Endoplasmic Reticulum Stress in Cancer

Ruixin Zhou , Wenlong Wang , Baizhao Li , Zhu Li , Juan Huang , Xinying Li

MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70263

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70263 DOI: 10.1002/mco2.70263
REVIEW

Endoplasmic Reticulum Stress in Cancer

Author information +
History +
PDF

Abstract

Persistent and intense endoplasmic reticulum (ER) stress is widely acknowledged as a hallmark of tumorigenesis. To restore ER homeostasis, cells activate the unfolded protein response (UPR), which is aberrantly regulated in cancer cells. This review provides an in-depth analysis of the mechanisms through which the UPR facilitates tumor progression. The UPR is activated by ER stress sensors such as inositol-requiring enzyme 1 (IRE1α), protein kinase R-like ER-resident kinase (PERK), and activating transcription factor 6 (ATF6). These sensors regulate cancer cell proliferation, immune evasion, metastasis, and drug resistance. We summarize the crosstalk between the UPR and multiple signaling pathways, including mTOR, MAPK, and NF-κB, which collectively promote tumor growth and metastasis. Additionally, we discuss the role of the UPR in modulating the tumor microenvironment to support angiogenesis and immune evasion. We also provide an overview of pharmacological agents targeting specific UPR pathways, such as GRP78 inhibitors, IRE1α inhibitors, PERK inhibitors, and ATF6 inhibitors, with the aim of developing more effective cancer therapies. This comprehensive review highlights the potential of targeting the UPR as a novel strategy for cancer treatment and underscores the need for further research to elucidate the complex interactions between the UPR and cancer progression.

Keywords

endoplasmic reticulum (ER) / unfolded protein response (UPR) / tumor microenvironment (TME) / proliferation / metastasis

Cite this article

Download citation ▾
Ruixin Zhou, Wenlong Wang, Baizhao Li, Zhu Li, Juan Huang, Xinying Li. Endoplasmic Reticulum Stress in Cancer. MedComm, 2025, 6(7): e70263 DOI:10.1002/mco2.70263

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. S. Schwarzand M. D. Blower, “The Endoplasmic Reticulum: Structure, Function and Response to Cellular Signaling,” Cellular and Molecular Life Sciences 73, no. 1 (2016): 79-94.

[2]

B. M. Adams, M. E. Oster, and D. N. Hebert, “Protein Quality Control in the Endoplasmic Reticulum,” Protein Journal 38, no. 3 (2019): 317-329.

[3]

S. A. Oakesand F. R. Papa, “The Role of Endoplasmic Reticulum Stress in human Pathology,” Annu Rev Pathol 10 (2015): 173-194.

[4]

R. Iurlaroand C. Muñoz-Pinedo, “Cell Death Induced by Endoplasmic Reticulum Stress,” Febs Journal 283, no. 14 (2016): 2640-2652.

[5]

M. Songand J. R. Cubillos-Ruiz, “Endoplasmic Reticulum Stress Responses in Intratumoral Immune Cells: Implications for Cancer Immunotherapy,” Trends in Immunology 40, no. 2 (2019): 128-141.

[6]

Z. H. Cao, Z. Wu, C. Hu, M. Zhang, W. Z. Wang, and X. B. Hu, “Endoplasmic Reticulum Stress and Destruction of Pancreatic β Cells in Type 1 Diabetes,” Chinese Medical Journal 133, no. 1 (2020): 68-73.

[7]

Q. Liu, H. Körner, H. Wu, and W. Wei, “Endoplasmic Reticulum Stress in Autoimmune Diseases,” Immunobiology 225, no. 2 (2020): 151881.

[8]

C. N. Young, “Endoplasmic Reticulum Stress in the Pathogenesis of Hypertension,” Experimental Physiology 102, no. 8 (2017): 869-884.

[9]

F. Bray, M. Laversanne, E. Weiderpass, and I. Soerjomataram, “The Ever-increasing Importance of Cancer as a Leading Cause of Premature Death Worldwide,” Cancer 127, no. 16 (2021): 3029-3030.

[10]

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 68, no. 6 (2018): 394-424.

[11]

F. Bray, M. Laversanne, H. Sung, et al., “Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA: A Cancer Journal for Clinicians 74, no. 3 (2024): 229-263.

[12]

S. Chen, Z. Cao, K. Prettner, et al., “Estimates and Projections of the Global Economic Cost of 29 Cancers in 204 Countries and Territories from 2020 to 2050,” JAMA Oncology 9, no. 4 (2023): 465.

[13]

C. Kimand B. Kim, “Anti-Cancer Natural Products and Their Bioactive Compounds Inducing ER Stress-Mediated Apoptosis: A Review,” Nutrients 10, no. 8 (2018): 1021.

[14]

X. Chen, D. Iliopoulos, Q. Zhang, et al., “XBP1 promotes Triple-negative Breast Cancer by Controlling the HIF1α Pathway,” Nature 508, no. 7494 (2014): 103-107.

[15]

L. He, H. Li, C. Li, et al., “HMMR Alleviates Endoplasmic Reticulum Stress by Promoting Autophagolysosomal Activity During Endoplasmic Reticulum Stress-driven Hepatocellular Carcinoma Progression,” Cancer Commun (Lond) 43, no. 9 (2023): 981-1002.

[16]

P. Dauer, N. S. Sharma, V. K. Gupta, et al., “ER Stress Sensor, Glucose Regulatory Protein 78 (GRP78) Regulates Redox Status in Pancreatic Cancer Thereby Maintaining “Stemness”,” Cell death & disease 10, no. 2 (2019): 132.

[17]

M. M. Chen, W. Guo, S. M. Chen, et al., “Xanthine Dehydrogenase Rewires Metabolism and the Survival of Nutrient Deprived Lung Adenocarcinoma Cells by Facilitating UPR and Autophagic Degradation,” Int J Biol Sci 19, no. 3 (2023): 772-788.

[18]

I. C. Salaroglio, E. Panada, E. Moiso, et al., “PERK Induces Resistance to Cell Death Elicited by Endoplasmic Reticulum Stress and Chemotherapy,” Molecular cancer 16, no. 1 (2017): 91.

[19]

C. Hetz, K. Zhang, and R. J. Kaufman, “Mechanisms, Regulation and Functions of the Unfolded Protein Response,” Nature Reviews Molecular Cell Biology 21, no. 8 (2020): 421-438.

[20]

O. Morana, W. Wood, and C. D. Gregory, “The Apoptosis Paradox in Cancer,” International Journal of Molecular Sciences 23, no. 3 (2022): 1328.

[21]

X. Yi, H. Wang, Y. Yang, et al., “SIRT7 orchestrates Melanoma Progression by Simultaneously Promoting Cell Survival and Immune Evasion via UPR Activation,” Signal Transduct Target Ther 8, no. 1 (2023): 107.

[22]

W. Y. Xie, X. D. Zhou, Q. Li, L. X. Chen, and D. H. Ran, “Acid-induced Autophagy Protects human Lung Cancer Cells From Apoptosis by Activating ER Stress,” Experimental Cell Research 339, no. 2 (2015): 270-279.

[23]

E. Andreucci, S. Peppicelli, J. Ruzzolini, F. Bianchini, and L. Calorini, “Physicochemical Aspects of the Tumour Microenvironment as Drivers of Vasculogenic Mimicry,” Cancer and Metastasis Reviews 41, no. 4 (2022): 935-951.

