PDF
Abstract
As a physicochemical mechanism, phase separation is a spatial and temporal regulator of specific molecules within a cell, and it provides a new perspective for understanding cellular pathophysiology. Phase separation is closely associated with multiple metabolic processes in the body, including the regulation of key metabolic enzymes and the physiology of mitochondria. Mitochondria also regulate multiple physiological functions through phase separation, including protecting healthy mitochondria and mRNAs in oocytes and regulating crosstalk between nuclear and mitochondrial. Importantly, abnormal phase separation in vivo is associated with the development of diseases, including cancer, neurodegenerative diseases, endocrine disorders, skeletal system diseases, and infectious diseases. This review summarizes the relationship between phase separation and metabolism under both physiological and pathological conditions, as well as the therapeutic potential of phase separation in the treatment of relevant diseases, aiming to explore the possibility of treating diseases by regulating phase separation.
Keywords
diseases
/
metabolism
/
mitochondria
/
phase separation
Cite this article
Download citation ▾
Chuan Gao, Peng Ding, Changqing Zhang, Junjie Gao.
Phase Separation Regulates Metabolism, Mitochondria, and Diseases.
MedComm, 2025, 6(7): e70283 DOI:10.1002/mco2.70283
| [1] |
S. F. Banani, H. O. Lee, A. A. Hyman, and M. K. Rosen, “Biomolecular Condensates: Organizers of Cellular Biochemistry,” Nature Reviews Molecular Cell Biology 18, no. 5 (2017): 285-298.
|
| [2] |
Q. Xiao, C. K. McAtee, and X. Su, “Phase Separation in Immune Signalling,” Nature Reviews Immunology 22, no. 3 (2022): 188-199.
|
| [3] |
Y. G. Zhao and H. Zhang, “Phase Separation in Membrane Biology: The Interplay Between Membrane-Bound Organelles and Membraneless Condensates,” Developmental Cell 55, no. 1 (2020): 30-44.
|
| [4] |
S. Cheng, G. Altmeppen, C. So, et al., “Mammalian Oocytes Store mRNAs in a Mitochondria-associated Membraneless Compartment,” Science 378, no. 6617 (2022): eabq4835.
|
| [5] |
Y. Xiao, J. Chen, S. Yang, et al., “Maternal mRNA Deadenylation and Allocation via Rbm14 Condensates Facilitate Vertebrate Blastula Development,” Embo Journal (2022): e111364.
|
| [6] |
M. Prouteau and R. Loewith, “Regulation of Cellular Metabolism Through Phase Separation of Enzymes,” Biomolecules 8, no. 4 (2018): 160.
|
| [7] |
Q. Long, Y. Zhou, H. Wu, et al., “Author Correction: Phase Separation Drives the Self-assembly of Mitochondrial Nucleoids for Transcriptional Modulation,” Nature Structural & Molecular Biology 28, no. 12 (2021): 1050.
|
| [8] |
M. Feric, T. G. Demarest, J. Tian, D. L. Croteau, V. A. Bohr, and T. Misteli, “Self-assembly of Multi-component Mitochondrial Nucleoids via Phase Separation,” Embo Journal 40, no. 6 (2021): e107165.
|
| [9] |
S. Z. Peng, X. H. Chen, S. J. Chen, et al., “Phase Separation of Nur77 Mediates Celastrol-induced Mitophagy by Promoting the Liquidity of p62/SQSTM1 Condensates,” Nature Communications 12, no. 1 (2021): 5989.
|
| [10] |
V. J. Xavier and J. C. Martinou, “RNA Granules in the Mitochondria and Their Organization Under Mitochondrial Stresses,” International Journal of Molecular Sciences 22, no. 17 (2021): 9502.
|
| [11] |
C. J. Webber, S. E. Lei, and B. Wolozin, “The Pathophysiology of Neurodegenerative Disease: Disturbing the Balance Between Phase Separation and Irreversible Aggregation,” Progress in Molecular Biology and Translational Science 174 (2020): 187-223.
|
| [12] |
L. Pytowski, C. F. Lee, A. C. Foley, D. J. Vaux, and L. Jean, “Liquid-liquid Phase Separation of Type II Diabetes-associated IAPP Initiates Hydrogelation and Aggregation,” PNAS 117, no. 22 (2020): 12050-12061.
|
| [13] |
S. Alberti and D. Dormann, “Liquid-Liquid Phase Separation in Disease,” Annual Review of Genetics 53 (2019): 171-194.
|
| [14] |
X. Zhang, L. Yuan, W. Zhang, et al., “Liquid-liquid Phase Separation in Diseases,” MedComm 5, no. 7 (2024): e640.
|
| [15] |
H. Zhang, R. Zhao, J. Tones, et al., “Nuclear Body Phase Separation Drives Telomere Clustering in ALT Cancer Cells,” Molecular Biology of the Cell 31, no. 18 (2020): 2048-2056.
|
| [16] |
X. Shao, Y. Chen, A. Xu, et al., “Deneddylation of PML/RARalpha Reconstructs Functional PML Nuclear Bodies via Orchestrating Phase Separation to Eradicate APL,” Cell Death and Differentiation 29, no. 8 (2022): 1654-1668.
|
| [17] |
C. L. Netherton and T. Wileman, “Virus Factories, Double Membrane Vesicles and Viroplasm Generated in Animal Cells,” Current Opinion in Virology 1, no. 5 (2011): 381-387.
|
| [18] |
I. A. Klein, A. Boija, L. K. Afeyan, et al., “Partitioning of Cancer Therapeutics in Nuclear Condensates,” Science 368, no. 6497 (2020): 1386-1392.
|
| [19] |
C. P. Brangwynne, C. R. Eckmann, D. S. Courson, et al., “Germline P Granules Are Liquid Droplets That Localize by Controlled Dissolution/Condensation,” Science 324, no. 5935 (2009): 1729-1732.
|
| [20] |
C. P. Brangwynne, T. J. Mitchison, and A. A. Hyman, “Active Liquid-Like Behavior of Nucleoli Determines Their Size and Shape in Xenopus laevis Oocytes,” PNAS 108, no. 11 (2011): 4334-4339.
|
| [21] |
P. Li, S. Banjade, H. C. Cheng, et al., “Phase Transitions in the Assembly of Multivalent Signalling Proteins,” Nature 483, no. 7389 (2012): 336-340.
|
| [22] |
T. J. Nott, E. Petsalaki, P. Farber, et al., “Phase Transition of a Disordered nuage Protein Generates Environmentally Responsive Membraneless Organelles,” Molecular Cell 57, no. 5 (2015): 936-947.
