Mitochondria-Associated Endoplasmic Reticulum Membranes in Human Health and Diseases

Yong Liu , Zi-Hui Mao , Junwen Huang , Hui Wang , Xiao Zhang , Xin Zhou , Yue Xu , Shaokang Pan , Dongwei Liu , Zhangsuo Liu , Qi Feng

MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70259

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70259 DOI: 10.1002/mco2.70259
REVIEW

Mitochondria-Associated Endoplasmic Reticulum Membranes in Human Health and Diseases

Author information +
History +
PDF

Abstract

As fundamental units of life activities, cells exhibit a high degree of structural refinement and functional specialization, forming the cornerstone of life complexity. Compartmentalization within cells is pivotal for maintaining the orderly progression of intracellular biochemical processes. Cellular compartments constitute the enclosed regions within the cytoplasm of all eukaryotic cells and are typically surrounded by a single or double layer of phospholipids, and include major organelles, such as the endoplasmic reticulum (ER) and mitochondria. Compartmentalization enables organelles to maintain distinct environments in terms of space, physics, and chemistry, thereby increasing their functionality. Human health is closely associated with cellular organelle homeostasis, and organelle dysfunction affects disease pathogenesis. In contrast to isolated cellular compartments, organelles are interdependent and communicate via membrane contact sites, with close membrane contact between the ER and mitochondria, forming mitochondria-associated ER membranes (MAMs), which are involved in multiple cellular functions and whose integrity and function are essential for cellular homeostasis, with dysfunction implicated in various diseases. Investigating MAMs structure, function, and disease-state alterations informs mechanisms and developing therapies. This article reviews the discovery, structure, function, and research progress of MAMs in human systemic diseases and cancer and explores their potential as therapeutic targets.

Keywords

mitochondria / endoplasmic reticulum / mitochondria-associated endoplasmic reticulum membranes / human diseases

Cite this article

Download citation ▾
Yong Liu, Zi-Hui Mao, Junwen Huang, Hui Wang, Xiao Zhang, Xin Zhou, Yue Xu, Shaokang Pan, Dongwei Liu, Zhangsuo Liu, Qi Feng. Mitochondria-Associated Endoplasmic Reticulum Membranes in Human Health and Diseases. MedComm, 2025, 6(7): e70259 DOI:10.1002/mco2.70259

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Y. G. Zhao and H. Zhang, “Phase Separation in Membrane Biology: The Interplay Between Membrane-Bound Organelles and Membraneless Condensates,” Developmental Cell 55, no. 1 (2020): 30-44.

[2]

V. E. B. Hipolito, J. A. Diaz, K. V. Tandoc, et al., “Enhanced Translation Expands the Endo-lysosome Size and Promotes Antigen Presentation During Phagocyte Activation,” Plos Biology 17, no. 12 (2019): e3000535.

[3]

S. Wang, Z. Wang, Q. Fan, et al., “Ginkgolide K Protects the Heart Against Endoplasmic Reticulum Stress Injury by Activating the Inositol-requiring Enzyme 1α/X Box-binding Protein-1 Pathway,” British Journal of Pharmacology 173, no. 15 (2016): 2402-2418.

[4]

Y. Liu, C. Xu, R. Gu, R. Han, Z. Li, and X. Xu, “Endoplasmic Reticulum Stress in Diseases,” MedComm 5, no. 9 (2024): e701.

[5]

L. Yu, Q. Liang, W. Zhang, et al., “HSP22 suppresses Diabetes-induced Endothelial Injury by Inhibiting Mitochondrial Reactive Oxygen Species Formation,” Redox Biology 21 (2019): 101095.

[6]

Y. Wang, X. Dai, H. Li, et al., “The Role of Mitochondrial Dynamics in Disease,” MedComm 4, no. 6 (2023): e462.

[7]

D. E. Gottschling and T. Nyström, “The Upsides and Downsides of Organelle Interconnectivity,” Cell 169, no. 1 (2017): 24-34.

[8]

A. Jain and R. Zoncu, “Organelle Transporters and Inter-organelle Communication as Drivers of Metabolic Regulation and Cellular Homeostasis,” Molecular Metabolism 60 (2022): 101481.

[9]

Y. Liu, J. L. Huo, K. Ren, et al., “Mitochondria-associated Endoplasmic Reticulum Membrane (MAM): A Dark Horse for Diabetic Cardiomyopathy Treatment,” Cell Death Discovery 10, no. 1 (2024): 1-12.

[10]

M. Yang, Y. Han, S. Luo, et al., “MAMs Protect against Ectopic Fat Deposition and Lipid-Related Kidney Damage in DN Patients,” Frontiers in Endocrinology 12 (2021): 609580.

[11]

S. Wu, Q. Lu, Y. Ding, et al., “Hyperglycemia-driven Inhibition of AMP-Activated Protein Kinase α2 Induces Diabetic Cardiomyopathy by Promoting Mitochondria-associated Endoplasmic Reticulum Membranes in Vivo,” Circulation 139, no. 16 (2019): 1913-1936.

[12]

W. Bernhard and C. Rouiller, “Close Topographical Relationship Between Mitochondria and Ergastoplasm of Liver Cells in a Definite Phase of Cellular Activity,” The Journal of Biophysical and Biochemical Cytology 2, no. Suppl 4 (1956): 73-78.

[13]

J. Katz, P. A. Wals, S. Golden, and L. Raijman, “Mitochondrial-reticular Cytostructure in Liver Cells,” Biochemical Journal 214, no. 3 (1983): 795-813.

[14]

J. E. Vance, “Phospholipid Synthesis in a Membrane Fraction Associated With Mitochondria,” Journal of Biological Chemistry 265, no. 13 (1990): 7248-7256.

[15]

R. Rizzuto, P. Pinton, W. Carrington, et al., “Close Contacts With the Endoplasmic Reticulum as Determinants of Mitochondrial Ca2+ Responses,” Science 280, no. 5370 (1998): 1763-1766.

[16]

R. Bravo, J. M. Vicencio, V. Parra, et al., “Increased ER-Mitochondrial Coupling Promotes Mitochondrial Respiration and Bioenergetics During Early Phases of ER Stress,” Journal of Cell Science 124, no. 13 (2011): 2143-2152.

[17]

G. Csordás, C. Renken, P. Várnai, et al., “Structural and Functional Features and Significance of the Physical Linkage Between ER and Mitochondria,” Journal of Cell Biology 174, no. 7 (2006): 915-921.

[18]

M. Fujimoto and T. Hayashi. Chapter Two—New Insights Into the Role of Mitochondria-Associated Endoplasmic Reticulum Membrane. In: K. W. Jeon, ed. “International Review of Cell and Molecular Biology”. (Academic Press, 2011): 73-117.

[19]

S. Zhang, Y. Shao, M. Su, Y. Hao, Y. Yuan, and D. Xing, “The Application of Different Biotechnologies in Detecting the Changes in MAM and Their Classic Discoveries,” Analytical Biochemistry 698 (2025): 115744.

[20]

G. Csordás, D. Weaver, and G. Hajnóczky, “Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions,” Trends in Cell Biology 28, no. 7 (2018): 523-540.

[21]

X. Wang, C. Xing, G. Li, et al., “The Key Role of Proteostasis at Mitochondria-associated Endoplasmic Reticulum Membrane in Vanadium-induced Nephrotoxicity Using a Proteomic Strategy,” Science of the Total Environment 869 (2023): 161741.

[22]

Y. Peng, L. Zhou, Y. Jin, et al., “Calcium Bridges Built by Mitochondria-associated Endoplasmic Reticulum Membranes: Potential Targets for Neural Repair in Neurological Diseases,” Neural Regeneration Research 20, no. 12 (2025): 3349-3369. Published online November 13, 2024.

[23]

A. P. Magalhães Rebelo, F. Dal Bello, T. Knedlik, et al., “Chemical Modulation of Mitochondria-Endoplasmic Reticulum Contact Sites,” Cells 9, no. 7 (2020): 1637.