[24]

M. Corazzari, F. Rapino, F. Ciccosanti, et al., “Oncogenic BRAF Induces Chronic ER Stress Condition Resulting in Increased Basal Autophagy and Apoptotic Resistance of Cutaneous Melanoma,” Cell Death and Differentiation 22, no. 6 (2015): 946-958.

[25]

A. Goenka, F. Khan, B. Verma, et al., “Tumor Microenvironment Signaling and Therapeutics in Cancer Progression,” Cancer Commun (Lond) 43, no. 5 (2023): 525-561.

[26]

J. Hwangand L. Qi, “Quality Control in the Endoplasmic Reticulum: Crosstalk Between ERAD and UPR Pathways,” Trends in Biochemical Sciences 43, no. 8 (2018): 593-605.

[27]

S. X. Zhang, J. J. Wang, C. R. Starr, et al., “The Endoplasmic Reticulum: Homeostasis and Crosstalk in Retinal Health and Disease,” Progress in Retinal and Eye Research 98 (2024): 101231.

[28]

Y. Zhang, Y. Wang, G. Zhao, E. J. Tanner, M. Adli, and D. Matei, “FOXK2 promotes Ovarian Cancer Stemness by Regulating the Unfolded Protein Response Pathway,” Journal of Clinical Investigation 132, no. 10 (2022).

[29]

S. Chen, A. Henderson, M. C. Petriello, et al., “Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction,” Cell metabolism 30, no. 6 (2019): 1141-1151.e5. e5.

[30]

C. Hetz, “The Unfolded Protein Response: Controlling Cell Fate Decisions Under ER Stress and Beyond,” Nature Reviews Molecular Cell Biology 13, no. 2 (2012): 89-102.

[31]

J. J. Rodvold, N. R. Mahadevan, and M. Zanetti, “Immune Modulation by ER Stress and Inflammation in the Tumor Microenvironment,” Cancer Letters 380, no. 1 (2016): 227-236.

[32]

K. Mori, “Evolutionary Aspects of the Unfolded Protein Response,” Cold Spring Harbor perspectives in biology 14, no. 12 (2022).

[33]

P. Kettel, L. Marosits, E. Spinetti, et al., “Disordered Regions in the IRE1α ER Lumenal Domain Mediate Its Stress-induced Clustering,” Embo Journal 43 (2024): 4668-4698.

[34]

X. H. Funand G. Thibault, “Lipid Bilayer Stress and Proteotoxic Stress-induced Unfolded Protein Response Deploy Divergent Transcriptional and Non-transcriptional Programmes,” Biochim Biophys Acta Mol Cell Biol Lipids 1865, no. 1 (2020): 158449.

[35]

B. M. Gardnerand P. Walter, “Unfolded Proteins Are Ire1-activating Ligands That Directly Induce the Unfolded Protein Response,” Science 333, no. 6051 (2011): 1891-1894.

[36]

F. Cairrão, C. C. Santos, A. Le Thomas, S. Marsters, A. Ashkenazi, and P. M. Domingos, “Pumilio Protects Xbp1 mRNA From Regulated Ire1-dependent Decay,” Nature Communications 13, no. 1 (2022): 1587.

[37]

L. H. Glimcher, A. H. Lee, and N. N. Iwakoshi, “XBP-1 and the Unfolded Protein Response (UPR),” Nature Immunology 21, no. 9 (2020): 963-965.

[38]

M. J. Grey, E. Cloots, M. S. Simpson, et al., “IRE1β negatively Regulates IRE1α Signaling in Response to Endoplasmic Reticulum Stress,” Journal of Cell Biology 219, no. 2 (2020).

[39]

E. Cloots, M. S. Simpson, C. De Nolf, W. I. Lencer, S. Janssens, and M. J. Grey, “Evolution and Function of the Epithelial Cell-specific ER Stress Sensor IRE1β,” Mucosal Immunol 14, no. 6 (2021): 1235-1246.

[40]

M. J. Grey, H. De Luca, D. V. Ward, et al., “The Epithelial-specific ER Stress Sensor ERN2/IRE1β Enables Host-microbiota Crosstalk to Affect Colon Goblet Cell Development,” Journal of Clinical Investigation 132, no. 17 (2022).

[41]

S. E. Bettigoleand L. H. Glimcher, “Endoplasmic Reticulum Stress in Immunity,” Annual Review of Immunology 33 (2015): 107-138.

[42]

W. Rozpedek, D. Pytel, B. Mucha, H. Leszczynska, J. A. Diehl, and I. Majsterek, “The Role of the PERK/eIF2α/ATF4/CHOP Signaling Pathway in Tumor Progression during Endoplasmic Reticulum Stress,” Current Molecular Medicine 16, no. 6 (2016): 533-544.

[43]

A. De Leo, A. Ugolini, X. Yu, et al., “Glucose-driven Histone Lactylation Promotes the Immunosuppressive Activity of Monocyte-derived Macrophages in Glioblastoma,” Immunity 57, no. 5 (2024): 1105-1123.e8. e8.

[44]

C. She, C. Wu, W. Guo, et al., “Combination of RUNX1 Inhibitor and Gemcitabine Mitigates Chemo-resistance in Pancreatic Ductal Adenocarcinoma by Modulating BiP/PERK/eIF2α-axis-mediated Endoplasmic Reticulum Stress,” Journal of Experimental & Clinical Cancer Research 42, no. 1 (2023): 238.

[45]

D. Li, W. J. Wang, Y. Z. Wang, Y. B. Wang, and Y. L. Li, “Lobaplatin Promotes (125)I-induced Apoptosis and Inhibition of Proliferation in Hepatocellular Carcinoma by Upregulating PERK-eIF2α-ATF4-CHOP Pathway,” Cell death & disease 10, no. 10 (2019): 744.

[46]

P. Wang, L. Han, M. Yu, et al., “The Prognostic Value of PERK in Cancer and Its Relationship with Immune Cell Infiltration,” Frontiers in Molecular Biosciences 8 (2021): 648752.

[47]

K. Haze, T. Okada, H. Yoshida, et al., “Identification of the G13 (cAMP-response-element-binding protein-related protein) Gene Product Related to Activating Transcription Factor 6 as a Transcriptional Activator of the Mammalian Unfolded Protein Response,” Biochemical Journal 355, no. Pt 1 (2001): 19-28.

[48]

W. T. Stauffer, A. Arrieta, E. A. Blackwood, and C. C. Glembotski, “Sledgehammer to Scalpel: Broad Challenges to the Heart and Other Tissues Yield Specific Cellular Responses via Transcriptional Regulation of the ER-Stress Master Regulator ATF6α,” International Journal of Molecular Sciences 21, no. 3 (2020): 1134.

[49]

A. Papaioannou, A. Higa, G. Jégou, et al., “Alterations of EDEM1 Functions Enhance ATF6 Pro-survival Signaling,” Febs Journal 285, no. 22 (2018): 4146-4164.

[50]

F. Hinte, E. van Anken, B. Tirosh, and W. Brune, “Repression of Viral Gene Expression and Replication by the Unfolded Protein Response Effector XBP1u,” Elife 9 (2020).

[51]

Y. Liu, X. Wang, Z. Zhen, Y. Yu, Y. Qiu, and W. Xiang, “GRP78 regulates Milk Biosynthesis and the Proliferation of Bovinemammaryepithelial Cells Through the mTOR Signaling Pathway,” Cellular & Molecular Biology Letters 24 (2019): 57.