|
| [23] |
S. Banjade and M. K. Rosen, “Phase Transitions of Multivalent Proteins Can Promote Clustering of Membrane Receptors,” Elife 3 (2014): e04123.
|
| [24] |
A. Aguzzi and M. Altmeyer, “Phase Separation: Linking Cellular Compartmentalization to Disease,” Trends in Cell Biology 26, no. 7 (2016): 547-558.
|
| [25] |
L. Gennari, D. Rendina, A. Falchetti, and D. Merlotti, “Paget's Disease of Bone,” Calcified Tissue International 104, no. 5 (2019): 483-500.
|
| [26] |
S. Alberti, A. Gladfelter, and T. Mittag, “Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates,” Cell 176, no. 3 (2019): 419-434.
|
| [27] |
A. G. Larson and G. J. Narlikar, “The Role of Phase Separation in Heterochromatin Formation, Function, and Regulation,” Biochemistry 57, no. 17 (2018): 2540-2548.
|
| [28] |
A. R. Strom, A. V. Emelyanov, M. Mir, D. V. Fyodorov, X. Darzacq, and G. H. Karpen, “Phase Separation Drives Heterochromatin Domain Formation,” Nature 547, no. 7662 (2017): 241-245.
|
| [29] |
J. A. Riback, C. D. Katanski, J. L. Kear-Scott, et al., “Stress-Triggered Phase Separation Is an Adaptive, Evolutionarily Tuned Response,” Cell 168, no. 6 (2017): 1028-1040. e1019.
|
| [30] |
C. L. Riggs, N. Kedersha, P. Ivanov, and P. Anderson, “Mammalian Stress Granules and P Bodies at a Glance,” Journal of Cell Science 133, no. 16 (2020): jcs242487.
|
| [31] |
A. R. Strom and C. P. Brangwynne, “The Liquid Nucleome—phase Transitions in the Nucleus at a Glance,” Journal of Cell Science 132, no. 22 (2019): jcs235093.
|
| [32] |
O. Beutel, R. Maraspini, K. Pombo-García, C. Martin-Lemaitre, and A. Honigmann, “Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions,” Cell 179, no. 4 (2019): 923-936. e911.
|
| [33] |
C. N. Mudogo, S. Falke, H. Brognaro, M. Duszenko, and C. Betzel, “Protein Phase Separation and Determinants of in Cell Crystallization,” Traffic (Copenhagen, Denmark) 21, no. 2 (2020): 220-230.
|
| [34] |
W. Peeples and M. K. Rosen, “Mechanistic Dissection of Increased Enzymatic Rate in a Phase-separated Compartment,” Nature Chemical Biology 17, no. 6 (2021): 693-702.
|
| [35] |
Q. Long, Y. Zhou, H. Wu, et al., “Phase Separation Drives the Self-assembly of Mitochondrial Nucleoids for Transcriptional Modulation,” Nature structural & molecular biology 28, no. 11 (2021): 900-908.
|
| [36] |
K. Gonzalez-Arzola, A. Diaz-Quintana, N. Bernardo-Garcia, et al., “Nucleus-translocated Mitochondrial Cytochrome c Liberates Nucleophosmin-sequestered ARF Tumor Suppressor by Changing Nucleolar Liquid-liquid Phase Separation,” Nature Structural & Molecular Biology 29, no. 10 (2022): 1024-1036.
|
| [37] |
M. Du and Z. J. Chen, “DNA-induced Liquid Phase Condensation of cGAS Activates Innate Immune Signaling,” Science 361, no. 6403 (2018): 704-709.
|
| [38] |
K. Arimoto, H. Takahashi, T. Hishiki, H. Konishi, T. Fujita, and K. Shimotohno, “Negative Regulation of the RIG-I Signaling by the Ubiquitin Ligase RNF125,” PNAS 104, no. 18 (2007): 7500-7505.
|
| [39] |
T. S. Harmon, A. S. Holehouse, M. K. Rosen, and R. V. Pappu, “Intrinsically Disordered Linkers Determine the Interplay Between Phase Separation and Gelation in Multivalent Proteins,” Elife 6 (2017): e30294.
|
| [40] |
A. L. Darling, Y. Liu, C. J. Oldfield, and V. N. Uversky, “Intrinsically Disordered Proteome of Human Membrane-Less Organelles,” Proteomics 18, no. 5-6 (2018): e1700193.
|
| [41] |
W. Borcherds, A. Bremer, M. B. Borgia, and T. Mittag, “How Do Intrinsically Disordered Protein Regions Encode a Driving Force for Liquid-liquid Phase Separation?,” Current Opinion in Structural Biology 67 (2021): 41-50.
|
| [42] |
R. K. Das, K. M. Ruff, and R. V. Pappu, “Relating Sequence Encoded Information to Form and Function of Intrinsically Disordered Proteins,” Current Opinion in Structural Biology 32 (2015): 102-112.
|
| [43] |
E. W. Martin, A. S. Holehouse, C. R. Grace, A. Hughes, R. V. Pappu, and T. Mittag, “Sequence Determinants of the Conformational Properties of an Intrinsically Disordered Protein prior to and Upon Multisite Phosphorylation,” Journal of the American Chemical Society 138, no. 47 (2016): 15323-15335.
|
| [44] |
A. Garaizar, I. Sanchez-Burgos, R. Collepardo-Guevara, and J. R. Espinosa, “Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid-Liquid Phase Separation,” Molecules (Basel, Switzerland) 25, no. 20 (2020): 4705.
|
| [45] |
C. W. Pak, M. Kosno, A. S. Holehouse, et al., “Sequence Determinants of Intracellular Phase Separation by Complex Coacervation of a Disordered Protein,” Molecular Cell 63, no. 1 (2016): 72-85.
|
| [46] |
S. F. Banani, A. M. Rice, W. B. Peeples, et al., “Compositional Control of Phase-Separated Cellular Bodies,” Cell 166, no. 3 (2016): 651-663.
|
| [47] |
H. R. Li, W. C. Chiang, P. C. Chou, W. J. Wang, and J. R. Huang, “TAR DNA-binding Protein 43 (TDP-43) Liquid-liquid Phase Separation Is Mediated by Just a Few Aromatic Residues,” Journal of Biological Chemistry 293, no. 16 (2018): 6090-6098.
|
| [48] |
A. E. Conicella, G. H. Zerze, J. Mittal, and N. L. Fawzi, “ALS Mutations Disrupt Phase Separation Mediated by α-Helical Structure in the TDP-43 Low-Complexity C-Terminal Domain,” Structure (London, England) 24, no. 9 (2016): 1537-1549.
