PDF
Abstract
The microbiota is pivotal for our health. It includes different phyla like Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, Fusobacteria, and Verrucomicrobia. The interaction between microbiota and immunity shares a bidirectional relationship. The microbiota helps to stimulate immunity development. The immunity influences microbial composition in turn. This interaction is critical for maintaining homeostasis, preventing pathogen invasion, and regulating the immune system. Furthermore, this symbiotic relationship is crucial for maintaining overall health and preventing various diseases. The microbiota–immune system contributes to immune system maturation, while the immune system selects for beneficial microbiota composition, thus enhancing our immunity. This review summarizes the molecular mechanisms and biological functions of the interaction between microbiota and immunity, offering solid evidence for the role of microbiota in immune regulation. Notably, the review categorizes microbiota according to phyla and explains disease associations, molecular effectors, and functional outcomes about the microbiota–immune system. We also introduced three core molecular mechanisms of the microbiota–immune systems. Moreover, we detail the progression from target discovery to clinical trial design for bacterial and immune-related diseases. Finally, we propose four therapeutic strategies for diseases.
Keywords
microbiota
/
immunity
/
molecular mechanisms
/
biological functions
/
diseases
/
new therapeutic opportunities
Cite this article
Download citation ▾
Jingjing Zeng, Zimeng He, Guoqing Wang, Yuxin Ma, Feng Zhang.
Interaction Between Microbiota and Immunity: Molecular Mechanisms, Biological Functions, Diseases, and New Therapeutic Opportunities.
MedComm, 2025, 6(7): e70265 DOI:10.1002/mco2.70265
| [1] |
Y. Lu, X. Yuan, M. Wang, et al., “Gut Microbiota Influence Immunotherapy Responses: Mechanisms and Therapeutic Strategies,” Journal of hematology & oncology 15, no. 1 (2022): 47.
|
| [2] |
K. Donald and B. B. Finlay, “Early-life Interactions Between the Microbiota and Immune System: Impact on Immune System Development and Atopic Disease,” Nature Reviews Immunology 23, no. 11 (2023): 735-748.
|
| [3] |
G. Anderson, “A More Holistic Perspective of Alzheimer's Disease: Roles of Gut Microbiome, Adipocytes, HPA Axis, Melatonergic Pathway and Astrocyte Mitochondria in the Emergence of Autoimmunity,” Front Biosci (Landmark Ed) 28, no. 12 (2023): 355.
|
| [4] |
K. A. Fogelson, P. C. Dorrestein, A. Zarrinpar, et al., “The Gut Microbial Bile Acid Modulation and Its Relevance to Digestive Health and Diseases,” Gastroenterology 164, no. 7 (2023): 1069-1085.
|
| [5] |
A. Nesci, C. Carnuccio, V. Ruggieri, et al., “Gut Microbiota and Cardiovascular Disease: Evidence on the Metabolic and Inflammatory Background of a Complex Relationship,” International Journal of Molecular Sciences 24, no. 10 (2023).
|
| [6] |
Y. Zhao, Y. Wang, F. Meng, et al., “Altered Gut Microbiota as Potential Biomarkers for Autism Spectrum Disorder in Early Childhood,” Neuroscience (2023): 523118-523131.
|
| [7] |
K. Hou, Z. X. Wu, X. Y. Chen, et al., “Microbiota in Health and Diseases,” Signal Transduct Target Ther 7, no. 1 (2022): 135.
|
| [8] |
P. Qiu, T. Ishimoto, L. Fu, et al., “The Gut Microbiota in Inflammatory Bowel Disease,” Frontiers in Cellular and Infection Microbiology (2022): 12733992.
|
| [9] |
H. M. Reynolds and M. L. Bettini, “Early-life Microbiota-immune Homeostasis,” Frontiers in immunology (2023): 141266876.
|
| [10] |
E. R. Mann, Y. K. Lam, and H. H. Uhlig, “Short-chain Fatty Acids: Linking Diet, the Microbiome and Immunity,” Nature Reviews Immunology 24, no. 8 (2024): 577-595.
|
| [11] |
A. Ignacio, S. Czyz, and K. D. McCoy, “Early Life Microbiome Influences on Development of the Mucosal Innate Immune System,” Seminars in Immunology (2024): 73101885.
|
| [12] |
N. A. Bustos, K. Ribbeck, and C. E. Wagner, “The Role of Mucosal Barriers in Disease Progression and Transmission,” Advanced Drug Delivery Reviews (2023): 200115008.
|
| [13] |
N. Juge, “Relationship Between Mucosa-associated Gut Microbiota and human Diseases,” Biochemical Society Transactions 50, no. 5 (2022): 1225-1236.
|
| [14] |
N. Kano, G. H. Ong, D. Ori, et al., “Pathophysiological Role of Nucleic Acid-Sensing Pattern Recognition Receptors in Inflammatory Diseases,” Frontiers in Cellular and Infection Microbiology (2022): 12910654.
|
| [15] |
V. Kumar and J. H. Stewart Iv, “Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore,” J Innate Immun 16, no. 1 (2024): 295-323.
|
| [16] |
S. L. Carroll, C. Pasare, and G. M. Barton, “Control of Adaptive Immunity by Pattern Recognition Receptors,” Immunity 57, no. 4 (2024): 632-648.
|
| [17] |
Y. Y. Cheok, G. M. Y. Tan, C. Y. Q. Lee, et al., “Innate Immunity Crosstalk With Helicobacter pylori: Pattern Recognition Receptors and Cellular Responses,” International Journal of Molecular Sciences 23, no. 14 (2022).
|
| [18] |
T. Wang, Y. Hu, S. Dusi, et al., ““Open Sesame” to the Complexity of Pattern Recognition Receptors of Myeloid-derived Suppressor Cells in Cancer,” Frontiers in immunology (2023): 141130060.
|
| [19] |
J. Wang, N. Zhu, X. Su, et al., “Gut-Microbiota-Derived Metabolites Maintain Gut and Systemic Immune Homeostasis,” Cells 12, no. 5 (2023).
|
| [20] |
D. Li, Y. Li, S. Yang, et al., “Diet-gut Microbiota-epigenetics in Metabolic Diseases: From Mechanisms to Therapeutics,” Biomedicine & Pharmacotherapy (2022): 153113290.
|
| [21] |
H. Chen, C. E. Rosen, J. A. González-Hernández, et al., “Highly Multiplexed Bioactivity Screening Reveals human and Microbiota Metabolome-GPCRome Interactions,” Cell 186, no. 14 (2023): 3095-3110.
|
| [22] |
S. Chen, A. Saeed, Q. Liu, et al., “Macrophages in Immunoregulation and Therapeutics,” Signal Transduct Target Ther 8, no. 1 (2023): 207.
|
| [23] |
A. E. Shin, Y. Tesfagiorgis, F. Larsen, et al., “F4/80(+)Ly6C(high) Macrophages Lead to Cell Plasticity and Cancer Initiation in Colitis,” Gastroenterology 164, no. 4 (2023): 593-609.
|
| [24] |
Y. Fu, J. Lyu, and S. Wang, “The Role of Intestinal Microbes on Intestinal Barrier Function and Host Immunity From a Metabolite Perspective,” Frontiers in immunology (2023): 141277102.
