Novel Lysosomal-Associated Transmembrane Protein 4B-Positive Stem-Like Cell Subpopulation Characterizes High-Risk Colorectal Cancer Subtypes

Yangyang Fang , Tianmei Fu , Ziqing Xiong , Qian Zhang , Wei Liu , Kuai Yu , Aiping Le

MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70284

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70284 DOI: 10.1002/mco2.70284
ORIGINAL ARTICLE

Novel Lysosomal-Associated Transmembrane Protein 4B-Positive Stem-Like Cell Subpopulation Characterizes High-Risk Colorectal Cancer Subtypes

Author information +
History +
PDF

Abstract

Colorectal cancer (CRC) exhibits substantial intertumoral heterogeneity, largely attributable to multiple tumor stem-like cell populations, whose molecular identities and clinical significance remain incompletely defined. This study delineates tumor-intrinsic stem-like cell diversity and its prognostic implications through single-cell transcriptomic profiling of 171,906 tumor epithelial cells (n = 152), integrated with bulk transcriptomic (n = 1389) and genomic (n = 1077) datasets. Functional validation was conducted via in vitro assays and multiplex immunofluorescence. A previously unrecognized lysosome-associated transmembrane protein 4B-positive (LAPTM4B+) stem-like cell cluster was identified, distinct from the classical leucine-rich repeat-containing G-protein coupled receptor 5-positive (LGR5+) population. LAPTM4B+ cells exhibited MYC pathway activation and 8q chromosomal gains, with preferential enrichment in microsatellite-stable, POLE wild-type, and left-sided tumors. Stratification based on LAPTM4B+/LGR5+ stem-like cell ratios defined four CRC stem-like subtypes (CSS), with CSS2 (LAPTM4B+-dominant) associated with the poorest prognosis (HR = 2.31, p < 0.001). The combined expression of LAPTM4B and LGR5 demonstrated superior predictive power for CRC progression compared to either marker alone (AUC = 0.820 vs. 0.715/0.699), underscoring the synergistic influence of distinct stem-like cell populations on patient outcomes. These findings provide novel insights into CRC heterogeneity and cooperative interactions among diverse stem-like populations shaping disease outcomes.

Keywords

colorectal cancer / leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) / lysosome-associated transmembrane protein 4B (LAPTM4B) / stem-like cells

Cite this article

Download citation ▾
Yangyang Fang, Tianmei Fu, Ziqing Xiong, Qian Zhang, Wei Liu, Kuai Yu, Aiping Le. Novel Lysosomal-Associated Transmembrane Protein 4B-Positive Stem-Like Cell Subpopulation Characterizes High-Risk Colorectal Cancer Subtypes. MedComm, 2025, 6(7): e70284 DOI:10.1002/mco2.70284

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. B. Amin, F. L. Greene, S. B. Edge, et al., “The Eighth Edition AJCC Cancer Staging Manual: Continuing to Build a Bridge From a Population-Based to a More “Personalized” Approach to Cancer Staging,” CA: A Cancer Journal for Clinicians 67, no. 2 (2017): 93-99.

[2]

Cancer Genome Atlas Network. “Comprehensive Molecular Characterization of Human Colon and Rectal Cancer.” Nature 487, no. 7407 (2012): 330-337.

[3]

P. L. Bedard, A. R. Hansen, M. J. Ratain, and L. L. Siu, “Tumour Heterogeneity in the Clinic,” Nature 501, no. 7467 (2013): 355-364.

[4]

T. Reya, S. J. Morrison, M. F. Clarke, and I. L. Weissman, “Stem Cells, Cancer, and Cancer Stem Cells,” Nature 414, no. 6859 (2001): 105-111.

[5]

P. Chen, W. H. Hsu, J. Han, Y. Xia, and R. A. DePinho, “Cancer Stemness Meets Immunity: From Mechanism to Therapy,” Cell Reports 34, no. 1 (2021): 108597.

