Autoimmune Diseases: Molecular Pathogenesis and Therapeutic Targets

Xiaoshuang Song , Hantian Liang , Fang Nan , Wenjing Chen , Junyao Li , Liu He , Yiping Cun , Zhenhong Li , Wei Zhang , Dunfang Zhang

MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70262

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70262 DOI: 10.1002/mco2.70262
REVIEW

Autoimmune Diseases: Molecular Pathogenesis and Therapeutic Targets

Author information +
History +
PDF

Abstract

Autoimmune diseases are a set of disorders in which the immune system attacks one's own tissues, leading to chronic inflammation, tissue damage, and systemic dysfunction. Affecting approximately 10% of the global population, these diseases impose significant health and economic burdens worldwide. The pathogenesis of autoimmune diseases is complex, involving not only genetic predisposition (e.g., human leukocyte antigen variants), environmental triggers (e.g., infections), and a dysregulated immune response but also various interacting components that contribute to the development of diverse clinical phenotypes. This review provides a comprehensive overview of common autoimmune diseases, covering their clinical manifestations, pathogenic mechanisms, and diagnostic approaches such as disease-specific autoantibodies. We also explore current therapeutic strategies, including commonly used broad-spectrum anti-inflammatory drugs, recent molecular-targeted therapies (e.g., Janus kinase inhibitors, monoclonal antibodies), and emerging cellular therapies such as chimeric antigen receptor T cells therapy and regulatory T-cell adoptive transfer. Incorporating knowledge from preclinical and clinical studies, this review synthesizes relevant information to inform about autoimmune diseases, bridge the gap from lab to clinic, and promote future advances through exploring precision medicine applications to meet clinical needs.

Keywords

autoimmune diseases / immune tolerance / pathogenesis / therapeutic strategies

Cite this article

Download citation ▾
Xiaoshuang Song, Hantian Liang, Fang Nan, Wenjing Chen, Junyao Li, Liu He, Yiping Cun, Zhenhong Li, Wei Zhang, Dunfang Zhang. Autoimmune Diseases: Molecular Pathogenesis and Therapeutic Targets. MedComm, 2025, 6(7): e70262 DOI:10.1002/mco2.70262

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

L. Wang, F. Wang, and M. E. Gershwin, “Human Autoimmune Diseases: A Comprehensive Update,” Journal of Internal Medicine 278, no. 4 (2015): 369-395.

[2]

N. Conrad, S. Misra, J. Y. Verbakel, et al., “Incidence, Prevalence, and co-occurrence of Autoimmune Disorders Over Time and by Age, Sex, and Socioeconomic Status: A Population-based Cohort Study of 22 Million Individuals in the UK,” The Lancet 401, no. 10391 (2023): 1878-1890.

[3]

Global, Regional, and National Burden of Rheumatoid Arthritis, 1990-2020, and Projections to 2050: A Systematic Analysis of the Global Burden of Disease Study 2021. The Lancet Rheumatology 2023; 5(10): e594-e610.

[4]

J. Tian, D. Zhang, X. Yao, Y. Huang, and Q. Lu, “Global Epidemiology of Systemic Lupus Erythematosus: A Comprehensive Systematic Analysis and Modelling Study,” Annals of the Rheumatic Diseases 82, no. 3 (2023): 351-356.

[5]

F. Cao, Y. He, Y. Wang, et al., “Global Burden and Cross-country Inequalities in Autoimmune Diseases From 1990 to 2019,” Autoimmunity Reviews 22, no. 6 (2023): 103326.

[6]

M. D. Rosenblum, K. A. Remedios, and A. K. Abbas, “Mechanisms of human Autoimmunity,” The Journal of Clinical Investigation 125, no. 6 (2015): 2228-2233.

[7]

L. Fugger, L. T. Jensen, and J. Rossjohn, “Challenges, Progress, and Prospects of Developing Therapies to Treat Autoimmune Diseases,” Cell 181, no. 1 (2020): 63-80.

[8]

L. Klareskog, A. I. Catrina, and S. Paget, “Rheumatoid Arthritis,” Lancet (London, England) 373, no. 9664 (2009): 659-672.

[9]

R. Hansildaar, D. Vedder, M. Baniaamam, A. K. Tausche, M. Gerritsen, and M. T. Nurmohamed, “Cardiovascular Risk in Inflammatory Arthritis: Rheumatoid Arthritis and Gout,” The Lancet Rheumatology 3, no. 1 (2021): e58-e70.

[10]

A. K. Reddy, J. R. Kolfenbach, and A. G. Palestine, “Ocular Manifestations of Rheumatoid Arthritis,” Current Opinion in Ophthalmology 33, no. 6 (2022): 551-556.

[11]

A. Fanouriakis, N. Tziolos, G. Bertsias, and D. T. Boumpas, “Update οn the Diagnosis and Management of Systemic Lupus Erythematosus,” Annals of the Rheumatic Diseases 80, no. 1 (2021): 14-25.

[12]

X. Su, H. Yu, Q. Lei, et al., “Systemic Lupus Erythematosus: Pathogenesis and Targeted Therapy,” Molecular Biomedicine 5, no. 1 (2024): 54.

[13]

M. Petri, A. M. Orbai, G. S. Alarcón, et al., “Derivation and Validation of the Systemic Lupus International Collaborating Clinics Classification Criteria for Systemic Lupus Erythematosus,” Arthritis and Rheumatism 64, no. 8 (2012): 2677-2686.

[14]

A. Fava, M. Petri, “Systemic Lupus Erythematosus: Diagnosis and Clinical Management,” Journal of Autoimmunity 96 (2019): 1-13.

[15]

R. I. Fox, “Sjögren's Syndrome,” Lancet (London, England) 366, no. 9482 (2005): 321-331.

[16]

M. Ramos-Casals, P. Brito-Zerón, R. Seror, et al., “Characterization of Systemic Disease in Primary Sjögren's Syndrome: EULAR-SS Task Force Recommendations for Articular, Cutaneous, Pulmonary and Renal Involvements,” Rheumatology (Oxford, England) 54, no. 12 (2015): 2230-2238.

[17]

T. Seeliger, N. K. Prenzler, S. Gingele, et al., “Neuro-Sjögren: Peripheral Neuropathy with Limb Weakness in Sjögren's Syndrome,” Frontiers in Immunology 10 (2019): 1600.

[18]

W. H. Boehncke, M. P. Schön, “Psoriasis,” Lancet (London, England) 386, no. 9997 (2015): 983-994.

[19]

N. R. Telfer, R. J. Chalmers, K. Whale, and G. Colman, “The Role of Streptococcal Infection in the Initiation of Guttate Psoriasis,” Archives of Dermatology 128, no. 1 (1992): 39-42.

[20]

R. E. Kokoska, M. D. Szeto, and R. P. Dellavalle, “From the Cochrane Library: Antistreptococcal Interventions for Guttate and Chronic Plaque Psoriasis,” Journal of the American Academy of Dermatology 88, no. 2 (2023): e93-e94.

[21]

K. E. Benjegerdes, K. Hyde, D. Kivelevitch, and B. Mansouri, “Pustular Psoriasis: Pathophysiology and Current Treatment Perspectives,” Psoriasis (Auckland, NZ) 6 (2016): 131-144.

[22]

G. Micali, A. E. Verzì, G. Giuffrida, E. Panebianco, M. L. Musumeci, and F. Lacarrubba, “Inverse Psoriasis: From Diagnosis to Current Treatment Options,” Clinical, Cosmetic and Investigational Dermatology 12 (2019): 953-959.

[23]

A. W. Armstrong, M. P. Siegel, J. Bagel, et al., “From the Medical Board of the National Psoriasis Foundation: Treatment Targets for Plaque Psoriasis,” Journal of the American Academy of Dermatology 76, no. 2 (2017): 290-298.

[24]

S. B. Kaushik, M. G. Lebwohl, “Psoriasis: Which Therapy for which Patient: Psoriasis Comorbidities and Preferred Systemic Agents,” Journal of the American Academy of Dermatology 80, no. 1 (2019): 27-40.

[25]

E. R. Volkmann, K. Andréasson, and V. Smith, “Systemic Sclerosis,” Lancet (London, England) 401, no. 10373 (2023): 304-318.

[26]

Y. Allanore, R. Simms, O. Distler, et al., “Systemic Sclerosis,” Nature Reviews Disease Primers 1 (2015): 15002.

[27]

C. P. Denton, D. Khanna, “Systemic Sclerosis,” Lancet (London, England) 390, no. 10103 (2017): 1685-1699.

[28]

A. Sterkens, J. Lambert, and A. Bervoets, “Alopecia Areata: A Review on Diagnosis, Immunological Etiopathogenesis and Treatment Options,” Clinical and Experimental Medicine 21, no. 2 (2021): 215-230.

[29]

G. Mieli-Vergani, D. Vergani, A. J. Czaja, et al., “Autoimmune hepatitis,” Nature Reviews Disease Primers 4 (2018): 18017.

[30]

E. J. Carey, A. H. Ali, and K. D. Lindor, “Primary Biliary Cirrhosis,” Lancet (London, England) 386, no. 10003 (2015): 1565-1575.

[31]

J. E. Eaton, J. A. Talwalkar, K. N. Lazaridis, G. J. Gores, and K. D. Lindor, “Pathogenesis of Primary Sclerosing Cholangitis and Advances in Diagnosis and Management,” Gastroenterology 145, no. 3 (2013): 521-536.

