Phage and Endolysin Therapy Against Antibiotics Resistant Bacteria: From Bench to Bedside

Majid Taati Moghadam , Samane Mohebi , Raheleh Sheikhi , Meysam Hasannejad-Bibalan , Shahla Shahbazi , Shadman Nemati

MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70280

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70280 DOI: 10.1002/mco2.70280
REVIEW

Phage and Endolysin Therapy Against Antibiotics Resistant Bacteria: From Bench to Bedside

Author information +
History +
PDF

Abstract

The rapid global spread of antibiotic-resistant bacteria presents a growing public health crisis, threatening the efficacy of existing antimicrobial treatments. As traditional antibiotics become increasingly ineffective, alternative therapies such as bacteriophages and endolysins have gained renewed scientific and clinical interest. These biological agents, naturally derived from bacteriophage life cycles, exhibit potent and selective antibacterial activity, especially against multidrug-resistant pathogens. Despite decades of research, the clinical translation of phage and endolysin therapies remains limited due to regulatory, delivery, and stability challenges. This review provides a comprehensive overview of the mechanisms, advantages, and limitations of both bacteriophages and endolysins, including their structure, mode of action, and interaction with bacterial hosts. Particular attention is given to combination therapies, where synergistic effects have been observed–especially in biofilm-associated infections. We also explore the latest findings from preclinical studies, clinical trials, and compassionate-use cases, with an emphasis on genetically engineered and synthetic variants that enhance therapeutic potential. Furthermore, we discuss manufacturing challenges, regulatory barriers, and future directions such as personalized phage therapy and engineered endolysins. By synthesizing current knowledge, this review highlights the academic and translational significance of phage and endolysin-based approaches in combating antibiotic-resistant infections.

Keywords

antibiotic-resistant infections / endolysin / engineered endolysins / engineered phages / phage

Cite this article

Download citation ▾
Majid Taati Moghadam, Samane Mohebi, Raheleh Sheikhi, Meysam Hasannejad-Bibalan, Shahla Shahbazi, Shadman Nemati. Phage and Endolysin Therapy Against Antibiotics Resistant Bacteria: From Bench to Bedside. MedComm, 2025, 6(7): e70280 DOI:10.1002/mco2.70280

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Aranaga, L. D. Pantoja, E. A. Martínez, and A. Falco, “Phage Therapy in the Era of Multidrug Resistance in Bacteria: A Systematic Review,” International Journal of Molecular Sciences 23, no. 9 (2022): 4577.

[2]

K. Liu, C. Wang, X. Zhou, et al., “Bacteriophage Therapy for Drug-resistant Staphylococcus aureus Infections,” Frontiers in Cellular and Infection Microbiology 14 (2024): 1336821.

[3]

V. V. Vlassov, N. V. Tikunova, and V. V. Morozova, “Bacteriophages as Therapeutic Preparations: What Restricts Their Application in Medicine,” Biochemistry (Mosc) 85, no. 11 (2020): 1350-1361.

[4]

S. M. Mousavi, S. Babakhani, L. Moradi, et al., “Bacteriophage as a Novel Therapeutic Weapon for Killing Colistin-resistant Multi-drug-resistant and Extensively Drug-resistant Gram-negative Bacteria,” Current Microbiology 78, no. 12 (2021): 4023-4036.

[5]

X. Zhen, C. S. Lundborg, X. Sun, X. Hu, and H. Dong, “Economic Burden of Antibiotic Resistance in ESKAPE Organisms: A Systematic Review,” Antimicrob Resist Infect Control 8 (2019): 137.

[6]

C. H. Wang, Y. H. Hsieh, Z. M. Powers, and C. Y. Kao, “Defeating Antibiotic-Resistant Bacteria: Exploring Alternative Therapies for a Post-Antibiotic Era,” International Journal of Molecular Sciences 21, no. 3 (2020): 1061.

[7]

A. E. Paharik and A. R. Horswill, “The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response,” Microbiology Spectrum 4, no. 2 (2016).

[8]

F. Eghbalpoor, M. Gorji, M. Z. Alavigeh, and M. T. Moghadam, “Genetically Engineered Phages and Engineered Phage-derived Enzymes to Destroy Biofilms of Antibiotics Resistance Bacteria,” Heliyon 10, no. 15 (2024): e35666.

[9]

A. Ghosh Moulic, P. Deshmukh, and S. S. Gaurkar, “A Comprehensive Review on Biofilms in Otorhinolaryngology: Understanding the Pathogenesis, Diagnosis, and Treatment Strategies,” Cureus 16, no. 4 (2024): e57634.

[10]

S. A. Fong, A. Drilling, S. Morales, et al., “Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates From Chronic Rhinosinusitis Patients,” Frontiers in Cellular and Infection Microbiology 7 (2017): 418.

[11]

D. M. Lin, B. Koskella, and H. C. Lin, “Phage Therapy: An Alternative to Antibiotics in the Age of Multi-drug Resistance,” World J Gastrointest Pharmacol Ther 8, no. 3 (2017): 162-173.

[12]

S. Uyttebroek, J. Onsea, W. J. Metsemakers, et al., “The Potential Role of Bacteriophages in the Treatment of Recalcitrant Chronic Rhinosinusitis,” Antibiotics (Basel) 10, no. 6 (2021): 675.

[13]

T. Azimi, M. Mosadegh, M. J. Nasiri, S. Sabour, S. Karimaei, and A. Nasser, “Phage Therapy as a Renewed Therapeutic Approach to Mycobacterial Infections: A Comprehensive Review,” Infection and Drug Resistance 12 (2019): 2943-2959.

[14]

M. Taati Moghadam, N. Amirmozafari, A. Shariati, M. Hallajzadeh, S. Mirkalantari, A. Khoshbayan, et al., “How Phages Overcome the Challenges of Drug Resistant Bacteria in Clinical Infections,” Infection and Drug Resistance 13 (2020): 45-61.

[15]

M. Hassannia, M. Naderifar, S. Salamy, M. R. Akbarizadeh, S. Mohebi, and M. T. Moghadam, “Engineered Phage Enzymes Against Drug-resistant Pathogens: A Review on Advances and Applications,” Bioprocess and Biosystems Engineering 47, no. 3 (2024): 301-312.

[16]

V. S. Gondil, K. Harjai, and S. Chhibber, “Endolysins as Emerging Alternative Therapeutic Agents to Counter Drug-resistant Infections,” International Journal of Antimicrobial Agents 55, no. 2 (2020): 105844.

[17]

N. Walter, M. Mirzaei, L. Deng, C. Willy, V. Alt, and M. Rupp, “The Potential of Bacteriophage Therapy as an Alternative Treatment Approach for Antibiotic-Resistant Infections,” Medical Principles and Practice : International Journal of the Kuwait University, Health Science Centre 33, no. 1 (2024): 1-9.

[18]

J. Szaleniec, A. Górski, M. Szaleniec, et al., “Can Phage Therapy Solve the Problem of Recalcitrant Chronic Rhinosinusitis?,” Future Microbiology 12 (2017): 1427-1442.

[19]

L. M. T. Dicks and W. Vermeulen, “Bacteriophage-Host Interactions and the Therapeutic Potential of Bacteriophages,” Viruses. 16, no. 3 (2024): 478.

[20]

M. T. Moghadam, A. Mojtahedi, S. Salamy, et al., “Phage Therapy as a Glimmer of Hope in the Fight Against the Recurrence or Emergence of Surgical Site Bacterial Infections,” Infection 52, no. 2 (2024): 385-402.

[21]

M. B. Boroujeni, S. Mohebi, A. Malekian, et al., “The Therapeutic Effect of Engineered Phage, Derived Protein and Enzymes Against Superbug Bacteria,” Biotechnology and Bioengineering 121, no. 1 (2024): 82-99.

[22]

F. M. Zerbini, S. G. Siddell, E. J. Lefkowitz, et al., “Changes to Virus Taxonomy and the ICTV Statutes Ratified by the International Committee on Taxonomy of Viruses (2023),” Arch. Virol 168, no. 7 (2023): 175.

[23]

G. F. Hatfull and R. W. Hendrix, “Bacteriophages and Their Genomes,” Current opinion in virology 1, no. 4 (2011): 298-303.

[24]

E. Harrison and M. A. Brockhurst, “Ecological and Evolutionary Benefits of Temperate Phage: What Does or Doesn't Kill You Makes You Stronger,” BioEssays 39, no. 12 (2017).

[25]

R. Monteiro, D. P. Pires, A. R. Costa, and J. Azeredo, “Phage Therapy: Going Temperate?,” Trends in Microbiology 27, no. 4 (2019): 368-378.

[26]

E. V. Davies, C. Winstanley, J. L. Fothergill, and C. E. James, “The Role of Temperate Bacteriophages in Bacterial Infection,” Fems Microbiology Letters 363, no. 5 (2016): fnw015.