|
| [25] |
M. Arifuzzaman, N. Collins, C. J. Guo, et al., “Nutritional Regulation of Microbiota-derived Metabolites: Implications for Immunity and Inflammation,” Immunity 57, no. 1 (2024): 14-27.
|
| [26] |
S. Brinkmann, M. S. Spohn, and T. F. Schäberle, “Bioactive Natural Products From Bacteroidetes,” Natural Product Reports 39, no. 5 (2022): 1045-1065.
|
| [27] |
C. Ma, S. Zhang, S. J. Renaud, et al., “Structural Elucidation of a Capsular Polysaccharide From Bacteroides uniformis and Its Ameliorative Impact on DSS-induced Colitis in Mice,” International Journal of Biological Macromolecules 279, no. Pt 2 (2024): 135119.
|
| [28] |
Y. Yan, Y. Lei, Y. Qu, et al., “Bacteroides Uniformis-induced Perturbations in Colonic Microbiota and Bile Acid Levels Inhibit TH17 Differentiation and Ameliorate Colitis Developments,” Npj Biofilms and Microbiomes 9, no. 1 (2023): 56.
|
| [29] |
C. H. F. Hansen, D. Jozipovic, L. F. Zachariassen, et al., “Probiotic Treatment With Viable α-galactosylceramide-producing Bacteroides fragilis Reduces Diabetes Incidence in Female Nonobese Diabetic Mice,” J Diabetes 16, no. 8 (2024): e13593.
|
| [30] |
E. Marietta, I. Horwath, S. Meyer, et al., “Administration of Human Derived Upper Gut Commensal Prevotella Histicola Delays the Onset of Type 1 Diabetes in NOD Mice,” BMC Microbiology 22, no. 1 (2022): 8.
|
| [31] |
M. F. Juárez-Chairez, M. S. Cid-Gallegos, C. Jiménez-Martínez, et al., “The Role of Microbiota on Rheumatoid Arthritis Onset,” Int J Rheum Dis 27, no. 3 (2024): e15122.
|
| [32] |
L. Jiang, M. Shang, S. Yu, et al., “A High-fiber Diet Synergizes With Prevotella copri and Exacerbates Rheumatoid Arthritis,” Cell Mol Immunol 19, no. 12 (2022): 1414-1424.
|
| [33] |
T. Nii, Y. Maeda, D. Motooka, et al., “Genomic Repertoires Linked With Pathogenic Potency of Arthritogenic Prevotella Copri Isolated From the Gut of Patients With Rheumatoid Arthritis,” Annals of the Rheumatic Diseases 82, no. 5 (2023): 621-629.
|
| [34] |
J. A. Seifert, E. A. Bemis, K. Ramsden, et al., “Association of Antibodies to Prevotella Copri in Anti-Cyclic Citrullinated Peptide-Positive Individuals at Risk of Developing Rheumatoid Arthritis and in Patients with Early or Established Rheumatoid Arthritis,” Arthritis Rheumatol 75, no. 4 (2023): 507-516.
|
| [35] |
G. Anderson, “Physiological Processes Underpinning the Ubiquitous Benefits and Interactions of Melatonin, Butyrate and Green Tea in Neurodegenerative Conditions,” Melatonin Research 7, no. 1 (2024): 20-46.
|
| [36] |
T. Li, N. Ding, H. Guo, et al., “A Gut Microbiota-bile Acid Axis Promotes Intestinal Homeostasis Upon Aspirin-mediated Damage,” Cell Host & Microbe 32, no. 2 (2024): 191-208.
|
| [37] |
S. Carasso, R. Zaatry, H. Hajjo, et al., “Inflammation and Bacteriophages Affect DNA Inversion States and Functionality of the Gut Microbiota,” Cell Host & Microbe 32, no. 3 (2024): 322-334.
|
| [38] |
V. Taleb, Q. Liao, Y. Narimatsu, et al., “Structural and Mechanistic Insights Into the Cleavage of Clustered O-glycan Patches-containing Glycoproteins by Mucinases of the human Gut,” Nature Communications 13, no. 1 (2022): 4324.
|
| [39] |
J. Feng, Y. Qian, Z. Zhou, et al., “Polysaccharide Utilization Loci in Bacteroides Determine Population Fitness and Community-level Interactions,” Cell Host & Microbe 30, no. 2 (2022): 200-215.
|
| [40] |
C. de Ram, B. van der Lugt, J. Elzinga, et al., “Revealing Glycosylation Patterns in in Vitro-Produced Mucus Exposed to Pasteurized Mucus-Associated Intestinal Microbes by MALDI-TOF-MS and PGC-LC-MS/MS,” Journal of Agricultural and Food Chemistry 72, no. 27 (2024): 15345-15356.
|
| [41] |
J. H. Shin, G. Tillotson, T. N. MacKenzie, et al., “Bacteroides and Related Species: The Keystone Taxa of the human Gut Microbiota,” Anaerobe (2024): 85102819.
|
| [42] |
F. Yang, Y. Yang, L. Chen, et al., “The Gut Microbiota Mediates Protective Immunity Against Tuberculosis via Modulation of lncRNA,” Gut Microbes 14, no. 1 (2022): 2029997.
|
| [43] |
W. Wei, C. C. Wong, Z. Jia, et al., “Parabacteroides distasonis Uses Dietary Inulin to Suppress NASH via Its Metabolite Pentadecanoic Acid,” Nature microbiology 8, no. 8 (2023): 1534-1548.
|
| [44] |
N. Han, H. J. Chang, H. Y. Yeo, et al., “Association of Gut Microbiome With Immune Microenvironment in Surgically Treated Colorectal Cancer Patients,” Pathology 56, no. 4 (2024): 528-539.
|
| [45] |
K. Conde-Pérez, P. Aja-Macaya, E. Buetas, et al., “The Multispecies Microbial Cluster of Fusobacterium, Parvimonas, Bacteroides and Faecalibacterium as a Precision Biomarker for Colorectal Cancer Diagnosis,” Mol Oncol 18, no. 5 (2024): 1093-1122.
|
| [46] |
M. John Kenneth, H. C. Tsai, C. Y. Fang, et al., “Diet-mediated Gut Microbial Community Modulation and Signature Metabolites as Potential Biomarkers for Early Diagnosis, Prognosis, Prevention and Stage-specific Treatment of Colorectal Cancer,” Journal of Advanced Research (2023): 5245-5257.
|
| [47] |
J. Yang, X. Wang, T. Hu, et al., “Entero-toxigenic Bacteroides fragilis Contributes to Intestinal Barrier Injury and Colorectal Cancer Progression by Mediating the BFT/STAT3/ZEB2 Pathway,” Cell Cycle 23, no. 1 (2024): 70-82.
|
| [48] |
B. Périchon, J. Lichtl-Häfele, E. Bergsten, et al., “Detection of Streptococcus Gallolyticus and Four Other CRC-Associated Bacteria in Patient Stools Reveals a Potential “Driver” Role for Enterotoxigenic Bacteroides fragilis,” Frontiers in Cellular and Infection Microbiology (2022): 12794391.
|
| [49] |
Y. Matsumiya, M. Suenaga, T. Ishikawa, et al., “Clinical Significance of Bacteroides fragilis as a Potential Prognostic Factor in Colorectal Cancer,” Anaerobe (2023): 84102784.