[32]

T. H. Karlsen, T. Folseraas, D. Thorburn, and M. Vesterhus, “Primary Sclerosing Cholangitis—a Comprehensive Review,” Journal of Hepatology 67, no. 6 (2017): 1298-1323.

[33]

B. H. Toh, “Pathophysiology and Laboratory Diagnosis of Pernicious Anemia,” Immunologic Research 65, no. 1 (2017): 326-330.

[34]

A. R. Mathew, G. Di Matteo, P. La Rosa, et al., “Vitamin B12 Deficiency and the Nervous System: Beyond Metabolic Decompensation-Comparing Biological Models and Gaining New Insights Into Molecular and Cellular Mechanisms,” International Journal of Molecular Sciences 25, no. 1 (2024): 590.

[35]

S. Kulnigg-Dabsch, “Autoimmune Gastritis,” Wiener Medizinische Wochenschrift (1946) 166, no. 13-14 (2016): 424-430.

[36]

Ç. Kalkan, I. Soykan, “Polyautoimmunity in Autoimmune Gastritis,” European Journal of Internal Medicine 31 (2016): 79-83.

[37]

N. Bizzaro, A. Antico, and D. Villalta, “Autoimmunity and Gastric Cancer,” International Journal of Molecular Sciences 19, no. 2 (2018): 377.

[38]

P. Qiu, T. Ishimoto, L. Fu, J. Zhang, Z. Zhang, and Y. Liu, “The Gut Microbiota in Inflammatory Bowel Disease,” Frontiers in Cellular and Infection Microbiology 12 (2022): 733992.

[39]

S. Massironi, C. Viganò, A. Palermo, et al., “Inflammation and Malnutrition in Inflammatory Bowel Disease,” The Lancet Gastroenterology & Hepatology 8, no. 6 (2023): 579-590.

[40]

F. Rieder, C. Fiocchi, and G. Rogler, “Mechanisms, Management, and Treatment of Fibrosis in Patients with Inflammatory Bowel Diseases,” Gastroenterology 152, no. 2 (2017): 340-350. e6.

[41]

D. S. Keller, A. Windsor, R. Cohen, and M. Chand, “Colorectal Cancer in Inflammatory Bowel Disease: Review of the Evidence,” Techniques in Coloproctology 23, no. 1 (2019): 3-13.

[42]

J. Landy, E. Ronde, N. English, et al., “Tight Junctions in Inflammatory Bowel Diseases and Inflammatory Bowel Disease Associated Colorectal Cancer,” World Journal of Gastroenterology 22, no. 11 (2016): 3117-3126.

[43]

M. Harbord, V. Annese, S. R. Vavricka, et al., “The First European Evidence-based Consensus on Extra-intestinal Manifestations in Inflammatory Bowel Disease,” Journal of Crohn's & Colitis 10, no. 3 (2016): 239-254.

[44]

Y. Du, G. Li, Y. Zhou, et al., “Role of Epigenetic Modifications and Aging in Inflammatory Bowel Disease,” MedComm—Future Medicine 2, no. 4 (2023): e63.

[45]

T. Quattrin, L. D. Mastrandrea, and L. S. K. Walker, “Type 1 Diabetes,” Lancet (London, England) 401, no. 10394 (2023): 2149-2162.

[46]

A. Katsarou, S. Gudbjörnsdottir, A. Rawshani, et al., “Type 1 Diabetes Mellitus,” Nature Reviews Disease Primers 3 (2017): 17016.

[47]

S. Hummel, N. Friedl, C. Winkler, A. G. Ziegler, and P. Achenbach, “Presymptomatic Type 1 Diabetes and Disease Severity at Onset. Reply to Schneider J, Gemulla G, Kiess W Et al [letter],” Diabetologia 66, no. 12 (2023): 2389-2390.

[48]

C. P. Domingueti, L. M. Dusse, M. Carvalho, L. P. de Sousa, K. B. Gomes, and A. P. Fernandes, “Diabetes Mellitus: The Linkage Between Oxidative Stress, Inflammation, Hypercoagulability and Vascular Complications,” Journal of Diabetes and Its Complications 30, no. 4 (2016): 738-745.

[49]

A. Antonelli, S. M. Ferrari, A. Corrado, A. Di Domenicantonio, and P. Fallahi, “Autoimmune Thyroid Disorders,” Autoimmunity Reviews 14, no. 2 (2015): 174-180.

[50]

J. Bogusławska, M. Godlewska, E. Gajda, and A. Piekiełko-Witkowska, “Cellular and Molecular Basis of Thyroid Autoimmunity,” European Thyroid Journal 11, no. 1 (2022): e210024.

[51]

T. J. Smith, L. Hegedüs, “Graves' Disease,” The New England Journal of Medicine 375, no. 16 (2016): 1552-1565.

[52]

L. Bartalena, L. Baldeschi, K. Boboridis, et al., “The 2016 European Thyroid Association/European Group on Graves' Orbitopathy Guidelines for the Management of Graves' Orbitopathy,” European Thyroid Journal 5, no. 1 (2016): 9-26.

[53]

P. Caturegli, A. De Remigis, and N. R. Rose, “Hashimoto Thyroiditis: Clinical and Diagnostic Criteria,” Autoimmunity Reviews 13, no. 4-5 (2014): 391-397.

[54]

H. A. Liebman, I. C. Weitz, “Autoimmune Hemolytic Anemia,” The Medical Clinics of North America 101, no. 2 (2017): 351-359.

[55]

D. S. Reich, C. F. Lucchinetti, and P. A. Calabresi, “Multiple Sclerosis,” The New England Journal of Medicine 378, no. 2 (2018): 169-180.

[56]

M. S. Y. Yeung, M. Djelloul, E. Steiner, et al., “Dynamics of Oligodendrocyte Generation in Multiple Sclerosis,” Nature 566, no. 7745 (2019): 538-542.

[57]

J. Oh, A. Vidal-Jordana, and X. Montalban, “Multiple Sclerosis: Clinical Aspects,” Current Opinion in Neurology 31, no. 6 (2018): 752-759.

[58]

W. J. Brownlee, T. A. Hardy, F. Fazekas, and D. H. Miller, “Diagnosis of Multiple Sclerosis: Progress and Challenges,” Lancet (London, England) 389, no. 10076 (2017): 1336-1346.

[59]

F. D. Lublin, S. C. Reingold, “Defining the Clinical Course of Multiple Sclerosis: Results of an International Survey. National Multiple Sclerosis Society (USA) Advisory Committee on Clinical Trials of New Agents in Multiple Sclerosis,” Neurology 46, no. 4 (1996): 907-911.

[60]

N. E. Gilhus, S. Tzartos, A. Evoli, J. Palace, T. M. Burns, and J. Verschuuren, “Myasthenia Gravis,” Nature Reviews Disease Primers 5, no. 1 (2019): 30.

[61]

N. E. Gilhus, J. J. Verschuuren, “Myasthenia Gravis: Subgroup Classification and Therapeutic Strategies,” The Lancet Neurology 14, no. 10 (2015): 1023-1036.

[62]

W. T. Cornblath, “Treatment of Ocular Myasthenia Gravis,” Asia-Pacific Journal of Ophthalmology (Philadelphia, Pa) 7, no. 4 (2018): 257-259.

[63]

M. M. Rahman, M. R. Islam, and P. S. Dhar, “Myasthenia Gravis in Current Status: Epidemiology, Types, Etiology, Pathophysiology, Symptoms, Diagnostic Tests, Prevention, Treatment, and Complications—correspondence,” International Journal of Surgery (London, England) 109, no. 2 (2023): 178-180.

[64]

N. E. Gilhus, “Myasthenia Gravis,” The New England Journal of Medicine 375, no. 26 (2016): 2570-2581.

[65]

C. S. Vinen, D. B. Oliveira, “Acute Glomerulonephritis,” Postgraduate Medical Journal 79, no. 930 (2003): 206-213. quiz 212-3.

[66]

P. Ronco, H. Debiec, “Pathophysiological Advances in Membranous Nephropathy: Time for a Shift in Patient's Care,” Lancet (London, England) 385, no. 9981 (2015): 1983-1992.

[67]

R. J. H. Smith, G. B. Appel, A. M. Blom, et al., “C3 glomerulopathy—understanding a Rare Complement-driven Renal Disease,” Nature Reviews Nephrology 15, no. 3 (2019): 129-143.

[68]

S. Sethi, A. S. De Vriese, and F. C. Fervenza, “Acute Glomerulonephritis,” Lancet (London, England) 399, no. 10335 (2022): 1646-1663.

[69]

H. J. Anders, A. R. Kitching, N. Leung, and P. Romagnani, “Glomerulonephritis: Immunopathogenesis and Immunotherapy,” Nature Reviews Immunology 23, no. 7 (2023): 453-471.

[70]

M. J. Walker, T. C. Barnett, J. D. McArthur, et al., “Disease Manifestations and Pathogenic Mechanisms of Group A Streptococcus,” Clinical Microbiology Reviews 27, no. 2 (2014): 264-301.

[71]

J. A. Bluestone, M. Anderson, “Tolerance in the Age of Immunotherapy,” The New England Journal of Medicine 383, no. 12 (2020): 1156-1166.

[72]

D. S. Pisetsky, “Pathogenesis of Autoimmune Disease,” Nature Reviews Nephrology 19, no. 8 (2023): 509-524.

[73]

J. Varadé, S. Magadán, and Á. González-Fernández, “Human Immunology and Immunotherapy: Main Achievements and Challenges,” Cellular & Molecular Immunology 18, no. 4 (2021): 805-828.