[27]

N. Shaikh and P. I. Tarr, “Escherichia coli O157:H7 Shiga Toxin-encoding Bacteriophages: Integrations, Excisions, Truncations, and Evolutionary Implications,” Journal of Bacteriology 185, no. 12 (2003): 3596-3605.

[28]

M. K. Waldor and J. J. Mekalanos, “Lysogenic Conversion by a Filamentous Phage Encoding Cholera Toxin,” Science 272, no. 5270 (1996): 1910-1914.

[29]

M. Taati Moghadam, A. Khoshbayan, Z. Chegini, I. Farahani, and A. Shariati, “Bacteriophages, a New Therapeutic Solution for Inhibiting Multidrug-resistant Bacteria Causing Wound Infection: Lesson From Animal Models and Clinical Trials,” Drug Design, Development and Therapy 14 (2020): 1867-1883.

[30]

J. R. Meyer, D. T. Dobias, J. S. Weitz, J. E. Barrick, R. T. Quick, and R. E. Lenski, “Repeatability and Contingency in the Evolution of a Key Innovation in phage lambda,” Science 335, no. 6067 (2012): 428-432.

[31]

N. M. Hitchcock, D. Devequi Gomes Nunes, J. Shiach, et al., “Current Clinical Landscape and Global Potential of Bacteriophage Therapy,” Viruses. 15, no. 4 (2023): 1020.

[32]

A. Forde and C. Hill, “Phages of Life—the Path to Pharma,” British Journal of Pharmacology 175, no. 3 (2018): 412-418.

[33]

B. Koskella and S. Meaden, “Understanding Bacteriophage Specificity in Natural Microbial Communities,” Viruses. 5, no. 3 (2013): 806-823.

[34]

V. A. Floccari and A. Dragoš, “Host Control by SPβ Phage Regulatory Switch as Potential Manipulation Strategy,” Current Opinion in Microbiology 71 (2023): 102260.

[35]

K. White, J. H. Yu, G. Eraclio, F. Dal Bello, A. Nauta, J. Mahony, et al., “Bacteriophage-host Interactions as a Platform to Establish the Role of Phages in Modulating the Microbial Composition of Fermented Foods,” Microbiome Res Rep 1, no. 1 (2022): 3.

[36]

P. A. de Jonge, F. L. Nobrega, S. J. J. Brouns, and B. E. Dutilh, “Molecular and Evolutionary Determinants of Bacteriophage Host Range,” Trends in Microbiology 27, no. 1 (2019): 51-63.

[37]

J. Bertozzi Silva, Z. Storms, and D. Sauvageau, “Host Receptors for Bacteriophage Adsorption,” Fems Microbiology Letters 363, no. 4 (2016): fnw002.

[38]

K. Żbikowska, M. Michalczuk, and B. Dolka, “The Use of Bacteriophages in the Poultry Industry,” Animals (Basel) 10, no. 5 (2020): 872.

[39]

D. Boeckaerts, M. Stock, B. De Baets, and Y. Briers, “Identification of Phage Receptor-Binding Protein Sequences With Hidden Markov Models and an Extreme Gradient Boosting Classifier,” Viruses. 14, no. 6 (2022): 1329.

[40]

D. Boeckaerts, M. Stock, B. Criel, H. Gerstmans, B. De Baets, and Y. Briers, “Predicting Bacteriophage Hosts Based on Sequences of Annotated Receptor-binding Proteins,” Scientific Reports 11, no. 1 (2021): 1467.

[41]

R. Lood, B. Y. Winer, A. J. Pelzek, et al., “Novel Phage Lysin Capable of Killing the Multidrug-resistant Gram-negative Bacterium Acinetobacter baumannii in a Mouse Bacteremia Model,” Antimicrobial Agents and Chemotherapy 59, no. 4 (2015): 1983-1991.

[42]

A. Nakonieczna, C. J. Cooper, and R. Gryko, “Bacteriophages and Bacteriophage-derived Endolysins as Potential Therapeutics to Combat Gram-positive Spore Forming Bacteria,” Journal of Applied Microbiology 119, no. 3 (2015): 620-631.

[43]

C. Pereira, C. Moreirinha, L. Teles, et al., “Application of Phage Therapy During Bivalve Depuration Improves Escherichia coli Decontamination,” Food Microbiology 61 (2017): 102-112.

[44]

F. L. Nobrega, A. R. Costa, L. D. Kluskens, and J. Azeredo, “Revisiting Phage Therapy: New Applications for Old Resources,” Trends in Microbiology 23, no. 4 (2015): 185-191.

[45]

A. Górski, R. Międzybrodzki, B. Weber-Dąbrowska, W. Fortuna, S. Letkiewicz, P. Rogóż, et al., “Phage Therapy: Combating Infections With Potential for Evolving From Merely a Treatment for Complications to Targeting Diseases,” Frontiers in Microbiology 7 (2016): 1515.

[46]

P. Simmonds, M. J. Adams, M. Benkő, et al., “Consensus Statement: Virus Taxonomy in the Age of Metagenomics,” Nature Reviews Microbiology 15, no. 3 (2017): 161-168.

[47]

A. Chevallereau, B. J. Pons, S. van Houte, and E. R. Westra, “Interactions Between Bacterial and Phage Communities in Natural Environments,” Nature Reviews Microbiology 20, no. 1 (2022): 49-62.

[48]

D. G. Sant, L. C. Woods, J. J. Barr, and M. J. McDonald, “Host Diversity Slows Bacteriophage Adaptation by Selecting Generalists Over Specialists,” Nature Ecology & Evolution 5, no. 3 (2021): 350-359.

[49]

T. Holtzman, R. Globus, S. Molshanski-Mor, A. Ben-Shem, I. Yosef, and U. Qimron, “A Continuous Evolution System for Contracting the Host Range of Bacteriophage T7,” Scientific Reports 10, no. 1 (2020): 307.

[50]

J. K. Cornuault, E. Moncaut, V. Loux, et al., “The Enemy From Within: A Prophage of Roseburia intestinalis Systematically Turns Lytic in the Mouse Gut, Driving Bacterial Adaptation by CRISPR Spacer Acquisition,” The ISME journal 14, no. 3 (2020): 771-787.

[51]

L. De Sordi, V. Khanna, and L. Debarbieux, “The Gut Microbiota Facilitates Drifts in the Genetic Diversity and Infectivity of Bacterial Viruses,” Cell Host & Microbe 22, no. 6 (2017): 801-808. e3.

[52]

T. N. Mavrich and G. F. Hatfull, “Bacteriophage Evolution Differs by Host, Lifestyle and Genome,” Nature microbiology 2 (2017): 17112.

[53]

B. M. GenBank. “National Library of Medicine (US), National Center for Biotechnology Information”.

[54]

J. Lin, F. Du, M. Long, and P. Li, “Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review,” Molecules (Basel, Switzerland) 27, no. 6 (2022): 1857.

[55]

A. Ross, S. Ward, and P. Hyman, “More Is Better: Selecting for Broad Host Range Bacteriophages,” Frontiers in Microbiology 7 (2016): 1352.

[56]

J. Doss, K. Culbertson, D. Hahn, J. Camacho, and N. Barekzi, “A Review of Phage Therapy Against Bacterial Pathogens of Aquatic and Terrestrial Organisms,” Viruses. 9, no. 3 (2017): 50.

[57]

O. J. Bernasconi, V. Donà, R. Tinguely, and A. Endimiani, “In Vitro Activity of Three Commercial Bacteriophage Cocktails Against Multidrug-resistant Escherichia coli and Proteus Spp. Strains of human and Non-human Origin,” J Glob Antimicrob Resist 8 (2017): 179-185.

[58]

D. Vandenheuvel, R. Lavigne, and H. Brüssow, “Bacteriophage Therapy: Advances in Formulation Strategies and Human Clinical Trials,” Annu Rev Virol 2, no. 1 (2015): 599-618.

[59]

R. T. Schooley, B. Biswas, J. J. Gill, et al., “Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient With a Disseminated Resistant Acinetobacter baumannii Infection,” Antimicrobial Agents and Chemotherapy 61, no. 10 (2017): e00954.

[60]

C. Rohde, G. Resch, J. P. Pirnay, et al., “Expert Opinion on Three Phage Therapy Related Topics: Bacterial Phage Resistance, Phage Training and Prophages in Bacterial Production Strains,” Viruses. 10, no. 4 (2018): 178.

[61]

Z. Drulis-Kawa, G. Majkowska-Skrobek, B. Maciejewska, A. S. Delattre, and R. Lavigne, “Learning From Bacteriophages—advantages and Limitations of Phage and Phage-encoded Protein Applications,” Current Protein & Peptide Science 13, no. 8 (2012): 699-722.

[62]

S. J. Labrie, J. E. Samson, and S. Moineau, “Bacteriophage Resistance Mechanisms,” Nature Reviews Microbiology 8, no. 5 (2010): 317-327.