[52]

N. Amin-Wetzel, R. A. Saunders, M. J. Kamphuis, et al., “A J-Protein Co-chaperone Recruits BiP to Monomerize IRE1 and Repress the Unfolded Protein Response,” Cell 171, no. 7 (2017): 1625-1637.e13. e13.

[53]

C. J. Adams, M. C. Kopp, N. Larburu, P. R. Nowak, and M. M. U. Ali, “Structure and Molecular Mechanism of ER Stress Signaling by the Unfolded Protein Response Signal Activator IRE1,” Frontiers in Molecular Biosciences 6 (2019): 11.

[54]

M. C. Kopp, N. Larburu, V. Durairaj, C. J. Adams, and M. M. U. Ali, “UPR Proteins IRE1 and PERK Switch BiP From Chaperone to ER Stress Sensor,” Nature structural & molecular biology 26, no. 11 (2019): 1053-1062.

[55]

J. Shen, E. L. Snapp, J. Lippincott-Schwartz, and R. Prywes, “Stable Binding of ATF6 to BiP in the Endoplasmic Reticulum Stress Response,” Molecular and Cellular Biology 25, no. 3 (2005): 921-932.

[56]

J. Jia, L. Zhu, X. Yue, et al., “Crosstalk Between KDEL Receptor and EGF Receptor Mediates Cell Proliferation and Migration via STAT3 Signaling,” Cell Communication and Signaling 22, no. 1 (2024): 140.

[57]

M. Farshbaf, A. Y. Khosroushahi, S. Mojarad-Jabali, A. Zarebkohan, H. Valizadeh, and P. R. Walker, “Cell Surface GRP78: An Emerging Imaging Marker and Therapeutic Target for Cancer,” J Control Release 328 (2020): 932-941.

[58]

I. Hernandezand M. Cohen, “Linking Cell-surface GRP78 to Cancer: From Basic Research to Clinical Value of GRP78 Antibodies,” Cancer Letters 524 (2022): 1-14.

[59]

X. Zeng, H. Zhang, J. Guo, et al., “A Novel Bispecific T-cell Engager Using the Ligand-target csGRP78 Against Acute Myeloid Leukemia,” Cellular and Molecular Life Sciences 81, no. 1 (2024): 371.

[60]

A. M. Shields, S. J. Thompson, G. S. Panayi, and V. M. Corrigall, “Pro-resolution Immunological Networks: Binding Immunoglobulin Protein and Other Resolution-associated Molecular Patterns,” Rheumatology 51, no. 5 (2012): 780-788.

[61]

Z. Wu, Z. Xu, X. Zhou, et al., “sGRP78 enhances Selective Autophagy of Monomeric TLR4 to Regulate Myeloid Cell Death,” Cell death & disease 13, no. 7 (2022): 587.

[62]

Y. Tang, Q. Jiang, Y. Ou, et al., “BIP Induces Mice CD19(hi) Regulatory B Cells Producing IL-10 and Highly Expressing PD-L1, FasL,” Molecular Immunology 69 (2016): 44-51.

[63]

M. Yang, F. Zhang, K. Qin, et al., “Glucose-Regulated Protein 78-Induced Myeloid Antigen-Presenting Cells Maintained Tolerogenic Signature Upon LPS Stimulation,” Frontiers in immunology 7 (2016): 552.

[64]

K. Qin, S. Ma, H. Li, et al., “GRP78 Impairs Production of Lipopolysaccharide-Induced Cytokines by Interaction With CD14,” Frontiers in immunology 8 (2017): 579.

[65]

L. Zhao, Y. Lv, X. Zhou, et al., “Secreted Glucose Regulated protein78 Ameliorates DSS-induced Mouse Colitis,” Frontiers in immunology 14 (2023): 986175.

[66]

L. Chen, H. Zheng, X. Yu, et al., “Tumor-Secreted GRP78 Promotes the Establishment of a Pre-metastatic Niche in the Liver Microenvironment,” Frontiers in immunology 11 (2020): 584458.

[67]

S. Mafi, E. Ahmadi, E. Meehan, et al., “The mTOR Signaling Pathway Interacts With the ER Stress Response and the Unfolded Protein Response in Cancer,” Cancer Research 83, no. 15 (2023): 2450-2460.

[68]

L. Qin, Z. Wang, L. Tao, and Y. Wang, “ER Stress Negatively Regulates AKT/TSC/mTOR Pathway to Enhance Autophagy,” Autophagy 6, no. 2 (2010): 239-247.

[69]

W. Y. Hung, J. H. Chang, Y. Cheng, et al., “Autophagosome Accumulation-mediated ATP Energy Deprivation Induced by Penfluridol Triggers Nonapoptotic Cell Death of Lung Cancer via Activating Unfolded Protein Response,” Cell death & disease 10, no. 8 (2019): 538.

[70]

A. Grenier, L. Poulain, J. Mondesir, et al., “AMPK-PERK Axis Represses Oxidative Metabolism and Enhances Apoptotic Priming of Mitochondria in Acute Myeloid Leukemia,” Cell reports 38, no. 1 (2022): 110197.

[71]

X. Jiang, B. Zhu, G. Li, et al., “p20BAP31 promotes Cell Apoptosis via Interaction With GRP78 and Activating the PERK Pathway in Colorectal Cancer,” International Journal of Biological Macromolecules 272, no. Pt 2 (2024): 132870.

[72]

S. K. Nitureand A. K. Jaiswal, “Nrf2-induced Antiapoptotic Bcl-xL Protein Enhances Cell Survival and Drug Resistance,” Free Radic Biol Med 57 (2013): 119-131.

[73]

J. Li, B. Lee, and A. S. Lee, “Endoplasmic Reticulum Stress-induced Apoptosis: Multiple Pathways and Activation of p53-up-regulated Modulator of Apoptosis (PUMA) and NOXA by p53,” Journal of Biological Chemistry 281, no. 11 (2006): 7260-7270.

[74]

Y. Qian, C. C. Wong, J. Xu, et al., “Sodium Channel Subunit SCNN1B Suppresses Gastric Cancer Growth and Metastasis via GRP78 Degradation,” Cancer Research 77, no. 8 (2017): 1968-1982.

[75]

S. S. Choi, S. K. Lee, J. K. Kim, et al., “Flightless-1 Inhibits ER Stress-induced Apoptosis in Colorectal Cancer Cells by Regulating Ca(2+) Homeostasis,” Experimental & Molecular Medicine 52, no. 6 (2020): 940-950.

[76]

Y. X. Feng, E. S. Sokol, C. A. Del Vecchio, et al., “Epithelial-to-mesenchymal Transition Activates PERK-eIF2α and Sensitizes Cells to Endoplasmic Reticulum Stress,” Cancer discovery 4, no. 6 (2014): 702-715.

[77]

S. Dey, C. M. Sayers, Verginadis II, et al., “ATF4-dependent Induction of Heme Oxygenase 1 Prevents Anoikis and Promotes Metastasis,” Journal of Clinical Investigation 125, no. 7 (2015): 2592-2608.

[78]

H. Yuan, Z. Zhao, Z. Guo, L. Ma, J. Han, and Y Song. A Novel ER Stress Mediator TMTC3 Promotes Squamous Cell Carcinoma Progression by Activating GRP78/PERK Signaling Pathway. Int J Biol Sci 2022; 18(13): 4853-4868.