[6]

A. Kreso and J. E. Dick, “Evolution of the Cancer Stem Cell Model,” Cell Stem Cell 14, no. 3 (2014): 275-291.

[7]

T. Sato, R. G. Vries, H. J. Snippert, et al., “Single Lgr5 Stem Cells Build Crypt-Villus Structures in Vitro Without a Mesenchymal Niche,” Nature 459, no. 7244 (2009): 262-265.

[8]

A. Soleimani, N. Saeedi, A. M. Al-Asady, et al., “Colorectal Cancer Stem Cell Biomarkers: Biological Traits and Prognostic Insights,” Current Pharmaceutical Design 30, no. 18 (2024): 1386-1397.

[9]

S. Basu, N. Gavert, T. Brabletz, and A. Ben-Ze'ev, “The Intestinal Stem Cell Regulating Gene ASCL2 Is Required for L1-Mediated Colon Cancer Progression,” Cancer Letters 424 (2018): 9-18.

[10]

M. J. T. Stubbington, O. Rozenblatt-Rosen, A. Regev, and S. A. Teichmann, “Single-Cell Transcriptomics to Explore the Immune System in Health and Disease,” Science 358, no. 6359 (2017): 58-63.

[11]

R. Li, X. Liu, X. Huang, et al., “Single-Cell Transcriptomic Analysis Deciphers Heterogenous Cancer Stem-Like Cells in Colorectal Cancer and Their Organ-Specific Metastasis,” Gut 73, no. 3 (2024): 470-484.

[12]

Y. Wu, S. Yang, J. Ma, et al., “Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level,” Cancer Discovery 12, no. 1 (2022): 134-153.

[13]

F. Wang, J. Long, L. Li, et al., “Single-Cell and Spatial Transcriptome Analysis Reveals the Cellular Heterogeneity of Liver Metastatic Colorectal Cancer,” Science Advances 9, no. 24 (2023): eadf5464.

[14]

G. S. Gulati, S. S. Sikandar, D. J. Wesche, et al., “Single-Cell Transcriptional Diversity Is a Hallmark of Developmental Potential,” Science 367, no. 6476 (2020): 405-411.

[15]

K. C. Oost, L. van Voorthuijsen, A. Fumagalli, et al., “Specific Labeling of Stem Cell Activity in Human Colorectal Organoids Using an ASCL2-Responsive Minigene,” Cell Reports 22, no. 6 (2018): 1600-1614.

[16]

S. Viswanadhapalli, K. V. Dileep, K. Y. J. Zhang, H. B. Nair, and R. K. Vadlamudi, “Targeting LIF/LIFR Signaling in Cancer,” Genes & Diseases 9, no. 4 (2022): 973-980.

[17]

J. Guinney, R. Dienstmann, X. Wang, et al., “The Consensus Molecular Subtypes of Colorectal Cancer,” Nature Medicine 21, no. 11 (2015): 1350-1356.

[18]

M. Abbasian, E. Mousavi, Z. Arab-Bafrani, and A. Sahebkar, “The Most Reliable Surface Marker for the Identification of Colorectal Cancer Stem-Like Cells: A Systematic Review and Meta-Analysis,” Journal of Cellular Physiology 234, no. 6 (2019): 8192-8202.

[19]

T. Higa and K. I. Nakayama, “Cell Cycle Heterogeneity and Plasticity of Colorectal Cancer Stem Cells,” Cancer Science 115, no. 5 (2024): 1370-1377.

[20]

I. Joanito, P. Wirapati, N. Zhao, et al., “Single-Cell and Bulk Transcriptome Sequencing Identifies Two Epithelial Tumor Cell States and Refines the Consensus Molecular Classification of Colorectal Cancer,” Nature Genetics 54, no. 7 (2022): 963-975.

[21]

J. Martínez-Pérez, C. Torrado, D.-C. Ma, and M. Valladares-Ayerbes, “Targeted Treatment Against Cancer Stem Cells in Colorectal Cancer,” International Journal of Molecular Sciences 25, no. 11 (2024): 6220.

[22]

N. Barker, J. H. van Es, J. Kuipers, et al., “Identification of Stem Cells in Small Intestine and Colon by Marker Gene Lgr5,” Nature 449, no. 7165 (2007): 1003-1007.