[24]

A. Zhang, C. D. Williamson, D. S. Wong, et al., “Quantitative Proteomic Analyses of Human Cytomegalovirus-Induced Restructuring of Endoplasmic Reticulum-Mitochondrial Contacts at Late Times of Infection*,” Molecular & Cellular Proteomics 10, no. 10 (2011). M111.009936.

[25]

C. Giorgi, D. De Stefani, A. Bononi, R. Rizzuto, and P. Pinton, “Structural and Functional Link Between the Mitochondrial Network and the Endoplasmic Reticulum,” International Journal of Biochemistry & Cell Biology 41, no. 10 (2009): 1817-1827.

[26]

C. Chen, G. Dai, M. Fan, X. Wang, K. Niu, and W. Gao, “Mitochondria-associated Endoplasmic Reticulum Membranes and Myocardial Ischemia: From Molecular Mechanisms to Therapeutic Strategies,” Journal of Translational Medicine 23, no. 1 (2025): 277.

[27]

M. Yang, X. Qin, and X. Liu, “The Effect of Mitochondrial-associated Endoplasmic Reticulum Membranes (MAMs) Modulation: New Insights Into Therapeutic Targets for Depression,” Neuroscience and Biobehavioral Reviews 172 (2025): 106087.

[28]

J. Chen, D. Liu, L. Lei, et al., “CNPY2 Aggravates Renal Tubular Cell Ferroptosis in Diabetic Nephropathy by Regulating PERK/ATF4/CHAC1 Pathway and MAM Integrity,” Advanced Science (2025): e2416441.

[29]

Z. Zhuang, S. Huang, X. Zhang, et al., “Lipin1 ameliorates Cognitive Ability of Diabetic Encephalopathy via Regulating Ca2+ Transfer Through Mitochondria-associated Endoplasmic Reticulum Membranes,” International Immunopharmacology 150 (2025): 114266.

[30]

Y. Peng, L. Zhou, Y. Jin, et al., “Calcium Bridges Built by Mitochondria-associated Endoplasmic Reticulum Membranes: Potential Targets for Neural Repair in Neurological Diseases,” Neural Regeneration Research 20, no. 12 (2025): 3349.

[31]

R. Resende, T. Fernandes, A. C. Pereira, A. P. Marques, and C. F. Pereira, “Endoplasmic Reticulum-Mitochondria Contacts Modulate Reactive Oxygen Species-Mediated Signaling and Oxidative Stress in Brain Disorders: The Key Role of Sigma-1 Receptor,” Antioxid Redox Signaling 37, no. 10-12 (2022): 758-780.

[32]

C. Wolf, R. Zimmermann, O. Thaher, et al., “The Charcot-Marie Tooth Disease Mutation R94Q in MFN2 Decreases ATP Production but Increases Mitochondrial Respiration Under Conditions of Mild Oxidative Stress,” Cells 8, no. 10 (2019): 1289.

[33]

H. K. Yeo, T. H. Park, H. Y. Kim, et al., “Phospholipid Transfer Function of PTPIP51 at Mitochondria-associated ER Membranes,” Embo Reports 22, no. 6 (2021): e51323.

[34]

X. Lu, Y. Gong, W. Hu, et al., “Ultrastructural and Proteomic Profiling of Mitochondria-associated Endoplasmic Reticulum Membranes Reveal Aging Signatures in Striated Muscle,” Cell Death & Disease 13, no. 4 (2022): 296.

[35]

R. Iwasawa, A. L. Mahul-Mellier, C. Datler, E. Pazarentzos, and S. Grimm, “Fis1 and Bap31 Bridge the Mitochondria-ER Interface to Establish a Platform for Apoptosis Induction,” Embo Journal 30, no. 3 (2011): 556-568. Published online December 24, 2010.

[36]

K. Nakamura, S. Aoyama-Ishiwatari, T. Nagao, et al., “PDZD8-FKBP8 tethering Complex at ER-mitochondria Contact Sites Regulates Mitochondrial Complexity,” Biorix (2024). Published online June 3, 2024: 2023.08.22.554218.

[37]

A. S. Maione, P. Faris, L. Iengo, et al., “Ca2+ dysregulation in Cardiac Stromal Cells Sustains Fibro-adipose Remodeling in Arrhythmogenic Cardiomyopathy and Can be Modulated by Flecainide,” Journal of Translational Medicine 20 (2022): 522.

[38]

M. Kerkhofs, M. Bittremieux, G. Morciano, et al., “Emerging Molecular Mechanisms in Chemotherapy: Ca2+ Signaling at the Mitochondria-associated Endoplasmic Reticulum Membranes,” Cell Death & Disease 9, no. 3 (2018): 1-15.

[39]

A. C. Simões-Alves, J. H. Costa-Silva, I. B. Barros-Junior, et al., “Saturated Fatty Acid-Enriched Diet-Impaired Mitochondrial Bioenergetics in Liver from Undernourished Rats during Critical Periods of Development,” Cells 8, no. 4 (2019): 335.

[40]

A. Carreras-Sureda, F. Jaña, H. Urra, et al., “Non-canonical Function of IRE1α Determines Mitochondria-associated Endoplasmic Reticulum Composition to Control Calcium Transfer and Bioenergetics,” Nature Cell Biology 21, no. 6 (2019): 755-767.

[41]

S. Wu, Q. Lu, Q. Wang, et al., “Binding of FUN14 Domain Containing 1 with Inositol 1,4,5-Trisphosphate Receptor in Mitochondria-Associated Endoplasmic Reticulum Membranes Maintains Mitochondrial Dynamics and Function in Hearts in Vivo,” Circulation 136, no. 23 (2017): 2248-2266.

[42]

K. J. De Vos, G. M. Mórotz, R. Stoica, et al., “VAPB Interacts With the Mitochondrial Protein PTPIP51 to Regulate Calcium Homeostasis,” Human Molecular Genetics 21, no. 6 (2012): 1299-1311.

[43]

X. Yang, J. Liang, L. Ding, et al., “Phosphatidylserine Synthase Regulates Cellular Homeostasis Through Distinct Metabolic Mechanisms,” PLOS Genetics 15, no. 12 (2019): e1008548.

[44]

V. F. Monteiro-Cardoso, L. Rochin, A. Arora, et al., “ORP5/8 and MIB/MICOS Link ER-mitochondria and Intra-mitochondrial Contacts for Non-vesicular Transport of Phosphatidylserine,” Cell Reports 40, no. 12 (2022): 111364.

[45]

M. I. Hernández-Alvarez, D. Sebastián, S. Vives, et al., “Deficient Endoplasmic Reticulum-Mitochondrial Phosphatidylserine Transfer Causes Liver Disease,” Cell 177, no. 4 (2019): 881-895. e17.

[46]

J. Xu, S. Chen, W. Wang, et al., “Hepatic CDP-diacylglycerol Synthase 2 Deficiency Causes Mitochondrial Dysfunction and Promotes Rapid Progression of NASH and Fibrosis,” Science Bulletin 67, no. 3 (2022): 299-314.

[47]

H. Su, H. Guo, X. Qiu, et al., “Lipocalin 2 Regulates Mitochondrial Phospholipidome Remodeling, Dynamics, and Function in Brown Adipose Tissue in Male Mice,” Nature Communications 14, no. 1 (2023): 6729.

[48]

M. L. Sassano, A. R. van Vliet, E. Vervoort, et al., “PERK Recruits E-Syt1 at ER-Mitochondria Contacts for Mitochondrial Lipid Transport and Respiration,” Journal of Cell Biology 222, no. 3 (2023): e202206008.

[49]

M. Bosch, M. Marí, A. Herms, et al., “Caveolin-1 Deficiency Causes Cholesterol Dependent Mitochondrial Dysfunction and Apoptotic Susceptibility,” Current Biology 21, no. 8 (2011): 681-686.

[50]

M. Y. W. Ng, C. Charsou, A. Lapao, et al., “The Cholesterol Transport Protein GRAMD1C Regulates Autophagy Initiation and Mitochondrial Bioenergetics,” Nature Communications 13, no. 1 (2022): 6283.

