molecular Targets and N6-methyladenosine Modification in Tumors of Urinary System,” Cell death & disease 15 (2024): 275.

[186]

J. Han, H. Kong, X. Wang, and X. A. Zhang, “Novel Insights into the Interaction between N6-methyladenosine Methylation and Noncoding RNAs in Musculoskeletal Disorders,” Cell Proliferation 55 (2022): e13294.

[187]

J. Chen, Y. Tian, Q. Zhang, et al., “Novel Insights into the Role of N6-Methyladenosine RNA Modification in Bone Pathophysiology,” Stem Cells and Development 30 (2021): 17-28.

[188]

Y. Yang, X. Fan, M. Mao, et al., “Extensive Translation of Circular RNAs Driven by N(6)-methyladenosine,” Cell Research 27 (2017): 626-641.

[189]

C. Tang, Y. Xie, T. Yu, et al., “m(6)A-dependent Biogenesis of Circular RNAs in Male Germ Cells,” Cell Research 30 (2020): 211-228.

[190]

Y. An and H. Duan, “The Role of m6A RNA Methylation in Cancer Metabolism,” Molecular Cancer 21 (2022): 14.

[191]

H. Shi, X. Wang, Z. Lu, et al., “YTHDF3 facilitates Translation and Decay of N(6)-methyladenosine-modified RNA,” Cell Research 27 (2017): 315-328.

[192]

C. Zhou, B. Molinie, K. Daneshvar, et al., “Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns That Are Distinct from mRNAs,” Cell Reports 20 (2017): 2262-2276.

[193]

D. Sadato, T. Ono, S. Gotoh-Saito, et al., “Eukaryotic Translation Initiation Factor 3 (eIF3) Subunit E Is Essential for Embryonic Development and Cell Proliferation,” FEBS Open Bio 8 (2018): 1188-1201.

[194]

R. She, J. Luo, and J. S. Weissman, “Translational Fidelity Screens in Mammalian Cells Reveal eIF3 and eIF4G2 as Regulators of Start Codon Selectivity,” Nucleic Acids Research 51 (2023): 6355-6369.

[195]

Y. Lin, F. Li, L. Huang, et al., “eIF3 Associates with 80S Ribosomes to Promote Translation Elongation, Mitochondrial Homeostasis, and Muscle Health,” Molecular Cell 79 (2020): 577.

[196]

M. C. Kramer, D. Liang, D. C. Tatomer, et al., “Combinatorial Control of Drosophila Circular RNA Expression by Intronic Repeats, hnRNPs, and SR Proteins,” Genes & development 29 (2015): 2168-2182.

[197]

W. Huang, Y. Ling, S. Zhang, et al., “TransCirc: an Interactive Database for Translatable Circular RNAs Based on Multi-omics Evidence,” Nucleic Acids Research 49 (2021): D236-d242.

[198]

R. Li, H. Zhao, X. Huang, et al., “Super-enhancer RNA M(6)A Promotes Local Chromatin Accessibility and Oncogene Transcription in Pancreatic Ductal Adenocarcinoma,” Nature Genetics 55 (2023): 2224-2234.

[199]

M. G. AbouHaidar, S. Venkataraman, A. Golshani, B. Liu, and T. Ahmad, “Novel Coding, Translation, and Gene Expression of a Replicating Covalently Closed Circular RNA of 220 Nt,” PNAS 111 (2014): 14542-14547.

[200]

J. E. Toller-Kawahisa, C. H. Hiroki, C. M. S. Silva, et al., “The Metabolic Function of Pyruvate Kinase M2 Regulates Reactive Oxygen Species Production and Microbial Killing by Neutrophils,” Nature Communications 14 (2023): 4280.

[201]

Y. Wei, Q. Miao, Q. Zhang, et al., “Aerobic Glycolysis Is the Predominant Means of Glucose Metabolism in Neuronal Somata, Which Protects against Oxidative Damage,” Nature Neuroscience 26 (2023): 2081-2089.