[23]

J. A. Clara, C. Monge, Y. Yang, and N. Takebe, “Targeting Signalling Pathways and the Immune Microenvironment of Cancer Stem Cells—A Clinical Update,” Nature reviews Clinical Oncology 17, no. 4 (2020): 204-232.

[24]

C. Morral, J. Stanisavljevic, X. Hernando-Momblona, et al., “Zonation of Ribosomal DNA Transcription Defines a Stem Cell Hierarchy in Colorectal Cancer,” Cell Stem Cell 26, no. 6 (2020): 845-861. e12.

[25]

E. M. F. de Sousa, S. Colak, J. Buikhuisen, et al., “Methylation of Cancer-Stem-Cell-Associated Wnt Target Genes Predicts Poor Prognosis in Colorectal Cancer Patients,” Cell Stem Cell 9, no. 5 (2011): 476-485.

[26]

S. B. Malla, R. M. Byrne, M. W. Lafarge, et al., “Pathway Level Subtyping Identifies a Slow-Cycling Biological Phenotype Associated With Poor Clinical Outcomes in Colorectal Cancer,” Nature Genetics 56, no. 3 (2024): 458-472.

[27]

B. G. Jang, H. S. Kim, W. Y. Chang, J. M. Bae, W. H. Kim, and G. H. Kang, “Expression Profile of LGR5 and Its Prognostic Significance in Colorectal Cancer Progression,” American Journal of Pathology 188, no. 10 (2018): 2236-2250.

[28]

F. Walker, H. H. Zhang, A. Odorizzi, and A. W. Burgess, “LGR5 Is a Negative Regulator of Tumourigenicity, Antagonizes Wnt Signalling and Regulates Cell Adhesion in Colorectal Cancer Cell Lines,” PLoS ONE 6, no. 7 (2011): e22733.

[29]

C. Wu, S. Qiu, L. Lu, et al., “RSPO2-LGR5 Signaling Has Tumour-Suppressive Activity in Colorectal Cancer,” Nature Communications 5 (2014): 3149.

[30]

J. Liao, J. Wang, Y. Xu, et al., “LAPTM4B-YAP Loop Feedback Amplification Enhances the Stemness of Hepatocellular Carcinoma,” Iscience 26, no. 6 (2023): 106754.

[31]

H. Wang, Q. Zhou, D. F. Xie, Q. Xu, T. Yang, and W. Wang, “LAPTM4B-Mediated Hepatocellular Carcinoma Stem Cell Proliferation and MDSC Migration: Implications for HCC Progression and Sensitivity to PD-L1 Monoclonal Antibody Therapy,” Cell Death & Disease 15, no. 2 (2024): 165.

[32]

R. Yan, D. Liu, H. Guo, et al., “LAPTM4B Counteracts Ferroptosis via Suppressing the Ubiquitin-Proteasome Degradation of SLC7A11 in Non-Small Cell Lung Cancer,” Cell Death & Disease 15, no. 6 (2024): 436.

[33]

H. Wang, Q. Wang, Y. Wu, J. Lou, S. Zhu, and Y. Xu, “Autophagy-Related Gene LAPTM4B Promotes the Progression of Renal Clear Cell Carcinoma and Is Associated With Immunity,” Frontiers in Pharmacology 14 (2023): 1118217.

[34]

R. Yan, D. Liu, J. Wang, et al., “miR-137-LAPTM4B Regulates Cytoskeleton Organization and Cancer Metastasis via the RhoA-LIMK-Cofilin Pathway in Osteosarcoma,” Oncogenesis 12, no. 1 (2023): 25.

[35]

L. Huang, J. H. Bernink, A. Giladi, et al., “Tuft Cells Act as Regenerative Stem Cells in the Human Intestine,” Nature 634, no. 8035 (2024): 929-935.

[36]

C. V. Dang, “MYC, Metabolism, Cell Growth, and Tumorigenesis,” Cold Spring Harbor Perspectives in Medicine 3, no. 8 (2013): a014217.