[51]

S. T. Feng, Z. Z. Wang, Y. H. Yuan, et al., “Dynamin-related Protein 1: A Protein Critical for Mitochondrial Fission, Mitophagy, and Neuronal Death in Parkinson's disease,” Pharmacological Research 151 (2020): 104553.

[52]

Z. Zhou, M. Torres, H. Sha, et al., “Endoplasmic Reticulum-associated Degradation Regulates Mitochondrial Dynamics in Brown Adipocytes,” Science 368, no. 6486 (2020): 54-60.

[53]

S. Gao and J. Hu, “Mitochondrial Fusion: The Machineries in and Out,” Trends in Cell Biology 31, no. 1 (2021): 62-74.

[54]

K. Arasaki, H. Shimizu, H. Mogari, et al., “A Role for the Ancient SNARE Syntaxin 17 in Regulating Mitochondrial Division,” Developmental Cell 32, no. 3 (2015): 304-317.

[55]

P. Gao, M. Yang, X. Chen, S. Xiong, J. Liu, and L. Sun, “DsbA-L Deficiency Exacerbates Mitochondrial Dysfunction of Tubular Cells in Diabetic Kidney Disease,” Clinical Science 134, no. 7 (2020): 677-694.

[56]

C. Li, L. Li, M. Yang, et al., “PACS-2 Ameliorates Tubular Injury by Facilitating Endoplasmic Reticulum-Mitochondria Contact and Mitophagy in Diabetic Nephropathy,” Diabetes 71, no. 5 (2022): 1034-1050.

[57]

R. Yu, S. Jin, U. Lendahl, M. Nistér, and J. Zhao, “Human Fis1 Regulates Mitochondrial Dynamics Through Inhibition of the Fusion Machinery,” Embo Journal 38, no. 8 (2019): e99748.

[58]

S. Chen, Y. Sun, Y. Qin, et al., “Dynamic Interaction of REEP5-MFN1/2 Enables Mitochondrial Hitchhiking on Tubular ER,” Journal of Cell Biology 223, no. 10 (2024): e202304031.

[59]

A. Ponneri Babuharisankar, C. L. Kuo, H. Y. Chou, et al., “Mitochondrial Lon-induced Mitophagy Benefits Hypoxic Resistance via Ca2+-dependent FUNDC1 Phosphorylation at the ER-mitochondria Interface,” Cell Death & Disease 14, no. 3 (2023): 1-17.

[60]

T. Mori, T. Hayashi, E. Hayashi, and T. P. Su, “Sigma-1 Receptor Chaperone at the ER-Mitochondrion Interface Mediates the Mitochondrion-ER-Nucleus Signaling for Cellular Survival,” PLoS ONE 8, no. 10 (2013): e76941.

[61]

Z. Jia, H. Li, K. Xu, et al., “MAM-mediated Mitophagy and Endoplasmic Reticulum Stress: The Hidden Regulators of Ischemic Stroke,” Frontiers in Cellular Neuroscience 18 (2024): 1470144.

[62]

K. Takeda, S. Nagashima, I. Shiiba, et al., “MITOL Prevents ER Stress-induced Apoptosis by IRE1α Ubiquitylation at ER-Mitochondria Contact Sites,” Embo Journal 38, no. 15 (2019): e100999.

[63]

J. Li, M. Ni, B. Lee, E. Barron, D. Hinton, and A. Lee, “The Unfolded Protein Response Regulator GRP78/BiP Is Required for Endoplasmic Reticulum Integrity and Stress-induced Autophagy in Mammalian Cells,” Cell Death and Differentiation 15, no. 9 (2008): 1460-1471.

[64]

M. H. Jeong, M. S. Jeon, G. E. Kim, and H. R. Kim, “Polyhexamethylene Guanidine Phosphate Induces Apoptosis Through Endoplasmic Reticulum Stress in Lung Epithelial Cells,” International Journal of Molecular Sciences 22, no. 3 (2021): 1215.

[65]

J. P. Muñoz, S. Ivanova, J. Sánchez-Wandelmer, et al., “Mfn2 modulates the UPR and Mitochondrial Function via Repression of PERK,” Embo Journal 32, no. 17 (2013): 2348-2361.

[66]

D. Boehning, R. L. Patterson, L. Sedaghat, N. O. Glebova, T. Kurosaki, and S. H. Snyder, “Cytochrome c Binds to Inositol (1,4,5) Trisphosphate Receptors, Amplifying Calcium-dependent Apoptosis,” Nature Cell Biology 5, no. 12 (2003): 1051-1061.

[67]

M. Bittremieux, J. B. Parys, P. Pinton, and G. Bultynck, “ER Functions of Oncogenes and Tumor Suppressors: Modulators of Intracellular Ca2 + Signaling,” Biochimica et Biophysica Acta: Molecular Cell Research 1863, no. 6, Part B (2016): 1364-1378.

[68]

N. Popgeorgiev and G. Gillet, “Bcl-xL and IP3R Interaction: Intimate Relationship With an Uncertain Outcome,” Cell Calcium 101 (2022): 102504.

[69]

N. Rosa, H. Ivanova, L. E. Wagner, et al., “Bcl-xL Acts as an Inhibitor of IP3R Channels, Thereby Antagonizing Ca2+-driven Apoptosis,” Cell Death and Differentiation 29, no. 4 (2022): 788-805.

[70]

G. H. Lee, H. Y. Lee, B. Li, H. R. Kim, and H. J. Chae, “Bax Inhibitor-1-Mediated Inhibition of Mitochondrial Ca2+ Intake Regulates Mitochondrial Permeability Transition Pore Opening and Cell Death,” Scientific Reports 4, no. 1 (2014): 5194.

[71]

R. Iwasawa, A. L. Mahul-Mellier, C. Datler, E. Pazarentzos, and S. Grimm, “Fis1 and Bap31 Bridge the Mitochondria-ER Interface to Establish a Platform for Apoptosis Induction,” Embo Journal 30, no. 3 (2011): 556-568.

[72]

T. Simmen, J. E. Aslan, A. D. Blagoveshchenskaya, et al., “PACS-2 Controls Endoplasmic Reticulum-Mitochondria Communication and Bid-Mediated Apoptosis,” The EMBO Journal 24, no. 4 (2005): 717-729.

[73]

A. Jenner, A. Peña-Blanco, R. Salvador-Gallego, et al., “DRP1 interacts Directly With BAX to Induce Its Activation and Apoptosis,” Embo Journal 41, no. 8 (2022): e108587. Published online January 13, 2022.

[74]

Y. D. Chen, Y. T. Fang, C. P. Chang, et al., “S100A10 Regulates ULK1 Localization to ER-Mitochondria Contact Sites in IFN-γ-Triggered Autophagy,” Journal of Molecular Biology 429, no. 1 (2017): 142-157.

[75]

D. S. Grunwald, N. M. Otto, J. M. Park, D. Song, and D. H. Kim, “GABARAPs and LC3s Have Opposite Roles in Regulating ULK1 for Autophagy Induction,” Autophagy 16, no. 4 (2019): 600-614.

[76]

L. E. Gallagher, L. E. Williamson, and E. Y. W. Chan, “Advances in Autophagy Regulatory Mechanisms,” Cells 5, no. 2 (2016): 24.

[77]

Z. Tang, Y. Takahashi, and H. G. Wang, “ATG2 regulation of Phagophore Expansion at Mitochondria-associated ER Membranes,” Autophagy 15, no. 12 (2019): 2165-2166.

[78]

M. Hamasaki, N. Furuta, A. Matsuda, et al., “Autophagosomes Form at ER-Mitochondria Contact Sites,” Nature 495, no. 7441 (2013): 389-393.

[79]

U. Ahumada-Castro, E. Silva-Pavez, A. Lovy, E. Pardo, J. Molgό, and C. Cárdenas, “MTOR-independent Autophagy Induced by Interrupted Endoplasmic Reticulum-mitochondrial Ca2+ Communication: A Dead End in Cancer Cells,” Autophagy 15, no. 2 (2019): 358-361.