[74]

R. Wang, C. Lan, K. Benlagha, et al., “The Interaction of Innate Immune and Adaptive Immune System,” MedComm 5, no. 10 (2024): e714.

[75]

P. J. Haley, “Species Differences in the Structure and Function of the Immune System,” Toxicology 188, no. 1 (2003): 49-71.

[76]

S. Carpenter, L. A. J. O'Neill, “From Periphery to Center Stage: 50 Years of Advancements in Innate Immunity,” Cell 187, no. 9 (2024): 2030-2051.

[77]

H. Chi, M. Pepper, and P. G. Thomas, “Principles and Therapeutic Applications of Adaptive Immunity,” Cell 187, no. 9 (2024): 2052-2078.

[78]

W. Hoffman, F. G. Lakkis, and G. Chalasani, “B Cells, Antibodies, and More,” Clinical Journal of the American Society of Nephrology: CJASN 11, no. 1 (2016): 137-154.

[79]

L. A. Trouw, M. R. Daha, “Role of Complement in Innate Immunity and Host Defense,” Immunology Letters 138, no. 1 (2011): 35-37.

[80]

C. A. Dinarello, “Historical Insights Into Cytokines,” European Journal of Immunology 37 (2007): S34-45. Suppl 1. Suppl 1.

[81]

E. Jo, “Interplay Between Host and Pathogen: Immune Defense and Beyond,” Experimental & Molecular Medicine 51, no. 12 (2019): 1-3.

[82]

J. T. Loh, K. P. Lam, “Fungal Infections: Immune Defense, Immunotherapies and Vaccines,” Advanced Drug Delivery Reviews 196 (2023): 114775.

[83]

A. Mihalić, J. Železnjak, B. Lisnić, S. Jonjić, V. Juranić Lisnić, and I. Brizić, “Immune Surveillance of cytomegalovirus in Tissues,” Cellular & Molecular Immunology 21, no. 9 (2024): 959-981.

[84]

R. Berry, G. M. Watson, S. Jonjic, M. A. Degli-Esposti, and J. Rossjohn, “Modulation of Innate and Adaptive Immunity by Cytomegaloviruses,” Nature Reviews Immunology 20, no. 2 (2020): 113-127.

[85]

J. B. Swann, M. J. Smyth, “Immune Surveillance of Tumors,” The Journal of Clinical Investigation 117, no. 5 (2007): 1137-1146.

[86]

D. Ribatti, “The Concept of Immune Surveillance Against Tumors. The First Theories,” Oncotarget 8, no. 4 (2017): 7175-7180.

[87]

N. D. Huntington, D. H. Gray, “Immune Homeostasis in Health and Disease,” Immunology & Cell Biology 96, no. 5 (2018): 451-452.

[88]

L. V. Parijs, A. K. Abbas, “Homeostasis and Self-Tolerance in the Immune System: Turning Lymphocytes off,” Science (New York, NY) 280, no. 5361 (1998): 243-248.

[89]

X. Meng, J. A. Layhadi, S. T. Keane, N. J. K. Cartwright, S. R. Durham, and M. H. Shamji, “Immunological Mechanisms of Tolerance: Central, Peripheral and the Role of T and B Cells,” Asia Pacific Allergy 13, no. 4 (2023): 175-186.

[90]

G. Sogkas, F. Atschekzei, I. R. Adriawan, N. Dubrowinskaja, T. Witte, and R. E. Schmidt, “Cellular and Molecular Mechanisms Breaking Immune Tolerance in Inborn Errors of Immunity,” Cellular & Molecular Immunology 18, no. 5 (2021): 1122-1140.

[91]

L. Klein, E. Petrozziello, “Antigen Presentation for central Tolerance Induction,” Nature Reviews Immunology 25, no. 1 (2025): 57-72.

[92]

P. Kumar, S. Saini, S. Khan, S. Surendra Lele, and B. S. Prabhakar, “Restoring Self-tolerance in Autoimmune Diseases by Enhancing Regulatory T-cells,” Cellular Immunology 339 (2019): 41-49.

[93]

K. M. Ashby, K. A. Hogquist, “A Guide to Thymic Selection of T Cells,” Nature Reviews Immunology 24, no. 2 (2024): 103-117.

[94]

E. Adamopoulou, S. Tenzer, N. Hillen, et al., “Exploring the MHC-peptide Matrix of central Tolerance in the human thymus,” Nature Communications 4 (2013): 2039.

[95]

M. Irla, “Instructive Cues of Thymic T Cell Selection,” Annual Review of Immunology 40 (2022): 95-119.

[96]

P. A. Savage, D. E. J. Klawon, and C. H. Miller, “Regulatory T Cell Development,” Annual Review of Immunology 38 (2020): 421-453.

[97]

J. Srinivasan, J. N. Lancaster, N. Singarapu, L. P. Hale, L. I. R. Ehrlich, and E. R. Richie, “Age-Related Changes in Thymic Central Tolerance,” Frontiers in Immunology 12 (2021): 676236.

[98]

C. N. Miller, M. R. Waterfield, J. M. Gardner, and M. S. Anderson, “Aire in Autoimmunity,” Annual Review of Immunology 42, no. 1 (2024): 427-453.

[99]

R. R. Hardy, C. E. Carmack, S. A. Shinton, J. D. Kemp, and K. Hayakawa, “Resolution and Characterization of Pro-B and Pre-pro-B Cell Stages in Normal Mouse Bone Marrow,” The Journal of Experimental Medicine 173, no. 5 (1991): 1213-1225.

[100]

H. Wardemann, S. Yurasov, A. Schaefer, J. W. Young, E. Meffre, and M. C. Nussenzweig, “Predominant Autoantibody Production by Early human B Cell Precursors,” Science (New York, NY) 301, no. 5638 (2003): 1374-1377.

[101]

R. Pelanda, S. A. Greaves, T. Alves da Costa, L. M. Cedrone, M. L. Campbell, and R. M. Torres, “B-cell Intrinsic and Extrinsic Signals That Regulate central Tolerance of Mouse and human B Cells,” Immunological Reviews 307, no. 1 (2022): 12-26.

[102]

D. Nemazee, “Mechanisms of central Tolerance for B Cells,” Nature Reviews Immunology 17, no. 5 (2017): 281-294.

[103]

H. U. Scherer, D. van der Woude, and R. E. M. Toes, “From Risk to Chronicity: Evolution of Autoreactive B Cell and Antibody Responses in Rheumatoid Arthritis,” Nature Reviews Rheumatology 18, no. 7 (2022): 371-383.

[104]

C. C. Goodnow, C. G. Vinuesa, K. L. Randall, F. Mackay, and R. Brink, “Control Systems and Decision Making for Antibody Production,” Nature Immunology 11, no. 8 (2010): 681-688.

[105]

J. E. Kenison, N. A. Stevens, and F. J. Quintana, “Therapeutic Induction of Antigen-specific Immune Tolerance,” Nature Reviews Immunology 24, no. 5 (2024): 338-357.

[106]

L. S. Walker, A. K. Abbas, “The Enemy Within: Keeping Self-reactive T Cells at Bay in the Periphery,” Nature Reviews Immunology 2, no. 1 (2002): 11-19.

[107]

G. J. Nossal, B. L. Pike, “Clonal Anergy: Persistence in Tolerant Mice of Antigen-binding B Lymphocytes Incapable of Responding to Antigen or Mitogen,” Proceedings of the National Academy of Sciences of the United States of America 77, no. 3 (1980): 1602-1606.

[108]

G. D. Sckisel, M. N. Bouchlaka, A. M. Monjazeb, et al., “Out-of-Sequence Signal 3 Paralyzes Primary CD4(+) T-Cell-Dependent Immunity,” Immunity 43, no. 2 (2015): 240-250.

[109]

L. Han, T. Wu, Q. Zhang, A. Qi, and X. Zhou, “Immune Tolerance Regulation Is Critical to Immune Homeostasis,” Journal of Immunology Research 2025 (2025): 5006201.

[110]

I. Ferber, G. Schönrich, J. Schenkel, A. L. Mellor, G. J. Hämmerling, and B. Arnold, “Levels of Peripheral T Cell Tolerance Induced by Different Doses of Tolerogen,” Science (New York, NY) 263, no. 5147 (1994): 674-676.

[111]

A. Paskiewicz, J. Niu, and C. Chang, “Autoimmune Lymphoproliferative Syndrome: A Disorder of Immune Dysregulation,” Autoimmunity Reviews 22, no. 11 (2023): 103442.

[112]

P. Marrack, J. Kappler, “Control of T Cell Viability,” Annual Review of Immunology 22 (2004): 765-787.

[113]

N. Koshkina, Y. Yang, and E. S. Kleinerman, “The Fas/FasL Signaling Pathway: Its Role in the Metastatic Process and as a Target for Treating Osteosarcoma Lung Metastases,” Advances in Experimental Medicine and Biology 1258 (2020): 177-187.

[114]

G. M. Davey, C. Kurts, J. F. Miller, et al., “Peripheral Deletion of Autoreactive CD8 T Cells by Cross Presentation of Self-antigen Occurs by a Bcl-2-inhibitable Pathway Mediated by Bim,” The Journal of Experimental Medicine 196, no. 7 (2002): 947-955.

[115]

A. Strasser, A. W. Harris, D. C. Huang, P. H. Krammer, and S. Cory, “Bcl-2 and Fas/APO-1 Regulate Distinct Pathways to Lymphocyte Apoptosis,” The EMBO Journal 14, no. 24 (1995): 6136-6147.