|
| [50] |
I. Messaritakis, A. Koulouridi, E. Boukla, et al., “Investigation of Microbial Translocation, TLR and VDR Gene Polymorphisms, and Recurrence Risk in Stage III Colorectal Cancer Patients,” Cancers (Basel) 14, no. 18 (2022).
|
| [51] |
J. Hu, J. Chen, X. Xu, et al., “Gut Microbiota-derived 3-phenylpropionic Acid Promotes Intestinal Epithelial Barrier Function via AhR Signaling,” Microbiome 11, no. 1 (2023): 102.
|
| [52] |
J. Subirats, H. Sharpe, and E. Topp, “Fate of Clostridia and Other Spore-forming Firmicute Bacteria During Feedstock anaerobic Digestion and Aerobic Composting,” Journal of Environmental Management (2022): 309114643.
|
| [53] |
Z. Liang, C. Zhang, X. Liu, et al., “Neutrophil-activating Protein in Bacillus Spores Inhibits Casein Allergy via TLR2 Signaling,” Frontiers in immunology (2024): 151428079.
|
| [54] |
W. Pu, H. Zhang, T. Zhang, et al., “Inhibitory Effects of Clostridium Butyricum Culture and Supernatant on Inflammatory Colorectal Cancer in Mice,” Frontiers in immunology (2023): 141004756.
|
| [55] |
Y. Ma, D. Sannino, J. R. Linden, et al., “Epsilon Toxin-producing Clostridium Perfringens Colonize the Multiple Sclerosis Gut Microbiome Overcoming CNS Immune Privilege,” Journal of Clinical Investigation 133, no. 9 (2023).
|
| [56] |
K. Wang, K. Wang, J. Wang, et al., “Protective Effect of Clostridium Butyricum on Escherichia coli-Induced Endometritis in Mice via Ameliorating Endometrial Barrier and Inhibiting Inflammatory Response,” Microbiology Spectrum 10, no. 6 (2022): e0328622.
|
| [57] |
F. F. Krause, K. I. Mangold, A. L. Ruppert, et al., “Clostridium Sporogenes-derived Metabolites Protect Mice Against Colonic Inflammation,” Gut Microbes 16, no. 1 (2024): 2412669.
|
| [58] |
H. S. Rohith, M. S. Peddha, and P. M. Halami, “Probiotic Bacillus Licheniformis MCC2514 and Bifidobacterium Breve NCIM 5671 Regulates GATA3 and Foxp3 Expression in the Elevated Disease Condition,” Probiotics and antimicrobial proteins 16, no. 3 (2024): 894-910.
|
| [59] |
O. J. Park, Y. E. Ha, J. R. Sim, et al., “Butyrate Potentiates Enterococcus faecalis Lipoteichoic Acid-induced Inflammasome Activation via Histone Deacetylase Inhibition,” Cell Death Discov 9, no. 1 (2023): 107.
|
| [60] |
J. Wei, J. Luo, F. Yang, et al., “Cultivated Enterococcus faecium B6 From Children With Obesity Promotes Nonalcoholic Fatty Liver Disease by the Bioactive Metabolite Tyramine,” Gut Microbes 16, no. 1 (2024): 2351620.
|
| [61] |
Z. Y. Liu, H. L. Yang, S. Li, et al., “Paraprobiotic and Postbiotic Forms of Bacillus siamensis Improved Growth, Immunity, Liver and Intestinal Health in Lateolabrax Maculatus Fed Soybean Meal Diet,” Fish & Shellfish Immunology (2024): 145109370.
|
| [62] |
J. Moon, A. R. Lee, H. Kim, et al., “Faecalibacterium Prausnitzii Alleviates Inflammatory Arthritis and Regulates IL-17 Production, Short Chain Fatty Acids, and the Intestinal Microbial Flora in Experimental Mouse Model for Rheumatoid Arthritis,” Arthritis Research & Therapy 25, no. 1 (2023): 130.
|
| [63] |
Z. Liu, T. Liu, Z. Zhang, et al., “Bacillus Coagulans Regulates Gut Microbiota and Ameliorates the Alcoholic-associated Liver Disease in Mice,” Frontiers in Microbiology (2024): 151337185.
|
| [64] |
T. Zhou, S. Qiu, L. Zhang, et al., “Supplementation of Clostridium Butyricum Alleviates Vascular Inflammation in Diabetic Mice,” Diabetes Metab J 48, no. 3 (2024): 390-404.
|
| [65] |
H. Xu, H. Luo, J. Zhang, et al., “Therapeutic Potential of Clostridium Butyricum Anticancer Effects in Colorectal Cancer,” Gut Microbes 15, no. 1 (2023): 2186114.
|
| [66] |
W. Cao, C. Zheng, X. Xu, et al., “Clostridium Butyricum Potentially Improves Inflammation and Immunity Through Alteration of the Microbiota and Metabolism of Gastric Cancer Patients After Gastrectomy,” Frontiers in immunology (2022): 131076245.
|
| [67] |
P. H. Le, C. T. Chiu, P. J. Yeh, et al., “Clostridium Innocuum Infection in Hospitalised Patients With Inflammatory Bowel Disease,” Journal of Infection 84, no. 3 (2022): 337-342.
|
| [68] |
M. Bai, H. Guo, and X. Y. Zheng, “Inflammatory Bowel Disease and Clostridium difficile Infection: Clinical Presentation, Diagnosis, and Management,” Therap Adv Gastroenterol (2023): 1617562848231207280.
|
| [69] |
K. Rao, Q. Zhao, J. Bell, et al., “An Open-Label, Randomized Trial Comparing Fidaxomicin with Oral Vancomycin for the Treatment of Clostridioides difficile Infection in Hospitalized Patients Receiving Concomitant Antibiotics for Concurrent Infections,” Clinical Infectious Diseases 78, no. 2 (2024): 277-282.
|
| [70] |
A. P. Sanghvi, J. A. Miles, and C. Sayed, “Clostridium difficile Infection Risk in Patients With Hidradenitis Suppurativa,” British Journal of Dermatology 187, no. 5 (2022): 800-802.
|
| [71] |
X. Gao, X. Liu, Y. Wang, et al., “Effects of Clostridium Butyricum on Intestinal Microflora and Metabolism of Eriocheir Sinensis,” International Journal of Molecular Sciences 24, no. 18 (2023).
|
| [72] |
Y. Luo, Y. Jin, H. Wang, et al., “Effects of Clostridium Tyrobutyricum on Lipid Metabolism, Intestinal Barrier Function, and Gut Microbiota in Obese Mice Induced by High-Fat Diet,” Nutrients 16, no. 4 (2024): 493.
|
| [73] |
Y. Bahrami, S. Bouk, E. Kakaei, et al., “Natural Products From Actinobacteria as a Potential Source of New Therapies against Colorectal Cancer: A Review,” Frontiers in pharmacology (2022): 13929161.
|
| [74] |
Z. Fang, T. Pan, L. Li, et al., “Bifidobacterium Longum Mediated Tryptophan Metabolism to Improve Atopic Dermatitis via the Gut-skin Axis,” Gut Microbes 14, no. 1 (2022): 2044723.
|
| [75] |
H. Wang, Y. He, D. Dang, et al., “Bifidobacterium animalis Subsp. Lactis CCFM1274 Relieved Allergic Asthma Symptoms by Modifying Intestinal Tryptophan Metabolism in Mice,” Food Funct 15, no. 17 (2024): 8810-8822.