[80]

S. Missiroli, M. Bonora, S. Patergnani, et al., “PML at Mitochondria-Associated Membranes Is Critical for the Repression of Autophagy and Cancer Development,” Cell Reports 16, no. 9 (2016): 2415-2427.

[81]

Y. Hu, H. Chen, L. Zhang, et al., “The AMPK-MFN2 Axis Regulates MAM Dynamics and Autophagy Induced by Energy Stresses,” Autophagy 17, no. 5 (2021): 1142-1156.

[82]

M. S. Herrera-Cruz, M. C. Yap, N. Tahbaz, et al., “Rab32 uses Its Effector Reticulon 3L to Trigger Autophagic Degradation of Mitochondria-associated Membrane (MAM) Proteins,” Biology Direct 16, no. 1 (2021): 22.

[83]

M. D. Li, L. Fu, B. B. Lv, et al., “Arsenic Induces Ferroptosis and Acute Lung Injury Through mtROS-mediated Mitochondria-associated Endoplasmic Reticulum Membrane Dysfunction,” Ecotoxicology and Environmental Safety 238 (2022): 113595.

[84]

H. Liu, S. Zheng, G. Hou, et al., “AKAP1/PKA-mediated GRP75 Phosphorylation at Mitochondria-associated Endoplasmic Reticulum Membranes Protects Cancer Cells Against Ferroptosis,” Cell Death and Differentiation 32, no. 3 (2025): 488-505. Published online November 13, 2024:1-18.

[85]

P. Guo, Q. Li, S. Wang, et al., “Hesperidin Alleviates Terbuthylazine-induced Ferroptosis via Maintenance of Mitochondria-associated Endoplasmic Reticulum Membrane Integrity in Chicken Hepatocytes,” Comp Biochem Physiol Toxicol Pharmacol CBP 284 (2024): 109989.

[86]

H. Lin, X. Guo, J. Liu, et al., “Ethanol-Induced Hepatic Ferroptosis Is Mediated by PERK-Dependent MAMs Formation: Preventive Role of Quercetin,” Molecular Nutrition & Food Research 68, no. 7 (2024): 2300343.

[87]

H. Ni, Z. Ou, Y. Wang, et al., “XBP1 modulates Endoplasmic Reticulum and Mitochondria Crosstalk via Regulating NLRP3 in Renal Ischemia/Reperfusion Injury,” Cell Death Discovery 9, no. 1 (2023): 1-12.

[88]

Y. Li, L. Zhu, M. X. Cai, et al., “TGR5 supresses cGAS/STING Pathway by Inhibiting GRP75-mediated Endoplasmic Reticulum-mitochondrial Coupling in Diabetic Retinopathy,” Cell Death & Disease 14, no. 9 (2023): 1-16.

[89]

Z. Zhu, X. Zhou, H. Du, et al. STING Suppresses Mitochondrial VDAC2 to Govern RCC Growth Independent of Innate Immunity. Advanced Science 2023; 10(3): 2203718.

[90]

X. Guo, L. Wang, J. Xuan, et al., “Fluoride Induces Spermatocyte Apoptosis by IP3R1/MCU-mediated Mitochondrial Calcium Overload Through MAMs,” Journal of Hazardous Materials 489 (2025): 137514.

[91]

I. de Ridder, M. Kerkhofs, F. O. Lemos, J. Loncke, G. Bultynck, and J. B. Parys, “The ER-Mitochondria Interface, Where Ca2+ and Cell Death Meet,” Cell Calcium 112 (2023): 102743.

[92]

D. Naón, M. I. Hernández-Alvarez, S. Shinjo, et al., “Splice Variants of Mitofusin 2 Shape the Endoplasmic Reticulum and Tether It to Mitochondria,” Science 380, no. 6651 (2023): eadh9351.

[93]

D. A. Peñalva, A. K. Monnappa, P. Natale, and I. López-Montero, “Mfn2-dependent Fusion Pathway of PE-enriched Micron-sized Vesicles,” Pnas 121, no. 30 (2024): e2313609121.

[94]

P. Gomez-Suaga, S. Paillusson, R. Stoica, W. Noble, D. P. Hanger, and C. C. J. Miller, “The ER-Mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy,” Current Biology 27, no. 3 (2017): 371-385.

[95]

G. M. Mórotz, S. M. Martín-Guerrero, A. Markovinovic, et al., “The PTPIP51 Coiled-coil Domain Is Important in VAPB Binding, Formation of ER-mitochondria Contacts and IP3 Receptor Delivery of Ca2+ to Mitochondria,” Frontiers in Cell and Developmental Biology 10 (2022): 920947.

[96]

Y. Liu, Y. Wei, X. Jin, H. Cai, Q. Chen, and X. Zhang, “PDZD8 Augments Endoplasmic Reticulum-Mitochondria Contact and Regulates Ca2+ Dynamics and Cypd Expression to Induce Pancreatic β-Cell Death During Diabetes,” Diabetes & Metabolism Journal 48, no. 6 (2024): 1058-1072.

[97]

Y. Hirabayashi, S. K. Kwon, H. Paek, et al., “ER-mitochondria Tethering by PDZD8 Regulates Ca2+ Dynamics in Mammalian Neurons,” Science 358, no. 6363 (2017): 623-630.

[98]

K. Nakamura, S. Aoyama-Ishiwatari, T. Nagao, et al., “Mitochondrial Complexity Is Regulated at ER-mitochondria Contact Sites via PDZD8-FKBP8 Tethering,” Nature Communications 16, no. 1 (2025): 3401.

[99]

N. Tessier, M. Ducrozet, M. Dia, et al., “TRPV1 Channels Are New Players in the Reticulum-Mitochondria Ca2+ Coupling in a Rat Cardiomyoblast Cell Line,” Cells 12, no. 18 (2023): 2322.

[100]

Y. Liu, X. Ma, H. Fujioka, J. Liu, S. Chen, and X. Zhu, “DJ-1 Regulates the Integrity and Function of ER-mitochondria Association Through Interaction With IP3R3-Grp75-VDAC1,” PNAS 116, no. 50 (2019): 25322-25328.

[101]

T. Hayashi and T. P. Su, “Sigma-1 Receptor Chaperones at the ER- Mitochondrion Interface Regulate Ca2+ Signaling and Cell Survival,” Cell 131, no. 3 (2007): 596-610.

[102]

E. Brailoiu, S. Chakraborty, G. C. Brailoiu, et al., “Choline Is an Intracellular Messenger Linking Extracellular Stimuli to IP3-Evoked Ca2+ Signals Through Sigma-1 Receptors,” Cell reports 26, no. 2 (2019): 330-337. e4.

[103]

L. Planas-Serra, N. Launay, L. Goicoechea, et al., “Sphingolipid Desaturase DEGS1 Is Essential for Mitochondria-associated Membrane Integrity,” Journal of Clinical Investigation 133, no. 10 (2023): e162957.

[104]

H. Kim, S. Lee, Y. Jun, and C. Lee, “Structural Basis for Mitoguardin-2 Mediated Lipid Transport at ER-mitochondrial Membrane Contact Sites,” Nature Communications 13, no. 1 (2022): 3702.

[105]

Z. Hong, J. Adlakha, N. Wan, et al., “Mitoguardin-2-Mediated Lipid Transfer Preserves Mitochondrial Morphology and Lipid Droplet Formation,” Journal of Cell Biology 221, no. 12 (2022): e202207022.

[106]

C. Duan, R. Liu, L. Kuang, et al., “Activated Drp1 Initiates the Formation of Endoplasmic Reticulum-Mitochondrial Contacts via Shrm4-Mediated Actin Bundling,” Advanced Science 10, no. 36 (2023): 2304885.

[107]

B. Yang, Q. Liu, and Y. Bi, “Autophagy and Apoptosis Are Regulated by Stress on Bcl2 by AMBRA1 in the Endoplasmic Reticulum and Mitochondria,” Theoretical Biology and Medical Modelling 16, no. 1 (2019): 18.

[108]

F. Strappazzon, A. Di Rita, A. Peschiaroli, et al., “HUWE1 controls MCL1 Stability to Unleash AMBRA1-induced Mitophagy,” Cell Death and Differentiation 27, no. 4 (2020): 1155-1168.