[116]

A. E. Weant, R. D. Michalek, I. U. Khan, B. C. Holbrook, M. C. Willingham, and J. M. Grayson, “Apoptosis Regulators Bim and Fas Function Concurrently to Control Autoimmunity and CD8+ T Cell Contraction,” Immunity 28, no. 2 (2008): 218-230.

[117]

J. Hutcheson, J. C. Scatizzi, A. M. Siddiqui, et al., “Combined Deficiency of Proapoptotic Regulators Bim and Fas Results in the Early Onset of Systemic Autoimmunity,” Immunity 28, no. 2 (2008): 206-217.

[118]

W. A. Figgett, K. Fairfax, F. B. Vincent, et al., “The TACI Receptor Regulates T-cell-independent Marginal Zone B Cell Responses Through Innate Activation-induced Cell Death,” Immunity 39, no. 3 (2013): 573-583.

[119]

E. C. Rosser, C. Mauri, “Regulatory B Cells: Origin, Phenotype, and Function,” Immunity 42, no. 4 (2015): 607-612.

[120]

Y. Song, N. Wang, L. Chen, and L. Fang, “Tr1 Cells as a Key Regulator for Maintaining Immune Homeostasis in Transplantation,” Frontiers in Immunology 12 (2021): 671579.

[121]

V. Niederlova, O. Tsyklauri, T. Chadimova, and O. Stepanek, “CD8(+) Tregs Revisited: A Heterogeneous Population With Different Phenotypes and Properties,” European Journal of Immunology 51, no. 3 (2021): 512-530.

[122]

R. J. Dart, I. Zlatareva, P. Vantourout, et al., “Conserved Γδ T Cell Selection by BTNL Proteins Limits Progression of human Inflammatory Bowel Disease,” Science (New York, NY) 381, no. 6663 (2023): eadh0301.

[123]

S. Borna, E. Meffre, and R. Bacchetta, “FOXP3 deficiency, From the Mechanisms of the Disease to Curative Strategies,” Immunological Reviews 322, no. 1 (2024): 244-258.

[124]

S. Sakaguchi, N. Mikami, J. B. Wing, A. Tanaka, K. Ichiyama, and N. Ohkura, “Regulatory T Cells and Human Disease,” Annual Review of Immunology 38 (2020): 541-566.

[125]

C. Campbell, P. T. McKenney, D. Konstantinovsky, et al., “Bacterial Metabolism of Bile Acids Promotes Generation of Peripheral Regulatory T Cells,” Nature 581, no. 7809 (2020): 475-479.

[126]

A. Yilmazer, D. M. Zevla, R. Malmkvist, et al., “Selective Ablation of Thymic and Peripheral Foxp3(+) Regulatory T Cell Development,” Frontiers in Immunology 14 (2023): 1298938.

[127]

C. Campbell, A. Rudensky, “Roles of Regulatory T Cells in Tissue Pathophysiology and Metabolism,” Cell Metabolism 31, no. 1 (2020): 18-25.

[128]

J. M. Weiss, A. M. Bilate, M. Gobert, et al., “Neuropilin 1 Is Expressed on thymus-derived Natural Regulatory T Cells, but Not Mucosa-generated Induced Foxp3+ T Reg Cells,” The Journal of Experimental Medicine 209, no. 10 (2012): 1723-1742. s1.

[129]

A. M. Thornton, P. E. Korty, D. Q. Tran, et al., “Expression of Helios, an Ikaros Transcription Factor family Member, Differentiates Thymic-derived From Peripherally Induced Foxp3+ T Regulatory Cells,” Journal of Immunology (Baltimore, Md: 1950) 184, no. 7 (2010): 3433-3441.

[130]

A. Scheffold, K. M. Murphy, and T. Höfer, “Competition for Cytokines: T(reg) Cells Take All,” Nature Immunology 8, no. 12 (2007): 1285-1287.

[131]

D. C. Nascimento, P. R. Viacava, R. G. Ferreira, et al., “Sepsis Expands a CD39(+) Plasmablast Population That Promotes Immunosuppression via Adenosine-mediated Inhibition of Macrophage Antimicrobial Activity,” Immunity 54, no. 9 (2021): 2024-2041. e8.

[132]

F. Marangoni, A. Zhakyp, M. Corsini, et al., “Expansion of Tumor-associated Treg Cells Upon Disruption of a CTLA-4-dependent Feedback Loop,” Cell 184, no. 15 (2021): 3998-4015. e19.

[133]

C. C. Clement, A. D'Alessandro, S. Thangaswamy, et al., “3-hydroxy-L-kynurenamine Is an Immunomodulatory Biogenic Amine,” Nature Communications 12, no. 1 (2021): 4447.

[134]

P. Hsu, B. Santner-Nanan, M. Hu, et al., “IL-10 Potentiates Differentiation of Human Induced Regulatory T Cells via STAT3 and Foxo1,” Journal of Immunology (Baltimore, Md: 1950) 195, no. 8 (2015): 3665-3674.

[135]

M. G. Roncarolo, S. Gregori, R. Bacchetta, M. Battaglia, and N. Gagliani, “The Biology of T Regulatory Type 1 Cells and Their Therapeutic Application in Immune-Mediated Diseases,” Immunity 49, no. 6 (2018): 1004-1019.

[136]

X. Z. Wu, K. Zhai, F. S. Yi, et al., “IL-10 Promotes Malignant Pleural Effusion in Mice by Regulating T(H) 1- and T(H) 17-cell Differentiation and Migration,” European Journal of Immunology 49, no. 4 (2019): 653-665.

[137]

M. M. Shull, I. Ormsby, A. B. Kier, et al., “Targeted Disruption of the Mouse Transforming Growth Factor-beta 1 Gene Results in Multifocal Inflammatory Disease,” Nature 359, no. 6397 (1992): 693-699.

[138]

W. Chen, “TGF-β Regulation of T Cells,” Annual Review of Immunology 41 (2023): 483-512.

[139]

R. X. Wang, C. R. Yu, I. M. Dambuza, et al., “Interleukin-35 Induces Regulatory B Cells That Suppress Autoimmune Disease,” Nature Medicine 20, no. 6 (2014): 633-641.

[140]

C. A. Dendrou, J. Petersen, J. Rossjohn, and L. Fugger, “HLA Variation and Disease,” Nature Reviews Immunology 18, no. 5 (2018): 325-339.

[141]

X. Chi, M. Huang, H. Tu, et al., “Innate and Adaptive Immune Abnormalities Underlying Autoimmune Diseases: The Genetic Connections,” Science China Life Sciences 66, no. 7 (2023): 1482-1517.

[142]

K. Tizaoui, S. Terrazzino, S. Cargnin, et al., “The Role of PTPN22 in the Pathogenesis of Autoimmune Diseases: A Comprehensive Review,” Seminars in Arthritis and Rheumatism 51, no. 3 (2021): 513-522.

[143]

S. M. Stanford, N. Bottini, “PTPN22: The Archetypal Non-HLA Autoimmunity Gene,” Nature Reviews Rheumatology 10, no. 10 (2014): 602-611.

[144]

W. H. Robinson, S. Younis, Z. Z. Love, L. Steinman, and T. V. Lanz, “Epstein-Barr Virus as a Potentiator of Autoimmune Diseases,” Nature Reviews Rheumatology 20, no. 11 (2024): 729-740.

[145]

R. H. Refai, M. F. Hussein, M. H. Abdou, and A. N. Abou-Raya, “Environmental Risk Factors of Systemic Lupus Erythematosus: A Case-control Study,” Scientific Reports 13, no. 1 (2023): 10219.

[146]

Y. Ishikawa, K. Ikari, M. Hashimoto, et al., “Shared Epitope Defines Distinct Associations of Cigarette Smoking With Levels of Anticitrullinated Protein Antibody and Rheumatoid Factor,” Annals of the Rheumatic Diseases 78, no. 11 (2019): 1480-1487.

[147]

K. H. Costenbader, E. W. Karlson, “Cigarette Smoking and Autoimmune Disease: What Can We Learn From Epidemiology?” Lupus 15, no. 11 (2006): 737-745.

[148]

E. Sakamoto, Y. Katahira, I. Mizoguchi, et al., “Chemical- and Drug-Induced Allergic, Inflammatory, and Autoimmune Diseases via Haptenation,” Biology 12, no. 1 (2023): 123.

[149]

M. Nikpour, K. Morrisroe, A. Calderone, D. Yates, and A. Silman, “Occupational Dust and Chemical Exposures and the Development of Autoimmune Rheumatic Diseases,” Nature Reviews Rheumatology 21, no. 3 (2025): 137-156.

[150]

M. A. Dooley, S. L. Hogan, “Environmental Epidemiology and Risk Factors for Autoimmune Disease,” Current Opinion in Rheumatology 15, no. 2 (2003): 99-103.

[151]

A. Ponsonby, A. McMichael, and I. van der Mei, “Ultraviolet Radiation and Autoimmune Disease: Insights From Epidemiological Research,” Toxicology 181-182 (2002): 71-78.

[152]

R. Chaudhary, A. Prasad, V. Agarwal, et al., “Chronic Stress Predisposes to the Aggravation of Inflammation in Autoimmune Diseases With Focus on Rheumatoid Arthritis and Psoriasis,” International Immunopharmacology 125 (2023): 111046.