[37]

M. Müller, P. C. Hermann, S. Liebau, et al., “The Role of Pluripotency Factors to Drive Stemness in Gastrointestinal Cancer,” Stem Cell Research 16, no. 2 (2016): 349-357.

[38]

N. V. Varlakhanova, R. F. Cotterman, W. N. deVries, et al., “myc Maintains Embryonic Stem Cell Pluripotency and Self-Renewal,” Differentiation 80, no. 1 (2010): 9-19.

[39]

X. Fang, W. Zhou, Q. Wu, et al., “Deubiquitinase USP13 Maintains Glioblastoma Stem Cells by Antagonizing FBXL14-Mediated Myc Ubiquitination,” Journal of Experimental Medicine 214, no. 1 (2017): 245-267.

[40]

D. W. Felsher, “MYC Inactivation Elicits Oncogene Addiction Through Both Tumor Cell-Intrinsic and Host-Dependent Mechanisms,” Genes & Cancer 1, no. 6 (2010): 597-604.

[41]

P. Mulè, D. Fernandez-Perez, S. Amato, et al., “WNT Oncogenic Transcription Requires MYC Suppression of Lysosomal Activity and EPCAM Stabilization in Gastric Tumors,” Gastroenterology 167, no. 5 (2024): 903-918.

[42]

A. Gerger, W. Zhang, D. Yang, et al., “Common Cancer Stem Cell Gene Variants Predict Colon Cancer Recurrence,” Clinical Cancer Research 17, no. 21 (2011): 6934-6943.

[43]

T. E. Buffart, J. Coffa, M. A. Hermsen, et al., “DNA Copy Number Changes at 8q11-24 in Metastasized Colorectal Cancer,” Cellular Oncology 27, no. 1 (2005): 57-65.

[44]

L. Bouaoun, D. Sonkin, M. Ardin, et al., “TP53 Variations in Human Cancers: New Lessons From the IARC TP53 Database and Genomics Data,” Human Mutation 37, no. 9 (2016): 865-876.

[45]

H. Solomon, N. Dinowitz, I. S. Pateras, et al., “Mutant p53 Gain of Function Underlies High Expression Levels of Colorectal Cancer Stem Cells Markers,” Oncogene 37, no. 12 (2018): 1669-1684.

[46]

H. Mizuno, B. T. Spike, G. M. Wahl, and A. J. Levine, “Inactivation of p53 in Breast Cancers Correlates With Stem Cell Transcriptional Signatures,” PNAS 107, no. 52 (2010): 22745-22750.

[47]

R. Di Fiore, M. Marcatti, R. Drago-Ferrante, et al., “Mutant p53 Gain of Function Can be at the Root of Dedifferentiation of Human Osteosarcoma MG63 Cells Into 3AB-OS Cancer Stem Cells,” Bone 60 (2014): 198-212.

[48]

S. Chen, Y. Zhou, Y. Chen, and J. Gu, “fastp: An Ultra-Fast All-in-One FASTQ Preprocessor,” Bioinformatics 34, no. 17 (2018): i884-i890.

[49]

F. A. Wolf, P. Angerer, and F. J. Theis, “SCANPY: Large-Scale Single-Cell Gene Expression Data Analysis,” Genome Biology 19, no. 1 (2018): 15.

[50]

S. L. Wolock, R. Lopez, and A. M. Klein, “Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data,” Cell Systems 8, no. 4 (2019): 281-291. e9.

[51]

M. Lotfollahi, M. Naghipourfar, M. D. Luecken, et al., “Mapping Single-Cell Data to Reference Atlases by Transfer Learning,” Nature Biotechnology 40, no. 1 (2022): 121-130.

[52]

M. Litviňuková, C. Talavera-López, H. Maatz, et al., “Cells of the Adult Human Heart,” Nature 588, no. 7838 (2020): 466-472.

[53]

C. Domínguez Conde, C. Xu, L. B. Jarvis, et al., “Cross-Tissue Immune Cell Analysis Reveals Tissue-Specific Features in Humans,” Science 376, no. 6594 (2022): eabl5197.