|
| [49] |
H. Cinar, Z. Fetahaj, S. Cinar, R. M. Vernon, H. S. Chan, and R. H. A. Winter, “Temperature, Hydrostatic Pressure, and Osmolyte Effects on Liquid-Liquid Phase Separation in Protein Condensates: Physical Chemistry and Biological Implications,” Chemistry (Weinheim An Der Bergstrasse, Germany) 25, no. 57 (2019): 13049-13069.
|
| [50] |
B. Hu, L. Han, Z. Gao, et al., “Effects of Temperature and Solvent Condition on Phase Separation Induced Molecular Fractionation of Gum Arabic/Hyaluronan Aqueous Mixtures,” International Journal of Biological Macromolecules 116 (2018): 683-690.
|
| [51] |
J. Xiong, S. S. Kang, M. Wang, et al., “FSH and ApoE4 Contribute to Alzheimer's Disease-Like Pathogenesis via C/EBPβ/δ-secretase in Female Mice,” Nature Communications 14, no. 1 (2023): 6577.
|
| [52] |
N. La Cunza, L. X. Tan, T. Thamban, et al., “Mitochondria-dependent Phase Separation of Disease-relevant Proteins Drives Pathological Features of Age-related Macular Degeneration,” JCI Insight 6, no. 9 (2021): e142254.
|
| [53] |
A. Patel, L. Malinovska, S. Saha, et al., “ATP as a Biological Hydrotrope,” Science 356, no. 6339 (2017): 753-756.
|
| [54] |
C. Yang, G. M. Dominique, M. M. Champion, and P. W. Huber, “Remnants of the Balbiani Body Are Required for Formation of RNA Transport Granules in Xenopus Oocytes,” Iscience 25, no. 3 (2022): 103878.
|
| [55] |
K. Ribbeck and D. Görlich, “The Permeability Barrier of Nuclear Pore Complexes Appears to Operate via Hydrophobic Exclusion,” Embo Journal 21, no. 11 (2002): 2664-2671.
|
| [56] |
U. Griesenbach, K. M. Wilson, R. Farley, et al., “Assessment of the Nuclear Pore Dilating Agent Trans-cyclohexane-1,2-diol in Differentiated Airway Epithelium,” The Journal of Gene Medicine 14, no. 7 (2012): 491-500.
|
| [57] |
S. Kroschwald, S. Maharana, and A. Simon, “Hexanediol: A Chemical Probe to Investigate the Material Properties of Membrane-less Compartments,” Matters (2017).
|
| [58] |
Y. Itoh, S. A.-O. Iida, S. Tamura, et al., “1,6-hexanediol Rapidly Immobilizes and Condenses Chromatin in Living human Cells,” Life Science Alliance 4, no. 4 (2021): e202001005.
|
| [59] |
Y. Wu, L. Ma, S. Cai, et al., “RNA-induced Liquid Phase Separation of SARS-CoV-2 Nucleocapsid Protein Facilitates NF-κB Hyper-activation and Inflammation,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 167.
|
| [60] |
N. Shulga and D. S. Goldfarb, “Binding Dynamics of Structural Nucleoporins Govern Nuclear Pore Complex Permeability and May Mediate Channel Gating,” Molecular and Cellular Biology 23, no. 2 (2003): 534-542.
|
| [61] |
J. Li, M. Zhang, W. Ma, et al., “Post-translational Modifications in Liquid-liquid Phase Separation: A Comprehensive Review,” Molecular Biomed 3, no. 1 (2022): 13.
|
| [62] |
S. Wegmann, B. Eftekharzadeh, K. Tepper, et al., “Tau Protein Liquid-liquid Phase Separation Can Initiate Tau Aggregation,” Embo Journal 37, no. 7 (2018): e98049.
|
| [63] |
J. C. Wootton, “Non-globular Domains in Protein Sequences: Automated Segmentation Using Complexity Measures,” Computers & Chemistry 18, no. 3 (1994): 269-285.
|
| [64] |
M. P. Hughes, M. R. Sawaya, D. R. Boyer, et al., “Atomic Structures of Low-complexity Protein Segments Reveal Kinked β Sheets That Assemble Networks,” Science 359, no. 6376 (2018): 698-701.
|
| [65] |
A. W. Folkmann, A. Putnam, C. F. Lee, and G. Seydoux, “Regulation of Biomolecular Condensates by Interfacial Protein Clusters,” Science 373, no. 6560 (2021): 1218-1224.
|
| [66] |
D. M. Mitrea, B. Chandra, M. C. Ferrolino, et al., “Methods for Physical Characterization of Phase-Separated Bodies and Membrane-less Organelles,” Journal of Molecular Biology 430, no. 23 (2018): 4773-4805.
|
| [67] |
A. Padrón, S. Iwasaki, and N. T. Ingolia, “Proximity RNA Labeling by APEX-Seq Reveals the Organization of Translation Initiation Complexes and Repressive RNA Granules,” Molecular Cell 75, no. 4 (2019): 875-887. e875.
|
| [68] |
A. Judge, M. S. Dodd, and Metabolism Essays in Biochemistry 64, no. 4 (2020): 607-647.
|
| [69] |
L. J. Sweetlove and A. R. Fernie, “The Role of Dynamic Enzyme Assemblies and Substrate Channelling in Metabolic Regulation,” Nature Communications 9, no. 1 (2018): 2136.
|
| [70] |
Z. Zou and X. Fu, “Abiotic Regulation: A Common Way for Proteins to Modulate Their Functions,” Current Protein & Peptide Science 16, no. 3 (2015): 188-195.
|
| [71] |
A. M. van der Bliek, M. M. Sedensky, and P. G. Morgan, “Cell Biology of the Mitochondrion,” Genetics 207, no. 3 (2017): 843-871.
|
| [72] |
L. Pernas and L. Scorrano, “Mito-Morphosis: Mitochondrial Fusion, Fission, and Cristae Remodeling as Key Mediators of Cellular Function,” Annual Review of Physiology 78 (2016): 505-531.
|
| [73] |
D. J. Pagliarini, S. E. Calvo, B. Chang, et al., “A Mitochondrial Protein Compendium Elucidates Complex I Disease Biology,” Cell 134, no. 1 (2008): 112-123.
|
| [74] |
S. Melser, J. Lavie, and G. Bénard, “Mitochondrial Degradation and Energy Metabolism,” Biochimica Et Biophysica Acta 1853, no. 10 Pt B (2015): 2812-2821.
|
| [75] |
B. R. Olsen, G. Svenneby, E. Kvamme, B. Tveit, and T. Eskeland, “Formation and Ultrastructure of Enzymically Active Polymers of Pig Renal Glutaminase,” Journal of Molecular Biology 52, no. 2 (1970): 239-245.