[153]

V. K. Kuchroo, P. S. Ohashi, R. B. Sartor, and C. G. Vinuesa, “Dysregulation of Immune Homeostasis in Autoimmune Diseases,” Nature Medicine 18, no. 1 (2012): 42-47.

[154]

L. Peng, “Necroptosis and Autoimmunity,” Clinical Immunology 266 (2024): 110313.

[155]

S. Sciascia, N. Bizzaro, P. L. Meroni, et al., “Autoantibodies Testing in Autoimmunity: Diagnostic, Prognostic and Classification Value,” Autoimmunity Reviews 22, no. 7 (2023): 103356.

[156]

A. M. Till, H. Kenk, I. Rjasanowski, et al., “Autoantibody-defined Risk for Type 1 Diabetes Mellitus in a General Population of Schoolchildren: Results of the Karlsburg Type 1 Diabetes Risk Study After 18 Years,” Diabetic Medicine: A Journal of the British Diabetic Association 32, no. 8 (2015): 1008-1016.

[157]

D. Jarczak, A. Nierhaus, “Cytokine Storm-Definition, Causes, and Implications,” International Journal of Molecular Sciences 23, no. 19 (2022): 11740.

[158]

H. Terui, K. Yamasaki, M. Wada-Irimada, et al., “Staphylococcus aureus Skin Colonization Promotes SLE-Like Autoimmune Inflammation via Neutrophil Activation and the IL-23/IL-17 Axis,” Science Immunology 7, no. 76 (2022): eabm9811.

[159]

J. Clarke, “IL-17 Sustains Plasma Cells in SLE,” Nature Reviews Rheumatology 16, no. 12 (2020): 666.

[160]

T. Arkatkar, S. W. Du, H. M. Jacobs, et al., “B Cell-derived IL-6 Initiates Spontaneous Germinal Center Formation During Systemic Autoimmunity,” The Journal of Experimental Medicine 214, no. 11 (2017): 3207-3217.

[161]

D. Aletaha, A. Kerschbaumer, K. Kastrati, et al., “Consensus Statement on Blocking Interleukin-6 Receptor and Interleukin-6 in Inflammatory Conditions: An Update,” Annals of the Rheumatic Diseases 82, no. 6 (2023): 773-787.

[162]

F. Pandolfi, L. Franza, V. Carusi, S. Altamura, G. Andriollo, and E. Nucera, “Interleukin-6 in Rheumatoid Arthritis,” International Journal of Molecular Sciences 21, no. 15 (2020): 5238.

[163]

F. Zhang, B. Zhang, H. Ding, et al., “The Oxysterol Receptor EBI2 Links Innate and Adaptive Immunity to Limit IFN Response and Systemic Lupus Erythematosus,” Advanced Science (Weinheim, Baden-Wurttemberg, Germany) 10, no. 27 (2023): e2207108.

[164]

M. Nangaku, W. G. Couser, “Mechanisms of Immune-deposit Formation and the Mediation of Immune Renal Injury,” Clinical and Experimental Nephrology 9, no. 3 (2005): 183-191.

[165]

I. Ginsburg, M. Feldman, “Mechanism by Which Immune Complexes Are Deposited in Hosts Tissue,” Inflammopharmacology 30, no. 1 (2022): 349-351.

[166]

N. J. Bernard, “Preventing Immune-complex-mediated Disease,” Nature Reviews Rheumatology 15, no. 1 (2019): 4-4.

[167]

M. J. Redondo, N. G. Morgan, “Heterogeneity and Endotypes in Type 1 Diabetes Mellitus,” Nature Reviews Endocrinology 19, no. 9 (2023): 542-554.

[168]

D. M. Gravano, K. K. Hoyer, “Promotion and Prevention of Autoimmune Disease by CD8+ T Cells,” Journal of Autoimmunity 45 (2013): 68-79.

[169]

D. S. Chin, C. S. Y. Lim, F. Nordin, N. Arifin, and T. G. Jun, “Antibody-Dependent Cell-Mediated Cytotoxicity through Natural Killer (NK) Cells: Unlocking NK Cells for Future Immunotherapy,” Current Pharmaceutical Biotechnology 23, no. 4 (2022): 552-578.

[170]

S. L. Coss, D. Zhou, G. T. Chua, et al., “The Complement System and human Autoimmune Diseases,” Journal of Autoimmunity 137 (2023): 102979.

[171]

M. Sisto, D. Ribatti, and S. Lisi, “Organ Fibrosis and Autoimmunity: The Role of Inflammation in TGFβ-Dependent EMT,” Biomolecules 11, no. 2 (2021): 310.

[172]

N. J. Zvaifler, “Relevance of the Stroma and Epithelial-mesenchymal Transition (EMT) for the Rheumatic Diseases,” Arthritis Research & Therapy 8, no. 3 (2006): 210.

[173]

E. L. Krawitt, “Autoimmune hepatitis,” The New England Journal of Medicine 354, no. 1 (2006): 54-66.

[174]

H. Yu, Y. Nagafuchi, and K. Fujio, “Clinical and Immunological Biomarkers for Systemic Lupus Erythematosus,” Biomolecules 11, no. 7 (2021): 928.

[175]

I. Lapić, A. Padoan, D. Bozzato, and M. Plebani, “Erythrocyte Sedimentation Rate and C-Reactive Protein in Acute Inflammation,” American Journal of Clinical Pathology 153, no. 1 (2020): 14-29.

[176]

J. Irure-Ventura, M. López-Hoyos, “Disease Criteria of Systemic Lupus Erythematosus (SLE); the Potential Role of Non-criteria Autoantibodies,” Journal of Translational Autoimmunity 5 (2022): 100143.

[177]

D. Aletaha, J. S. Smolen, “Diagnosis and Management of Rheumatoid Arthritis: A Review,” Jama 320, no. 13 (2018): 1360-1372.

[178]

X. Bossuyt, E. De Langhe, M. O. Borghi, and P. L. Meroni, “Understanding and Interpreting Antinuclear Antibody Tests in Systemic Rheumatic Diseases,” Nature Reviews Rheumatology 16, no. 12 (2020): 715-726.

[179]

M. So, C. Speake, A. K. Steck, et al., “Advances in Type 1 Diabetes Prediction Using Islet Autoantibodies: Beyond a Simple Count,” Endocrine Reviews 42, no. 5 (2021): 584-604.

[180]

S. Subramanian, F. Khan, and I. B. Hirsch, “New Advances in Type 1 Diabetes,” BMJ (Clinical Research Ed) 384 (2024): e075681.

[181]

D. Liu, V. Saikam, K. A. Skrada, D. Merlin, and S. S. Iyer, “Inflammatory Bowel Disease Biomarkers,” Medicinal Research Reviews 42, no. 5 (2022): 1856-1887.

[182]

M. Ralli, D. Angeletti, M. Fiore, et al., “Hashimoto's Thyroiditis: An Update on Pathogenic Mechanisms, Diagnostic Protocols, Therapeutic Strategies, and Potential Malignant Transformation,” Autoimmunity Reviews 19, no. 10 (2020): 102649.

[183]

L. Muratori, A. W. Lohse, and M. Lenzi, “Diagnosis and Management of Autoimmune hepatitis,” BMJ (Clinical Research Ed) 380 (2023): e070201.

[184]

P. C. Taylor, E. C. Keystone, D. van der Heijde, et al., “Baricitinib versus Placebo or Adalimumab in Rheumatoid Arthritis,” The New England Journal of Medicine 376, no. 7 (2017): 652-662.

[185]

E. Crickx, P. Chappert, A. Sokal, et al., “Rituximab-resistant Splenic Memory B Cells and Newly Engaged Naive B Cells Fuel Relapses in Patients With Immune Thrombocytopenia,” Science Translational Medicine 13, no. 589 (2021): eabc3961.

[186]

G. Murdaca, B. M. Colombo, and F. Puppo, “Adalimumab for the Treatment of Immune-mediated Diseases: An Update on Old and Recent Indications,” Drugs of Today (Barcelona, Spain: 1998) 47, no. 4 (2011): 277-288.

[187]

J. R. Vane, “Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-Like Drugs,” Nature New Biology 231, no. 25 (1971): 232-235.

[188]

C. J. Hawkey, “COX-2 Chronology,” Gut 54, no. 11 (2005): 1509-1514.

[189]

L. J. Crofford, “COX-1 and COX-2 Tissue Expression: Implications and Predictions,” The Journal of Rheumatology Supplement 49 (1997): 15-19.

[190]

E. M. Antman, J. S. Bennett, A. Daugherty, C. Furberg, H. Roberts, and K. A. Taubert, “Use of Nonsteroidal Antiinflammatory Drugs: An Update for Clinicians: A Scientific Statement From the American Heart Association,” Circulation 115, no. 12 (2007): 1634-1642.

[191]

P. Li, Y. Zheng, and X. Chen, “Drugs for Autoimmune Inflammatory Diseases: From Small Molecule Compounds to Anti-TNF Biologics,” Frontiers in Pharmacology 8 (2017): 460.

[192]

J. M. Scheiman, B. Cryer, M. B. Kimmey, R. I. Rothstein, D. S. Riff, and M. M. Wolfe, “A Randomized, Controlled Comparison of Ibuprofen at the Maximal Over-the-counter Dose Compared With Prescription-dose Celecoxib on Upper Gastrointestinal Mucosal Injury,” Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association 2, no. 4 (2004): 290-295.