[63]

A. M. Ormälä and M. Jalasvuori, “Phage Therapy: Should Bacterial Resistance to Phages be a Concern, Even in the Long Run?,” Bacteriophage 3, no. 1 (2013): e24219.

[64]

X. Wittebole, S. De Roock, and S. M. Opal, “A Historical Overview of Bacteriophage Therapy as an Alternative to Antibiotics for the Treatment of Bacterial Pathogens,” Virulence 5, no. 1 (2014): 226-235.

[65]

A. Wernicki, A. Nowaczek, and R. Urban-Chmiel, “Bacteriophage Therapy to Combat Bacterial Infections in Poultry,” Virology journal 14, no. 1 (2017): 179.

[66]

E. Jończyk-Matysiak, B. Weber-Dąbrowska, B. Owczarek, et al., “Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics,” Viruses. 9, no. 6 (2017): 150.

[67]

F. Abdelrahman, M. Easwaran, O. I. Daramola, et al., “Phage-Encoded Endolysins,” Antibiotics (Basel) 10, no. 2 (2021): 124.

[68]

V. S. Gondil, F. M. Khan, N. Mehra, et al., “Clinical Potential of Bacteriophage and Endolysin Based Therapeutics: A Futuristic Approach,” Microbial Products for Health, Environment and Agriculture (2021): 39-58.

[69]

M. Wang, J. Zhang, J. Wei, et al., “Phage-inspired Strategies to Combat Antibacterial Resistance,” Critical Reviews in Microbiology 50, no. 2 (2024): 196-211.

[70]

Y. Briers, G. Volckaert, A. Cornelissen, et al., “Muralytic Activity and Modular Structure of the Endolysins of Pseudomonas aeruginosa Bacteriophages φKZ and EL,” Molecular Microbiology 65, no. 5 (2007): 1334-1344.

[71]

F. M. Khan, J.-H. Chen, R. Zhang, and B. Liu, “A Comprehensive Review of the Applications of Bacteriophage-derived Endolysins for Foodborne Bacterial Pathogens and Food Safety: Recent Advances, Challenges, and Future Perspective,” Frontiers in Microbiology 14 (2023): 1259210.

[72]

E. Murray, L. A. Draper, R. P. Ross, and C. Hill, “The Advantages and Challenges of Using Endolysins in a Clinical Setting,” Viruses. 13, no. 4 (2021): 680.

[73]

N. Matamp and S. G. Bhat, “Phage Endolysins as Potential Antimicrobials Against Multidrug Resistant Vibrio Alginolyticus and Vibrio Parahaemolyticus: Current Status of Research and Challenges Ahead,” Microorganisms 7, no. 3 (2019): 84.

[74]

L. Rodríguez-Rubio, H. Gerstmans, S. Thorpe, S. Mesnage, R. Lavigne, and Y. Briers, “DUF3380 domain From a Salmonella Phage Endolysin Shows Potent N-acetylmuramidase Activity,” Applied and Environmental Microbiology 82, no. 16 (2016): 4975-4981.

[75]

S. A. Ragland and A. K. Criss, “From Bacterial Killing to Immune Modulation: Recent Insights Into the Functions of Lysozyme,” PLoS Pathogens 13, no. 9 (2017): e1006512.

[76]

F. M. Khan, F. Rasheed, Y. Yang, B. Liu, and R. Zhang, “Endolysins: A New Antimicrobial Agent Against Antimicrobial Resistance. Strategies and Opportunities in Overcoming the Challenges of Endolysins Against Gram-negative Bacteria,” Frontiers in Pharmacology 15 (2024): 1385261.

[77]

D. Nelson, L. Loomis, and V. A. Fischetti, “Prevention and Elimination of Upper respiratory Colonization of Mice by Group A Streptococci by Using a Bacteriophage Lytic Enzyme,” Proceedings of the National Academy of Sciences 98, no. 7 (2001): 4107-4112.

[78]

Y. Briers, M. Walmagh, V. Van Puyenbroeck, et al., “Engineered Endolysin-based “Artilysins” to Combat Multidrug-resistant Gram-negative Pathogens,” MBio 5, no. 4 (2014): 01379.

[79]

D. C. Nelson, M. Schmelcher, L. Rodriguez-Rubio, et al., “Endolysins as Antimicrobials,” Advances in Virus Research 83 (2012): 299-365.

[80]

M. Morita, Y. Tanji, Y. Orito, K. Mizoguchi, A. Soejima, and H. Unno, “Functional Analysis of Antibacterial Activity of Bacillus Amyloliquefaciens Phage Endolysin Against Gram-negative Bacteria,” FEBS Letters 500, no. 1-2 (2001): 56-59.

[81]

M. Walmagh, Y. Briers, S. SBd, J. Azeredo, and R. Lavigne, “Characterization of Modular Bacteriophage Endolysins From Myoviridae Phages OBP, 201φ2-1 and PVP-SE1,” PLoS ONE 7, no. 5 (2012): e36991.

[82]

A. H. Delcour, “Outer Membrane Permeability and Antibiotic Resistance,” Biochimica Et Biophysica Acta (BBA)-Proteins and Proteomics 1794, no. 5 (2009): 808-816.

[83]

H. Oliveira, C. São-José, and J. Azeredo, “Phage-derived Peptidoglycan Degrading Enzymes: Challenges and Future Prospects for in Vivo Therapy,” Viruses. 10, no. 6 (2018): 292.

[84]

H. Yang, J. Yu, and H. Wei, “Engineered Bacteriophage Lysins as Novel Anti-infectives,” Frontiers in Microbiology 5 (2014): 542.

[85]

H. Yang, S. B. Linden, J. Wang, J. Yu, D. C. Nelson, and H. Wei, “A Chimeolysin With Extended-spectrum Streptococcal Host Range Found by an Induced Lysis-based Rapid Screening Method,” Scientific Reports 5, no. 1 (2015): 17257.

[86]

C. São-José, “Engineering of Phage-derived Lytic Enzymes: Improving Their Potential as Antimicrobials,” Antibiotics 7, no. 2 (2018): 29.

[87]

B. Maciejewska, K. Źrubek, A. Espaillat, et al., “Modular Endolysin of Burkholderia AP3 Phage Has the Largest Lysozyme-Like Catalytic Subunit Discovered to Date and no Catalytic Aspartate Residue,” Scientific Reports 7, no. 1 (2017): 14501.

[88]

C. Ghose and C. W. Euler, “Gram-negative Bacterial Lysins,” Antibiotics 9, no. 2 (2020): 74.

[89]

D. Nelson, R. Schuch, P. Chahales, S. Zhu, and V. A. Fischetti, “PlyC: A Multimeric Bacteriophage Lysin,” Proceedings of the National Academy of Sciences 103, no. 28 (2006): 10765-10770.

[90]

W. C. B. Lai, X. Chen, M. K. Y. Ho, J. Xia, and S. S. Y. Leung, “Bacteriophage-derived Endolysins to Target Gram-negative Bacteria,” International Journal of Pharmaceutics 589 (2020): 119833.

[91]

S. Kim, D.-W. Lee, J.-S. Jin, and J. Kim, “Antimicrobial Activity of LysSS, a Novel Phage Endolysin, Against Acinetobacter baumannii and Pseudomonas aeruginosa,” Journal of Global Antimicrobial Resistance 22 (2020): 32-39.

[92]

Y. Larpin, F. Oechslin, P. Moreillon, G. Resch, J. M. Entenza, and S. Mancini, “In Vitro Characterization of PlyE146, a Novel Phage Lysin That Targets Gram-negative Bacteria,” PLoS ONE 13, no. 2 (2018): e0192507.

[93]

M. Thandar, R. Lood, B. Y. Winer, D. R. Deutsch, C. W. Euler, and V. A. Fischetti, “Novel Engineered Peptides of a Phage Lysin as Effective Antimicrobials Against Multidrug-resistant Acinetobacter baumannii,” Antimicrobial Agents and Chemotherapy 60, no. 5 (2016): 2671-2679.

[94]

S.-Y. Peng, R.-I. You, M.-J. Lai, N.-T. Lin, L.-K. Chen, and K.-C. Chang, “Highly Potent Antimicrobial Modified Peptides Derived From the Acinetobacter baumannii Phage Endolysin LysAB2,” Scientific Reports 7, no. 1 (2017): 11477.

[95]

C. W. Euler, A. Raz, A. Hernandez, et al., “PlyKp104, a Novel Phage Lysin for the Treatment of Klebsiella pneumoniae, Pseudomonas aeruginosa, and Other Gram-negative ESKAPE Pathogens,” Antimicrobial Agents and Chemotherapy 67, no. 5 (2023): e01519-22.