|
| [76] |
R. Josephs and G. Borisy, “Self-assembly of Glutamic Dehydrogenase Into Ordered Superstructures: Multichain Tubes Formed by Association of Single Molecules,” Journal of Molecular Biology 65, no. 1 (1972): 127-155.
|
| [77] |
R. E. Miller, E. Shelton, and E. R. Stadtman, “Zinc-induced Paracrystalline Aggregation of Glutamine Synthetase,” Archives of Biochemistry and Biophysics 163, no. 1 (1974): 155-171.
|
| [78] |
J. R. Valcourt, J. M. Lemons, E. M. Haley, M. Kojima, O. O. Demuren, and H. A. Coller, “Staying Alive: Metabolic Adaptations to Quiescence,” Cell Cycle 11, no. 9 (2012): 1680-1696.
|
| [79] |
R. P. Joyner, J. H. Tang, J. Helenius, et al., “A Glucose-starvation Response Regulates the Diffusion of Macromolecules,” Elife 5 (2016): e09376.
|
| [80] |
L. B. Persson, V. S. Ambati, and O. Brandman, “Cellular Control of Viscosity Counters Changes in Temperature and Energy Availability,” Cell 183, no. 6 (2020): 1572-1585. e1516.
|
| [81] |
M. C. Munder, D. Midtvedt, T. Franzmann, et al., “A pH-driven Transition of the Cytoplasm From a Fluid- to a Solid-Like state Promotes Entry Into Dormancy,” Elife 5 (2016): e09347.
|
| [82] |
R. Narayanaswamy, M. Levy, M. Tsechansky, et al., “Widespread Reorganization of Metabolic Enzymes Into Reversible Assemblies Upon Nutrient Starvation,” PNAS 106, no. 25 (2009): 10147-10152.
|
| [83] |
S. Saad, G. Cereghetti, Y. Feng, P. Picotti, M. Peter, and R. Dechant, “Reversible Protein Aggregation Is a Protective Mechanism to Ensure Cell Cycle Restart After Stress,” Nature Cell Biology 19, no. 10 (2017): 1202-1213.
|
| [84] |
J. L. Trujillo and W. C. Deal, “Pig Liver Phosphofructokinase: Asymmetry Properties, Proof of Rapid Association-dissociation Equilibria, and Effect of Temperature and Protein Concentration on the Equilibria,” Biochemistry 16, no. 14 (1977): 3098-3104.
|
| [85] |
L. G. Foe and J. L. Trujillo, “Quaternary Structure of Pig Liver Phosphofructokinase,” Journal of Biological Chemistry 255, no. 21 (1980): 10537-10541.
|
| [86] |
S. Jang, J. C. Nelson, E. G. Bend, et al., “Glycolytic Enzymes Localize to Synapses Under Energy Stress to Support Synaptic Function,” Neuron 90, no. 2 (2016): 278-291.
|
| [87] |
Q. J. Shen, H. Kassim, Y. Huang, et al., “Filamentation of Metabolic Enzymes in Saccharomyces Cerevisiae,” Journal of Genetics and Genomics 43, no. 6 (2016): 393-404.
|
| [88] |
C. Noree, K. Begovich, D. Samilo, R. Broyer, E. Monfort, and J. E. Wilhelm, “A Quantitative Screen for Metabolic Enzyme Structures Reveals Patterns of Assembly Across the Yeast Metabolic Network,” Molecular Biology of the Cell 30, no. 21 (2019): 2721-2736.
|
| [89] |
H. G. Suresh, A. X. da Silveira Dos Santos, W. Kukulski, et al., “Prolonged Starvation Drives Reversible Sequestration of Lipid Biosynthetic Enzymes and Organelle Reorganization in Saccharomyces Cerevisiae,” Molecular Biology of the Cell 26, no. 9 (2015): 1601-1615.
|
| [90] |
E. M. Lynch, D. R. Hicks, M. Shepherd, et al., “Human CTP Synthase Filament Structure Reveals the Active Enzyme Conformation,” Nature Structural & Molecular Biology 24, no. 6 (2017): 507-514.
|
| [91] |
M. Jin, G. G. Fuller, T. Han, et al., “Glycolytic Enzymes Coalesce in G Bodies Under Hypoxic Stress,” Cell Reports 20, no. 4 (2017): 895-908.
|
| [92] |
K. Montrose, R. M. López Cabezas, J. Paukštytė, and J. Saarikangas, “Winter Is Coming: Regulation of Cellular Metabolism by Enzyme Polymerization in Dormancy and Disease,” Experimental Cell Research 397, no. 2 (2020): 112383.
|
| [93] |
C. L. Kohnhorst, M. Kyoung, M. Jeon, et al., “Identification of a Multienzyme Complex for Glucose Metabolism in Living Cells,” Journal of Biological Chemistry 292, no. 22 (2017): 9191-9203.
|
| [94] |
S. Sacchi, P. Cappelletti, and G. Murtas, “Biochemical Properties of Human D-amino Acid Oxidase Variants and Their Potential Significance in Pathologies,” Frontiers in Molecular Biosciences 5 (2018): 55.
|
| [95] |
G. N. Aughey and J. L. Liu, “Metabolic Regulation via Enzyme Filamentation,” Critical Reviews in Biochemistry and Molecular Biology 51, no. 4 (2015): 282-293.
|
| [96] |
M. T. Goswami, G. Chen, B. V. Chakravarthi, et al., “Role and Regulation of Coordinately Expressed De Novo Purine Biosynthetic Enzymes PPAT and PAICS in Lung Cancer,” Oncotarget 6, no. 27 (2015): 23445-23461.
|
| [97] |
S. An, R. Kumar, E. D. Sheets, and S. J. Benkovic, “Reversible Compartmentalization of De Novo Purine Biosynthetic Complexes in Living Cells,” Science 320, no. 5872 (2008): 103-106.
|
| [98] |
W. C. Thomas, F. P. Brooks, A. A. Burnim, et al., “Convergent Allostery in Ribonucleotide Reductase,” Nature Communications 10, no. 1 (2019): 2653.
|
| [99] |
S. Angermüller, G. Bruder, A. Völkl, H. Wesch, and H. D. Fahimi, “Localization of Xanthine Oxidase in Crystalline Cores of Peroxisomes. A Cytochemical and Biochemical Study,” European Journal of Cell Biology 45, no. 1 (1987): 137-144.
|
| [100] |
T. Rey, S. Zaganelli, E. Cuillery, et al., “Mitochondrial RNA Granules Are Fluid Condensates Positioned by Membrane Dynamics,” Nature Cell Biology 22, no. 10 (2020): 1180-1186.