|
| [76] |
M. Li, X. Han, L. Sun, et al., “Indole-3-acetic Acid Alleviates DSS-induced Colitis by Promoting the Production of R-equol From Bifidobacterium Pseudolongum,” Gut Microbes 16, no. 1 (2024): 2329147.
|
| [77] |
A. U. Happel, L. Rametse, B. Perumaul, et al., “Bifidobacterium Infantis Supplementation versus Placebo in Early Life to Improve Immunity in Infants Exposed to HIV: A Protocol for a Randomized Trial,” BMC Complement Med Ther 23, no. 1 (2023): 367.
|
| [78] |
M. Demirci, Z. Taner, F. E. Keskin, et al., “Similar Bacterial Signatures in the Gut Microbiota of Type 1 and Type 2 Diabetes Patients and Its Association With G Protein-coupled Receptor 41 and 43 Gene Expression,” J Diabetes Metab Disord 21, no. 2 (2022): 1359-1368.
|
| [79] |
G. Yuan, S. Wen, X. Zhong, et al., “Inulin Alleviates Offspring Asthma by Altering Maternal Intestinal Microbiome Composition to Increase Short-chain Fatty Acids,” PLoS ONE 18, no. 4 (2023): e0283105.
|
| [80] |
S. Wang, Y. Liu, S. Qin, et al., “Composition of Maternal Circulating Short-Chain Fatty Acids in Gestational Diabetes Mellitus and Their Associations With Placental Metabolism,” Nutrients 14, no. 18 (2022): 3727.
|
| [81] |
J. Niu, M. Cui, X. Yang, et al., “Microbiota-derived Acetate Enhances Host Antiviral Response via NLRP3,” Nature Communications 14, no. 1 (2023): 642.
|
| [82] |
S. Tian, Y. Lei, F. Zhao, et al., “Improving Insulin Resistance by Sulforaphane via Activating the Bacteroides and Lactobacillus SCFAs-GPR-GLP1 Signal Axis,” Food Funct 15, no. 17 (2024): 8644-8660.
|
| [83] |
Q. Song, X. Zhang, W. Liu, et al., “Bifidobacterium Pseudolongum-generated Acetate Suppresses Non-alcoholic Fatty Liver Disease-associated Hepatocellular Carcinoma,” Journal of Hepatology 79, no. 6 (2023): 1352-1365.
|
| [84] |
L. Zhou, Y. Xie, and Y. Li, “Bifidobacterium Infantis Promotes Foxp3 Expression in Colon Cells via PD-L1-Mediated Inhibition of the PI3K-Akt-mTOR Signaling Pathway,” Frontiers in immunology (2022): 13871705.
|
| [85] |
Q. Zhao, H. Ren, N. Yang, et al., “Bifidobacterium Pseudocatenulatum-Mediated Bile Acid Metabolism to Prevent Rheumatoid Arthritis via the Gut-Joint Axis,” Nutrients 15, no. 2 (2023): 255.
|
| [86] |
Y. Lin, L. Fan, Y. Qi, et al., “Bifidobacterium adolescentis Induces Decorin(+) Macrophages via TLR2 to Suppress Colorectal Carcinogenesis,” Journal of Experimental & Clinical Cancer Research 42, no. 1 (2023): 172.
|
| [87] |
Q. Gao, S. Lu, Y. Wang, et al., “Bacterial DNA Methyltransferase: A Key to the Epigenetic World With Lessons Learned From Proteobacteria,” Frontiers in Microbiology (2023): 141129437.
|
| [88] |
J. Cobb, J. Rawson, N. Gonzalez, et al., “Reversal of Diabetes by an Oral Salmonella-based Vaccine in Acute and Progressive Diabetes in NOD Mice,” PLoS ONE 19, no. 5 (2024): e0303863.
|
| [89] |
T. Ju, B. C. T. Bourrie, A. J. Forgie, et al., “The Gut Commensal Escherichia coli Aggravates High-Fat-Diet-Induced Obesity and Insulin Resistance in Mice,” Applied and environmental microbiology 89, no. 3 (2023): e0162822.
|
| [90] |
M. Tozzi, A. Fiore, S. Travaglione, et al., “Coli Cytotoxic Necrotizing Factor-1 Promotes Colorectal Carcinogenesis by Causing Oxidative Stress, DNA Damage and Intestinal Permeability Alteration,” Journal of Experimental & Clinical Cancer Research 44, no. 1 (2025): 29.
|
| [91] |
M. Shuster, Z. Lyu, J. Augenstreich, et al., “Salmonella Typhimurium Infection Inhibits Macrophage IFNβ Signaling in a TLR4-dependent Manner,” Infection and Immunity 92, no. 10 (2024): e0009824.
|
| [92] |
X. Fei, S. Chen, L. Li, et al., “Helicobacter pylori Infection Promotes M1 Macrophage Polarization and Gastric Inflammation by Activation of NLRP3 Inflammasome via TNF/TNFR1 Axis,” Cell Communication and Signaling 23, no. 1 (2025): 6.
|
| [93] |
S. Kumar and M. Dhiman, “Helicobacter pylori Secretary Proteins-Induced Oxidative Stress and Its Role in NLRP3 Inflammasome Activation,” Cellular Immunology (2024): 399-400104811.
|
| [94] |
M. Pan, N. Barua, and M. Ip, “Mucin-degrading Gut Commensals Isolated From Healthy Faecal Donor Suppress Intestinal Epithelial Inflammation and Regulate Tight Junction Barrier Function,” Frontiers in immunology (2022): 131021094.
|
| [95] |
T. Wang, X. Meng, M. Qian, et al., “Helicobacter Hepaticus CdtB Triggers Colonic Mucosal Barrier Disruption in Mice via Epithelial Tight Junction Impairment Mediated by MLCK/pMLC2 Signaling Pathway,” Vet Sci 12, no. 2 (2025): 174.
|
| [96] |
I. Nagao, M. Kawasaki, T. Goyama, et al., “Enterohemorrhagic Escherichia coli (EHEC) Disrupts Intestinal Barrier Integrity in Translational Canine Stem Cell-derived Monolayers,” Microbiology Spectrum 12, no. 10 (2024): e0096124.
|
| [97] |
Q. Shi, Q. Wang, Y. Shen, et al., “Escherichia coli LTB26 Mutant Enhances Immune Responses to rotavirus Antigen VP8 in a Mouse Model,” Molecular Immunology (2024): 17310-17319.
|
| [98] |
B. Zhao, L. Osbelt, T. R. Lesker, et al., “Helicobacter Spp. Are Prevalent in Wild Mice and Protect From Lethal Citrobacter Rodentium Infection in the Absence of Adaptive Immunity,” Cell reports 42, no. 6 (2023): 112549.
|
| [99] |
A. Zhang, A. Piechocka-Trocha, X. Li, et al., “A Leucine Zipper Dimerization Strategy to Generate Soluble T Cell Receptors Using the Escherichia coli Expression System,” Cells 11, no. 3 (2022): 312.
|
| [100] |
A. M. Harrandah, “The Role of Fusobacteria in Oral Cancer and Immune Evasion,” Current Opinion in Oncology 35, no. 2 (2023): 125-131.
|
| [101] |
R. J. Gibbs, A. C. Chambers, and D. J. Hill, “The Emerging Role of Fusobacteria in Carcinogenesis,” European Journal of Clinical Investigation 54, no. 2 (2024): e14353.