[96]

R. D. Heselpoth, C. W. Euler, R. Schuch, and V. A. Fischetti, “Lysocins: Bioengineered Antimicrobials That Deliver Lysins Across the Outer Membrane of Gram-negative Bacteria,” Antimicrobial Agents and Chemotherapy 63, no. 6 (2019): 00342-00319.

[97]

J. J. K. Chu, W. H. Poh, N. T. B. Hasnuddin, et al., “Novel Phage Lysin Abp013 Against Acinetobacter baumannii,” Antibiotics 11, no. 2 (2022): 169.

[98]

H. Ning, Y. Cong, H. Lin, and J. Wang, “Development of Cationic Peptide Chimeric Lysins Based on Phage Lysin Lysqdvp001 and Their Antibacterial Effects Against Vibrio Parahaemolyticus: A Preliminary Study,” International Journal of Food Microbiology 358 (2021): 109396.

[99]

H.-Q. Ning, H. Lin, and J.-X. Wang, “Synergistic Effects of Endolysin Lysqdvp001 and ε-poly-lysine in Controlling Vibrio Parahaemolyticus and Its Biofilms,” International Journal of Food Microbiology 343 (2021): 109112.

[100]

S. Xu, E. Campisi, J. Li, and V. A. Fischetti, “Decontamination of Escherichia coli O157: H7 on Fresh Romaine Lettuce Using a Novel Bacteriophage Lysin,” International Journal of Food Microbiology 341 (2021): 109068.

[101]

R. Vázquez, A. Doménech-Sánchez, S. Ruiz, et al., “Improvement of the Antibacterial Activity of Phage Lysin-derived Peptide P87 Through Maximization of Physicochemical Properties and Assessment of Its Therapeutic Potential,” Antibiotics 11, no. 10 (2022): 1448.

[102]

R. Vázquez, M. Seoane-Blanco, V. Rivero-Buceta, S. Ruiz, M. J. van Raaij, and P. García, “Monomodular Pseudomonas aeruginosa Phage JG004 Lysozyme (Pae87) Contains a Bacterial Surface-active Antimicrobial Peptide-Like Region and a Possible Substrate-binding Subdomain,” Biological Crystallography 78, no. 4 (2022): 435-454.

[103]

M. Naveed, Y. Wang, X. Yin, et al., “Purification, Characterization and Bactericidal Action of Lysozyme, Isolated From Bacillus Subtillis BSN314: A Disintegrating Effect of Lysozyme on Gram-positive and Gram-negative Bacteria,” Molecules (Basel, Switzerland) 28, no. 3 (2023): 1058.

[104]

B. Son, Y. Kim, B. Yu, and M. Kong, “Isolation and Characterization of a Weizmannia Coagulans Bacteriophage youna2 and Its Endolysin plyyouna2,” Journal of Microbiology and Biotechnology 33, no. 8 (2023): 1050.

[105]

U. Leungtongkam, T. Kitti, S. Khongfak, et al., “Genome Characterization of the Novel Lytic Phage vB_AbaAut_ChT04 and the Antimicrobial Activity of Its Lysin Peptide Against Acinetobacter baumannii Isolates From Different Time Periods,” Archives of Virology 168, no. 9 (2023): 238.

[106]

C. Li, M. Jiang, F. M. Khan, et al., “Intrinsic Antimicrobial Peptide Facilitates a New Broad-spectrum Lysin LysP53 to Kill Acinetobacter baumannii in Vitro and in a Mouse Burn Infection Model,” ACS Infectious Diseases 7, no. 12 (2021): 3336-3344.

[107]

H. Haddad Kashani, M. Schmelcher, H. Sabzalipoor, E. Seyed Hosseini, and R. Moniri, “Recombinant Endolysins as Potential Therapeutics Against Antibiotic-resistant Staphylococcus aureus: Current Status of Research and Novel Delivery Strategies,” Clinical Microbiology Reviews 31, no. 1 (2018): 00071-00017.

[108]

B. J. Bruno, G. D. Miller, and C. S. Lim, “Basics and Recent Advances in Peptide and Protein Drug Delivery,” Therapeutic Delivery 4, no. 11 (2013): 1443-1467.

[109]

F. M. Khan, V. S. Gondil, C. Li, et al., “A Novel Acinetobacter baumannii Bacteriophage Endolysin LysAB54 With High Antibacterial Activity Against Multiple Gram-negative Microbes,” Frontiers in Cellular and Infection Microbiology 11 (2021): 637313.

[110]

H. Yang, M. Wang, J. Yu, and H. Wei, “Antibacterial Activity of a Novel Peptide-modified Lysin Against Acinetobacter baumannii and Pseudomonas aeruginosa,” Frontiers in Microbiology 6 (2015): 1471.

[111]

I. Guideline, “Stability Testing of New Drug Substances and Products,” Q1A (R2), Current Step 4, no. 1-24 (2003).

[112]

D. Dams and Y. Briers, “Enzybiotics: Enzyme-based Antibacterials as Therapeutics,” Therapeutic Enzymes: Function and Clinical Implications 1148 (2019): 233-253.

[113]

M. J. Love, D. Bhandari, R. C. Dobson, and C. Billington, “Potential for Bacteriophage Endolysins to Supplement or Replace Antibiotics in Food Production and Clinical Care,” Antibiotics 7, no. 1 (2018): 17.

[114]

M. Harhala, D. C. Nelson, P. Miernikiewicz, et al., “Safety Studies of Pneumococcal Endolysins Cpl-1 and Pal,” Viruses. 10, no. 11 (2018): 638.

[115]

H. Zhao, D. Verma, W. Li, et al., “Depletion of T Cell Epitopes in Lysostaphin Mitigates Anti-drug Antibody Response and Enhances Antibacterial Efficacy in Vivo,” Chemistry & Biology 22, no. 5 (2015): 629-639.

[116]

K. Blazanovic, H. Zhao, Y. Choi, et al., “Structure-based Redesign of Lysostaphin Yields Potent Antistaphylococcal Enzymes That Evade Immune Cell Surveillance,” Molecular Therapy Methods & Clinical Development 2 (2015): 15021.

[117]

A. Raz, A. Serrano, M. Thaker, T. Alston, and V. A. Fischetti, “Lysostaphin Lysibody Leads to Effective Opsonization and Killing of Methicillin-resistant Staphylococcus aureus in a Murine Model,” Antimicrobial Agents and Chemotherapy 62, no. 10 (2018): 01056-01018.

[118]

H. Yang, J. Xu, W. Li, et al., “Staphylococcus aureus Virulence Attenuation and Immune Clearance Mediated by a Phage Lysin-derived Protein,” The EMBO Journal 37, no. 17 (2018): e98045.

[119]

H. Zhang, X. Zhang, S. Liang, et al., “Bactericidal Synergism Between Phage Endolysin Ply2660 and Cathelicidin LL-37 Against Vancomycin-resistant Enterococcus faecalis Biofilms,” NPJ Biofilms and Microbiomes 9, no. 1 (2023): 16.

[120]

S. Sitthisak, S. Manrueang, S. Khongfak, et al., “Antibacterial Activity of vB_AbaM_PhT2 Phage Hydrophobic Amino Acid Fusion Endolysin, Combined With Colistin Against Acinetobacter baumannii,” Scientific Reports 13, no. 1 (2023): 7470.

[121]

M. A. Belete, S. Tadesse, M. Tilahun, E. Alemayehu, and M. Saravanan, “Phage Endolysins as New Therapeutic Options for Multidrug Resistant Staphylococcus aureus: An Emerging Antibiotic-free Way to Combat Drug Resistant Infections,” Frontiers in Cellular and Infection Microbiology 14 (2024): 1397935.

[122]

R. H. Stevens, H. Zhang, M. Kajsik, et al., “Successful Use of a Phage Endolysin for Treatment of Chronic Pelvic Pain Syndrome/Chronic Bacterial Prostatitis,” Frontiers in Medicine 10 (2023): 1238147.

[123]

S.-Y. Lu, K. M. Bischoff, J. O. Rich, S. Liu, and C. D. Skory, “Recombinant Bacteriophage LysKB317 Endolysin Mitigates Lactobacillus Infection of Corn Mash Fermentations,” Biotechnology for Biofuels 13 (2020): 1-14.

[124]

D. Gutiérrez, P. Ruas-Madiedo, B. Martínez, A. Rodríguez, and P. García, “Effective Removal of Staphylococcal Biofilms by the Endolysin LysH5,” PLoS ONE 9, no. 9 (2014): e107307.

[125]

Y. Yuan, X. Li, L. Wang, et al., “The Endolysin of the Acinetobacter baumannii Phage vB_AbaP_D2 Shows Broad Antibacterial Activity,” Microbial Biotechnology 14, no. 2 (2021): 403-418.

[126]

M. Guo, C. Feng, J. Ren, et al., “A Novel Antimicrobial Endolysin, LysPA26, Against Pseudomonas aeruginosa,” Frontiers in Microbiology 8 (2017): 293.