|
| [101] |
H. Antonicka, F. Sasarman, T. Nishimura, V. Paupe, and E. A. Shoubridge, “The Mitochondrial RNA-Binding Protein GRSF1 Localizes to RNA Granules and Is Required for Posttranscriptional Mitochondrial Gene Expression,” Cell Metabolism 17, no. 3 (2013): 386-398.
|
| [102] |
F. J. Iborra, H. Kimura, and P. R. Cook, “The Functional Organization of Mitochondrial Genomes in human Cells,” Bmc Biology 2 (2004): 9.
|
| [103] |
A. A. Jourdain, M. Koppen, M. Wydro, et al., “GRSF1 Regulates RNA Processing in Mitochondrial RNA Granules,” Cell Metabolism 17, no. 3 (2013): 399-410.
|
| [104] |
H. Antonicka and E. A. Shoubridge, “Mitochondrial RNA Granules Are Centers for Posttranscriptional RNA Processing and Ribosome Biogenesis,” Cell Reports 10, no. 6 (2015): 920-932.
|
| [105] |
G. Ashrafi and T. L. Schwarz, “The Pathways of Mitophagy for Quality Control and Clearance of Mitochondria,” Cell Death and Differentiation 20, no. 1 (2013): 31-42.
|
| [106] |
K. Palikaras, E. Lionaki, and N. Tavernarakis, “Mechanisms of Mitophagy in Cellular Homeostasis, Physiology and Pathology,” Nature Cell Biology 20, no. 9 (2018): 1013-1022.
|
| [107] |
N. S. Muthunayake, D. T. Tomares, W. S. Childers, and J. M. Schrader, “Phase-separated Bacterial ribonucleoprotein Bodies Organize mRNA Decay,” Wiley Interdisciplinary Reviews-Rna 11, no. 6 (2020): e1599.
|
| [108] |
M. W. Gorna, A. J. Carpousis, and B. F. Luisi, “From Conformational Chaos to Robust Regulation: The Structure and Function of the Multi-enzyme RNA Degradosome,” Quarterly Reviews of Biophysics 45, no. 2 (2012): 105-145.
|
| [109] |
K. H. Cho, “The Structure and Function of the Gram-Positive Bacterial RNA Degradosome,” Frontiers in Microbiology 8 (2017): 154.
|
| [110] |
N. Al-Husini, D. T. Tomares, O. Bitar, W. S. Childers, and J. M. Schrader, “alpha-Proteobacterial RNA Degradosomes Assemble Liquid-Liquid Phase-Separated RNP Bodies,” Molecular Cell 71, no. 6 (2018): 1027.
|
| [111] |
L. Li, P. Zheng, and J. Dean, “Maternal Control of Early Mouse Development,” Development (Cambridge, England) 137, no. 6 (2010): 859-870.
|
| [112] |
G. P. Moore, S. Lintern-Moore, H. Peters, and M. Faber, “RNA Synthesis in the Mouse Oocyte,” Journal of Cell Biology 60, no. 2 (1974): 416-422.
|
| [113] |
A. Jamieson-Lucy and M. C. Mullins, “The Vertebrate Balbiani Body, Germ Plasm, and Oocyte Polarity,” Current Topics in Developmental Biology 135 (2019): 1-34.
|
| [114] |
X. Chen, M. Gao, Y. Xia, et al., “Phase Separation of Nur77 Mediates XS561-induced Apoptosis by Promoting the Formation of Nur77/Bcl-2 Condensates,” Acta Pharmaceutica Sinica B 14, no. 3 (2024): 1204-1221.
|
| [115] |
J. K. Box, N. Paquet, M. N. Adams, et al., “Nucleophosmin: From Structure and Function to Disease Development,” BMC Molecular Biology 17, no. 1 (2016): 19.
|
| [116] |
K. Gonzalez-Arzola, A. Guerra-Castellano, F. Rivero-Rodriguez, et al., “Mitochondrial Cytochrome c Shot towards Histone Chaperone Condensates in the Nucleus,” FEBS Open Bio 11, no. 9 (2021): 2418-2440.
|
| [117] |
G. G. Kovacs, “Concepts and Classification of Neurodegenerative Diseases,” Handbook of Clinical Neurology 145 (2017): 301-307.
|
| [118] |
J. P. Taylor, J. Hardy, and K. H. Fischbeck, “Toxic Proteins in Neurodegenerative Disease,” Science 296, no. 5575 (2002): 1991-1995.
|
| [119] |
S. Ray, N. Singh, R. Kumar, et al., “α-Synuclein Aggregation Nucleates Through Liquid-liquid Phase Separation,” Nature Chemistry 12, no. 8 (2020): 705-716.
|
| [120] |
M. Jucker and L. C. Walker, “Propagation and Spread of Pathogenic Protein Assemblies in Neurodegenerative Diseases,” Nature Neuroscience 21, no. 10 (2018): 1341-1349.
|
| [121] |
B. T. Hyman, C. H. Phelps, T. G. Beach, et al., “National Institute on Aging-Alzheimer's Association Guidelines for the Neuropathologic Assessment of Alzheimer's Disease,” Alzheimers Dement 8, no. 1 (2012): 1-13.
|
| [122] |
G. Govindarajalu, M. Selvam, E. Palchamy, and S. Baluchamy, “N-terminal Truncations of human bHLH Transcription Factor Twist1 Leads to the Formation of Aggresomes,” Molecular and Cellular Biochemistry 439, no. 1-2 (2018): 75-85.
|
| [123] |
A. Crotti, H. R. Sait, K. M. McAvoy, et al., “BIN1 favors the Spreading of Tau via Extracellular Vesicles,” Scientific Reports 9, no. 1 (2019): 9477.
|
| [124] |
S. Narasimhan, J. L. Guo, L. Changolkar, et al., “Pathological Tau Strains From Human Brains Recapitulate the Diversity of Tauopathies in Nontransgenic Mouse Brain,” Journal of Neuroscience 37, no. 47 (2017): 11406-11423.
|
| [125] |
A. Hernández-Vega, M. Braun, L. Scharrel, et al., “Local Nucleation of Microtubule Bundles Through Tubulin Concentration Into a Condensed Tau Phase,” Cell Reports 20, no. 10 (2017): 2304-2312.
|
| [126] |
S. Ambadipudi, J. Biernat, D. Riedel, E. Mandelkow, and M. Zweckstetter, “Liquid-liquid Phase Separation of the Microtubule-binding Repeats of the Alzheimer-related Protein Tau,” Nature Communications 8, no. 1 (2017): 275.
|
| [127] |
J. C. Ferreon, A. Jain, K. J. Choi, et al., “Acetylation Disfavors Tau Phase Separation,” International Journal of Molecular Sciences 19, no. 5 (2018): 1360.