[79]

P. Carmelietand R. K Jain. Molecular Mechanisms and Clinical Applications of Angiogenesis. Nature 2011; 473(7347): 298-307.

[80]

R. Ghosh, K. L. Lipson, K. E. Sargent, et al. Transcriptional Regulation of VEGF-A by the Unfolded Protein Response Pathway. PLoS ONE 2010; 5(3): e9575.

[81]

E. R. Pereira, N. Liao, G. A. Neale, and L. M Hendershot. Transcriptional and Post-transcriptional Regulation of Proangiogenic Factors by the Unfolded Protein Response. PLoS ONE e12521, 2010; 5(9).

[82]

G. Auf, A. Jabouille, S. Guérit, et al. Inositol-requiring Enzyme 1alpha Is a Key Regulator of Angiogenesis and Invasion in Malignant Glioma. PNAS 2010; 107(35): 15553-15558.

[83]

J. M. Harnoss, A. Le Thomas, and M. Reichelt, et al. IRE1α Disruption in Triple-Negative Breast Cancer Cooperates With Antiangiogenic Therapy by Reversing ER Stress Adaptation and Remodeling the Tumor Microenvironment. Cancer Research 2020; 80(11): 2368-2379.

[84]

Y. Wang, G. N. Alam, Y. Ning, et al. The Unfolded Protein Response Induces the Angiogenic Switch in human Tumor Cells Through the PERK/ATF4 Pathway. Cancer Research 2012; 72(20): 5396-5406.

[85]

M. Peng, Y. Mo, Y. Wang, et al. Neoantigen Vaccine: An Emerging Tumor Immunotherapy. Molecular cancer 2019; 18(1): 128.

[86]

M. W. Teng, J. Galon, W. H. Fridman, and M. J Smyth. From Mice to Humans: Developments in Cancer Immunoediting. Journal of Clinical Investigation 2015; 125(9): 3338-3346.

[87]

M. M. Gubinand M. D Vesely. Cancer Immunoediting in the Era of Immuno-oncology. Clinical Cancer Research 28, 3917-3928, 2022.

[88]

G. Kroemer, T. A. Chan, A. M. M. Eggermont, and L Galluzzi. Immunosurveillance in Clinical Cancer Management. CA: A Cancer Journal for Clinicians 2024; 74(2): 187-202.

[89]

O. Demaria, S. Cornen, M. Daëron, Y. Morel, R. Medzhitov, and E Vivier. Harnessing Innate Immunity in Cancer Therapy. Nature 2019; 574(7776): 45-56.

[90]

H. Qinand Y Chen. Lipid Metabolism and Tumor Antigen Presentation. Advances in Experimental Medicine and Biology 2021; 1316: 169-189.

[91]

S. Jhunjhunwala, C. Hammer, and L Delamarre. Antigen Presentation in Cancer: Insights Into Tumour Immunogenicity and Immune Evasion. Nature Reviews Cancer 2021; 21(5): 298-312.

[92]

T. Jiang, T. Shi, H. Zhang, et al. Tumor Neoantigens: From Basic Research to Clinical Applications. Journal of hematology & oncology 2019; 12(1): 93.

[93]

R. Y. Pan, W. H. Chung, M. T. Chu, et al. Recent Development and Clinical Application of Cancer Vaccine: Targeting Neoantigens. Journal of Immunology Research 2018; 2018: 1-9.

[94]

F. Lang, B. Schrörs, M. Löwer, Ö. Türeci, and U Sahin. Identification of Neoantigens for Individualized Therapeutic Cancer Vaccines. Nat Rev Drug Discovery 2022; 21(4): 261-282.

[95]

T. E. Angell, M. G. Lechner, J. K. Jang, J. S. LoPresti, and A. L Epstein. MHC Class I Loss Is a Frequent Mechanism of Immune Escape in Papillary Thyroid Cancer That Is Reversed by Interferon and Selumetinib Treatment in Vitro. Clinical Cancer Research 2014; 20(23): 6034-6044.

[96]

F. Perea, M. Bernal, A. Sánchez-Palencia, et al. The Absence of HLA Class I Expression in Non-small Cell Lung Cancer Correlates With the Tumor Tissue Structure and the Pattern of T Cell Infiltration. International Journal of Cancer 2017; 140(4): 888-899.

[97]

M. Kawazu, T. Ueno, K. Saeki, et al. HLA Class I Analysis Provides Insight into the Genetic and Epigenetic Background of Immune Evasion in Colorectal Cancer with High Microsatellite Instability. Gastroenterology 2022; 162(3): 799-812.

[98]

M. L. Burr, C. E. Sparbier, K. L. Chan, et al. An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell 2019; 36(4): 385-401.e8.e8.

[99]

S. F. de Almeida, J. V. Fleming, J. E. Azevedo, M. Carmo-Fonseca, and M de Sousa. Stimulation of an Unfolded Protein Response Impairs MHC Class I Expression. Journal of Immunology 2007; 178(6): 3612-3619.

[100]

D. P. Granados, P. L. Tanguay, M. P. Hardy, et al. ER Stress Affects Processing of MHC Class I-associated Peptides. BMC Immunology [Electronic Resource] 2009; 10: 10.

[101]

A. Pommier, N. Anaparthy, N. Memos, et al. Unresolved Endoplasmic Reticulum Stress Engenders Immune-resistant, Latent Pancreatic Cancer Metastases. Science 2018; 360(6394).

[102]

M. Ganesan, S. Mathews, E. Makarov, et al. Acetaldehyde Suppresses HBV-MHC Class I Complex Presentation on Hepatocytes via Induction of ER Stress and Golgi Fragmentation. American journal of physiology Gastrointestinal and liver physiology 2020; 319(4): G432-G442.

[103]

R. Bartoszewski, J. W. Brewer, and A. Rab, et al. The Unfolded Protein Response (UPR)-activated Transcription Factor X-box-binding Protein 1 (XBP1) Induces microRNA-346 Expression That Targets the human Antigen Peptide Transporter 1 (TAP1) mRNA and Governs Immune Regulatory Genes. Journal of Biological Chemistry 2011; 286(48): 41862-41870.

[104]

E. Vivier, D. Artis, M. Colonna, et al. Innate Lymphoid Cells: 10 Years On. Cell 2018; 174(5): 1054-1066.

[105]

N. D. Huntington, J. Cursons, and J Rautela. The Cancer-natural Killer Cell Immunity Cycle. Nature Reviews Cancer 2020; 20(8): 437-454.

[106]

I. Pragerand C Watzl. Mechanisms of Natural Killer Cell-mediated Cellular Cytotoxicity. J Leukoc Biol 2019; 105(6): 1319-1329.

[107]

C. Guillerey, N. D. Huntington, and M. J Smyth. Targeting Natural Killer Cells in Cancer Immunotherapy. Nature Immunology 2016; 17(9): 1025-1036.

[108]

S. Sarkar, W. T. Germeraad, K. M. Rouschop, et al. Hypoxia Induced Impairment of NK Cell Cytotoxicity Against Multiple Myeloma Can be Overcome by IL-2 Activation of the NK Cells. PLoS ONE 2013; 8(5): e64835.

[109]

A. Obiedat, E. Seidel, M. Mahameed, et al. Transcription of the NKG2D Ligand MICA Is Suppressed by the IRE1/XBP1 Pathway of the Unfolded Protein Response Through the Regulation of E2F1. Faseb Journal 2019; 33(3): 3481-3495.