[127]

X. Meng, Y. Shi, W. Ji, X. Meng, J. Zhang, H. Wang, et al., “Application of a Bacteriophage Lysin to Disrupt Biofilms Formed by the Animal Pathogen Streptococcus suis,” Applied and Environmental Microbiology 77, no. 23 (2011): 8272-8279.

[128]

S. C. Becker, D. R. Roach, V. S. Chauhan, et al., “Triple-acting Lytic Enzyme Treatment of Drug-resistant and Intracellular Staphylococcus aureus,” Scientific Reports 6, no. 1 (2016): 25063.

[129]

H. Koo, R. N. Allan, R. P. Howlin, P. Stoodley, and L. Hall-Stoodley, “Targeting Microbial Biofilms: Current and Prospective Therapeutic Strategies,” Nature Reviews Microbiology 15, no. 12 (2017): 740-755.

[130]

C. Wiuff, R. Zappala, R. Regoes, K. Garner, F. Baquero, and B. Levin, “Phenotypic Tolerance: Antibiotic Enrichment of Noninherited Resistance in Bacterial Populations,” Antimicrobial Agents and Chemotherapy 49, no. 4 (2005): 1483-1494.

[131]

K. Lewis, “Persister Cells,” Annual Review of Microbiology 64, no. 1 (2010): 357-372.

[132]

N. Pal, P. Sharma, M. Kumawat, et al., “Phage Therapy: An Alternative Treatment Modality for MDR Bacterial Infections,” Infectious Diseases 56 (2024): 785-817.

[133]

M. U. Rahman, W. Wang, Q. Sun, et al., “Endolysin, a Promising Solution Against Antimicrobial Resistance,” Antibiotics 10, no. 11 (2021): 1277.

[134]

H. Liu, Z. Hu, M. Li, Y. Yang, S. Lu, and X. Rao, “Therapeutic Potential of Bacteriophage Endolysins for Infections Caused by Gram-positive Bacteria,” Journal of Biomedical Science 30, no. 1 (2023): 29.

[135]

P. Letrado, B. Corsini, R. Díez-Martínez, N. Bustamante, J. E. Yuste, and P. García, “Bactericidal Synergism Between Antibiotics and Phage Endolysin Cpl-711 to Kill Multidrug-resistant Pneumococcus,” Future Microbiology 13, no. 11 (2018): 1215-1223.

[136]

V. S. Gondil, K. Harjai, and S. Chhibber, “Investigating the Potential of Endolysin Loaded Chitosan Nanoparticles in the Treatment of Pneumococcal Pneumonia,” Journal of Drug Delivery Science and Technology 61 (2021): 102142.

[137]

J. M. Ochieng'Oduor, N. Onkoba, F. Maloba, W. O. Arodi, and A. Nyachieo, “Efficacy of Lytic Staphylococcus aureus Bacteriophage Against Multidrug-resistant Staphylococcus aureus in Mice,” The Journal of Infection in Developing Countries 10, no. 11 (2016): 1208-1213.

[138]

R. R. Pallavali, V. L. Degati, D. Lomada, M. C. Reddy, and V. R. P. Durbaka, “Isolation and in Vitro Evaluation of Bacteriophages Against MDR-bacterial Isolates From Septic Wound Infections,” PLoS ONE 12, no. 7 (2017): e0179245.

[139]

R. R. Pallavali, V. L. Degati, V. R. Narala, K. K. Velpula, S. Yenugu, and V. R. P. Durbaka, “Lytic Bacteriophages Against Bacterial Biofilms Formed by Multidrug-resistant Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus Isolated From Burn Wounds,” Therapy, Applications, and Research 2, no. 3 (2021): 120-130.

[140]

M. Vashisth, A. B. Jaglan, S. Yashveer, et al., “Development and Evaluation of Bacteriophage Cocktail to Eradicate Biofilms Formed by an Extensively Drug-resistant (XDR) Pseudomonas aeruginosa,” Viruses. 15, no. 2 (2023): 427.

[141]

M. M. Saleh, M. A. Sabbah, and Z. K. Zedan, “Isolation and Characterization of Three Lytic Bacteriophages to Overcome Multidrug-, Extensive Drug-, and Pandrug-Resistant Pseudomonas aeruginosa,” PHAGE 5, no. 4 (2024): 230-240.

[142]

S. A. Gomez-Ochoa, M. Pitton, L. G. Valente, et al., “Efficacy of Phage Therapy in Preclinical Models of Bacterial Infection: A Systematic Review and Meta-analysis,” The Lancet Microbe 3, no. 12 (2022): e956-e68.

[143]

Y. Yuan, L. Wang, X. Li, D. Tan, C. Cong, and Y. Xu, “Efficacy of a Phage Cocktail in Controlling Phage Resistance Development in Multidrug Resistant Acinetobacter baumannii,” Virus Research 272 (2019): 197734.

[144]

S. Chhibber, A. Shukla, and S. Kaur, “Transfersomal Phage Cocktail Is an Effective Treatment Against Methicillin-resistant Staphylococcus aureus-mediated Skin and Soft Tissue Infections,” Antimicrobial Agents and Chemotherapy 61, no. 10 (2017): 02146-02116.

[145]

S. M. Lehman, G. Mearns, D. Rankin, et al., “Design and Preclinical Development of a Phage Product for the Treatment of Antibiotic-resistant Staphylococcus aureus Infections,” Viruses. 11, no. 1 (2019): 88.

[146]

L. G. Kifelew, M. S. Warner, S. Morales, et al., “Efficacy of Phage Cocktail AB-SA01 Therapy in Diabetic Mouse Wound Infections Caused by Multidrug-resistant Staphylococcus aureus,” BMC Microbiology 20 (2020): 1-10.

[147]

L. G. Valente, L. Federer, M. Iten, et al., “Searching for Synergy: Combining Systemic Daptomycin Treatment With Localised Phage Therapy for the Treatment of Experimental Pneumonia due to MRSA,” BMC Research Notes 14 (2021): 1-4.

[148]

S. N. Arumugam, P. Manohar, S. Sukumaran, et al., “Antibacterial Efficacy of Lytic Phages Against Multidrug-resistant Pseudomonas aeruginosa Infections in Bacteraemia Mice Models,” BMC Microbiology 22, no. 1 (2022): 187.

[149]

H. Geng, W. Zou, M. Zhang, et al., “Evaluation of Phage Therapy in the Treatment of Staphylococcus aureus-induced Mastitis in Mice,” Folia Microbiologica 65 (2020): 339-351.

[150]

L. Wang, T. Tkhilaishvili, B. B. Andres, A. Trampuz, and M. G. Moreno, “Bacteriophage-antibiotic Combinations Against Ciprofloxacin/Ceftriaxone-resistant Escherichia coli in Vitro and in an Experimental Galleria mellonella Model,” International Journal of Antimicrobial Agents 56, no. 6 (2020): 106200.

[151]

I. Pradal, A. Casado, B. Del Rio, et al., “Enterococcus faecium Bacteriophage vB_efah_163, a New Member of the Herelleviridae family, Reduces the Mortality Associated With an E. faecium vanR Clinical Isolate in a Galleria Mellonella Animal Model,” Viruses. 15, no. 1 (2023): 179.

[152]

A. S. Abdulamir, S. A. Jassim, and F. Abu Bakar, “Novel Approach of Using a Cocktail of Designed Bacteriophages Against Gut Pathogenic E. coli for Bacterial Load Biocontrol,” Annals of Clinical Microbiology and Antimicrobials 13 (2014): 1-11.

[153]

J. Wang, W. Meng, K. Zhang, et al., “Topically Applied Bacteriophage to Control Multi-drug Resistant Pseudomonas aeruginosa-infected Wounds in a New Zealand Rabbit Model,” Frontiers in Microbiology 13 (2022): 1031101.

[154]

E. A. Ashworth, R. C. Wright, R. K. Shears, et al., “Exploiting Lung Adaptation and Phage Steering to Clear Pan-resistant Pseudomonas aeruginosa Infections in Vivo,” Nature Communications 15, no. 1 (2024): 1547.

[155]

J. L. Morris, H. L. Letson, L. Elliott, et al., “Evaluation of Bacteriophage as an Adjunct Therapy for Treatment of Peri-prosthetic Joint Infection Caused by Staphylococcus aureus,” PLoS ONE 14, no. 12 (2019): e0226574.

[156]

M. Cheng, J. Liang, Y. Zhang, et al., “The Bacteriophage EF-P29 Efficiently Protects Against Lethal Vancomycin-resistant Enterococcus faecalis and Alleviates Gut Microbiota Imbalance in a Murine Bacteremia Model,” Frontiers in Microbiology 8 (2017): 837.

[157]

D. Gelman, S. Beyth, V. Lerer, K. Adler, R. Poradosu-Cohen, S. Coppenhagen-Glazer, et al., “Combined Bacteriophages and Antibiotics as an Efficient Therapy Against VRE Enterococcus faecalis in a Mouse Model,” Research in Microbiology 169, no. 9 (2018): 531-539.