|
| [102] |
M. Hong, Z. Li, H. Liu, et al., “Fusobacterium nucleatum Aggravates Rheumatoid Arthritis Through FadA-containing Outer Membrane Vesicles,” Cell Host & Microbe 31, no. 5 (2023): 798-810.
|
| [103] |
D. Li, Z. Li, L. Wang, et al., “Oral Inoculation of Fusobacterium nucleatum Exacerbates Ulcerative Colitis via the Secretion of Virulence Adhesin FadA,” Virulence 15, no. 1 (2024): 2399217.
|
| [104] |
S. Wei, J. Zhang, X. Wu, et al., “Fusobacterium nucleatum Extracellular Vesicles Promote Experimental Colitis by Modulating Autophagy via the miR-574-5p/CARD3 Axis,” Inflammatory Bowel Diseases 29, no. 1 (2023): 9-26.
|
| [105] |
Z. Wang, B. Li, L. Bao, et al., “Fusobacterium Nucleatum Aggravates Intestinal Barrier Impairment and Colitis through IL-8 Induced Neutrophil Chemotaxis by Activating Epithelial Cells,” J Inflamm Res (2024): 178407-188420.
|
| [106] |
C. Martin-Gallausiaux, L. Salesse, D. Garcia-Weber, et al., “Fusobacterium nucleatum Promotes Inflammatory and Anti-apoptotic Responses in Colorectal Cancer Cells via ADP-heptose Release and ALPK1/TIFA Axis Activation,” Gut Microbes 16, no. 1 (2024): 2295384.
|
| [107] |
L. Zhang, D. Zhang, C. Liu, et al., “Outer Membrane Vesicles Derived From Fusobacterium nucleatum Trigger Periodontitis Through Host Overimmunity”, Adv Sci 11, no. 47 (2024): e2400882.
|
| [108] |
D. L. D'Antonio, A. Zenoniani, S. Umme, et al., “Intratumoral Fusobacterium nucleatum in Pancreatic Cancer: Current and Future Perspectives,” Pathogens 14, no. 1 (2024): 2.
|
| [109] |
L. Zhang, X. X. Leng, J. Qi, et al., “The Adhesin RadD Enhances Fusobacterium nucleatum Tumour Colonization and Colorectal Carcinogenesis,” Nature microbiology 9, no. 9 (2024): 2292-2307.
|
| [110] |
T. Zhang, Y. Li, E. Zhai, et al., “Intratumoral Fusobacterium nucleatum Recruits Tumor-Associated Neutrophils to Promote Gastric Cancer Progression and Immune Evasion,” Cancer Research 85, no. 10 (2025): 1819-1841.
|
| [111] |
W. Cheng, F. Li, and R. Yang, “The Roles of Gut Microbiota Metabolites in the Occurrence and Development of Colorectal Cancer: Multiple Insights for Potential Clinical Applications,” Gastro Hep Adv 3, no. 6 (2024): 855-870.
|
| [112] |
P. Pignatelli, F. Nuccio, A. Piattelli, et al., “The Role of Fusobacterium nucleatum in Oral and Colorectal Carcinogenesis,” Microorganisms 11, no. 9 (2023): 2358.
|
| [113] |
V. Cavallucci, I. Palucci, M. Fidaleo, et al., “Proinflammatory and Cancer-Promoting Pathobiont Fusobacterium nucleatum Directly Targets Colorectal Cancer Stem Cells,” Biomolecules 12, no. 9 (2022): 1256.
|
| [114] |
N. Bostanghadiri, S. Razavi, A. Shariati, et al., “Exploring the Interplay Between Fusobacterium nucleatum With the Expression of microRNA, and Inflammatory Mediators in Colorectal Cancer,” Frontiers in Microbiology (2023): 141302719.
|
| [115] |
W. P. Duggan, B. Kisakol, I. Woods, et al., “Spatial Transcriptomic Analysis Reveals Local Effects of Intratumoral Fusobacterial Infection on DNA Damage and Immune Signaling in Rectal Cancer,” Gut Microbes 16, no. 1 (2024): 2350149.
|
| [116] |
S. C. Williams, S. Garcet, H. Hur, et al., “Gram-negative anaerobes Elicit a Robust Keratinocytes Immune Response With Potential Insights Into HS Pathogenesis,” Experimental Dermatology 33, no. 5 (2024): e15087.
|
| [117] |
G. Lattanzi, F. Strati, A. Díaz-Basabe, et al., “iNKT Cell-neutrophil Crosstalk Promotes Colorectal Cancer Pathogenesis,” Mucosal Immunol 16, no. 3 (2023): 326-340.
|
| [118] |
H. S. Kim, C. G. Kim, W. K. Kim, et al., “Fusobacterium nucleatum Induces a Tumor Microenvironment With Diminished Adaptive Immunity Against Colorectal Cancers,” Frontiers in Cellular and Infection Microbiology (2023): 131101291.
|
| [119] |
A. L. Rakitin, I. S. Kulichevskaya, A. V. Beletsky, et al., “Verrucomicrobia of the Family Chthoniobacteraceae Participate in Xylan Degradation in Boreal Peat Soils,” Microorganisms 12, no. 11 (2024): 2271.
|
| [120] |
P. D. Cani, C. Depommier, M. Derrien, et al., “Akkermansia Muciniphila: Paradigm for next-generation Beneficial Microorganisms,” Nature reviews Gastroenterology & hepatology 19, no. 10 (2022): 625-637.
|
| [121] |
R. Effendi, M. Anshory, H. Kalim, et al., “Akkermansia Muciniphila and Faecalibacterium Prausnitzii in Immune-Related Diseases,” Microorganisms 10, no. 12 (2022).
|
| [122] |
Y. Han, Q. Ling, L. Wu, et al., “Akkermansia muciniphila Inhibits Nonalcoholic Steatohepatitis by Orchestrating TLR2-activated γδT17 Cell and Macrophage Polarization,” Gut Microbes 15, no. 1 (2023): 2221485.
|
| [123] |
V. C. Miranda, R. O. Souza, M. F. Quintanilha, et al., “A Next-Generation Bacteria (Akkermansia muciniphila BAA-835) Presents Probiotic Potential against Ovalbumin-Induced Food Allergy in Mice,” Probiotics and antimicrobial proteins 16, no. 3 (2024): 737-751.
|
| [124] |
S. A. Yoon, Y. Lim, H. R. Byeon, et al., “Heat-killed Akkermansia Muciniphila Ameliorates Allergic Airway Inflammation in Mice,” Frontiers in Microbiology (2024): 151386428.
|
| [125] |
X. Ma, N. Zhu, X. Yu, et al., “Research on Preventive Effect of Akkermansia muciniphilaAKK PROBIO on Acute Gouty Arthritis in Mice,” Food Sci Nutr 12, no. 10 (2024): 7644-7656.
|
| [126] |
J. Gaifem, A. Mendes-Frias, M. Wolter, et al., “Akkermansia muciniphila and Parabacteroides Distasonis Synergistically Protect From Colitis by Promoting ILC3 in the Gut,” MBio 15, no. 4 (2024): e0007824.
|
| [127] |
H. Wade, K. Pan, Q. Duan, et al., “Akkermansia Muciniphila and Its Membrane Protein Ameliorates Intestinal Inflammatory Stress and Promotes Epithelial Wound Healing via CREBH and miR-143/145,” Journal of Biomedical Science 30, no. 1 (2023): 38.