|
| [128] |
B. Eftekharzadeh, J. G. Daigle, L. E. Kapinos, et al., “Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease,” Neuron 99, no. 5 (2018): 925-940. e927.
|
| [129] |
Y. Ferrer-Acosta, E. N. Rodríguez-Cruz, F. Orange, et al., “EFhd2 is a Novel Amyloid Protein Associated With Pathological Tau in Alzheimer's Disease,” Journal of Neurochemistry 125, no. 6 (2013): 921-931.
|
| [130] |
K. Wang, J. Q. Liu, T. Zhong, et al., “Phase Separation and Cytotoxicity of Tau Are Modulated by Protein Disulfide Isomerase and S-nitrosylation of this Molecular Chaperone,” Journal of Molecular Biology 432, no. 7 (2020): 2141-2163.
|
| [131] |
O. Coskuner-Weber and V. N. Uversky, “Insights Into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases With Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology,” International Journal of Molecular Sciences 19, no. 2 (2018): 336.
|
| [132] |
A. K. Srivastava, J. M. Pittman, J. Zerweck, et al., “beta-Amyloid Aggregation and Heterogeneous Nucleation,” Protein Science 28, no. 9 (2019): 1567-1581.
|
| [133] |
D. R. Thal, J. Walter, T. C. Saido, and M. Fandrich, “Neuropathology and Biochemistry of Abeta and Its Aggregates in Alzheimer's Disease,” Acta Neuropathologica 129, no. 2 (2015): 167-182.
|
| [134] |
H. Fatafta, M. Khaled, M. C. Owen, A. Sayyed-Ahmad, and B. Strodel, “Amyloid-β Peptide Dimers Undergo a Random Coil to β-sheet Transition in the Aqueous Phase but Not at the Neuronal Membrane,” PNAS 118, no. 39 (2021): e2106210118.
|
| [135] |
B. Wolozin and P. Ivanov, “Stress Granules and Neurodegeneration,” Nature Reviews Neuroscience 20, no. 11 (2019): 649-666.
|
| [136] |
S. Alberti and D. Dormann, “Liquid-Liquid Phase Separation in Disease,” Annual Review of Genetics 53 (2019): 171.
|
| [137] |
D. Dormann, R. Rodde, D. Edbauer, et al., “ALS-associated Fused in sarcoma (FUS) Mutations Disrupt Transportin-mediated Nuclear Import,” Embo Journal 29, no. 16 (2010): 2841-2857.
|
| [138] |
N. H. Alami, R. B. Smith, M. A. Carrasco, et al., “Axonal Transport of TDP-43 mRNA Granules Is Impaired by ALS-Causing Mutations,” Neuron 81, no. 3 (2014): 536-543.
|
| [139] |
B. Portz, B. L. Lee, and J. Shorter, “FUS and TDP-43 Phases in Health and Disease,” Trends in Biochemical Sciences 46, no. 7 (2021): 550-563.
|
| [140] |
J. G. Morato, F. Hans, F. von Zweydorf, et al., “Sirtuin-1 Sensitive Lysine-136 Acetylation Drives Phase Separation and Pathological Aggregation of TDP-43,” Nature Communications 13, no. 1 (2022): 1223.
|
| [141] |
M. Hofweber, S. Hutten, B. Bourgeois, et al., “Phase Separation of FUS Is Suppressed by Its Nuclear Import Receptor and Arginine Methylation,” Cell 173, no. 3 (2018): 706.
|
| [142] |
J. S. Snowden, Q. Hu, S. Rollinson, et al., “The Most Common Type of FTLD-FUS (aFTLD-U) Is Associated With a Distinct Clinical Form of Frontotemporal Dementia but Is Not Related to Mutations in the FUS Gene,” Acta Neuropathologica 122, no. 1 (2011): 99-110.
|
| [143] |
T. J. Kwiatkowski and C. R. Vanderburg, “Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis (vol 323, pg 1205, 2009),” Science 324, no. 5926 (2009): 465-465.
|
| [144] |
J. Burre, M. Sharma, and T. C. Sudhof, “Cell Biology and Pathophysiology of Alpha-Synuclein,” Cold Spring Harbor Perspectives in Medicine 8, no. 3 (2018): a024091.
|
| [145] |
A. S. Sawner, S. Ray, P. Yadav, et al., “Modulating Alpha-Synuclein Liquid-Liquid Phase Separation,” Biochemistry 60, no. 48 (2021): 3676-3696.
|
| [146] |
M. Banez-Coronel, F. Ayhan, A. D. Tarabochia, et al., “RAN Translation in Huntington Disease,” Neuron 88, no. 4 (2015): 667-677.
|
| [147] |
G. P. Bates, R. Dorsey, J. F. Gusella, et al., “Huntington Disease,” Nature reviews Disease primers 1 (2015): 15005.
|
| [148] |
T. R. Peskett, F. Rau, J. O'Driscoll, R. Patani, A. R. Lowe, and H. R. Saibil, “A Liquid to Solid Phase Transition Underlying Pathological Huntingtin Exon1 Aggregation,” Molecular Cell 70, no. 4 (2018): 588.
|
| [149] |
K. Akiba, Y. Katoh-Fukui, K. Yoshida, et al., “Role of Liquid-Liquid Separation in Endocrine and Living Cells,” Journal of the Endocrine Society 5, no. 10 (2021): bvab126.
|
| [150] |
I. Horvath and P. Wittung-Stafshede, “Cross-talk Between Amyloidogenic Proteins in Type-2 Diabetes and Parkinson's Disease,” PNAS 113, no. 44 (2016): 12473-12477.
|
| [151] |
D. Sun, R. Wu, J. Zheng, P. Li, and L. Yu, “Polyubiquitin Chain-induced p62 Phase Separation Drives Autophagic Cargo Segregation,” Cell Research 28, no. 4 (2018): 405-415.
|
| [152] |
E. S. Siris, “Epidemiological Aspects of Paget's Disease: Family History and Relationship to Other Medical Conditions,” Seminars in Arthritis and Rheumatism 23, no. 4 (1994): 222-225.
|
| [153] |
B. S. Heinrich, Z. Maliga, D. A. Stein, A. A. Hyman, and S. P. J. Whelan, “Phase Transitions Drive the Formation of Vesicular Stomatitis Virus Replication Compartments,” MBio 9, no. 5 (2018): e02290.
|
| [154] |
J. Nikolic, R. Le Bars, Z. Lama, et al., “Negri Bodies Are Viral Factories With Properties of Liquid Organelles,” Nature Communications 8, no. 1 (2017): 58.
|
| [155] |
N. Poblete-Duran, Y. Prades-Perez, J. Vera-Otarola, R. Soto-Rifo, and F. Valiente-Echeverria, “Who Regulates Whom? An Overview of RNA Granules and Viral Infections,” Viruses. 8, no. 7 (2016): 180.