[109]

Y. Li, Y. Wang, Z. Jiang, et al., “Apoptosis Mediated by Crosstalk Between Mitochondria and Endoplasmic Reticulum: A Possible Cause of Citrinin Disruption of the Intestinal Barrier,” Ecotoxicol. Environ. Saf. 284 (2024): 116877.

[110]

T. Fernandes, M. R. Domingues, P. I. Moreira, and C. F. Pereira, “A Perspective on the Link Between Mitochondria-Associated Membranes (MAMs) and Lipid Droplets Metabolism in Neurodegenerative Diseases,” Biology 12, no. 3 (2023): 414.

[111]

A. F. Bernal, N. Mota, R. Pamplona, E. Area-Gomez, and M. Portero-Otin, “Hakuna MAM-Tata: Investigating the Role of Mitochondrial-associated Membranes in ALS,” Biochimica et Biophysica Acta - Molecular Basis of Disease 1869, no. 6 (2023): 166716.

[112]

R. Ganji, J. A. Paulo, Y. Xi, et al., “The p97-UBXD8 Complex Regulates ER-Mitochondria Contact Sites by Altering Membrane Lipid Saturation and Composition,” Nature Communications 14, no. 1 (2023): 638.

[113]

S. Zhao, X. Jiang, N. Li, and T. Wang, “SLMO Transfers Phosphatidylserine Between the Outer and Inner Mitochondrial Membrane in Drosophila,” Plos Biology 22, no. 12 (2024): e3002941.

[114]

J. Li, Y. Xin, J. Li, H. Chen, and H. Li, “Phosphatidylethanolamine N-methyltransferase: From Functions to Diseases,” Aging and Disease 14, no. 3 (2023): 879-891.

[115]

T. Fernandes, T. Melo, T. Conde, et al., “Mapping the Lipidome in Mitochondria-associated Membranes (MAMs) in an in Vitro Model of Alzheimer's Disease,” Journal of Neurochemistry 168, no. 7 (2024): 1237-1253.

[116]

J. Montesinos, K. Kabra, M. Uceda, et al., “The Contribution of Mitochondria-Associated ER Membranes to Cholesterol Homeostasis,” BioRxiv Published online November 11, 2024: 2024.11.11.622945.

[117]

J. Janikiewicz, J. Szymański, D. Malinska, et al., “Mitochondria-Associated Membranes in Aging and Senescence: Structure, Function, and Dynamics,” Cell Death & Disease 9, no. 3 (2018): 1-12.

[118]

T. Simmen and M. S. Herrera-Cruz, “Plastic Mitochondria-Endoplasmic Reticulum (ER) Contacts Use Chaperones and Tethers to Mould Their Structure and Signaling,” Current Opinion in Cell Biology 53 (2018): 61-69.

[119]

J. R. Friedman, L. L. Lackner, M. West, J. R. DiBenedetto, J. Nunnari, and G. K. Voeltz, “ER Tubules Mark Sites of Mitochondrial Division,” Science 334, no. 6054 (2011): 358-362.

[120]

R. J. Carter, M. Milani, A. J. Beckett, et al., “Novel Roles of RTN4 and CLIMP-63 in Regulating Mitochondrial Structure, Bioenergetics and Apoptosis,” Cell Death & Disease 13, no. 5 (2022): 1-13.

[121]

S. K. Sonn, S. Seo, J. Yang, et al., “ER-associated CTRP1 Regulates Mitochondrial Fission via Interaction With DRP1,” Experimental & Molecular Medicine 53, no. 11 (2021): 1769-1780.

[122]

Y. Sun, S. Chen, Y. Hou, S. H. Kang, and J. M. Lin, “Organelle Proximity Analysis for Enhanced Quantification of Mitochondria-Endoplasmic Reticulum Interactions in Single Cells via Super-Resolution Microscopy,” Analytical Chemistry 96, no. 28 (2024): 11557-11565.

[123]

G. Yepuri, L. M. Ramirez, G. G. Theophall, et al., “DIAPH1-MFN2 Interaction Regulates Mitochondria-SR/ER Contact and Modulates Ischemic/Hypoxic Stress,” Nature Communications 14 (2023): 6900.

[124]

V. Manganelli, A. Capozzi, S. Recalchi, et al., “The Role of Cardiolipin as a Scaffold Mitochondrial Phospholipid in Autophagosome Formation: In Vitro Evidence,” Biomolecules 11, no. 2 (2021): 222.

[125]

V. Tangeda, Y. K. Lo, A. P. Babuharisankar, et al., “Lon Upregulation Contributes to Cisplatin Resistance by Triggering NCLX-Mediated Mitochondrial Ca2+ Release in Cancer Cells,” Cell Death & Disease 13, no. 3 (2022): 241.

[126]

M. Calvo-Rodriguez, S. S. Hou, A. C. Snyder, et al., “Increased Mitochondrial Calcium Levels Associated With Neuronal Death in a Mouse Model of Alzheimer's Disease,” Nature Communications 11 (2020): 2146.

[127]

C. Sotomayor-Flores, P. Rivera-Mejías, C. Vásquez-Trincado, et al., “Angiotensin-(1-9) Prevents Cardiomyocyte Hypertrophy by Controlling Mitochondrial Dynamics via miR-129-3p/PKIA Pathway,” Cell Death and Differentiation 27, no. 9 (2020): 2586.

[128]

M. Liiv, A. Vaarmann, D. Safiulina, et al., “ER Calcium Depletion as a Key Driver for Impaired ER-to-mitochondria Calcium Transfer and Mitochondrial Dysfunction in Wolfram Syndrome,” Nature Communications 15, no. 1 (2024): 6143.

[129]

D. S. George, S. Hackelberg, N. D. Jayaraj, et al., “Mitochondrial Calcium Uniporter Deletion Prevents Painful Diabetic Neuropathy by Restoring Mitochondrial Morphology and Dynamics,” Pain 163, no. 3 (2022): 560-578.

[130]

Y. Hou, T. Kitaguchi, R. Kriszt, Y. H. Tseng, M. Raghunath, and M. Suzuki, “Ca2+-Associated Triphasic pH Changes in Mitochondria During Brown Adipocyte Activation,” Molecular Metabolism 6, no. 8 (2017): 797-808.

[131]

S. Ma, Q. Mao, W. Chen, et al., “Serum Lipidomics Analysis of Classical Swine Fever Virus Infection in Piglets and Emerging Role of Free Fatty Acids in Virus Replication in Vitro,” Frontiers in Cellular and Infection Microbiology 9 (2019): 410.

[132]

J. Yong, H. Bischof, S. Burgstaller, et al., “Mitochondria Supply ATP to the ER Through a Mechanism Antagonized by Cytosolic Ca2+. Sonenberg N, Pfeffer SR, Zimmermann R, Eds,” Elife 8 (2019): e49682.

[133]

Y. Tamura, S. Kawano, and T. Endo, “Lipid Homeostasis in Mitochondria,” Biological Chemistry 401, no. 6-7 (2020): 821-833.

[134]

F. Giordano, “Non-Vesicular Lipid Trafficking at the Endoplasmic Reticulum-Mitochondria Interface,” Biochemical Society Transactions 46, no. 2 (2018): 437-452.

[135]

J. Jacquemyn, J. Foroozandeh, K. Vints, et al., “Torsin and NEP1R1-CTDNEP1 Phosphatase Affect Interphase Nuclear Pore Complex Insertion by Lipid-Dependent and Lipid-Independent Mechanisms,” Embo Journal 40, no. 17 (2021): e106914.

[136]

S. Leterme and M. Michaud, “Mitochondrial Membrane Biogenesis: A New Pathway for Lipid Transport Mediated by PERK/E-Syt1 Complex,” Journal of Cell Biology 222, no. 3 (2023): e202301132.

[137]

C. H. Cortie, A. J. Hulbert, S. E. Hancock, T. W. Mitchell, D. McAndrew, and P. L. Else, “Of Mice, Pigs and Humans: An Analysis of Mitochondrial Phospholipids From Mammals With Very Different Maximal Lifespans,” Experimental Gerontology 70 (2015): 135-143.