|
| [128] |
C. R. Bakshani, T. O. Ojuri, B. Pilgaard, et al., “Carbohydrate-active Enzymes From Akkermansia Muciniphila Break Down Mucin O-glycans to Completion,” Nature microbiology 10, no. 2 (2025): 585-598.
|
| [129] |
M. D. Berkhout, A. Ioannou, C. de Ram, et al., “Mucin-driven Ecological Interactions in an in Vitro Synthetic Community of human Gut Microbes,” Glycobiology 34, no. 12 (2024).
|
| [130] |
J. Elzinga, Y. Narimatsu, N. de Haan, et al., “Binding of Akkermansia Muciniphila to Mucin Is O-glycan Specific,” Nature Communications 15, no. 1 (2024): 4582.
|
| [131] |
P. Garcia-Vello, H. L. P. Tytgat, J. Elzinga, et al., “The Lipooligosaccharide of the Gut Symbiont Akkermansia Muciniphila Exhibits a Remarkable Structure and TLR Signaling Capacity,” Nature Communications 15, no. 1 (2024): 8411.
|
| [132] |
M. Bae, C. D. Cassilly, X. Liu, et al., “Akkermansia Muciniphila Phospholipid Induces Homeostatic Immune Responses,” Nature 608, no. 7921 (2022): 168-173.
|
| [133] |
C. Zhang, Z. Wang, X. Liu, et al., “Akkermansia muciniphila Administration Ameliorates Streptozotocin-induced Hyperglycemia and Muscle Atrophy by Promoting IGF2 Secretion From Mouse Intestine,” Imeta 3, no. 5 (2024): e237.
|
| [134] |
M. Shi, Y. Yue, C. Ma, et al., “Pasteurized Akkermansia Muciniphila Ameliorate the LPS-Induced Intestinal Barrier Dysfunction via Modulating AMPK and NF-κB Through TLR2 in Caco-2 Cells,” Nutrients 14, no. 4 (2022).
|
| [135] |
J. Liu, H. Liu, H. Liu, et al., “Live and Pasteurized Akkermansia Muciniphila Decrease Susceptibility to Salmonella Typhimurium Infection in Mice,” Journal of Advanced Research 52 (2023): 89-102.
|
| [136] |
V. F. Rodrigues, J. Elias-Oliveira, Í. S. Pereira, et al., “Akkermansia Muciniphila and Gut Immune System: A Good Friendship That Attenuates Inflammatory Bowel Disease,” Obesity, and Diabetes Front Immunol (2022): 13934695.
|
| [137] |
R. Cheng, H. Zhu, Y. Sun, et al., “The Modified Outer Membrane Protein Amuc_1100 of Akkermansia muciniphila Improves Chronic Stress-induced Anxiety and Depression-Like Behavior in Mice,” Food Funct 13, no. 20 (2022): 10748-10758.
|
| [138] |
B. Song, W. Xian, Y. Sun, et al., “Akkermansia Muciniphila Inhibited the Periodontitis Caused by Fusobacterium nucleatum,” Npj Biofilms and Microbiomes 9, no. 1 (2023): 49.
|
| [139] |
S. Yan, L. Chen, N. Li, et al., “Effect of Akkermansia Muciniphila on Pancreatic Islet β-cell Function in Rats With Prediabetes Mellitus Induced by a High-fat Diet,” Bioresources and Bioprocessing 11, no. 1 (2024): 51.
|
| [140] |
X. Wang, S. Lin, L. Wang, et al., “Versatility of Bacterial Outer Membrane Vesicles in Regulating Intestinal Homeostasis,” Science Advances 9, no. 11 (2023): eade5079.
|
| [141] |
L. Derosa, B. Routy, A. M. Thomas, et al., “Intestinal Akkermansia Muciniphila Predicts Clinical Response to PD-1 Blockade in Patients With Advanced Non-small-cell Lung Cancer,” Nature Medicine 28, no. 2 (2022): 315-324.
|
| [142] |
Z. Zhu, J. Huang, Y. Zhang, et al., “Landscape of Tumoral Ecosystem for Enhanced anti-PD-1 Immunotherapy by Gut Akkermansia Muciniphila,” Cell reports 43, no. 6 (2024): 114306.
|
| [143] |
L. Xia, X. Zhu, Y. Wang, et al., “The Gut Microbiota Improves the Efficacy of Immune-checkpoint Inhibitor Immunotherapy Against Tumors: From Association to Cause and Effect,” Cancer Letters (2024): 598217123.
|
| [144] |
L. Y. Zhou, Y. Xie, and Y. Li, “Bifidobacterium Infantis Regulates the Programmed Cell Death 1 Pathway and Immune Response in Mice With Inflammatory Bowel Disease,” World Journal of Gastroenterology 28, no. 26 (2022): 3164-3176.
|
| [145] |
H. Ueki, K. Kitagawa, M. Kato, et al., “An Oral Cancer Vaccine Using Bifidobacterium Vector Augments Combination of Anti-PD-1 and Anti-CTLA-4 Antibodies in Mouse Renal Cell Carcinoma Model,” Scientific Reports 13, no. 1 (2023): 9994.
|
| [146] |
G. Mirji, A. Worth, S. A. Bhat, et al., “The Microbiome-derived Metabolite TMAO Drives Immune Activation and Boosts Responses to Immune Checkpoint Blockade in Pancreatic Cancer,” Science Immunology 7, no. 75 (2022): eabn0704.
|
| [147] |
Q. Wang, H. Lin, C. Shen, et al., “Gut Microbiota Regulates Postprandial GLP-1 Response via Ileal Bile Acid-TGR5 Signaling,” Gut Microbes 15, no. 2 (2023): 2274124.
|
| [148] |
Z. Li, Y. Zhang, W. Hong, et al., “Gut Microbiota Modulate Radiotherapy-associated Antitumor Immune Responses Against Hepatocellular Carcinoma via STING Signaling,” Gut Microbes 14, no. 1 (2022): 2119055.
|
| [149] |
N. Li, P. Ma, Y. Li, et al., “Gut Microbiota-derived 12-ketolithocholic Acid Suppresses the IL-17A Secretion From Colonic Group 3 Innate Lymphoid Cells to Prevent the Acute Exacerbation of Ulcerative Colitis,” Gut Microbes 15, no. 2 (2023): 2290315.
|
| [150] |
E. M. Eshleman, T. Rice, C. Potter, et al., “Microbiota-derived Butyrate Restricts Tuft Cell Differentiation via Histone Deacetylase 3 to Modulate Intestinal Type 2 Immunity,” Immunity 57, no. 2 (2024): 319-332.
|
| [151] |
A. Velez Lopez, A. Waddell, S. Antonacci, et al., “Microbiota-derived Butyrate Dampens Linaclotide Stimulation of the Guanylate Cyclase C Pathway in Patient-derived Colonoids,” Neurogastroenterology and Motility 35, no. 12 (2023): e14681.
|
| [152] |
S. Deleu, K. Arnauts, L. Deprez, et al., “High Acetate Concentration Protects Intestinal Barrier and Exerts Anti-Inflammatory Effects in Organoid-Derived Epithelial Monolayer Cultures From Patients With Ulcerative Colitis,” International Journal of Molecular Sciences 24, no. 1 (2023).