[110]

B. G. Gowen, B. Chim, C. D. Marceau, et al. A Forward Genetic Screen Reveals Novel Independent Regulators of ULBP1, an Activating Ligand for Natural Killer Cells. Elife 2015; 4.

[111]

M. Lazarovaand A Steinle. The NKG2D Axis: An Emerging Target in Cancer Immunotherapy. Expert Opinion on Therapeutic Targets 2019; 23(4): 281-294.

[112]

S. Zhu, N. Yang, J. Wu, et al. Tumor Microenvironment-related Dendritic Cell Deficiency: A Target to Enhance Tumor Immunotherapy. Pharmacological Research 2020; 159:104980.

[113]

S. Balan, M. Saxena, and N Bhardwaj. Dendritic Cell Subsets and Locations. Int Rev Cell Mol Biol 2019; 348: 1-68.

[114]

G. J. Clark, P. A. Silveira, P. M. Hogarth, and D. N. J Hart. The Cell Surface Phenotype of human Dendritic Cells. Seminars in cell & developmental biology 2019; 86: 3-14.

[115]

A. Lanzavecchiaand F Sallusto. Antigen Decoding by T Lymphocytes: From Synapses to Fate Determination. Nature Immunology 2001; 2(6): 487-492.

[116]

C. S. Garrisand M. J Pittet. ER Stress in Dendritic Cells Promotes Cancer. Cell 2015; 161(7): 1492-1493.

[117]

J. R. Cubillos-Ruiz, P. C. Silberman, M. R. Rutkowski, et al. ER Stress Sensor XBP1 Controls Anti-tumor Immunity by Disrupting Dendritic Cell Homeostasis. Cell 2015; 161(7): 1527-1538.

[118]

D. L. Herber, W. Cao, Y. Nefedova, et al. Lipid Accumulation and Dendritic Cell Dysfunction in Cancer. Nature Medicine 2010; 16(8): 880-886.

[119]

M. S. Gilardini Montani, R. Benedetti, and S. Piconese, et al. PGE2 Released by Pancreatic Cancer Cells Undergoing ER Stress Transfers the Stress to DCs Impairing Their Immune Function. Molecular Cancer Therapeutics 2021; 20(5): 934-945.

[120]

O. Guttman, A. Le Thomas, and S. Marsters, et al. Antigen-derived Peptides Engage the ER Stress Sensor IRE1α to Curb Dendritic Cell Cross-presentation. Journal of Cell Biology 2022; 221(6).

[121]

N. R. Mahadevan, V. Anufreichik, J. J. Rodvold, K. T. Chiu, H. Sepulveda, and M Zanetti. Cell-extrinsic Effects of Tumor ER Stress Imprint Myeloid Dendritic Cells and Impair CD8⁺ T Cell Priming. PLoS ONE 2012; 7(12): e51845.

[122]

Z. Zeng, H. Y. Chew, J. G. Cruz, G. R. Leggatt, and J. W Wells. Investigating T Cell Immunity in Cancer: Achievements and Prospects. International Journal of Molecular Sciences 2907, 2021; 22(6).

[123]

B. Farhood, M. Najafi, and K Mortezaee. CD8(+) cytotoxic T Lymphocytes in Cancer Immunotherapy: A Review. Journal of Cellular Physiology 2019; 234(6): 8509-8521.

[124]

B. J. Laidlaw, J. E. Craft, and S. M Kaech. The Multifaceted Role of CD4(+) T Cells in CD8(+) T Cell Memory. Nature Reviews Immunology 2016; 16(2): 102-111.

[125]

A. Palazon, P. A. Tyrakis, D. Macias, et al. An HIF-1α/VEGF-A Axis in Cytotoxic T Cells Regulates Tumor Progression. Cancer Cell 2017; 32(5): 669-683.e5.e5.

[126]

R. Wuand K. M Murphy. DCs at the Center of Help: Origins and Evolution of the Three-cell-type Hypothesis. Journal of Experimental Medicine 2022; 219(7).

[127]

S. P. Schoenberger, R. E. Toes, E. I. van der Voort, R. Offringa, and C. J Melief. T-cell Help for Cytotoxic T Lymphocytes Is Mediated by CD40-CD40L Interactions. Nature 1998; 393(6684): 480-483.

[128]

S. Feau, Z. Garcia, R. Arens, H. Yagita, J. Borst, and S. P Schoenberger. The CD4⁺ T-cell Help Signal Is Transmitted From APC to CD8⁺ T-cells via CD27-CD70 Interactions. Nature Communications 2012; 3: 948.

[129]

K. E. Hurst, K. A. Lawrence, M. T. Essman, Z. J. Walton, L. R. Leddy, and J. E Thaxton. Endoplasmic Reticulum Stress Contributes to Mitochondrial Exhaustion of CD8(+) T Cells. Cancer immunology research 2019; 7(3): 476-486.

[130]

Y. Cao, J. Trillo-Tinoco, R. A. Sierra, et al. ER Stress-induced Mediator C/EBP Homologous Protein Thwarts Effector T Cell Activity in Tumors Through T-bet Repression. Nature Communications 2019; 10(1): 1280.

[131]

X. Li, J. Zheng, S. Chen, F. D. Meng, J. Ning, and S. L Sun. Oleandrin, a Cardiac Glycoside, Induces Immunogenic Cell Death via the PERK/elF2α/ATF4/CHOP Pathway in Breast Cancer. Cell death & disease 2021; 12(4): 314.

[132]

M. Song, T. A. Sandoval, C. S. Chae, et al. IRE1α-XBP1 controls T Cell Function in Ovarian Cancer by Regulating Mitochondrial Activity. Nature 2018; 562(7727): 423-428.

[133]

X. Ma, E. Bi, Y. Lu, et al. Cholesterol Induces CD8(+) T Cell Exhaustion in the Tumor Microenvironment. Cell metabolism 2019; 30(1): 143-156.e5.e5.

[134]

Y. Chen, S. Zhang, Q. Wang, and X Zhang. Tumor-recruited M2 Macrophages Promote Gastric and Breast Cancer Metastasis via M2 Macrophage-secreted CHI3L1 Protein. Journal of hematology & oncology 2017; 10(1): 36.

[135]

M. J. Kim, H. J. Sun, Y. S. Song, et al. CXCL16 positively Correlated With M2-macrophage Infiltration, Enhanced Angiogenesis, and Poor Prognosis in Thyroid Cancer. Scientific Reports 2019; 9(1): 13288.

[136]

C. Wei, C. Yang, S. Wang, et al. Crosstalk Between Cancer Cells and Tumor Associated Macrophages Is Required for Mesenchymal Circulating Tumor Cell-mediated Colorectal Cancer Metastasis. Molecular cancer 2019; 18(1): 64.

[137]

R. Wang, Y. Liu, L. Liu, et al. Tumor Cells Induce LAMP2a Expression in Tumor-associated Macrophage for Cancer Progression. EBioMedicine 2019; 40: 118-134.

[138]

B. Z. Qianand J. W Pollard. Macrophage Diversity Enhances Tumor Progression and Metastasis. Cell 2010; 141(1): 39-51.

[139]

L. Qi, J. Chen, Y. Yang, and W Hu. Hypoxia Correlates with Poor Survival and M2 Macrophage Infiltration in Colorectal Cancer. Frontiers in oncology 2020; 10:566430.

[140]

D. Laoui, E. Van Overmeire, G. Di Conza, et al. Tumor Hypoxia Does Not Drive Differentiation of Tumor-associated Macrophages but Rather Fine-tunes the M2-Like Macrophage Population. Cancer Research 2014; 74(1): 24-30.