[138]

S. T. Decker and K. Funai, “Mitochondrial Membrane Lipids in the Regulation of Bioenergetic Flux,” Cell Metabolism 36, no. 9 (2024): 1963-1978.

[139]

E. Calzada, E. Avery, P. N. Sam, et al., “Phosphatidylethanolamine Made in the Inner Mitochondrial Membrane Is Essential for Yeast Cytochrome bc1 Complex Function,” Nature Communications 10 (2019): 1432.

[140]

Y. J. Shiao, G. Lupo, and J. E. Vance, “Evidence That Phosphatidylserine Is Imported Into Mitochondria via a Mitochondria-associated Membrane and That the Majority of Mitochondrial Phosphatidylethanolamine Is Derived From Decarboxylation of Phosphatidylserine *,” Journal of Biological Chemistry 270, no. 19 (1995): 11190-11198.

[141]

C. J. DeLong, Y. J. Shen, M. J. Thomas, and Z. Cui, “Molecular Distinction of Phosphatidylcholine Synthesis Between the CDP-Choline Pathway and Phosphatidylethanolamine Methylation Pathway *,” Journal of Biological Chemistry 274, no. 42 (1999): 29683-29688.

[142]

X. Miliara, J. A. Garnett, T. Tatsuta, et al., “Structural Insight Into the TRIAP1/PRELI-Like Domain family of Mitochondrial Phospholipid Transfer Complexes,” Embo Reports 16, no. 7 (2015): 824-835.

[143]

H. Su, H. Guo, X. Qiu, et al., “Lipocalin 2 Regulates Mitochondrial Phospholipidome Remodeling, Dynamics, and Function in Brown Adipose Tissue in Male Mice,” Nature Communications 14, no. 1 (2023): 1-19.

[144]

M. T. Bengoechea-Alonso, A. Aldaalis, and J. Ericsson, “Loss of the Fbw7 Tumor Suppressor Rewires Cholesterol Metabolism in Cancer Cells Leading to Activation of the PI3K-AKT Signalling Axis,” Frontiers in Oncology 12 (2022): 990672.

[145]

C. N. Poston, E. Duong, Y. Cao, and C. R. Bazemore-Walker, “Proteomic Analysis of Lipid Raft-enriched Membranes Isolated From Internal Organelles,” Biochemical and Biophysical Research Communications 415, no. 2 (2011): 355-360.

[146]

H. S. Bose, M. Bose, and R. M. Whittal, “Tom40 in Cholesterol Transport,” Iscience 26, no. 4 (2023): 106386.

[147]

J. Wang, P. Chen, Q. Cao, W. Wang, and X. Chang, “Traditional Chinese Medicine Ginseng Dingzhi Decoction Ameliorates Myocardial Fibrosis and High Glucose-Induced Cardiomyocyte Injury by Regulating Intestinal Flora and Mitochondrial Dysfunction,” Oxidative Medicine and Cellular Longevity 2022 (2022): 9205908.

[148]

Y. Zhang, G. Jiang, M. Sauler, and P. J. Lee, “Lung Endothelial HO-1 Targeting in Vivo Using Lentiviral miRNA Regulates Apoptosis and Autophagy During Oxidant Injury,” Faseb Journal 27, no. 10 (2013): 4041-4058.

[149]

K. Fan, X. Ding, Z. Zang, et al., “Drp1-Mediated Mitochondrial Metabolic Dysfunction Inhibits the Tumor Growth of Pituitary Adenomas,” Oxidative Medicine and Cellular Longevity 2022 (2022): 5652586.

[150]

S. C. Lewis, L. F. Uchiyama, and J. Nunnari, “ER-Mitochondria Contacts Couple mtDNA Synthesis With Mitochondrial Division in Human Cells,” Science 353, no. 6296 (2016): aaf5549.

[151]

O. M. de Brito and L. Scorrano, “Mitofusin 2 Tethers Endoplasmic Reticulum to Mitochondria,” Nature 456, no. 7222 (2008): 605-610.

[152]

J. Gao, A. Qin, D. Liu, et al., “Endoplasmic Reticulum Mediates Mitochondrial Transfer Within the Osteocyte Dendritic Network,” Science Advances 5, no. 11 (2019): eaaw7215.

[153]

Z. Zhuo, H. Lin, J. Liang, et al., “Mitophagy-Related Gene Signature for Prediction Prognosis, Immune Scenery, Mutation, and Chemotherapy Response in Pancreatic Cancer,” Frontiers in Cell and Developmental Biology 9 (2022): 802528.

[154]

X. Sun, Y. Hong, Y. Shu, et al., “The Involvement of Parkin-Dependent Mitophagy in the Anti-Cancer Activity of Ginsenoside,” Journal of Ginseng Research 46, no. 2 (2022): 266-274.

[155]

V. Gelmetti, P. D. Rosa, L. Torosantucci, et al., “PINK1 and BECN1 Relocalize at Mitochondria-Associated Membranes During Mitophagy and Promote ER-Mitochondria Tethering and Autophagosome Formation,” Autophagy 13, no. 4 (2017): 654-669. Published online April 3, 2017.

[156]

J. Yu, T. Li, Y. Liu, et al., “Phosphorylation Switches Protein Disulfide Isomerase Activity to Maintain Proteostasis and Attenuate ER Stress,” Embo Journal 39, no. 10 (2020): e103841.

[157]

T. Chen, H. Qiu, M. Zhao, et al., “IL-17A Contributes to HSV1 Infection-Induced Acute Lung Injury in a Mouse Model of Pulmonary Fibrosis,” Journal of Cellular and Molecular Medicine 23, no. 2 (2019): 908-919.

[158]

S. Lenna, R. Han, and M. Trojanowska, “Endoplasmic Reticulum Stress and Endothelial Dysfunction,” Iubmb Life 66, no. 8 (2014): 530-537.

[159]

D. Halder, S. J. Jeon, J. Y. Yoon, et al., “TREX1 Deficiency Induces ER Stress-Mediated Neuronal Cell Death by Disrupting Ca2+ Homeostasis,” Molecular Neurobiology 59, no. 3 (2022): 1398-1418.

[160]

C. A. Elena-Real, A. Díaz-Quintana, K. González-Arzola, et al., “Cytochrome c Speeds up Caspase Cascade Activation by Blocking 14-3-3ε-Dependent Apaf-1 Inhibition,” Cell Death & Disease 9, no. 3 (2018): 365.

[161]

Q. Wang, W. Chen, B. Zhang, et al., “Perfluorooctanoic Acid Induces Hepatocellular Endoplasmic Reticulum Stress and Mitochondrial-mediated Apoptosis in Vitro via Endoplasmic Reticulum-mitochondria Communication,” Chemico-Biological Interactions 354 (2022): 109844.

[162]

P. Chakraborty, R. Y. Parikh, S. Choi, et al., “Carbon Monoxide Activates PERK-regulated Autophagy to Induce Immunometabolic Reprogramming and Boost Anti-tumor T Cell Function,” Cancer Research 82, no. 10 (2022): 1969-1990.

[163]

L. Yuan, Q. Liu, Z. Wang, J. Hou, and P. Xu, “EI24 Tethers Endoplasmic Reticulum and Mitochondria to Regulate Autophagy Flux,” Cellular and Molecular Life Sciences CMLS 77, no. 8 (2020): 1591-1606.

[164]

Y. Fang, X. Chen, Q. Tan, H. Zhou, J. Xu, and Q. Gu, “Inhibiting Ferroptosis Through Disrupting the NCOA4-FTH1 Interaction: A New Mechanism of Action,” ACS Central Science 7, no. 6 (2021): 980-989.

[165]

A. N. von Krusenstiern, R. N. Robson, N. Qian, et al., “Identification of Essential Sites of Lipid Peroxidation in Ferroptosis,” Nature Chemical Biology 19, no. 6 (2023): 719-730.