|
| [153] |
Q. Wang, F. Wang, Y. Zhou, et al., “Bacillus Amyloliquefaciens SC06 Relieving Intestinal Inflammation by Modulating Intestinal Stem Cells Proliferation and Differentiation via AhR/STAT3 Pathway in LPS-Challenged Piglets,” Journal of Agricultural and Food Chemistry 72, no. 12 (2024): 6096-6109.
|
| [154] |
D. Y. Kim, J. Y. Park, and H. Y. Gee, “Lactobacillus Plantarum Ameliorates NASH-related Inflammation by Upregulating L-arginine Production,” Experimental & Molecular Medicine 55, no. 11 (2023): 2332-2345.
|
| [155] |
M. Hu, Y. Xu, Y. Wang, et al., “Gut Microbial-derived N-acetylmuramic Acid Alleviates Colorectal Cancer via the AKT1 Pathway,” Gut (2025).
|
| [156] |
N. Iakobachvili, S. A. Leon-Icaza, K. Knoops, et al., “Mycobacteria-host Interactions in human Bronchiolar Airway Organoids,” Molecular Microbiology 117, no. 3 (2022): 682-692.
|
| [157] |
M. Canadas-Ortega, I. Mühlbacher, G. Posselt, et al., “HtrA-Dependent E-Cadherin Shedding Impairs the Epithelial Barrier Function in Primary Gastric Epithelial Cells and Gastric Organoids,” International Journal of Molecular Sciences 25, no. 13 (2024).
|
| [158] |
M. Conte, F. Nigro, M. Porpora, et al., “Gliadin Peptide P31-43 Induces mTOR/NFkβ Activation and Reduces Autophagy: The Role of Lactobacillus Paracasei CBA L74 Postbiotc,” International Journal of Molecular Sciences 23, no. 7 (2022).
|
| [159] |
Y. Miao, M. Wang, H. Sun, et al., “Akkermansia muciniphila Ameliorates Colonic Injury in Mice With DSS-induced Acute Colitis by Blocking Macrophage Pro-inflammatory Phenotype Switching via the HDAC5/DAB2 Axis,” Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1871, no. 7 (2024): 119751.
|
| [160] |
H. Liu, R. Huang, B. Shen, et al., “Live Akkermansia Muciniphila Boosts Dendritic Cell Retinoic Acid Synthesis to Modulate IL-22 Activity and Mitigate Colitis in Mice,” Microbiome 12, no. 1 (2024): 275.
|
| [161] |
D. Jia, Y. Li, Y. Wang, et al., “Probiotic Bacillus Licheniformis ZW3 Alleviates DSS-Induced Colitis and Enhances Gut Homeostasis,” International Journal of Molecular Sciences 25, no. 1 (2024).
|
| [162] |
L. Ma, Q. Shen, W. Lyu, et al., “Clostridium Butyricum and Its Derived Extracellular Vesicles Modulate Gut Homeostasis and Ameliorate Acute Experimental Colitis,” Microbiology Spectrum 10, no. 4 (2022): e0136822.
|
| [163] |
C. L. Kuo, S. Hsin-Hsien Yeh, T. M. Chang, et al., “Bacillus Coagulans BACO-17 Ameliorates in Vitro and in Vivo Progression of Rheumatoid Arthritis,” International Immunopharmacology (2024): 141112863.
|
| [164] |
C. Wasén, L. C. Beauchamp, J. Vincentini, et al., “Bacteroidota Inhibit Microglia Clearance of Amyloid-beta and Promote Plaque Deposition in Alzheimer's disease Mouse Models,” Nature Communications 15, no. 1 (2024): 3872.
|
| [165] |
H. L. Chen, P. Y. Hu, C. S. Chen, et al., “Gut Colonization of Bacteroides plebeius Suppresses Colitis-associated Colon Cancer Development,” Microbiology Spectrum 13, no. 2 (2025): e0259924.
|
| [166] |
S. Kim, H. H. Lee, W. Choi, et al., “Anti-Tumor Effect of Heat-Killed Bifidobacterium Bifidum on Human Gastric Cancer Through Akt-p53-Dependent Mitochondrial Apoptosis in Xenograft Models,” International Journal of Molecular Sciences 23, no. 17 (2022).
|
| [167] |
Y. Luo, Y. Zhang, X. Han, et al., “Akkermansia Muciniphila Prevents Cold-related Atrial Fibrillation in Rats by Modulation of TMAO Induced Cardiac Pyroptosis,” EBioMedicine (2022): 82104087.
|
| [168] |
B. Balakrishnan, S. Johnson, D. Luckey, et al., “Small Intestinal Derived Prevotella Histicola Simulates Biologic as a Therapeutic Agent,” Scientific Reports 14, no. 1 (2024): 29217.
|
| [169] |
D. Su, M. Li, Y. Xie, et al., “Gut Commensal Bacteria Parabacteroides Goldsteinii-derived Outer Membrane Vesicles Suppress Skin Inflammation in Psoriasis,” J Control Release (2025): 377127-377145.
|
| [170] |
L. Wang, Z. Zhao, L. Zhao, et al., “Lactobacillus Plantarum DP189 Reduces α-SYN Aggravation in MPTP-Induced Parkinson's Disease Mice via Regulating Oxidative Damage, Inflammation, and Gut Microbiota Disorder,” Journal of Agricultural and Food Chemistry 70, no. 4 (2022): 1163-1173.
|
| [171] |
X. Y. Ang, N. S. Roslan, N. Ahmad, et al., “Lactobacillus Probiotics Restore Vaginal and Gut Microbiota of Pregnant Women With Vaginal Candidiasis,” Benef Microbes 14, no. 5 (2023): 421-431.
|
| [172] |
M. C. Buhaș, R. Candrea, L. I. Gavrilaș, et al., “Transforming Psoriasis Care: Probiotics and Prebiotics as Novel Therapeutic Approaches,” International Journal of Molecular Sciences 24, no. 13 (2023).
|
| [173] |
J. Yang, X. Yang, G. Wu, et al., “Gut Microbiota Modulate Distal Symmetric Polyneuropathy in Patients With Diabetes,” Cell metabolism 35, no. 9 (2023): 1548-1562.
|
| [174] |
C. H. Wang, Y. HR, W. L. Lu, et al., “Adjuvant Probiotics of Lactobacillus Salivarius Subsp. Salicinius AP-32, L. johnsonii MH-68, and Bifidobacterium Animalis Subsp. Lactis CP-9 Attenuate Glycemic Levels and Inflammatory Cytokines in Patients with Type 1,” Diabetes Mellitus Front Endocrinol (Lausanne) (2022): 13754401.
|
| [175] |
T. Louie, Y. Golan, S. Khanna, et al., “VE303, a Defined Bacterial Consortium, for Prevention of Recurrent Clostridioides difficile Infection: A Randomized Clinical Trial,” Jama 329, no. 16 (2023): 1356-1366.
|
| [176] |
L. Carucci, R. Nocerino, L. Paparo, et al., “Therapeutic Effects Elicited by the Probiotic Lacticaseibacillus Rhamnosus gg in Children With Atopic Dermatitis. The Results of the ProPAD Trial,” Pediatric Allergy and Immunology 33, no. 8 (2022): e13836.