[193]

M. Burnier, “The Safety of rofecoxib,” Expert Opinion on Drug Safety 4, no. 3 (2005): 491-499.

[194]

M. Eggert, M. Schulz, and G. Neeck, “Molecular Mechanisms of Glucocorticoid Action in Rheumatic Autoimmune Diseases,” The Journal of Steroid Biochemistry and Molecular Biology 77, no. 4 (2001): 185-191.

[195]

M. Löwenberg, A. P. Verhaar, G. R. van den Brink, and D. W. Hommes, “Glucocorticoid Signaling: A Nongenomic Mechanism for T-cell Immunosuppression,” Trends in Molecular Medicine 13, no. 4 (2007): 158-163.

[196]

W. Ge, D. Li, Y. Gao, and X. Cao, “The Roles of Lysosomes in Inflammation and Autoimmune Diseases,” International Reviews of Immunology 34, no. 5 (2015): 415-431.

[197]

A. Di Matteo, J. M. Bathon, and P. Emery, “Rheumatoid Arthritis,” Lancet (London, England) 402, no. 10416 (2023): 2019-2033.

[198]

M. Oray, K. Abu Samra, N. Ebrahimiadib, H. Meese, and C. S. Foster, “Long-term Side Effects of Glucocorticoids,” Expert Opinion on Drug Safety 15, no. 4 (2016): 457-465.

[199]

D. Paredes-Ruiz, G. Ruiz-Irastorza, and Z. Amoura, “Systemic Lupus Erythematosus and Glucocorticoids: A Never-ending Story?” Best Practice & Research Clinical Rheumatology 37, no. 4 (2023): 101873.

[200]

M. Boers, “Viewpoint: Glucocorticoids in the Treatment of Rheumatoid Arthritis: Points to (re)Consider,” Rheumatology (Oxford, England) 62, no. 11 (2023): 3534-3537.

[201]

M. Cutolo, Y. Shoenfeld, D. P. Bogdanos, et al., “To Treat or Not to Treat Rheumatoid Arthritis With Glucocorticoids? A Reheated Debate,” Autoimmunity Reviews 23, no. 1 (2024): 103437.

[202]

V. Konzett, D. Aletaha, “Management Strategies in Rheumatoid Arthritis,” Nature Reviews Rheumatology 20, no. 12 (2024): 760-769.

[203]

J. Sun, H. Zhang, Y. Ji, et al., “Efficacy and Safety of Cyclophosphamide Combined With Mycophenolate Mofetil for Induction Treatment of Class IV Lupus Nephritis,” International Journal of Clinical and Experimental Medicine 8, no. 11 (2015): 21572-21578.

[204]

P. M. Brown, A. G. Pratt, and J. D. Isaacs, “Mechanism of Action of Methotrexate in Rheumatoid Arthritis, and the Search for Biomarkers,” Nature Reviews Rheumatology 12, no. 12 (2016): 731-742.

[205]

H. M. Cherwinski, R. G. Cohn, P. Cheung, et al., “The Immunosuppressant Leflunomide Inhibits Lymphocyte Proliferation by Inhibiting Pyrimidine Biosynthesis,” The Journal of Pharmacology and Experimental Therapeutics 275, no. 2 (1995): 1043-1049.

[206]

R. Cascão, J. E. Fonseca, and L. F. Moita, “Celastrol: A Spectrum of Treatment Opportunities in Chronic Diseases,” Frontiers in Medicine 4 (2017): 69.

[207]

M. Jing, J. Yang, L. Zhang, et al., “Celastrol Inhibits Rheumatoid Arthritis Through the ROS-NF-κB-NLRP3 Inflammasome Axis,” International Immunopharmacology 98 (2021): 107879.

[208]

J. Yang, B. He, L. Dang, et al., “Celastrol Regulates the Hsp90-NLRP3 Interaction to Alleviate Rheumatoid Arthritis,” Inflammation 48, no. 1 (2025): 346-360.

[209]

F. Zhang, J. L. Shu, Y. Li, et al., “CP-25, a Novel Anti-inflammatory and Immunomodulatory Drug, Inhibits the Functions of Activated Human B Cells Through Regulating BAFF and TNF-alpha Signaling and Comparative Efficacy With Biological Agents,” Frontiers in Pharmacology 8 (2017): 933.

[210]

S. Kubo, K. Yamaoka, M. Kondo, et al., “The JAK Inhibitor, tofacitinib, Reduces the T Cell Stimulatory Capacity of human Monocyte-derived Dendritic Cells,” Annals of the Rheumatic Diseases 73, no. 12 (2014): 2192-2198.

[211]

F. E. McCann, A. C. Palfreeman, M. Andrews, et al., “Apremilast, a Novel PDE4 Inhibitor, Inhibits Spontaneous Production of Tumour Necrosis Factor-alpha From human Rheumatoid Synovial Cells and Ameliorates Experimental Arthritis,” Arthritis Research & Therapy 12, no. 3 (2010): R107.

[212]

K. Papp, K. Reich, C. L. Leonardi, et al., “Apremilast, an Oral Phosphodiesterase 4 (PDE4) Inhibitor, in Patients With Moderate to Severe Plaque Psoriasis: Results of a Phase III, Randomized, Controlled Trial (Efficacy and Safety Trial Evaluating the Effects of Apremilast in Psoriasis [ESTEEM] 1),” Journal of the American Academy of Dermatology 73, no. 1 (2015): 37-49.

[213]

M. Croft, S. Salek-Ardakani, and C. F. Ware, “Targeting the TNF and TNFR Superfamilies in Autoimmune Disease and Cancer,” Nature Reviews Drug Discovery 23, no. 12 (2024): 939-961.

[214]

G. Schett, A. Mackensen, and D. Mougiakakos, “CAR T-cell Therapy in Autoimmune Diseases,” Lancet (London, England) 402, no. 10416 (2023): 2034-2044.

[215]

M. Zouali, “Engineered Immune Cells as Therapeutics for Autoimmune Diseases,” Trends in Biotechnology 42, no. 7 (2024): 842-858.

[216]

P. R. Burkett, V. K. Kuchroo, “IL-17 Blockade in Psoriasis,” Cell 167, no. 7 (2016): 1669.

[217]

J. F. Merola, R. Landewé, I. B. McInnes, et al., “Bimekizumab in Patients With Active Psoriatic Arthritis and Previous Inadequate Response or Intolerance to Tumour Necrosis Factor-α Inhibitors: A Randomised, Double-blind, Placebo-controlled, Phase 3 Trial (BE COMPLETE),” Lancet (London, England) 401, no. 10370 (2023): 38-48.

[218]

C. Xu, A. Rafique, T. Potocky, et al., “Differential Binding of Sarilumab and Tocilizumab to IL-6Rα and Effects of Receptor Occupancy on Clinical Parameters,” The Journal of Clinical Pharmacology 61, no. 5 (2021): 714-724.

[219]

R. F. van Vollenhoven, B. H. Hahn, G. C. Tsokos, et al., “Efficacy and Safety of ustekinumab, an IL-12 and IL-23 Inhibitor, in Patients With Active Systemic Lupus Erythematosus: Results of a Multicentre, Double-blind, Phase 2, Randomised, Controlled Study,” Lancet (London, England) 392, no. 10155 (2018): 1330-1339.

[220]

C. K. Kerut, M. J. Wagner, C. P. Daniel, et al., “Guselkumab, a Novel Monoclonal Antibody Inhibitor of the p19 Subunit of IL-23, for Psoriatic Arthritis and Plaque Psoriasis: A Review of Its Mechanism, Use, and Clinical Effectiveness,” Cureus 15, no. 12 (2023): e51405.

[221]

S. J. Keam, “Mirikizumab: First Approval,” Drugs 83, no. 11 (2023): 1045-1052.

[222]

L. Qiu, L. Ma, Y. Xie, et al., “Efficacy and Safety of canakinumab in Systemic Juvenile Idiopathic Arthritis, the First Chinese Experience,” Pediatric Rheumatology Online Journal 22, no. 1 (2024): 38.

[223]

D. F. Ortiz, J. C. Lansing, L. Rutitzky, et al., “Elucidating the Interplay Between IgG-Fc Valency and FcγR Activation for the Design of Immune Complex Inhibitors,” Science Translational Medicine 8, no. 365 (2016): 365ra158.

[224]

G. D. Kalliolias, S. N. Liossis, “The Future of the IL-1 Receptor Antagonist anakinra: From Rheumatoid Arthritis to Adult-onset Still's Disease and Systemic-onset Juvenile Idiopathic Arthritis,” Expert Opinion on Investigational Drugs 17, no. 3 (2008): 349-359.

[225]

S. Zhao, E. Mysler, and R. J. Moots, “Etanercept for the Treatment of Rheumatoid Arthritis,” Immunotherapy 10, no. 6 (2018): 433-445.

[226]

M. Pombo-Suarez, J. J. Gomez-Reino, “Abatacept for the Treatment of Rheumatoid Arthritis,” Expert Review of Clinical Immunology 15, no. 4 (2019): 319-326.

[227]

M. Pitsiu, Ö. Yalkinoglu, C. Farrell, P. Girard, C. Vazquez-Mateo, and O. Papasouliotis, “Population Pharmacokinetics of Atacicept in Systemic Lupus erythematosus: An Analysis of Three Clinical Trials,” CPT: Pharmacometrics & Systems Pharmacology 12, no. 8 (2023): 1157-1169.