[166]

L. Ni, C. Yuan, and X. Wu, “Targeting Ferroptosis in Acute Kidney Injury,” Cell Death & Disease 13, no. 2 (2022): 182.

[167]

Y. Xue, S. Schmollinger, N. Attar, et al., “Endoplasmic Reticulum-Mitochondria Junction Is Required for Iron Homeostasis,” Journal of Biological Chemistry 292, no. 32 (2017): 13197-13204.

[168]

L. L. Wang, Y. R. Zhang, M. H. Zheng, X. Wang, X. Wu, and J. Y. Jin, “A Single Fluorescent Probe Reveals Changes in Endoplasmic Reticulum-Mitochondria Contact in Hepatocytes During Ferroptosis,” Chemical Engineering Journal 466 (2023): 143104.

[169]

Z. Zhang, H. Zhou, W. Gu, et al., “CGI1746 targets σ1R to Modulate Ferroptosis Through Mitochondria-Associated Membranes,” Nature Chemical Biology 20, no. 6 (2024): 699-709.

[170]

J. Zhuang, R. Fan, W. Liao, et al., “Organelle Synergy Unleashed: Modulating Mitochondrial-Endoplasmic Reticulum Contacts With a Self-Assembled Prodrug Amplifies Ferroptosis for Innovative Cancer Therapy,” Chem. Eng. J. 495 (2024): 153364.

[171]

K. L. Lannan, S. L. Spinelli, N. Blumberg, and R. P. Phipps, “Maresin 1 Induces a Novel Pro-Resolving Phenotype in Human Platelets,” Journal of Thrombosis and Haemostasis 15, no. 4 (2017): 802-813.

[172]

S. Missiroli, S. Patergnani, N. Caroccia, et al., “Mitochondria-Associated Membranes (MAMs) and Inflammation,” Cell Death & Disease 9, no. 3 (2018): 1-14.

[173]

Q. Zhang, M. Raoof, Y. Chen, et al., “Circulating Mitochondrial DAMPs Cause Inflammatory Responses to Injury,” Nature 464, no. 7285 (2010): 104-107.

[174]

D. V. Krysko, P. Agostinis, O. Krysko, et al., “Emerging Role of Damage-Associated Molecular Patterns Derived From Mitochondria in Inflammation,” Trends in Immunology 32, no. 4 (2011): 157-164.

[175]

A. C. Pereira, J. De Pascale, R. Resende, et al., “ER-Mitochondria Communication Is Involved in NLRP3 Inflammasome Activation Under Stress Conditions in the Innate Immune System,” Cellular and Molecular Life Sciences 79, no. 4 (2022): 1-27.

[176]

J. A. Smith, “STING, the Endoplasmic Reticulum, and Mitochondria: Is Three a Crowd or a Conversation?,” Frontiers in immunology 11 (2021): 611347.

[177]

T. Zhang, H. Tian, S. Qin, et al., “Nanoengineering Calcium Peroxide-Based Site-Specific Delivery Platform to Efficiently Activate the cGAS-STING Pathway for Cancer Immunotherapy by Amplified Endoplasmic Reticulum Stress,” Advanced Functional Materials 34 (2024): 2313384.

[178]

W. X. Wang, P. Prajapati, P. T. Nelson, and J. E. Springer, “The Mitochondria-Associated ER Membranes Are Novel Subcellular Locations Enriched for Inflammatory-Responsive MicroRNAs,” Molecular Neurobiology 57, no. 7 (2020): 2996-3013.

[179]

A. Markovinovic, J. Greig, S. M. Martín-Guerrero, S. Salam, and S. Paillusson, “Endoplasmic Reticulum-Mitochondria Signaling in Neurons and Neurodegenerative Diseases,” Journal of Cell Science 135, no. 3 (2022): jcs248534.

[180]

N. Bernard-Marissal, R. Chrast, and B. L. Schneider, “Endoplasmic Reticulum and Mitochondria in Diseases of Motor and Sensory Neurons: A Broken Relationship?,” Cell Death & Disease 9, no. 3 (2018): 1-16.

[181]

E. L. Wilson and E. Metzakopian, “ER-Mitochondria Contact Sites in Neurodegeneration: Genetic Screening Approaches to Investigate Novel Disease Mechanisms,” Cell Death and Differentiation 28, no. 6 (2021): 1804-1821.

[182]

W. Yu, H. Jin, and Y. Huang, “Mitochondria-Associated Membranes (MAMs): A Potential Therapeutic Target for Treating Alzheimer's Disease,” Clinical Science 135, no. 1 (2021): 109-126.

[183]

M. Pera, D. Larrea, C. Guardia-Laguarta, et al., “Increased Localization of APP-C99 in Mitochondria-Associated ER Membranes Causes Mitochondrial Dysfunction in Alzheimer Disease,” Embo Journal 36, no. 22 (2017): 3356-3371.

[184]

D. Marinho, I. L. Ferreira, R. Lorenzoni, S. M. Cardoso, I. Santana, and A. C. Rego, “Reduction of Class I Histone Deacetylases Ameliorates ER-Mitochondria Cross-Talk in Alzheimer's Disease,” Aging Cell 22, no. 8 (2023): e13895.

[185]

M. Pera, D. Larrea, C. Guardia-Laguarta, et al., “Increased Localization of APP-C99 in Mitochondria-Associated ER Membranes Causes Mitochondrial Dysfunction in Alzheimer Disease,” Embo Journal 36, no. 22 (2017): 3356-3371. Published online October 10, 2017.

[186]

J. Liu, Y. Liu, C. Gao, et al., “The Ultrastructural and Proteomic Analysis of Mitochondria-Associated Endoplasmic Reticulum Membrane in the Midbrain of a Parkinson's Disease Mouse Model,” Aging Cell 24, no. 4 (2025): e14436.

[187]

S. Paillusson, P. Gomez-Suaga, R. Stoica, et al., “α-Synuclein Binds to the ER-Mitochondria Tethering Protein VAPB to Disrupt Ca2+ Homeostasis and Mitochondrial ATP Production,” Acta Neuropathologica, Berlin 134, no. 1 (2017): 129-149.

[188]

S. Duponchel, L. Monnier, J. Molle, et al., “Hepatitis C Virus Replication Requires Integrity of Mitochondria-Associated ER Membranes,” JHEP Reports 5, no. 3 (2023): 100647.

[189]

S. Watanabe, H. Ilieva, H. Tamada, et al., “Mitochondria-Associated Membrane Collapse Is a Common Pathomechanism in SIGMAR1- and SOD1-Linked ALS,” EMBO Molecular Medicine 8, no. 12 (2016): 1421-1437.

[190]

S. R. Park, C. S. Cho, J. Xi, H. M. Kang, and J. H. Lee, “Holistic Characterization of Single-Hepatocyte Transcriptome Responses to High-Fat Diet,” American Journal of Physiology-Endocrinology and Metabolism 320, no. 2 (2021): E244-E258.

[191]

D. H. Ipsen, J. Lykkesfeldt, and P. Tveden-Nyborg, “Molecular Mechanisms of Hepatic Lipid Accumulation in Non-Alcoholic Fatty Liver Disease,” Cellular and Molecular Life Sciences 75, no. 18 (2018): 3313-3327.

[192]

J. Dong, L. Chen, F. Ye, et al., “Mic19 depletion Impairs Endoplasmic Reticulum-Mitochondrial Contacts and Mitochondrial Lipid Metabolism and Triggers Liver Disease,” Nature Communications 15, no. 1 (2024): 168.

[193]

J. Rieusset, J. Fauconnier, M. Paillard, et al., “Disruption of Calcium Transfer From ER to Mitochondria Links Alterations of Mitochondria-Associated ER Membrane Integrity to Hepatic Insulin Resistance,” Diabetologia 59, no. 3 (2016): 614-623.

[194]

X. Li, F. Gou, J. Zhu, et al., “Deoxynivalenol Induced Intestinal Barrier Injury, Mitochondrial Dysfunction and Calcium Overload by Inositol 1,4,5-Triphosphate Receptors (IP3Rs)-Mitochondrial Calcium Uniporter (MCU) Calcium Axis,” Science of the Total Environment 913 (2024): 169729.