[141]

L. N. Raines, H. Zhao, Y. Wang, et al. PERK Is a Critical Metabolic Hub for Immunosuppressive Function in Macrophages. Nature Immunology 2022; 23(3): 431-445.

[142]

F. Yang, Y. Liu, H. Ren, G. Zhou, X. Yuan, and X Shi. ER-stress Regulates Macrophage Polarization Through Pancreatic EIF-2alpha Kinase. Cellular Immunology 2019; 336: 40-47.

[143]

G. Di Conza, C. H. Tsai, H. Gallart-Ayala, et al. Tumor-induced Reshuffling of Lipid Composition on the Endoplasmic Reticulum Membrane Sustains Macrophage Survival and Pro-tumorigenic Activity. Nature Immunology 2021; 22(11): 1403-1415.

[144]

M. Jiang, X. Li, J. Zhang, et al. Dual Inhibition of Endoplasmic Reticulum Stress and Oxidation Stress Manipulates the Polarization of Macrophages Under Hypoxia to Sensitize Immunotherapy. ACS Nano 2021; 15(9): 14522-14534.

[145]

M. S. Gilardini Montani, L. Falcinelli, and R. Santarelli, et al. KSHV Infection Skews Macrophage Polarisation towards M2-Like/TAM and Activates Ire1 α-XBP1 Axis Up-regulating Pro-tumorigenic Cytokine Release and PD-L1 Expression. British Journal of Cancer 2020; 123(2): 298-306.

[146]

Y. Zhao, W. Zhang, M. Huo, et al. XBP1 regulates the Protumoral Function of Tumor-associated Macrophages in human Colorectal Cancer. Signal Transduct Target Ther 2021; 6(1): 357.

[147]

H. Zhang, S. Q. Wang, L. Hang, et al. GRP78 facilitates M2 Macrophage Polarization and Tumour Progression. Cellular and Molecular Life Sciences 2021; 78(23): 7709-7732.

[148]

J. Liu, L. Fan, H. Yu, et al. Endoplasmic Reticulum Stress Causes Liver Cancer Cells to Release Exosomal miR-23a-3p and Up-regulate Programmed Death Ligand 1 Expression in Macrophages. Hepatology 2019; 70(1): 241-258.

[149]

X. Yao, Y. Tu, Y. Xu, Y. Guo, F. Yao, and X Zhang. Endoplasmic Reticulum Stress-induced Exosomal miR-27a-3p Promotes Immune Escape in Breast Cancer via Regulating PD-L1 Expression in Macrophages. Journal of Cellular and Molecular Medicine 2020; 24(17): 9560-9573.

[150]

Y. Yuan, P. Jiao, Z. Wang, et al. Endoplasmic Reticulum Stress Promotes the Release of Exosomal PD-L1 From Head and Neck Cancer Cells and Facilitates M2 Macrophage Polarization. Cell Communication and Signaling 2022; 20(1): 12.

[151]

N. R. Mahadevan, J. Rodvold, H. Sepulveda, S. Rossi, A. F. Drew, and M Zanetti. Transmission of Endoplasmic Reticulum Stress and Pro-inflammation From Tumor Cells to Myeloid Cells. PNAS 2011; 108(16): 6561-6566.

[152]

V. Kumar, S. Patel, E. Tcyganov, and D. I Gabrilovich. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment. Trends in Immunology 2016; 37(3): 208-220.

[153]

P. L. Raber, P. Thevenot, R. Sierra, et al. Subpopulations of Myeloid-derived Suppressor Cells Impair T Cell Responses Through Independent Nitric Oxide-related Pathways. International Journal of Cancer 2014; 134(12): 2853-2864.

[154]

J. M. Ju, G. Nam, Y. K. Lee, et al. IDO1 scavenges Reactive Oxygen Species in Myeloid-derived Suppressor Cells to Prevent Graft-versus-host Disease. PNAS 2021; 118(10).

[155]

K. Cole, K. Pravoverov, and J. E Talmadge. Role of Myeloid-derived Suppressor Cells in Metastasis. Cancer and Metastasis Reviews 2021; 40(2): 391-411.

[156]

N. Erin, J. Grahovac, A. Brozovic, and T Efferth. Tumor Microenvironment and Epithelial Mesenchymal Transition as Targets to Overcome Tumor Multidrug Resistance. Drug Resistance Updates 2020; 53:100715.

[157]

P. De Cicco, G. Ercolano, and A Ianaro. The New Era of Cancer Immunotherapy: Targeting Myeloid-Derived Suppressor Cells to Overcome Immune Evasion. Frontiers in immunology 2020; 11: 1680.

[158]

E. N. Tcyganov, S. Hanabuchi, A. Hashimoto, et al. Distinct Mechanisms Govern Populations of Myeloid-derived Suppressor Cells in Chronic Viral Infection and Cancer. Journal of Clinical Investigation 2021; 131(16).

[159]

T. Condamine, G. A. Dominguez, J. I. Youn, et al. Lectin-type Oxidized LDL Receptor-1 Distinguishes Population of human Polymorphonuclear Myeloid-derived Suppressor Cells in Cancer Patients. Science Immunology 2016; 1(2).

[160]

E. Mohamed, R. A. Sierra, and J. Trillo-Tinoco, et al. The Unfolded Protein Response Mediator PERK Governs Myeloid Cell-Driven Immunosuppression in Tumors Through Inhibition of STING Signaling. Immunity 2020; 52(4): 668-682.e7.

[161]

R. A. Sierra, J. Trillo-Tinoco, E. Mohamed, et al. Anti-Jagged Immunotherapy Inhibits MDSCs and Overcomes Tumor-Induced Tolerance. Cancer Research 2017; 77(20): 5628-5638.

[162]

P. T. Thevenot, R. A. Sierra, P. L. Raber, et al. The Stress-response Sensor Chop Regulates the Function and Accumulation of Myeloid-derived Suppressor Cells in Tumors. Immunity 2014; 41(3): 389-401.

[163]

M. Liu, C. Wu, S. Luo, et al. PERK Reprograms Hematopoietic Progenitor Cells to Direct Tumor-promoting Myelopoiesis in the Spleen. Journal of Experimental Medicine 2022; 219(4).

[164]

L. B. Kennedyand A. K. S Salama. A Review of Cancer Immunotherapy Toxicity. CA: A Cancer Journal for Clinicians 2020; 70(2): 86-104.

[165]

F. Conforti, L. Pala, V. Bagnardi, et al. Cancer Immunotherapy Efficacy and Patients' sex: A Systematic Review and Meta-analysis. The Lancet Oncology 2018; 19(6): 737-746.

[166]

M. Aldea, F. Andre, A. Marabelle, S. Dogan, F. Barlesi, and J. C Soria. Overcoming Resistance to Tumor-Targeted and Immune-Targeted Therapies. Cancer discovery 2021; 11(4): 874-899.

[167]

M. A. Arap, J. Lahdenranta, P. J. Mintz, et al. Cell Surface Expression of the Stress Response Chaperone GRP78 Enables Tumor Targeting by Circulating Ligands. Cancer Cell 2004; 6(3): 275-284.

[168]

C. Kao, R. Chandna, A. Ghode, et al. Proapoptotic Cyclic Peptide BC71 Targets Cell-Surface GRP78 and Functions as an Anticancer Therapeutic in Mice. EBioMedicine 2018; 33: 22-32.