|
| [156] |
N. Kedersha, M. D. Panas, C. A. Achorn, et al., “G3BP-Caprin1-USP10 complexes Mediate Stress Granule Condensation and Associate With 40S Subunits,” Journal of Cell Biology 212, no. 7 (2016): 845-860.
|
| [157] |
I. M. Artika, A. K. Dewantari, and A. Wiyatno, “Molecular Biology of Coronaviruses: Current Knowledge,” Heliyon 6, no. 8 (2020): e04743.
|
| [158] |
S. Wang, T. Dai, Z. Qin, et al., “Targeting Liquid-liquid Phase Separation of SARS-CoV-2 Nucleocapsid Protein Promotes Innate Antiviral Immunity by Elevating MAVS Activity,” Nature Cell Biology 23, no. 7 (2021): 718-732.
|
| [159] |
C. R. Carlson, J. B. Asfaha, C. M. Ghent, et al., “Phosphoregulation of Phase Separation by the SARS-CoV-2 N Protein Suggests a Biophysical Basis for Its Dual Functions,” Molecular Cell 80, no. 6 (2020): 1092-1103. e1094.
|
| [160] |
Y. Wu, L. Ma, S. Cai, et al., “RNA-induced Liquid Phase Separation of SARS-CoV-2 Nucleocapsid Protein Facilitates NF-kappaB Hyper-activation and Inflammation,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 167.
|
| [161] |
T. M. Perdikari, A. C. Murthy, V. H. Ryan, S. Watters, M. T. Naik, and N. L. Fawzi, “SARS-CoV-2 Nucleocapsid Protein Phase-separates With RNA and With human hnRNPs,” Embo Journal 39, no. 24 (2020): e106478.
|
| [162] |
D. E. Gordon, G. M. Jang, M. Bouhaddou, et al., “A SARS-CoV-2 Protein Interaction Map Reveals Targets for Drug Repurposing,” Nature 583, no. 7816 (2020): 459-468.
|
| [163] |
C. Maomao, L. He, S. Dianqin, et al., “Current Cancer Burden in China: Epidemiology, Etiology, and Prevention,” Cancer Biology & Medicine 19, no. 8 (2022): 1121-1138.
|
| [164] |
J. W. Park and J. W. Han, “Targeting Epigenetics for Cancer Therapy,” Archives of Pharmacal Research 42, no. 2 (2019): 159-170.
|
| [165] |
J. Z. Zhang, T. W. Lu, L. M. Stolerman, et al., “Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling,” Cell 182, no. 6 (2020): 1531-1544. e1515.
|
| [166] |
X. Su, J. A. Ditlev, E. Hui, et al., “Phase Separation of Signaling Molecules Promotes T Cell Receptor Signal Transduction,” Science 352, no. 6285 (2016): 595-599.
|
| [167] |
M. A. Lemmon and J. Schlessinger, “Cell Signaling by Receptor Tyrosine Kinases,” Cell 141, no. 7 (2010): 1117-1134.
|
| [168] |
M. Jain, C. Arvanitis, K. Chu, et al., “Sustained Loss of a Neoplastic Phenotype by Brief Inactivation of MYC,” Science 297, no. 5578 (2002): 102-104.
|
| [169] |
Q. Peng, L. Wang, Z. Qin, et al., “Phase Separation of Epstein-Barr Virus EBNA2 and Its Coactivator EBNALP Controls Gene Expression,” Journal of Virology 94, no. 7 (2020): e01771.
|
| [170] |
C. B. Harley, A. B. Futcher, and C. W. Greider, “Telomeres Shorten During Ageing of human Fibroblasts,” Nature 345, no. 6274 (1990): 458-460.
|
| [171] |
A. Nabetani and F. Ishikawa, “Alternative Lengthening of Telomeres Pathway: Recombination-mediated Telomere Maintenance Mechanism in human Cells,” Journal of Biochemistry 149, no. 1 (2011): 5-14.
|
| [172] |
J. M. Zhang, T. Yadav, J. Ouyang, L. Lan, and L. Zou, “Alternative Lengthening of Telomeres Through Two Distinct Break-Induced Replication Pathways,” Cell Reports 26, no. 4 (2019): 955-968. e953.
|
| [173] |
N. W. Cho, R. L. Dilley, M. A. Lampson, and R. A. Greenberg, “Interchromosomal Homology Searches Drive Directional ALT Telomere Movement and Synapsis,” Cell 159, no. 1 (2014): 108-121.
|
| [174] |
V. Lallemand-Breitenbach and H. de Thé, “PML Nuclear Bodies: From Architecture to Function,” Current Opinion in Cell Biology 52 (2018): 154-161.
|
| [175] |
X. Shao, Y. Chen, A. Xu, et al., “Deneddylation of PML/RARα Reconstructs Functional PML Nuclear Bodies via Orchestrating Phase Separation to Eradicate APL,” Cell Death and Differentiation 29, no. 8 (2022): 1654-1668.
|
| [176] |
J. Garcia Morato, F. Hans, F. von Zweydorf, et al., “Sirtuin-1 Sensitive Lysine-136 Acetylation Drives Phase Separation and Pathological Aggregation of TDP-43,” Nature Communications 13, no. 1 (2022): 1223.
|
| [177] |
Y. Eygeris, S. Patel, A. Jozic, and G. Sahay, “Deconvoluting Lipid Nanoparticle Structure for Messenger RNA Delivery,” Nano Letters 20, no. 6 (2020): 4543-4549.
|
| [178] |
R. Y. Zhang, Z. H. Yu, L. Zeng, et al., “SHP2 phosphatase as a Novel Therapeutic Target for Melanoma Treatment,” Oncotarget 7, no. 45 (2016): 73817-73829.
|
| [179] |
X. Yuan, H. Bu, J. Zhou, C. Y. Yang, and H. Zhang, “Recent Advances of SHP2 Inhibitors in Cancer Therapy: Current Development and Clinical Application,” Journal of Medicinal Chemistry 63, no. 20 (2020): 11368-11396.
|
| [180] |
J. B. Easton, A. R. Royer, and D. S. Middlemas, “The Protein Tyrosine Phosphatase, Shp2, Is Required for the Complete Activation of the RAS/MAPK Pathway by Brain-derived Neurotrophic Factor,” Journal of Neurochemistry 97, no. 3 (2006): 834-845.
|
| [181] |
M. Tartaglia, C. M. Niemeyer, A. Fragale, et al., “Somatic Mutations in PTPN11 in Juvenile Myelomonocytic Leukemia, Myelodysplastic Syndromes and Acute Myeloid Leukemia,” Nature Genetics 34, no. 2 (2003): 148-150.