[158]

D. Subedi, F. Gordillo Altamirano, R. Deehan, A. Perera, R. Patwa, X. Kostoulias, et al., “Rational Design of Frontline Institutional Phage Cocktail for the Treatment of Nosocomial Enterobacter cloacae Complex Infections,” BioRxiv (2024). 2024.06. 30.601436.

[159]

W.-X. Wang, J.-Z. Wu, B.-L. Zhang, et al., “Phage Therapy Combats Pandrug-resistant Acinetobacter baumannii Infection Safely and Efficiently,” International Journal of Antimicrobial Agents 64, no. 2 (2024): 107220.

[160]

H. Liu, X. Wei, Z. Wang, et al., “LysSYL: A Broad-spectrum Phage Endolysin Targeting Staphylococcus Species and Eradicating S. aureus Biofilms,” Microbial Cell Factories 23, no. 1 (2024): 89.

[161]

M. Rashel, J. Uchiyama, T. Ujihara, et al., “Efficient Elimination of Multidrug-resistant Staphylococcus aureus by Cloned Lysin Derived From Bacteriophage ϕMR11,” The Journal of Infectious Diseases 196, no. 8 (2007): 1237-1247.

[162]

A. Raz, A. Serrano, A. Hernandez, C. W. Euler, and V. A. Fischetti, “Isolation of Phage Lysins That Effectively Kill Pseudomonas aeruginosa in Mouse Models of Lung and Skin Infection,” Antimicrobial Agents and Chemotherapy 63, no. 7 (2019): 00024-00019.

[163]

C. Wang, P. Li, W. Niu, et al., “Protective and Therapeutic Application of the Depolymerase Derived From a Novel KN1 Genotype of Klebsiella pneumoniae Bacteriophage in Mice,” Research in Microbiology 170, no. 3 (2019): 156-164.

[164]

M. Witzenrath, B. Schmeck, J. M. Doehn, et al., “Systemic Use of the Endolysin Cpl-1 Rescues Mice With Fatal Pneumococcal Pneumonia,” Critical Care Medicine 37, no. 2 (2009): 642-649.

[165]

M. Wu, K. Hu, Y. Xie, et al., “A Novel Phage PD-6A3, and Its Endolysin Ply6A3, With Extended Lytic Activity Against Acinetobacter baumannii,” Frontiers in Microbiology 9 (2019): 3302.

[166]

J. Y. Nale and M. R. Clokie, “Preclinical Data and Safety Assessment of Phage Therapy in Humans,” Current Opinion in Biotechnology 68 (2021): 310-317.

[167]

L. D. Melo, R. Ferreira, A. R. Costa, H. Oliveira, and J. Azeredo, “Efficacy and Safety Assessment of Two Enterococci Phages in an in Vitro Biofilm Wound Model,” Scientific Reports 9, no. 1 (2019): 6643.

[168]

P. Wintachai, A. Naknaen, J. Thammaphet, et al., “Characterization of Extended-spectrum-β-lactamase Producing Klebsiella pneumoniae Phage KP1801 and Evaluation of Therapeutic Efficacy in Vitro and in Vivo,” Scientific Reports 10, no. 1 (2020): 11803.

[169]

M. Cafora, G. Deflorian, F. Forti, et al., “Phage Therapy Against Pseudomonas aeruginosa Infections in a Cystic Fibrosis Zebrafish Model,” Scientific Reports 9, no. 1 (2019): 1527.

[170]

C. Kishor, R. R. Mishra, S. K. Saraf, M. Kumar, A. K. Srivastav, and G. Nath, “Phage Therapy of Staphylococcal Chronic Osteomyelitis in Experimental Animal Model,” Indian Journal of Medical Research 143, no. 1 (2016): 87-94.

[171]

D. Dehari, A. Chaudhuri, D. N. Kumar, et al., “A Bacteriophage Microgel Effectively Treats the Multidrug-Resistant Acinetobacter baumannii Bacterial Infections in Burn Wounds,” Pharmaceuticals 16, no. 7 (2023): 942.

[172]

S. Hesse, N. Malachowa, A. R. Porter, et al., “Bacteriophage Treatment Rescues Mice Infected With Multidrug-resistant Klebsiella pneumoniae ST258,” MBio 12, no. 1 (2021): 00034-00021.

[173]

F. Mehmood Khan, P. Manohar, V. Singh Gondil, et al., “The Applications of Animal Models in Phage Therapy: An Update,” Human Vaccines & Immunotherapeutics 19, no. 1 (2023): 2175519.

[174]

D. Liu, J. D. Van Belleghem, C. R. de Vries, et al., “The Safety and Toxicity of Phage Therapy: A Review of Animal and Clinical Studies,” Viruses. 13, no. 7 (2021): 1268.

[175]

H. J. Stacey, S. De Soir, and J. D. Jones, “The Safety and Efficacy of Phage Therapy: A Systematic Review of Clinical and Safety Trials,” Antibiotics 11, no. 10 (2022): 1340.

[176]

J. M. Loeffler, D. Nelson, and V. A. Fischetti, “Rapid Killing of Streptococcus pneumoniae With a Bacteriophage Cell Wall Hydrolase,” Science 294, no. 5549 (2001): 2170-2172.

[177]

P. Yoong, R. Schuch, D. Nelson, and V. A. Fischetti, “Identification of a Broadly Active Phage Lytic Enzyme With Lethal Activity Against Antibiotic-resistant Enterococcus faecalis and Enterococcus faecium,” Journal of Bacteriology 186, no. 14 (2004): 4808-4812.

[178]

M. J. Mayer, A. Narbad, and M. J. Gasson, “Molecular Characterization of a Clostridium difficile Bacteriophage and Its Cloned Biologically Active Endolysin,” Journal of Bacteriology 190, no. 20 (2008): 6734-6740.

[179]

R. Schuch, D. Nelson, and V. A. Fischetti, “A Bacteriolytic Agent That Detects and Kills Bacillus Anthracis,” Nature 418, no. 6900 (2002): 884-889.

[180]

V. A. Fischetti, “Bacteriophage Endolysins: A Novel Anti-infective to Control Gram-positive Pathogens,” International Journal of Medical Microbiology 300, no. 6 (2010): 357-362.

[181]

H. Gerstmans, B. Criel, and Y. Briers, “Synthetic Biology of Modular Endolysins,” Biotechnology Advances 36, no. 3 (2018): 624-640.

[182]

L. Zhang, D. Li, X. Li, et al., “LysGH15 kills Staphylococcus aureus Without Being Affected by the Humoral Immune Response or Inducing Inflammation,” Scientific Reports 6, no. 1 (2016): 29344.

[183]

J. M. Loeffler, S. Djurkovic, and V. A. Fischetti, “Phage Lytic Enzyme Cpl-1 as a Novel Antimicrobial for Pneumococcal Bacteremia,” Infection and Immunity 71, no. 11 (2003): 6199-6204.

[184]

I. Jado, R. López, E. García, A. Fenoll, J. Casal, and P. García, “Phage Lytic Enzymes as Therapy for Antibiotic-resistant Streptococcus pneumoniae Infection in a Murine Sepsis Model,” Journal of Antimicrobial Chemotherapy 52, no. 6 (2003): 967-973.

[185]

J. Borysowski, B. Weber-Dąbrowska, and A. Górski, “Bacteriophage Endolysins as a Novel Class of Antibacterial Agents,” Experimental Biology and Medicine 231, no. 4 (2006): 366-377.

[186]

S. Y. Jun, I. J. Jang, S. Yoon, et al., “Pharmacokinetics and Tolerance of the Phage Endolysin-based Candidate Drug SAL200 After a Single Intravenous Administration Among Healthy Volunteers,” Antimicrobial Agents and Chemotherapy 61, no. 6 (2017): 02629-02616.

[187]

S. Y. Jun, G. M. Jung, S. J. Yoon, et al., “Pharmacokinetics of the Phage Endolysin-based Candidate Drug SAL 200 in Monkeys and Its Appropriate Intravenous Dosing Period,” Clinical and Experimental Pharmacology and Physiology 43, no. 10 (2016): 1013-1016.

[188]

S. Y. Jun, G. M. Jung, S. J. Yoon, et al., “Preclinical Safety Evaluation of Intravenously Administered SAL200 Containing the Recombinant Phage Endolysin SAL-1 as a Pharmaceutical Ingredient,” Antimicrobial Agents and Chemotherapy 58, no. 4 (2014): 2084-2088.

[189]

V. A. Fischetti, “Novel Method to Control Pathogenic Bacteria on human Mucous Membranes,” Annals of the New York Academy of Sciences 987, no. 1 (2003): 207-214.