[169]

M. Chen, Y. Zhang, V. C. Yu, Y. S. Chong, T. Yoshioka, and R Ge. Isthmin Targets Cell-surface GRP78 and Triggers Apoptosis via Induction of Mitochondrial Dysfunction. Cell Death and Differentiation 2014; 21(5): 797-810.

[170]

R. Burikhanov, Y. Zhao, A. Goswami, S. Qiu, S. R. Schwarze, and V. M Rangnekar. The Tumor Suppressor Par-4 Activates an Extrinsic Pathway for Apoptosis. Cell 2009; 138(2): 377-388.

[171]

A. W. Paton, T. Beddoe, C. M. Thorpe, et al. AB5 subtilase Cytotoxin Inactivates the Endoplasmic Reticulum Chaperone BiP. Nature 2006; 443(7111): 548-552.

[172]

S. Samanta, S. Yang, B. Debnath, et al. The Hydroxyquinoline Analogue YUM70 Inhibits GRP78 to Induce ER Stress-Mediated Apoptosis in Pancreatic Cancer. Cancer Research 2021; 81(7): 1883-1895.

[173]

Y. Qiao, C. Dsouza, A. A. Matthews, et al. Discovery of Small Molecules Targeting GRP78 for Antiangiogenic and Anticancer Therapy. European Journal of Medicinal Chemistry 2020; 193:112228.

[174]

N. Hebbar, R. Epperly, A. Vaidya, et al. CAR T Cells Redirected to Cell Surface GRP78 Display Robust Anti-acute Myeloid Leukemia Activity and Do Not Target Hematopoietic Progenitor Cells. Nature Communications 2022; 13(1): 587.

[175]

A. V. Korennykh, P. F. Egea, A. A. Korostelev, et al. The Unfolded Protein Response Signals Through High-order Assembly of Ire1. Nature 2009; 457(7230): 687-693.

[176]

L. Wang, B. G. Perera, S. B. Hari, et al. Divergent Allosteric Control of the IRE1α Endoribonuclease Using Kinase Inhibitors. Nature Chemical Biology 2012; 8(12): 982-989.

[177]

R. Ghosh, L. Wang, E. S. Wang, et al. Allosteric Inhibition of the IRE1α RNase Preserves Cell Viability and Function During Endoplasmic Reticulum Stress. Cell 2014; 158(3): 534-548.

[178]

M. Thamsen, R. Ghosh, V. C. Auyeung, et al. Small Molecule Inhibition of IRE1α Kinase/RNase Has Anti-fibrotic Effects in the Lung. PLoS ONE 2019; 14(1): e0209824.

[179]

S. Morita, S. A. Villalta, H. C. Feldman, et al. Targeting ABL-IRE1α Signaling Spares ER-Stressed Pancreatic β Cells to Reverse Autoimmune Diabetes. Cell metabolism 2017; 25(4): 883-897.e8.e8.

[180]

H. C. Feldman, R. Ghosh, V. C. Auyeung, et al. ATP-competitive Partial Antagonists of the IRE1α RNase Segregate Outputs of the UPR. Nature Chemical Biology 2021; 17(11): 1148-1156.

[181]

B. C. Cross, P. J. Bond, P. G. Sadowski, et al. The Molecular Basis for Selective Inhibition of Unconventional mRNA Splicing by an IRE1-binding Small Molecule. PNAS 2012; 109(15): E869-E878.

[182]

I. Papandreou, N. C. Denko, M. Olson, et al. Identification of an Ire1alpha Endonuclease Specific Inhibitor With Cytotoxic Activity Against human Multiple Myeloma. Blood 2011; 117(4): 1311-1314.

[183]

N. McCarthy, N. Dolgikh, S. Logue, et al. The IRE1 and PERK Arms of the Unfolded Protein Response Promote Survival of Rhabdomyosarcoma Cells. Cancer Letters 2020; 490: 76-88.

[184]

C. Atkins, Q. Liu, E. Minthorn, et al. Characterization of a Novel PERK Kinase Inhibitor With Antitumor and Antiangiogenic Activity. Cancer Research 2013; 73(6): 1993-2002.

[185]

J. M. Axten, J. R. Medina, Y. Feng, et al. Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]Acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-pyrrolo[2,3-d]Pyrimidin-4-amine (GSK2606414), a Potent and Selective First-in-class Inhibitor of Protein Kinase R (PKR)-Like Endoplasmic Reticulum Kinase (PERK). Journal of Medicinal Chemistry 2012; 55(16): 7193-7207.

[186]

C. M. Gallagher, C. Garri, and E. L. Cain, et al. Ceapins Are a New Class of Unfolded Protein Response Inhibitors, Selectively Targeting the ATF6α Branch. Elife 2016; 5.

[187]

L. J. Bu, H. Q. Yu, L. L. Fan, et al. Melatonin, a Novel Selective ATF-6 Inhibitor, Induces human Hepatoma Cell Apoptosis Through COX-2 Downregulation. World Journal of Gastroenterology 2017; 23(6): 986.

[188]

A. S Lee. Glucose-regulated Proteins in Cancer: Molecular Mechanisms and Therapeutic Potential. Nature Reviews Cancer 2014; 14(4): 263-276.

[189]

D. I. Staquicini, S. D'Angelo, and F. Ferrara, et al. Therapeutic Targeting of Membrane-associated GRP78 in Leukemia and Lymphoma: Preclinical Efficacy in Vitro and Formal Toxicity Study of BMTP-78 in Rodents and Primates. Pharmacogenomics Journal 2018; 18(3): 436-443.

[190]

Y. R. Miao, B. L. Eckhardt, Y. Cao, et al. Inhibition of Established Micrometastases by Targeted Drug Delivery via Cell Surface-associated GRP78. Clinical Cancer Research 2013; 19(8): 2107-2116.

[191]

J. Ibanez, N. Hebbar, U. Thanekar, et al. GRP78-CAR T Cell Effector Function Against Solid and Brain Tumors Is Controlled by GRP78 Expression on T Cells. Cell Rep Med 2023; 4(11): 101297.

[192]

D. P. Raymundo, D. Doultsinos, X. Guillory, A. Carlesso, L. A. Eriksson, and E Chevet. Pharmacological Targeting of IRE1 in Cancer. Trends in cancer 2020; 6(12): 1018-1030.

[193]

M. Maurel, E. Chevet, J. Tavernier, and S Gerlo. Getting RIDD of RNA: IRE1 in Cell Fate Regulation. Trends in Biochemical Sciences 2014; 39(5): 245-254.

[194]

A. Carlesso, C. Chintha, A. M. Gorman, A. Samali, and L. A Eriksson. Effect of Kinase Inhibiting RNase Attenuator (KIRA) Compounds on the Formation of Face-to-Face Dimers of Inositol-Requiring Enzyme 1: Insights From Computational Modeling. International Journal of Molecular Sciences 5538, 2019; 20(22).

[195]

J. M. Harnoss, A. Le Thomas, A. Shemorry, et al. Disruption of IRE1α Through Its Kinase Domain Attenuates Multiple Myeloma. PNAS 2019; 116(33): 16420-16429.

[196]

S. E. Logue, E. P. McGrath, P. Cleary, et al. Inhibition of IRE1 RNase Activity Modulates the Tumor Cell Secretome and Enhances Response to Chemotherapy. Nature Communications 2018; 9(1): 3267.