[202]

F. Yang, A. P. Hu, Y. H. Guo, et al., “p113 isoform Encoded by CUX1 Circular RNA Drives Tumor Progression via Facilitating ZRF1/BRD4 Transactivation,” Molecular Cancer 20 (2021): 123.

[203]

N. Koga, F. Moriya, K. Waki, A. Yamada, K. Itoh, and M. Noguchi, “Immunological Efficacy of Herbal Medicines in Prostate Cancer Patients Treated by Personalized Peptide Vaccine,” Cancer Science 108 (2017): 2326-2332.

[204]

M. Noguchi, K. Fujimoto, G. Arai, et al., “A Randomized Phase III Trial of Personalized Peptide Vaccination for Castration‑Resistant Prostate Cancer Progressing after docetaxel,” Oncology Reports 45 (2021): 159-168.

[205]

L. Wang, W. Zheng, X. Lv, Y. Song, and T. Xu, “circMORC3-encoded Novel Protein Negatively Regulates Antiviral Immunity through Synergizing with Host Gene MORC3,” Plos Pathogens 19 (2023): e1011894.

[206]

Z. Pan, J. Zheng, J. Zhang, et al., “A Novel Protein Encoded by Exosomal CircATG4B Induces Oxaliplatin Resistance in Colorectal Cancer by Promoting Autophagy,” Adv Sci (Weinh) 9 (2022): e2204513.

[207]

Y. Li, Z. Wang, J. Yang, et al., “CircTRIM1 encodes TRIM1-269aa to Promote Chemoresistance and Metastasis of TNBC via Enhancing CaM-dependent MARCKS Translocation and PI3K/AKT/mTOR Activation,” Molecular cancer 23 (2024): 102.

[208]

A. S. De Groot, B. J. Roberts, A. Mattei, S. Lelias, C. Boyle, and W. D. Martin, “Immunogenicity Risk Assessment of Synthetic Peptide Drugs and Their Impurities,” Drug Discov Today 28 (2023): 103714.

[209]

X. Wang, N. Meng, S. Wang, et al., “Factors Influencing the Immunogenicity and Immunotoxicity of Cyclic RGD Peptide-Modified Nanodrug Delivery Systems,” Mol Pharm 17 (2020): 3281-3290.

[210]

J. Rosenstock, C. H. Sorli, M. E. Trautmann, et al., “Once-Weekly Efpeglenatide Dose-Range Effects on Glycemic Control and Body Weight in Patients with Type 2 Diabetes on Metformin or Drug Naive, Referenced to Liraglutide,” Diabetes Care 42 (2019): 1733-1741.

[211]

X. Bian, X. Qu, J. Zhang, et al., “Pharmacokinetics and Pharmacodynamics of Peptide Antibiotics,” Advanced Drug Delivery Reviews 183 (2022): 114171.

[212]

N. V. Marques, L. E. A. Wildemberg, and M. R. Gadelha, “Long-term, Real-world Experience of Pasireotide Dose Reduction in Patients with Acromegaly,” Endocr Connect 12 (2023): e230155.

[213]

Q. Wang, B. Cheng, S. Singh, et al., “A Protein-encoding CCDC7 Circular RNA Inhibits the Progression of Prostate Cancer by Up-regulating FLRT3,” NPJ Precis Oncol 8 (2024): 11.

[214]

S. F. A. Rizvi, H. Zhang, and Q. Fang, “Engineering Peptide Drug Therapeutics through Chemical Conjugation and Implication in Clinics,” Medicinal Research Reviews 44 (2024): 2420-2471.

[215]

H. S. Buddhiraju, D. N. Yadav, S. Dey, K. Eswar, A. Padmakumar, and A. K. Rengan, “Advances in Peptide-Decorated Targeted Drug Delivery: Exploring Therapeutic Potential and Nanocarrier Strategies,” ACS Appl Bio Mater 7 (2024): 4879-4893.