[228]

R. Lafayette, S. Barbour, R. Israni, et al., “A Phase 2b, Randomized, Double-blind, Placebo-controlled, Clinical Trial of atacicept for Treatment of IgA Nephropathy,” Kidney International 105, no. 6 (2024): 1306-1315.

[229]

T. Alexander, D. Farge, M. Badoglio, J. O. Lindsay, P. A. Muraro, and J. A. Snowden, “Hematopoietic Stem Cell Therapy for Autoimmune Diseases—Clinical Experience and Mechanisms,” Journal of Autoimmunity 92 (2018): 35-46.

[230]

T. Alexander, R. Greco, and J. A. Snowden, “Hematopoietic Stem Cell Transplantation for Autoimmune Disease,” Annual Review of Medicine 72 (2021): 215-228.

[231]

K. Balassa, R. Danby, and V. Rocha, “Haematopoietic Stem Cell Transplants: Principles and Indications,” British Journal of Hospital Medicine (London, England: 2005) 80, no. 1 (2019): 33-39.

[232]

B. Ayoglu, M. Donato, D. E. Furst, et al., “Characterising the Autoantibody Repertoire in Systemic Sclerosis Following Myeloablative Haematopoietic Stem Cell Transplantation,” Annals of the Rheumatic Diseases 82, no. 5 (2023): 670-680.

[233]

J. Z. Adamska, A. Zia, M. S. Bloom, et al., “Myeloablative Autologous Haematopoietic Stem Cell Transplantation Resets the B Cell Repertoire to a More Naïve state in Patients With Systemic Sclerosis,” Annals of the Rheumatic Diseases 82, no. 3 (2023): 357-364.

[234]

A. E. Miller, T. Chitnis, B. A. Cohen, K. Costello, N. L. Sicotte, and R. Stacom, “Autologous Hematopoietic Stem Cell Transplant in Multiple Sclerosis: Recommendations of the National Multiple Sclerosis Society,” JAMA Neurology 78, no. 2 (2021): 241-246.

[235]

T. Kalincik, S. Sharmin, I. Roos, et al., “Comparative Effectiveness of Autologous Hematopoietic Stem Cell Transplant vs Fingolimod, Natalizumab, and Ocrelizumab in Highly Active Relapsing-Remitting Multiple Sclerosis,” JAMA Neurology 80, no. 7 (2023): 702-713.

[236]

S. P. Persaud, J. K. Ritchey, S. Kim, et al., “Antibody-drug Conjugates plus Janus Kinase Inhibitors Enable MHC-mismatched Allogeneic Hematopoietic Stem Cell Transplantation,” The Journal of Clinical Investigation 131, no. 24 (2021): e145501.

[237]

E. W. Petersdorf, M. Bengtsson, M. Horowitz, et al., “HLA-DQ Heterodimers in Hematopoietic Cell Transplantation,” Blood 139, no. 20 (2022): 3009-3017.

[238]

X. He, F. Liu, M. Lu, C. Qian, and J. Mao, “Chimeric Antigen Receptor T-cell Therapy in Pediatric Refractory Systemic Lupus Erythematosus,” The Innovation Medicine 3, no. 1 (2025): 100119.

[239]

C. Tur, M. Eckstein, J. Velden, et al., “CD19-CAR T-cell Therapy Induces Deep Tissue Depletion of B Cells,” Annals of the Rheumatic Diseases 84, no. 1 (2025): 106-114.

[240]

J. Auth, F. Müller, S. Völkl, et al., “CD19-targeting CAR T-cell Therapy in Patients With Diffuse Systemic Sclerosis: A Case Series,” The Lancet Rheumatology 7, no. 2 (2025): e83-e93.

[241]

J. Liu, Y. Zhao, and H. Zhao, “Chimeric Antigen Receptor T-cell Therapy in Autoimmune Diseases,” Frontiers in Immunology 15 (2024): 1492552.

[242]

Y. Santamaria-Alza, G. Vasquez, “Are Chimeric Antigen Receptor T Cells (CAR-T cells) the Future in Immunotherapy for Autoimmune Diseases?” Inflammation Research: Official Journal of the European Histamine Research Society [et Al] 70, no. 6 (2021): 651-663.

[243]

U. Blache, S. Tretbar, U. Koehl, D. Mougiakakos, and S. Fricke, “CAR T Cells for Treating Autoimmune Diseases,” RMD Open 9, no. 4 (2023): e002907.

[244]

W. Wang, S. He, W. Zhang, et al., “BCMA-CD19 Compound CAR T Cells for Systemic Lupus Erythematosus: A Phase 1 Open-label Clinical Trial,” Annals of the Rheumatic Diseases 83, no. 10 (2024): 1304-1314.

[245]

S. Bittner, T. Hehlgans, and M. Feuerer, “Engineered Treg Cells as Putative Therapeutics Against Inflammatory Diseases and Beyond,” Trends in Immunology 44, no. 6 (2023): 468-483.

[246]

J. Rana, D. J. Perry, S. R. P. Kumar, et al., “CAR- and TRuC-redirected Regulatory T Cells Differ in Capacity to Control Adaptive Immunity to FVIII,” Molecular Therapy: the Journal of the American Society of Gene Therapy 29, no. 9 (2021): 2660-2676.

[247]

C. Raffin, L. T. Vo, and J. A. Bluestone, “T(reg) Cell-based Therapies: Challenges and Perspectives,” Nature Reviews Immunology 20, no. 3 (2020): 158-172.

[248]

N. Marek-Trzonkowska, M. Myśliwiec, A. Dobyszuk, et al., “Therapy of Type 1 Diabetes With CD4+CD25highCD127-regulatory T Cells Prolongs Survival of Pancreatic Islets — Results of One Year Follow-up,” Clinical Immunology 153, no. 1 (2014): 23-30.

[249]

J. A. Bluestone, J. H. Buckner, M. Fitch, et al., “Type 1 Diabetes Immunotherapy Using Polyclonal Regulatory T Cells,” Science Translational Medicine 7, no. 315 (2015): 315ra189.

[250]

G. S. Gilkeson, “Safety and Efficacy of Mesenchymal Stromal Cells and Other Cellular Therapeutics in Rheumatic Diseases in 2022: A Review of What We Know So Far,” Arthritis & Rheumatology (Hoboken, NJ) 74, no. 5 (2022): 752-765.

[251]

C. Voskens, D. Stoica, M. Rosenberg, et al., “Autologous Regulatory T-cell Transfer in Refractory Ulcerative Colitis With Concomitant Primary Sclerosing Cholangitis,” Gut 72, no. 1 (2023): 49-53.

[252]

R. W. Cochrane, R. A. Robino, B. Granger, et al., “High Affinity Chimeric Antigen Receptor Signaling Induces an Inflammatory Program in human Regulatory T Cells,” Biorxiv: the Preprint Server for Biology (2024).

[253]

S. C. Choi, J. Brown, M. Gong, et al., “Gut Microbiota Dysbiosis and Altered Tryptophan Catabolism Contribute to Autoimmunity in Lupus-susceptible Mice,” Science Translational Medicine 12, no. 551 (2020): eaax2220.

[254]

K. Gronke, M. Nguyen, H. Fuhrmann, et al., “Translocating Gut Pathobiont Enterococcus Gallinarum Induces T(H)17 and IgG3 Anti-RNA-directed Autoimmunity in Mouse and human,” Science Translational Medicine 17, no. 784 (2025): eadj6294.

[255]

Y. Xin, C. Gao, L. Wang, Q. Liu, and Q. Lu, “Lipopolysaccharide Released From Gut Activates Pyroptosis of Macrophages via Caspase 11-Gasdermin D Pathway in Systemic Lupus Erythematosus,” MedComm 5, no. 6 (2024): e610.

[256]

H. R. Peng, J. Q. Qiu, Q. M. Zhou, et al., “Intestinal Epithelial Dopamine Receptor Signaling Drives Sex-specific Disease Exacerbation in a Mouse Model of multiple Sclerosis,” Immunity 56, no. 12 (2023): 2773-2789. e8.

[257]

E. Miyauchi, S. W. Kim, W. Suda, et al., “Gut Microorganisms Act Together to Exacerbate Inflammation in Spinal Cords,” Nature 585, no. 7823 (2020): 102-106.

[258]

A. Nogal, A. M. Valdes, and C. Menni, “The Role of Short-chain Fatty Acids in the Interplay Between Gut Microbiota and Diet in Cardio-metabolic Health,” Gut Microbes 13, no. 1 (2021): 1-24.

[259]

A. C. McPherson, S. P. Pandey, M. J. Bender, and M. Meisel, “Systemic Immunoregulatory Consequences of Gut Commensal Translocation,” Trends in Immunology 42, no. 2 (2021): 137-150.

[260]

M. Wolter, E. T. Grant, M. Boudaud, et al., “Leveraging Diet to Engineer the Gut Microbiome,” Nature Reviews Gastroenterology & Hepatology 18, no. 12 (2021): 885-902.

[261]

M. N. Koss, L. Hochholzer, and R. A. Frommelt, “Carcinosarcomas of the Lung: A Clinicopathologic Study of 66 Patients,” The American Journal of Surgical Pathology 23, no. 12 (1999): 1514-1526.

[262]

X. Zhao, Y. Qiu, L. Liang, and X. Fu, “Interkingdom Signaling Between Gastrointestinal Hormones and the Gut Microbiome,” Gut Microbes 17, no. 1 (2025): 2456592.

[263]

T. Todberg, A. Egeberg, C. Zachariae, N. Sørensen, O. Pedersen, and L. Skov, “Patients With Psoriasis Have a Dysbiotic Taxonomic and Functional Gut Microbiota,” The British Journal of Dermatology 187, no. 1 (2022): 89-98.