[190]

R. Nau and H. Eiffert, “Modulation of Release of Proinflammatory Bacterial Compounds by Antibacterials: Potential Impact on Course of Inflammation and Outcome in Sepsis and Meningitis,” Clinical Microbiology Reviews 15, no. 1 (2002): 95-110.

[191]

D. J. Burgin, R. Liu, R. C. Hsieh, L. R. Heinzinger, and M. Otto, “Investigational Agents for the Treatment of Methicillin-resistant Staphylococcus aureus (MRSA) Bacteremia: Progress in Clinical Trials,” Expert Opinion on Investigational Drugs 31, no. 3 (2022): 263-279.

[192]

Fowler V, Das A, Lipka J, Schuch R, Cassino C, eds., Exebacase (Lysin CF-301) Improved Clinical Responder Rates in Methicillin Resistant Staphylococcus aureus Bacteremia Including Endocarditis Compared to Standard of Care Antibiotics Alone in a First-in Patient Phase 2 Study. (European Congress of Clinical Microbiology and Infectious Diseases Amsterdam Abstract L, 2019).

[193]

ClinicalTrials.gov. Safety e, and pharmacokinetics of CF-301 versus placebo in addition to antibacterial therapy for treatment of S. aureus bacteremia. 2017. https://clinicaltrials.gov/ct2/show/NCT03163446.

[194]

V. G. Fowler, A. F. Das, J. Lipka-Diamond, et al., “Exebacase in Addition to Standard-of-care Antibiotics for Staphylococcus aureus Bloodstream Infections and Right-sided Infective Endocarditis: A Phase 3, Superiority-design, Placebo-controlled, Randomized Clinical Trial (DISRUPT),” Clinical Infectious Diseases 78, no. 6 (2024): 1473-1481.

[195]

Y. Kizheva, M. Pandova, and P. Hristova, “Phage Therapy and Phage Biocontrol-Between Science, Real Application and Regulation,” Acta Microbiologica Bulgarica 40, no. 2 (2024): 164-180.

[196]

R. Międzybrodzki, N. Hoyle, F. Zhvaniya, et al., “Current Updates From the Long-standing Phage Research Centers in Georgia, Poland, and Russia,” Bacteriophages: Biology, Technology, Therapy (2021): 921-951.

[197]

Q. Yang, S. Le, T. Zhu, and N. Wu, “Regulations of Phage Therapy Across the World,” Frontiers in Microbiology 14 (2023): 1250848.

[198]

G. Verbeken and J.-P. Pirnay, “European Regulatory Aspects of Phage Therapy: Magistral Phage Preparations,” Current Opinion in Virology 52 (2022): 24-29.

[199]

N. M. Hitchcock, D. Devequi Gomes Nunes, J. Shiach, et al., “Current Clinical Landscape and Global Potential of Bacteriophage Therapy,” Viruses. 15, no. 4 (2023): 1020.

[200]

K. Pelak, D. Goldstein, N. Walley, et al., “National Institute of Allergy and Infectious Diseases Center for HIV,” AIDS Vaccine Immunology (CHAVI) Host Determinants of HIV-1 Control in African Americans J Infect Dis 201, no. 8 (2010): 1141-1149.

[201]

R. Międzybrodzki, J. Borysowski, B. Weber-Dąbrowska, W. Fortuna, S. Letkiewicz, K. Szufnarowski, et al., “Clinical Aspects of Phage Therapy,” Advances in Virus Research 83 (2012): 73-121.

[202]

G. A. Suh, T. P. Lodise, P. D. Tamma, et al., “Considerations for the Use of Phage Therapy in Clinical Practice,” Antimicrobial Agents and Chemotherapy 66, no. 3 (2022): e02071-21.

[203]

Aslam S, Lampley E, Wooten D, eds., Lessons Learned From the First 10 Consecutive Cases of Intravenous Bacteriophage Therapy to Treat Multidrug-resistant Bacterial Infections at a Single Center in the United States. Open Forum Infectious Diseases. (Oxford University Press US, 2020).

[204]

J. S. Little, R. M. Dedrick, K. G. Freeman, et al., “Bacteriophage Treatment of Disseminated Cutaneous Mycobacterium Chelonae Infection,” Nature Communications 13, no. 1 (2022): 2313.

[205]

N. Wu, L.-K. Chen, and T. Zhu, “Phage Therapy for Secondary Bacterial Infections With COVID-19,” Current Opinion in Virology 52 (2022): 9-14.

[206]

P. Nicholls and S. Aslam, “Role of Bacteriophage Therapy for Resistant Infections in Transplant Recipients,” Current Opinion in Organ Transplantation 27, no. 6 (2022): 546-553.

[207]

S. A. Strathdee, G. F. Hatfull, V. K. Mutalik, and R. T. Schooley, “Phage Therapy: From Biological Mechanisms to Future Directions,” Cell 186, no. 1 (2023): 17-31.

[208]

S. Kuipers, M. M. Ruth, M. Mientjes, R. G. de Sévaux, and J. van Ingen, “A Dutch Case Report of Successful Treatment of Chronic Relapsing Urinary Tract Infection With Bacteriophages in a Renal Transplant Patient,” Antimicrobial Agents and Chemotherapy 64, no. 1 (2019): 01281-01219.

[209]

S. T. Abedon, K. M. Danis-Wlodarczyk, and D. J. Wozniak, “Phage Cocktail Development for Bacteriophage Therapy: Toward Improving Spectrum of Activity Breadth and Depth,” Pharmaceuticals 14, no. 10 (2021): 1019.

[210]

M. C. García-Anaya, D. R. Sepúlveda, C. Rios-Velasco, P. B. Zamudio-Flores, A. I. Sáenz-Mendoza, and C. H. Acosta-Muñiz, “The Role of Food Compounds and Emerging Technologies on Phage Stability,” Innovative Food Science & Emerging Technologies 64 (2020): 102436.

[211]

M. R. Olson, R. P. Axler, and R. E. Hicks, “Effects of Freezing and Storage Temperature on MS2 Viability,” Journal of Virological Methods 122, no. 2 (2004): 147-152.

[212]

B. T. Tey, S. T. Ooi, K. C. Yong, M. Y. T. Ng, T. C. Ling, and W. S. Tan, “Production of Fusion m13 Phage Bearing the Di-sulphide Constrained Peptide Sequence (C-WSFFSNI-C) That Interacts With hepatitis B Core Antigen,” African Journal of Biotechnology 8, no. 2 (2009): 268.

[213]

J. Duarte, C. Pereira, C. Moreirinha, et al., “New Insights on Phage Efficacy to Control Aeromonas Salmonicida in Aquaculture Systems: An in Vitro Preliminary Study,” Aquaculture 495 (2018): 970-982.

[214]

K. Richards and D. J. Malik, “Bacteriophage Encapsulation in pH-responsive Core-shell Capsules as an Animal Feed Additive,” Viruses. 13, no. 6 (2021): 1131.

[215]

R. Dave and S. Ahiwale, “Overcoming Challenges and Regulatory Hurdles for Sustainable Bacteriophage Therapy Products,” Emerging Paradigms for Antibiotic-Resistant Infections: Beyond the Pill. (Springer, 2024): 771-786.

[216]

K. Murtazalieva, A. Mu, A. Petrovskaya, and R. D. Finn, “The Growing Repertoire of Phage Anti-defence Systems,” Trends in Microbiology 32, no. 12 (2024): 1212-1228.

[217]

J. Anomaly, “The Future of Phage: Ethical Challenges of Using Phage Therapy to Treat Bacterial Infections,” Public Health Ethics 13, no. 1 (2020): 82-88.

[218]

J. João, J. Lampreia, D. M. F. Prazeres, and A. M. Azevedo, “Manufacturing of Bacteriophages for Therapeutic Applications,” Biotechnology Advances 49 (2021): 107758.

[219]

F. Mancuso, J. Shi, and D. J. Malik, “High Throughput Manufacturing of Bacteriophages Using Continuous Stirred Tank Bioreactors Connected in Series to Ensure Optimum Host Bacteria Physiology for Phage Production,” Viruses. 10, no. 10 (2018): 537.

[220]

K. Jurač, D. Nabergoj, and A. Podgornik, “Bacteriophage Production Processes,” Applied Microbiology and Biotechnology 103 (2019): 685-694.

[221]

M. Agboluaje and D. Sauvageau, “Bacteriophage Production in Bioreactors,” Bacteriophage Therapy: from Lab to Clinical Practice 1693 (2018): 173-193.

[222]

D. P. Pires, A. R. Costa, G. Pinto, L. Meneses, and J. Azeredo, “Current Challenges and Future Opportunities of Phage Therapy,” FEMS Microbiology Reviews 44, no. 6 (2020): 684-700.