[216]

A. Petrovic, D. Igrec, K. Rozac, et al., “The Role of GLP1-RAs in Direct Modulation of Lipid Metabolism in Hepatic Tissue as Determined Using in Vitro Models of NAFLD,” Current Issues in Molecular Biology 45 (2023): 4544-4556.

[217]

K. E. Greber and M. Dawgul, “Antimicrobial Peptides under Clinical Trials,” Current Topics in Medicinal Chemistry 17 (2017): 620-628.

[218]

R. Buj, C. W. Chen, E. S. Dahl, et al., “Suppression of p16 Induces mTORC1-Mediated Nucleotide Metabolic Reprogramming,” Cell reports 28 (2019): 1971-1980. e1978.

[219]

Z. Mai, J. Zhong, J. Zhang, et al., “Carrier-Free Immunotherapeutic Nano-Booster with Dual Synergistic Effects Based on Glutaminase Inhibition Combined with Photodynamic Therapy,” ACS Nano (2023).

[220]

I. Vercellino and L. A. Sazanov, “The Assembly, Regulation and Function of the Mitochondrial respiratory Chain,” Nature Reviews Molecular Cell Biology 23 (2022): 141-161.

[221]

Y. G. Jeon, Y. Y. Kim, G. Lee, and J. B. Kim, “Physiological and Pathological Roles of Lipogenesis,” Nat Metab 5 (2023): 735-759.

[222]

X. Li, L. Tang, J. Deng, et al., “Identifying Metabolic Reprogramming Phenotypes with Glycolysis-lipid Metabolism Discoordination and Intercellular Communication for Lung Adenocarcinoma Metastasis,” Communications Biology 5 (2022): 198.

[223]

H. R. Jin, J. Wang, Z. J. Wang, et al., “Lipid Metabolic Reprogramming in Tumor Microenvironment: from Mechanisms to Therapeutics,” Journal of hematology & oncology 16 (2023): 103.

[224]

S. Bröer, “Intestinal Amino Acid Transport and Metabolic Health,” Annual Review of Nutrition 43 (2023): 73-99.

[225]

S. Qiao, C. Liu, L. Sun, et al., “Gut Parabacteroides Merdae Protects against Cardiovascular Damage by Enhancing Branched-chain Amino Acid Catabolism,” Nat Metab 4 (2022): 1271-1286.

[226]

J. Wang, D. Yang, X. Shen, et al., “BPTES Inhibits Anthrax Lethal Toxin-induced Inflammatory Response,” International Immunopharmacology 85 (2020): 106664.

[227]

S. Valiyari, M. Salami, R. Mahdian, et al., “sIL-24 Peptide, a human Interleukin-24 Isoform, Induces Mitochondrial-mediated Apoptosis in human Cancer Cells,” Cancer Chemotheraphy and Pharmacology 80 (2017): 451-459.

[228]

D. Wu, Y. Gao, L. Chen, et al., “Anti-tumor Effects of a Novel Chimeric Peptide on S180 and H22 Xenografts Bearing Nude Mice,” Peptides 31 (2010): 850-864.

[229]

J. Quandt, C. Schlude, M. Bartoschek, et al., “Long-peptide Vaccination with Driver Gene Mutations in p53 and Kras Induces Cancer Mutation-specific Effector as Well as Regulatory T Cell Responses,” Oncoimmunology 7 (2018): e1500671.

[230]

A. de Oliveira É, B. L. Faintuch, D. Seo, et al., “Radiolabeled GX1 Peptide for Tumor Angiogenesis Imaging,” Applied Biochemistry and Biotechnology 185 (2018): 863-874.

[231]

S. van Heesch, F. Witte, V. Schneider-Lunitz, et al., “The Translational Landscape of the Human Heart,” Cell 178 (2019): 242-260. e229.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/