[264]

P. Bianchimano, G. J. Britton, D. S. Wallach, et al., “Mining the Microbiota to Identify Gut Commensals Modulating Neuroinflammation in a Mouse Model of multiple Sclerosis,” Microbiome 10, no. 1 (2022): 174.

[265]

S. Ren, Y. Xu, X. Dong, et al., “Nanotechnology-empowered Combination Therapy for Rheumatoid Arthritis: Principles, Strategies, and Challenges,” Journal of Nanobiotechnology 22, no. 1 (2024): 431.

[266]

J. M. Mehta, S. C. Hiremath, C. Chilimba, A. Ghasemi, and J. D. Weaver, “Translation of Cell Therapies to Treat Autoimmune Disorders,” Advanced Drug Delivery Reviews 205 (2024): 115161.

[267]

J. C. Brutzkus, M. Shahrokhi, and M. A. Varacallo, “Naproxen,” StatPearls. (StatPearls Publishing LLC., 2025). StatPearls Publishing Copyright © 2025.

[268]

T. G. Kantor, “Ibuprofen,” Annals of Internal Medicine 91, no. 6 (1979): 877-882.

[269]

M. Fidahic, A. Jelicic Kadic, M. Radic, and L. Puljak, “Celecoxib for Rheumatoid Arthritis,” The Cochrane Database of Systematic Reviews 6, no. 6 (2017): Cd012095.

[270]

V. Chasov, E. Zmievskaya, I. Ganeeva, et al., “Immunotherapy Strategy for Systemic Autoimmune Diseases: Betting on CAR-T Cells and Antibodies,” Antibodies (Basel, Switzerland) 13, no. 1 (2024): 10.

[271]

P. Prasad, S. Verma, Surbhi, N. K. Ganguly, V. Chaturvedi, and S. A. Mittal, “Rheumatoid Arthritis: Advances in Treatment Strategies,” Molecular and Cellular Biochemistry 478, no. 1 (2023): 69-88.

[272]

L. C. Coates, J. F. Merola, S. M. Grieb, P. J. Mease, and K. Callis Duffin, “Methotrexate in Psoriasis and Psoriatic Arthritis,” The Journal of Rheumatology Supplement 96 (2020): 31-35.

[273]

E. Benites, E. Carrillo, and M. Heras, “Effects of Methotrexate and Etanercept Treatment in Moderate and Severe Psoriasis,” Medicine 101, no. 45 (2022): e31527.

[274]

M. E. Suarez-Almazor, C. Spooner, and E. Belseck, “Azathioprine for Rheumatoid Arthritis,” The Cochrane Database of Systematic Reviews 2000, no. 2 (2000): Cd001461.

[275]

B. Pirofsky, “Immune Haemolytic Disease: The Autoimmune Haemolytic Anaemias,” Clinics in Haematology 4, no. 1 (1975): 167-180.

[276]

C. J. Smyth, B. A. Bartholomew, D. M. Mills, J. C. Steigerwald, S. J. Strong, and S. Recart, “Cyclophosphamide Therapy for Rheumatoid Arthritis,” Archives of Internal Medicine 135, no. 6 (1975): 789-793.

[277]

R. Goldblum, “Therapy of Rheumatoid Arthritis With Mycophenolate Mofetil,” Clinical and Experimental Rheumatology 11 (1993): S117-S119. Suppl 8.

[278]

P. Narayanaswami, D. B. Sanders, L. Thomas, et al., “Comparative Effectiveness of Azathioprine and Mycophenolate Mofetil for Myasthenia Gravis (PROMISE-MG): A Prospective Cohort Study,” The Lancet Neurology 23, no. 3 (2024): 267-276.

[279]

N. Lin, Y. Q. Zhang, Q. Jiang, et al., “Clinical Practice Guideline for Tripterygium Glycosides/Tripterygium Wilfordii Tablets in the Treatment of Rheumatoid Arthritis,” Frontiers in Pharmacology 11 (2020): 608703.

[280]

Y. Chen, L. Wang, N. Li, and C. Zhou, “Tripterygium Glycosides for Safely Controlling Disease Activity in Systemic Lupus erythematosus: A Systematic Review With Meta-analysis and Trial Sequential Analysis,” Frontiers in Pharmacology 14 (2023): 1207385.

[281]

Z. Yingyan, L. Huasheng, Y. Jingyao, et al., “Effectiveness and Safety of Tripterygium Glycosides Tablet for Lupus Nephritis: A Systematic Review and Meta-analysis,” Journal of Traditional Chinese Medicine = Chung i Tsa Chih Ying Wen Pan 42, no. 5 (2022): 671-680.

[282]

J. L. Shu, X. Z. Zhang, L. Han, et al., “Paeoniflorin-6'-O-benzene Sulfonate Alleviates Collagen-induced Arthritis in Mice by Downregulating BAFF-TRAF2-NF-κB Signaling: Comparison With Biological Agents,” Acta Pharmacologica Sinica 40, no. 6 (2019): 801-813.

[283]

Y. Jamilloux, T. El Jammal, L. Vuitton, M. Gerfaud-Valentin, S. Kerever, and P. Sève, “JAK Inhibitors for the Treatment of Autoimmune and Inflammatory Diseases,” Autoimmunity Reviews 18, no. 11 (2019): 102390.

[284]

Y. Jiang, Y. Chen, Q. Yu, and Y. Shi, “Biologic and Small-Molecule Therapies for Moderate-to-Severe Psoriasis: Focus on Psoriasis Comorbidities,” BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy 37, no. 1 (2023): 35-55.

[285]

Y. Liu, D. Cortinovis, and M. A. Stone, “Recent Advances in the Treatment of the Spondyloarthropathies,” Current Opinion in Rheumatology 16, no. 4 (2004): 357-365.

[286]

A. M. Wride, G. F. Chen, S. L. Spaulding, E. Tkachenko, and J. M. Cohen, “Biologics for Psoriasis,” Dermatologic Clinics 42, no. 3 (2024): 339-355.

[287]

G. Van Assche, S. Vermeire, and P. Rutgeerts, “Adalimumab in Crohn's Disease,” Biologics: Targets & Therapy 1, no. 4 (2007): 355-365.

[288]

A. Hemperly, N. Vande Casteele, “Clinical Pharmacokinetics and Pharmacodynamics of Infliximab in the Treatment of Inflammatory Bowel Disease,” Clinical Pharmacokinetics 57, no. 8 (2018): 929-942.

[289]

T. Nie, H. A. Blair, “Inebilizumab: A Review in Neuromyelitis Optica Spectrum Disorder,” CNS Drugs 36, no. 10 (2022): 1133-1141.

[290]

J. A. Singh, N. P. Shah, and A. S. Mudano, “Belimumab for Systemic Lupus Erythematosus,” The Cochrane Database of Systematic Reviews 2, no. 2 (2021): Cd010668.

[291]

D. Baeten, J. Sieper, J. Braun, et al., “Secukinumab, an Interleukin-17A Inhibitor, in Ankylosing Spondylitis,” The New England Journal of Medicine 373, no. 26 (2015): 2534-2548.

[292]

T. Simopoulou, S. G. Tsiogkas, E. Zafiriou, and D. P. Bogdanos, “Secukinumab, ixekizumab, bimekizumab and brodalumab for Psoriasis and Psoriatic Arthritis,” Drugs of Today (Barcelona, Spain: 1998) 59, no. 3 (2023): 135-167.

[293]

A. Farah Izati, K. K. Wong, and C. H. Che Maraina, “IL-23/IL-17 Axis in the Pathogenesis and Treatment of Systemic Lupus Erythematosus and Rheumatoid Arthritis,” The Malaysian Journal of Pathology 42, no. 3 (2020): 333-347.

[294]

G. D'Haens, M. Dubinsky, T. Kobayashi, et al., “Mirikizumab as Induction and Maintenance Therapy for Ulcerative Colitis,” The New England Journal of Medicine 388, no. 26 (2023): 2444-2455.

[295]

B. E. Sands, L. Peyrin-Biroulet, J. Kierkus, et al., “Efficacy and Safety of Mirikizumab in a Randomized Phase 2 Study of Patients with Crohn's Disease,” Gastroenterology 162, no. 2 (2022): 495-508.

[296]

M. H. Schiff, “Durability and Rapidity of Response to anakinra in Patients With Rheumatoid Arthritis,” Drugs 64, no. 22 (2004): 2493-2501.

[297]

G. M. Walsh, “Canakinumab for the Treatment of Cryopyrin-associated Periodic Syndromes,” Drugs of Today (Barcelona, Spain: 1998) 45, no. 10 (2009): 731-735.

[298]

Y. Xu, X. Wang, Z. Hu, et al., “Advances in Hematopoietic Stem Cell Transplantation for Autoimmune Diseases,” Heliyon 10, no. 20 (2024): e39302.

[299]

D. Mougiakakos, G. Krönke, S. Völkl, et al., “CD19-Targeted CAR T Cells in Refractory Systemic Lupus Erythematosus,” The New England Journal of Medicine 385, no. 6 (2021): 567-569.

[300]

F. Fischbach, J. Richter, L. K. Pfeffer, et al., “CD19-targeted Chimeric Antigen Receptor T Cell Therapy in Two Patients With Multiple Sclerosis,” Med (New York, NY) 5, no. 6 (2024): 550-558. e2.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

26

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/