[223]

A. Henein, “What Are the Limitations on the Wider Therapeutic Use of Phage?,” Bacteriophage 3, no. 2 (2013): e24872.

[224]

D. J. Malik, H. Goncalves-Ribeiro, D. GoldSchmitt, J. Collin, A. Belkhiri, D. Fernandes, et al., “Advanced Manufacturing, Formulation and Microencapsulation of Therapeutic Phages,” Clinical Infectious Diseases 77, no. Supplement_5 (2023): S370-S83.

[225]

J. Lin, F. Du, M. Long, and P. Li, “Limitations of Phage Therapy and Corresponding Optimization Strategies: A Review,” Molecules (Basel, Switzerland) 27, no. 6 (2022): 1857.

[226]

F. Eghbalpoor, M. Gorji, M. Z. Alavigeh, and M. T. Moghadam, “Genetically Engineered Phages and Engineered Phage-derived Enzymes to Destroy Biofilms of Antibiotics Resistance Bacteria,” Heliyon 10, no. 15 (2024): e35666.

[227]

B. B. Hsu, T. E. Gibson, V. Yeliseyev, et al., “Dynamic Modulation of the Gut Microbiota and Metabolome by Bacteriophages in a Mouse Model,” Cell Host & Microbe 25, no. 6 (2019): 803-814. e5.

[228]

B. Gibb, P. Hyman, and C. L. Schneider, “The Many Applications of Engineered Bacteriophages—An Overview,” Pharmaceuticals 14, no. 7 (2021): 634.

[229]

M. Taati Moghadam, N. Amirmozafari, A. Mojtahedi, B. Bakhshayesh, A. Shariati, and F. Masjedian Jazi, “Association of Perturbation of Oral Bacterial With Incident of Alzheimer's Disease: A Pilot Study,” Journal of Clinical Laboratory Analysis 36, no. 7 (2022): e24483.

[230]

M. T. Moghadam, B. Bakhshayesh, S. Babakhani, et al., “The Effect of Bacterial Composition Shifts in the Oral Microbiota on Alzheimer's Disease,” Current Molecular Medicine 24, no. 2 (2024): 167-181.

[231]

S. Kilcher and M. J. Loessner, “Engineering Bacteriophages as Versatile Biologics,” Trends in Microbiology 27, no. 4 (2019): 355-367.

[232]

V. D. Paul, S. Sundarrajan, S. S. Rajagopalan, et al., “Lysis-deficient Phages as Novel Therapeutic Agents for Controlling Bacterial Infection,” BMC Microbiology 11, no. 1 (2011): 1-9.

[233]

T. Matsuda, T. A. Freeman, D. W. Hilbert, et al., “Lysis-deficient Bacteriophage Therapy Decreases Endotoxin and Inflammatory Mediator Release and Improves Survival in a Murine Peritonitis Model,” Surgery 137, no. 6 (2005): 639-646.

[234]

S. Meile, J. Du, M. Dunne, S. Kilcher, and M. J. Loessner, “Engineering Therapeutic Phages for Enhanced Antibacterial Efficacy,” Current Opinion in Virology 52 (2022): 182-191.

[235]

X. He, Y. Yang, Y. Guo, et al., “Phage-guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE Bioconjugates,” Journal of the American Chemical Society 142, no. 8 (2020): 3959-3969.

[236]

Q. Emslander, K. Vogele, P. Braun, et al., “Cell-free Production of Personalized Therapeutic Phages Targeting Multidrug-resistant Bacteria,” Cell Chemical Biology 29, no. 9 (2022): 1434-1445. e7.

[237]

S. Qin, Y. Liu, Y. Chen, J. Hu, W. Xiao, X. Tang, et al., “Engineered Bacteriophages Containing Anti-CRISPR Suppress Infection of Antibiotic-Resistant P. aeruginosa,” Microbiology Spectrum 10, no. 5 (2022): e01602-22.

[238]

R. M. Dedrick, C. A. Guerrero-Bustamante, R. A. Garlena, et al., “Engineered Bacteriophages for Treatment of a Patient With a Disseminated Drug-resistant Mycobacterium Abscessus,” Nature Medicine 25, no. 5 (2019): 730-733.

[239]

M. Hassannia, M. Naderifar, S. Salamy, M. R. Akbarizadeh, S. Mohebi, and M. T. Moghadam, “Engineered Phage Enzymes Against Drug-resistant Pathogens: A Review on Advances and Applications,” Bioprocess and Biosystems Engineering 47, no. 3 (2023): 1-12.

[240]

D. Guo, J. Chen, X. Zhao, Y. Luo, M. Jin, F. Fan, et al., “Genetic and Chemical Engineering of Phages for Controlling Multidrug-resistant Bacteria,” Antibiotics 10, no. 2 (2021): 202.

[241]

P. Lukacik, T. J. Barnard, P. W. Keller, et al., “Structural Engineering of a Phage Lysin That Targets Gram-negative Pathogens,” Proceedings of the National Academy of Sciences 109, no. 25 (2012): 9857-9862.

[242]

C. Landlinger, L. Tisakova, V. Oberbauer, et al., “Engineered Phage Endolysin Eliminates Gardnerella Biofilm Without Damaging Beneficial Bacteria in Bacterial Vaginosis Ex Vivo,” Pathogens 10, no. 1 (2021): 54.

[243]

H. Yang, Y. Bi, X. Shang, et al., “Antibiofilm Activities of a Novel Chimeolysin Against Streptococcus Mutans Under Physiological and Cariogenic Conditions,” Antimicrobial Agents and Chemotherapy 60, no. 12 (2016): 7436-7443.

[244]

M. Jia, W. Zhou, D. Luo, et al., “Calcium-binding Motif-mediated Binding of Redundant Calcium Offers a Chimeolysin Enhanced Bactericidal Activity and Extended Host Range Under Physiological Conditions,” Journal of Antimicrobial Chemotherapy 78, no. 5 (2023): 1182-1190.

[245]

H.-W. Hong, Y. D. Kim, J. Jang, M. S. Kim, M. Song, and H. Myung, “Combination Effect of Engineered Endolysin EC340 With Antibiotics,” Frontiers in Microbiology 13 (2022): 821936.

[246]

H. Gerstmans, L. Rodríguez-Rubio, R. Lavigne, and Y. Briers, “From endolysins to Artilysin® s: Novel Enzyme-based Approaches to Kill Drug-resistant Bacteria,” Biochemical Society Transactions 44, no. 1 (2016): 123-128.

[247]

T. Gervasi, N. Horn, U. Wegmann, G. Dugo, A. Narbad, and M. J. Mayer, “Expression and Delivery of an Endolysin to Combat Clostridium Perfringens,” Applied Microbiology and Biotechnology 98 (2014): 2495-2505.

[248]

C. Anastassopoulou, S. Ferous, A. Petsimeri, G. Gioula, and A. Tsakris, “Phage-Based Therapy in Combination With Antibiotics: A Promising Alternative Against Multidrug-Resistant Gram-Negative Pathogens,” Pathogens 13, no. 10 (2024): 896.

[249]

C. Gu Liu, S. I. Green, L. Min, J. R. Clark, K. C. Salazar, A. L. Terwilliger, et al., “Phage-antibiotic Synergy Is Driven by a Unique Combination of Antibacterial Mechanism of Action and Stoichiometry,” MBio 11, no. 4 (2020): 01462-01420.

[250]

S. Mukhopadhyay, P. Zhang, K. K. To, Y. Liu, C. Bai, and S. S. Leung, “Sequential Treatment Effects on Phage-antibiotic Synergistic Application Against Multi-drug-resistant Acinetobacter baumannii,” International Journal of Antimicrobial Agents 62, no. 5 (2023): 106951.

[251]

F. Oechslin, P. Piccardi, S. Mancini, et al., “Synergistic Interaction Between Phage Therapy and Antibiotics Clears Pseudomonas aeruginosa Infection in Endocarditis and Reduces Virulence,” The Journal of Infectious Diseases 215, no. 5 (2017): 703-712.

[252]

W. Huff, G. Huff, N. Rath, J. Balog, and A. Donoghue, “Therapeutic Efficacy of Bacteriophage and Baytril (enrofloxacin) Individually and in Combination to Treat Colibacillosis in Broilers,” Poultry Science 83, no. 12 (2004): 1944-1947.

[253]

A. Loganathan, B. Bozdogan, P. Manohar, and R. Nachimuthu, “Phage-antibiotic Combinations in Various Treatment Modalities to Manage MRSA Infections,” Frontiers in Pharmacology 15 (2024): 1356179.

[254]

J.-P. Pirnay, “Phage Therapy in the Year 2035,” Frontiers in Microbiology 11 (2020): 1171.

[255]

C. Torres-Barceló, “Phage Therapy Faces Evolutionary Challenges,” Viruses. 10, no. 6 (2018): 323.

[256]

T. Ferry, C. Kolenda, F. Laurent, et al., “Personalized Bacteriophage Therapy to Treat Pandrug-resistant Spinal Pseudomonas aeruginosa Infection,” Nature Communications 13, no. 1 (2022): 4239.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

22

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/