[54]

D. Kotliar, A. Veres, M. A. Nagy, et al., “Identifying Gene Expression Programs of Cell-Type Identity and Cellular Activity With Single-Cell RNA-Seq,” Elife 8 (2019): e43803.

[55]

S. Aibar, C. B. González-Blas, T. Moerman, et al., “SCENIC: Single-Cell Regulatory Network Inference and Clustering,” Nature Methods 14, no. 11 (2017): 1083-1086.

[56]

M. Kang, J. J. A. Armenteros, G. S. Gulati, et al., “Mapping Single-Cell Developmental Potential in Health and Disease With Interpretable Deep Learning,” BioRxiv (2024): 2024.03.19.585637.

[57]

Q. Li, “scTour: A Deep Learning Architecture for Robust Inference and Accurate Prediction of Cellular Dynamics,” Genome Biology 24, no. 1 (2023): 149.

[58]

N. Alghamdi, W. Chang, P. Dang, et al., “A Graph Neural Network Model to Estimate Cell-Wise Metabolic Flux Using Single-Cell RNA-Seq Data,” Genome Research 31, no. 10 (2021): 1867-1884.

[59]

L. Zhang, X. Yu, L. Zheng, et al., “Lineage Tracking Reveals Dynamic Relationships of T Cells in Colorectal Cancer,” Nature 564, no. 7735 (2018): 268-272.

[60]

S. Jin, M. V. Plikus, and Q. Nie, “CellChat for Systematic Analysis of Cell-Cell Communication From Single-Cell Transcriptomics,” Nature Protocols 20, no. 1 (2025): 180-219.

[61]

Z. Zeng, Y. Ma, L. Hu, et al., “OmicVerse: A Framework for Bridging and Deepening Insights Across Bulk and Single-Cell Sequencing,” Nature Communications 15, no. 1 (2024): 5983.

[62]

H. Li, “Aligning Sequence Reads, Clone Sequences and Assembly Contigs With BWA-MEM,” Arxiv Preprint Arxiv (2013): 13033997.

[63]

P. Danecek, J. K. Bonfield, J. Liddle, et al., “Twelve Years of SAMtools and BCFtools,” Gigascience 10, no. 2 (2021): giab008.

[64]

M. A. DePristo, E. Banks, R. Poplin, et al., “A Framework for Variation Discovery and Genotyping Using Next-Generation DNA Sequencing Data,” Nature Genetics 43, no. 5 (2011): 491-498.

[65]

G. A. Van der Auwera, M. O. Carneiro, C. Hartl, et al., “From FastQ Data to High Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline,” CP in Bioinformatics 43, no. 1110 (2013): 11.10.1-11.10.33.

[66]

W. McLaren, L. Gil, S. E. Hunt, et al., “The Ensembl Variant Effect Predictor,” Genome Biology 17 (2016): 1-14.

[67]

F. Favero, T. Joshi, A. M. Marquard, et al., “Sequenza: Allele-Specific Copy Number and Mutation Profiles From Tumor Sequencing Data,” Annals of Oncology 26, no. 1 (2015): 64-70.

[68]

A. Dobin, C. A. Davis, F. Schlesinger, et al., “STAR: Ultrafast Universal RNA-Seq Aligner,” Bioinformatics 29, no. 1 (2013): 15-21.

[69]

R. Patro, G. Duggal, M. I. Love, R. A. Irizarry, and C. Kingsford, “Salmon Provides Fast and Bias-Aware Quantification of Transcript Expression,” Nature Methods 14, no. 4 (2017): 417-419.

[70]

W. E. Johnson, C. Li, and A. Rabinovic, “Adjusting Batch Effects in Microarray Expression Data Using Empirical Bayes Methods,” Biostatistics (Oxford, England) 8, no. 1 (2007): 118-127.

[71]

D. Zeng, Z. Ye, R. Shen, et al. “IOBR: Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures,” Frontiers in Immunology 2021; 12:687975.

[72]

F. Gao, W. Wang, M. Tan, et al., “DeepCC: A Novel Deep Learning-Based Framework for Cancer Molecular Subtype Classification,” Oncogenesis 8, no. 9 (2019): 44.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

10

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/