|
| [182] |
Z. Liu, Z. Qin, Y. Liu, et al., “Liquid‒Liquid Phase Separation: Roles and Implications in Future Cancer Treatment,” International Journal of Biological Sciences 19, no. 13 (2023): 4139-4156.
|
| [183] |
M. Yu, Z. Peng, M. Qin, et al., “Interferon-γ Induces Tumor Resistance to anti-PD-1 Immunotherapy by Promoting YAP Phase Separation,” Molecular Cell 81, no. 6 (2021): 1216-1230. e1219.
|
| [184] |
J. Xie, H. He, W. Kong, et al., “Targeting Androgen Receptor Phase Separation to Overcome Antiandrogen Resistance,” Nature Chemical Biology 18, no. 12 (2022): 1341-1350.
|
| [185] |
Y. Li, J. Peng, Y. Xia, et al., “Sufu Limits Sepsis-induced Lung Inflammation via Regulating Phase Separation of TRAF6,” Theranostics 13, no. 11 (2023): 3761-3780.
|
| [186] |
S. Du, X. Hu, X. Liu, and P. Zhan, “Revolutionizing Viral Disease Treatment: Phase Separation and Lysosome/Exosome Targeting as New Areas and New Paradigms for Antiviral Drug Research,” Drug Discovery Today 29, no. 3 (2024): 103888.
|
| [187] |
J. Risso-Ballester, M. Galloux, J. Cao, et al., “A Condensate-hardening Drug Blocks RSV Replication in Vivo,” Nature 595, no. 7868 (2021): 596-599.
|
| [188] |
D. Zhao, W. Xu, X. Zhang, et al., “Understanding the Phase Separation Characteristics of Nucleocapsid Protein Provides a New Therapeutic Opportunity Against SARS-CoV-2,” Protein Cell 12, no. 9 (2021): 734-740.
|
| [189] |
M. Tian, Y. Sun, X. Kong, and B. Dong, “Revealing the Phase Separation in ER Membranes of Living Cells and Tissues by in Situ NIR Ratiometric Imaging,” Analytical Chemistry 94, no. 6 (2022): 2844-2854.
|
| [190] |
Y. Gao, Y. Zhu, H. Wang, et al., “Lipid-mediated Phase Separation of AGO Proteins on the ER Controls Nascent-peptide Ubiquitination,” Molecular Cell 82, no. 7 (2022): 1313-1328. e1318.
|
| [191] |
W. van Leeuwen, D. T. M. Nguyen, R. Grond, T. Veenendaal, C. Rabouille, and G. G. Farías, “Stress-induced Phase Separation of ERES Components Into Sec Bodies Precedes ER Exit Inhibition in Mammalian Cells,” Journal of Cell Science 135, no. 23 (2022): cs260294.
|
| [192] |
S. Liu, X. Zhang, X. Yao, et al., “Mammalian IRE1α Dynamically and Functionally Coalesces With Stress Granules,” Nature Cell Biology 26, no. 6 (2024): 917-931.
|
| [193] |
L. F. S. Mendes, C. G. Oliveira, K. F. Simões, E. Kava, and A. J. Costa-Filho, “Exploring Liquid-liquid Phase Separation in the Organisation of Golgi Matrix Proteins,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1872, no. 5 (2024): 141029.
|
| [194] |
A. A. Rebane, P. Ziltener, L. C. LaMonica, et al., “Liquid-liquid Phase Separation of the Golgi Matrix Protein GM130,” Febs Letters 594, no. 7 (2020): 1132-1144.
|
| [195] |
F. Trnka, C. Hoffmann, H. Wang, et al., “Aberrant Phase Separation of FUS Leads to Lysosome Sequestering and Acidification,” Frontiers in Cell and Developmental Biology 9 (2021): 716919.
|
| [196] |
E. R. Gallagher and E. L. F. Holzbaur, “The Selective Autophagy Adaptor p62/SQSTM1 Forms Phase Condensates Regulated by HSP27 That Facilitate the Clearance of Damaged Lysosomes via Lysophagy,” Cell Reports 42, no. 2 (2023): 112037.
|
| [197] |
M. Wu, G. Xu, C. Han, et al., “lncRNA SLERT Controls Phase Separation of FC/DFCs to Facilitate Pol I Transcription,” Science 373, no. 6554 (2021): 547-555.
|
| [198] |
S. Wohl, M. Jakubowski, and W. Zheng, “Salt-Dependent Conformational Changes of Intrinsically Disordered Proteins,” Journal of Physical Chemistry Letters 12, no. 28 (2021): 6684-6691.
|
| [199] |
M. Parisien, S. J. Silverberg, E. Shane, D. W. Dempster, and J. P. Bilezikian, “Bone Disease in Primary Hyperparathyroidism,” Endocrinology and Metabolism Clinics of North America 19, no. 1 (1990): 19-34.
|
| [200] |
A. Kamatar, J. P. K. Bravo, F. Yuan, et al., “Lipid Droplets as Substrates for Protein Phase Separation,” Biophysical Journal 123, no. 11 (2024): 1494-1507.
|
| [201] |
R. J. Wheeler, “Therapeutics-how to Treat Phase Separation-associated Diseases,” Emerging Topics in Life Sciences 4, no. 3 (2020): 307-318.
|
| [202] |
S. V. Ulianov, A. K. Velichko, M. D. Magnitov, et al., “Suppression of Liquid-liquid Phase Separation by 1,6-hexanediol Partially Compromises the 3D Genome Organization in Living Cells,” Nucleic Acids Research 49, no. 18 (2021): 10524-10541.
|
| [203] |
R. Düster, I. H. Kaltheuner, M. Schmitz, and M. Geyer, “1,6-Hexanediol, Commonly Used to Dissolve Liquid-liquid Phase Separated Condensates, Directly Impairs Kinase and Phosphatase Activities,” Journal of Biological Chemistry 296 (2021): 100260.
|
| [204] |
G. J. Brouhard and L. M. Rice, “Microtubule Dynamics: An Interplay of Biochemistry and Mechanics,” Nature Reviews Molecular Cell Biology 19, no. 7 (2018): 451-463.
|
| [205] |
I. Hayashi and M. Ikura, “Crystal Structure of the Amino-terminal Microtubule-binding Domain of End-binding Protein 1 (EB1),” Journal of Biological Chemistry 278, no. 38 (2003): 36430-36434.
|
| [206] |
X. Song, F. Yang, T. Yang, et al., “Phase Separation of EB1 Guides Microtubule plus-end Dynamics,” Nature Cell Biology 25, no. 1 (2023): 79-91.
|
RIGHTS & PERMISSIONS
2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.