[197]

X. Sheng, H. Z. Nenseth, S. Qu, et al. IRE1α-XBP1s pathway Promotes Prostate Cancer by Activating c-MYC Signaling. Nature Communications 2019; 10(1): 323.

[198]

R. Xiao, L. You, L. Zhang, et al. Inhibiting the IRE1α Axis of the Unfolded Protein Response Enhances the Antitumor Effect of AZD1775 in TP53 Mutant Ovarian Cancer. Adv Sci (Weinh) 2022; 9(21): e2105469.

[199]

P. J. Le Reste, R. Pineau, and K. Voutetakis, et al. Local Intracerebral Inhibition of IRE1 by MKC8866 Sensitizes Glioblastoma to Irradiation/Chemotherapy in Vivo. Cancer Letters 2020; 494: 73-83.

[200]

D. Rojas-Rivera, T. Delvaeye, R. Roelandt, et al. When PERK Inhibitors Turn out to be New Potent RIPK1 Inhibitors: Critical Issues on the Specificity and Use of GSK2606414 and GSK2656157. Cell Death and Differentiation 2017; 24(6): 1100-1110.

[201]

Z. Li, Y. Ge, J. Dong, et al. BZW1 Facilitates Glycolysis and Promotes Tumor Growth in Pancreatic Ductal Adenocarcinoma through Potentiating eIF2α Phosphorylation. Gastroenterology 2022; 162(4): 1256-1271.e14.e14.

[202]

W. Cai, X. Sun, and F. Jin, et al. PERK-eIF2α-ERK1/2 Axis Drives Mesenchymal-endothelial Transition of Cancer-associated Fibroblasts in Pancreatic Cancer. Cancer Letters 2021; 515: 86-95.

[203]

T. Bagratuni, D. Patseas, N. Mavrianou-Koutsoukou, et al. Characterization of a PERK Kinase Inhibitor With Anti-Myeloma Activity. Cancers (Basel) 2864, 2020; 12(10).

[204]

Y. Gao, D. J. Sartori, C. Li, et al. PERK Is Required in the Adult Pancreas and Is Essential for Maintenance of Glucose Homeostasis. Molecular and Cellular Biology 2012; 32(24): 5129-5139.

[205]

O. I. Coleman, E. M. Lobner, S. Bierwirth, et al. Activated ATF6 Induces Intestinal Dysbiosis and Innate Immune Response to Promote Colorectal Tumorigenesis. Gastroenterology 2018; 155(5): 1539-1552.e12.e12.

[206]

M. Shuda, N. Kondoh, N. Imazeki, et al. Activation of the ATF6, XBP1 and grp78 Genes in human Hepatocellular Carcinoma: A Possible Involvement of the ER Stress Pathway in Hepatocarcinogenesis. Journal of Hepatology 2003; 38(5): 605-614.

[207]

J. Cho, H. Y. Min, H. Pei, et al. The ATF6-EGF Pathway Mediates the Awakening of Slow-Cycling Chemoresistant Cells and Tumor Recurrence by Stimulating Tumor Angiogenesis. Cancers (Basel) 1772, 2020; 12(7).

[208]

B. Farhood, N. H. Goradel, K. Mortezaee, et al. Melatonin as an Adjuvant in Radiotherapy for Radioprotection and Radiosensitization. Clinical & translational oncology 2019; 21(3): 268-279.

[209]

Y. Y. Shin, Y. Seo, S. J. Oh, et al. Melatonin and Verteporfin Synergistically Suppress the Growth and Stemness of Head and Neck Squamous Cell Carcinoma Through the Regulation of Mitochondrial Dynamics. Journal of Pineal Research 2022; 72(1): e12779.

[210]

J. Wu, Z. Tan, H. Li, et al. Melatonin Reduces Proliferation and Promotes Apoptosis of Bladder Cancer Cells by Suppressing O-GlcNAcylation of Cyclin-dependent-Like Kinase 5. Journal of Pineal Research 2021; 71(3): e12765.

[211]

N. Chignard, S. Shang, H. Wang, et al. Cleavage of Endoplasmic Reticulum Proteins in Hepatocellular Carcinoma: Detection of Generated Fragments in Patient Sera. Gastroenterology 2006; 130(7): 2010-2022.

[212]

Z. Su, L. Wang, X. Chen, et al. An Unfolded Protein Response-Related mRNA Signature Predicting the Survival and Therapeutic Effect of Hepatocellular Carcinoma. Combinatorial Chemistry & High Throughput Screening 2022; 25(12): 2046-2058.

[213]

H. Guo, S. Zhang, B. Zhang, et al. Immunogenic Landscape and Risk Score Prediction Based On Unfolded Protein Response (UPR)-related Molecular Subtypes in Hepatocellular Carcinoma. Frontiers in immunology 2023; 14:1202324.

[214]

A. Houessinon, A. Gicquel, F. Bochereau, et al. Alpha-fetoprotein Is a Biomarker of Unfolded Protein Response and Altered Proteostasis in Hepatocellular Carcinoma Cells Exposed to Sorafenib. Cancer Letters 2016; 370(2): 242-249.

[215]

A. Galmiche, C. Sauzay, A. Houessinon, B. Chauffert, and O Pluquet. Probing Tumour Proteostasis and the UPR With Serum Markers. Trends in cancer 2016; 2(5): 219-221.

[216]

J. Tang, Y. S. Guo, Y. Zhang, et al. CD147 induces UPR to Inhibit Apoptosis and Chemosensitivity by Increasing the Transcription of Bip in Hepatocellular Carcinoma. Cell Death and Differentiation 2012; 19(11): 1779-1790.

[217]

L. Rasche, J. Duell, I. C. Castro, et al. GRP78-directed Immunotherapy in Relapsed or Refractory Multiple Myeloma—results From a Phase 1 Trial With the Monoclonal Immunoglobulin M Antibody PAT-SM6. Haematologica 2015; 100(3): 377-384.

[218]

F. Hong, C. Y. Lin, J. Yan, et al. Canopy Homolog 2 Contributes to Liver Oncogenesis by Promoting Unfolded Protein Response-dependent Destabilization of Tumor Protein P53. Hepatology 2022; 76(6): 1587-1601.

[219]

A. D'Urso, F. Oltolina, C. Borsotti, M. Prat, D. Colangelo, and A Follenzi. Macrophage Reprogramming via the Modulation of Unfolded Protein Response With siRNA-Loaded Magnetic Nanoparticles in a TAM-Like Experimental Model. Pharmaceutics 2023; 15(6).

[220]

S. Rahman, V. Kumar, A. Kumar, T. S. Abdullah, I. A. Rather, and A. T Jan. Molecular Perspective of Nanoparticle Mediated Therapeutic Targeting in Breast Cancer: An Odyssey of Endoplasmic Reticulum Unfolded Protein Response (UPR(ER)) and beyond. Biomedicines 635, 2021; 9(6).

[221]

J. Wang, X. Fang, and W Liang. Pegylated Phospholipid Micelles Induce Endoplasmic Reticulum-dependent Apoptosis of Cancer Cells but Not Normal Cells. ACS Nano 2012; 6(6): 5018-5030.

[222]

Z. Gao, B. Jing, Y. Wang, W. Wan, X. Dong, and Y Liu. Exploring the Impact of Lipid Nanoparticles on Protein Stability and Cellular Proteostasis. Journal of Colloid & Interface Science 2025; 678(Pt A): 656-665.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

16

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/