|
| [177] |
R. M. Elhossiny, H. H. Elshahawy, H. M. Mohamed, et al., “Assessment of Probiotic Strain Lactobacillus Acidophilus LB Supplementation as Adjunctive Management of Attention-deficit Hyperactivity Disorder in Children and Adolescents: A Randomized Controlled Clinical Trial,” BMC Psychiatry [Electronic Resource] 23, no. 1 (2023): 823.
|
| [178] |
J. Yang, J. Huang, Z. Huang, et al., “Cardiometabolic Benefits of Lacticaseibacillus Paracasei 8700:2: A Randomized Double-blind Placebo-controlled Trial,” Clinical Nutrition 42, no. 9 (2023): 1637-1646.
|
| [179] |
V. Vatsalya, W. Feng, M. Kong, et al., “The Beneficial Effects of Lactobacillus GG Therapy on Liver and Drinking Assessments in Patients With Moderate Alcohol-Associated Hepatitis,” American Journal of Gastroenterology 118, no. 8 (2023): 1457-1460.
|
| [180] |
A. Gálvez, E. DAdT, J. Espinosa, et al., “Ligilactobacillus Salivarius V4II-90 Eradicates Group B Streptococcus Colonisation During Pregnancy: A Randomised, Double-blind, Placebo-controlled Trial,” Benef Microbes 15, no. 4 (2024): 387-396.
|
| [181] |
F. C. Ross, D. Patangia, G. Grimaud, et al., “The Interplay Between Diet and the Gut Microbiome: Implications for Health and Disease,” Nature Reviews Microbiology 22, no. 11 (2024): 671-686.
|
| [182] |
A. Dębińska and B. Sozańska, “Fermented Food in Asthma and Respiratory Allergies-Chance or Failure?,” Nutrients 14, no. 7 (2022).
|
| [183] |
J. Wu, W. Ye, J. Yu, et al., “Engineered Bacteria and Bacterial Derivatives as Advanced Therapeutics for Inflammatory Bowel Disease,” Essays in Biochemistry 69, no. 2 (2025).
|
| [184] |
Z. P. Zou, X. P. Zhang, Q. Zhang, et al., “Genetically Engineered Bacteria as Inflammatory Bowel Disease Therapeutics,” Eng Microbiol 4, no. 4 (2024): 100167.
|
| [185] |
Y. Liu, J. Feng, H. Pan, et al., “Genetically Engineered Bacterium: Principles, Practices, and Prospects,” Frontiers in Microbiology (2022): 13997587.
|
| [186] |
H. Tang, T. Zhou, W. Jin, et al., “Tumor-targeting Engineered Probiotic Escherichia coli Nissle 1917 Inhibits Colorectal Tumorigenesis and Modulates Gut Microbiota Homeostasis in Mice,” Life Sciences (2023): 324121709.
|
| [187] |
M. Li, N. Liu, J. Zhu, et al., “Engineered Probiotics With Sustained Release of Interleukin-2 for the Treatment of Inflammatory Bowel Disease After Oral Delivery,” Biomaterials (2024): 309122584.
|
| [188] |
W. Chen, T. Zhou, Y. Liu, et al., “Genetically Engineered Bacteria Expressing IL-34 Alleviate DSS-induced Experimental Colitis by Promoting Tight Junction Protein Expression in Intestinal Mucosal Epithelial Cells,” Molecular Immunology 178 (2025): 64-75.
|
| [189] |
N. Ninyio, K. Schmitt, G. Sergon, et al., “Stable Expression of HIV-1 MPER Extended Epitope on the Surface of the Recombinant Probiotic Bacteria Escherichia Coli Nissle 1917 Using CRISPR/Cas9,” Microbial cell factories 23, no. 1 (2024): 39.
|
| [190] |
E. B. Noguès, C. Kropp, L. Bétemps, et al., “Lactococcus Lactis Engineered to Deliver hCAP18 cDNA Alleviates DNBS-induced Colitis in C57BL/6 Mice by Promoting IL17A and IL10 Cytokine Expression,” Scientific Reports 12, no. 1 (2022): 15641.
|
| [191] |
I. Seida, M. Al Shawaf, and N. Mahroum, “Fecal Microbiota Transplantation in Autoimmune Diseases—An Extensive Paper on a Pathogenetic Therapy,” Autoimmunity Reviews 23, no. 7-8 (2024): 103541.
|
| [192] |
Y. Kim, G. Kim, S. Kim, et al., “Fecal Microbiota Transplantation Improves Anti-PD-1 Inhibitor Efficacy in Unresectable or Metastatic Solid Cancers Refractory to Anti-PD-1 Inhibitor,” Cell Host & Microbe 32, no. 8 (2024): 1380-1393.
|
| [193] |
Z. Wu, B. Zhang, F. Chen, et al., “Fecal Microbiota Transplantation Reverses Insulin Resistance in Type 2 Diabetes: A Randomized, Controlled, Prospective Study,” Frontiers in Cellular and Infection Microbiology (2022): 121089991.
|
| [194] |
S. C. Ng, Z. Xu, J. W. Y. Mak, et al., “Microbiota Engraftment After Faecal Microbiota Transplantation in Obese Subjects With Type 2 Diabetes: A 24-week, Double-blind, Randomised Controlled Trial,” Gut 71, no. 4 (2022): 716-723.
|
| [195] |
S. Kedia, S. Virmani, S. KV, et al., “Faecal Microbiota Transplantation With Anti-inflammatory Diet (FMT-AID) Followed by Anti-inflammatory Diet Alone Is Effective in Inducing and Maintaining Remission Over 1 Year in Mild to Moderate Ulcerative Colitis: A Randomised Controlled Trial,” Gut 71, no. 12 (2022): 2401-2413.
|
| [196] |
L. Xue, Z. Deng, W. Luo, et al., “Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial,” Frontiers in Cellular and Infection Microbiology (2022): 12759306.
|
| [197] |
C. Huang, P. Yi, M. Zhu, et al., “Safety and Efficacy of Fecal Microbiota Transplantation for Treatment of Systemic Lupus Erythematosus: An EXPLORER Trial,” Journal of Autoimmunity (2022): 130102844.
|
| [198] |
J. A. Vasconcelos, A. S. Mota, F. Olímpio, et al., “Lactobacillus Rhamnosus Modulates Lung Inflammation and Mitigates Gut Dysbiosis in a Murine Model of Asthma-COPD Overlap Syndrome,” Probiotics and antimicrobial proteins (2023).
|
| [199] |
N. Demirel Öğüt, M. A. Ayanoğlu, S. Koç Yıldırım, et al., “Are IL-17 Inhibitors Superior to IL-23 Inhibitors in Reducing Systemic Inflammation in Moderate-to-severe Plaque Psoriasis? A Retrospective Cohort Study,” Archives of Dermatological Research 317, no. 1 (2025): 232.
|
| [200] |
J. Yu, Y. Wu, Z. Zhu, et al., “The Impact of Dietary Patterns on Gut Microbiota for the Primary and Secondary Prevention of Cardiovascular Disease: A Systematic Review,” Nutr J 24, no. 1 (2025): 17.
|
| [201] |
S. Smolinska, F. D. Popescu, E. Izquierdo, et al., “Telemedicine With Special Focus on Allergic Diseases and Asthma-Status 2022: An EAACI Position Paper,” Allergy 79, no. 4 (2024): 777-792.
|
RIGHTS & PERMISSIONS
2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.