[195]

Z. Li, B. Wang, L. Tian, B. Zheng, X. Zhao, and R. Liu, “Methane-Rich Saline Suppresses ER-Mitochondria Contact and Activation of the NLRP3 Inflammasome by Regulating the PERK Signaling Pathway to Ameliorate Intestinal Ischemia‒Reperfusion Injury,” Inflammation 47, no. 1 (2024): 376-389.

[196]

S. Liu, S. Han, C. Wang, et al., “MAPK1 Mediates MAM Disruption and Mitochondrial Dysfunction in Diabetic Kidney Disease via the PACS-2-Dependent Mechanism,” International Journal of Biological Sciences 20, no. 2 (2024): 569-584.

[197]

X. Wei, X. Wei, Z. Lu, et al., “Activation of TRPV1 Channel Antagonizes Diabetic Nephropathy Through Inhibiting Endoplasmic Reticulum-Mitochondria Contact in Podocytes,” Metabolism 105 (2020): 154182.

[198]

Y. Xie, E. Jing, and H. Cai, et al., “Reticulon-1A Mediates Diabetic Kidney Disease Progression Through Endoplasmic Reticulum-Mitochondrial Contacts in Tubular Epithelial Cells,” Kidney International 102, no. 2 (2022): 293-306.

[199]

Y. Fan, W. Xiao, and K. Lee, et al., “Inhibition of Reticulon-1A-Mediated Endoplasmic Reticulum Stress in Early AKI Attenuates Renal Fibrosis Development,” Journal of the American Society of Nephrology 28, no. 7 (2017): 2007.

[200]

Human reproductive system | Definition, Diagram & Facts | Britannica.

[201]

X. Wang, Y. Wen, J. Dong, C. Cao, and S. Yuan, “Systematic in-Depth Proteomic Analysis of Mitochondria-Associated Endoplasmic Reticulum Membranes in Mouse and Human Testes,” Proteomics 18, no. 14 (2018): 1700478.

[202]

D. Latino, M. Venditti, S. Falvo, et al., “Steroidogenesis Upregulation Through Mitochondria-Associated Endoplasmic Reticulum Membranes and Mitochondrial Dynamics in Rat Testes: The Role of D-Aspartate,” Cells 13, no. 6 (2024): 523.

[203]

Q. Guo, T. Deng, Y. Du, et al., “Impact of DEHP on Mitochondria-Associated Endoplasmic Reticulum Membranes and Reproductive Toxicity in Ovary,” Ecotoxicology and Environmental Safety 282 (2024): 116679.

[204]

Q. Wang, L. Li, X. Gao, et al., “Targeting GRP75 With a Chlorpromazine Derivative Inhibits Endometrial Cancer Progression Through GRP75-IP3R-Ca2+-AMPK Axis,” Advanced Science 11, no. 15 (2024): 2304203.

[205]

D. Ponnalagu, S. Hamilton, S. Sanghvi, et al., “CLIC4 Localizes to Mitochondrial-Associated Membranes and Mediates Cardioprotection,” Science Advances 8, no. 42 (2022): eabo1244.

[206]

H. Xu, W. Yu, M. Sun, et al., “Syntaxin17 Contributes to Obesity Cardiomyopathy Through Promoting Mitochondrial Ca2+ Overload in a Parkin-MCUb-Dependent Manner,” Metabolism 143 (2023): 155551.

[207]

P. Zhang, X. Yan, X. Zhang, et al., “TMEM215 Prevents Endothelial Cell Apoptosis in Vessel Regression by Blunting BIK-Regulated ER-to-Mitochondrial Ca Influx,” Circulation Research 133, no. 9 (2023): 739-757.

[208]

L. A. Kirshenbaum, R. Dhingra, R. Bravo-Sagua, and S. Lavandero, “DIAPH1-MFN2 interaction Decreases the Endoplasmic Reticulum-Mitochondrial Distance and Promotes Cardiac Injury Following Myocardial Ischemia,” Nature Communications 15, no. 1 (2024): 1469.

[209]

W. He, Z. Sun, G. Tong, et al., “FUNDC1 alleviates Doxorubicin-Induced Cardiotoxicity by Restoring Mitochondrial-Endoplasmic Reticulum Contacts and Blocked Autophagic Flux,” Theranostics 14, no. 9 (2024): 3719-3738.

[210]

C. Ma, D. Liu, H. Hao, and X. Wu, “Identification of the DPP-IV Inhibitory Peptides From Donkey Blood and Regulatory Effect on the Gut Microbiota of Type 2 Diabetic Mice,” Foods 11, no. 14 (2022): 2148.

[211]

J. Song, N. Li, R. Hu, et al., “Effects of PPARD Gene Variants on the Therapeutic Responses to Exenatide in chinese Patients With Type 2 Diabetes Mellitus,” Frontiers in Endocrinology 13 (2022): 949990.

[212]

J. Shu, J. Gambardella, D. Sorriento, and G. Santulli, “Mechanistic Role of IP3R Calcium Release Channel in Pancreatic Beta-Cell Function,” Diabetes 67S1 (2018): 313-315.

[213]

S. Tiwary, A. Nandwani, R. Khan, and M. Datta, “GRP75 Mediates Endoplasmic Reticulum-Mitochondria Coupling During Palmitate-Induced Pancreatic β-Cell Apoptosis,” Journal of Biological Chemistry 297, no. 6 (2021): 101368.

[214]

H. Kang, Q. Hu, Y. Yang, et al., “Urolithin A's Role in Alleviating Severe Acute Pancreatitis via Endoplasmic Reticulum-Mitochondrial Calcium Channel Modulation,” ACS Nano 18, no. 21 (2024): 13885-13898.

[215]

A. Nandwani, S. Rathore, and M. Datta, “LncRNA H19 Inhibition Impairs Endoplasmic Reticulum-Mitochondria Contact in Hepatic Cells and Augments Gluconeogenesis by Increasing VDAC1 Levels,” Redox Biology 69 (2024): 102989.

[216]

Services D of H& H. Locomotor System.

[217]

M. Viprey, H. Trang, M. Pomedio, et al., “Early Onset of Sleep-Disordered Breathing in Two Children with SEPN1-Related Myopathies,” Journal of Clinical Sleep Medicine 13, no. 09: 1105-1108.

[218]

A. Filipe, A. Chernorudskiy, S. Arbogast, et al., “Defective Endoplasmic Reticulum-Mitochondria Contacts and Bioenergetics in SEPN1-Related Myopathy,” Cell Death and Differentiation 28, no. 1 (2021): 123-138.

[219]

D. Grepper, C. Tabasso, N. Zanou, et al., “BCL2L13 at Endoplasmic Reticulum-Mitochondria Contact Sites Regulates Calcium Homeostasis to Maintain Skeletal Muscle Function,” Iscience 27, no. 8 (2024): 110510.

[220]

B. Zheng, X. Zhang, X. Kong, et al., “S1P Regulates Intervertebral Disc Aging by Mediating Endoplasmic Reticulum-Mitochondrial Calcium Ion Homeostasis,” JCI Insight 9, no. 21 (2024): e177789.

[221]

Y. Song, W. Geng, D. Zhu, et al., “SYNJ2BP Ameliorates Intervertebral Disc Degeneration by Facilitating Mitochondria-Associated Endoplasmic Reticulum Membrane Formation and Mitochondrial Zn2+ Homeostasis,” Free Radical Biology and Medicine 212 (2024): 220-233.

[222]

C. T. Ekanger, F. Zhou, D. Bohan, et al., “Human Organotypic Airway and Lung Organoid Cells of Bronchiolar and Alveolar Differentiation Are Permissive to Infection by Influenza and SARS-CoV-2 Respiratory Virus,” Frontiers in Cellular and Infection Microbiology 12 (2022): 841447.

[223]

P. Xiao, S. Wu, Z. Wang, G. Shen, and X. Shi, “Biotoxicity of Paraquat to Lung Cells Mediated by Endoplasmic Reticulum-Mitochondria Interaction,” Journal of Molecular Histology 55, no. 6 (2024): 1063-1077.

[224]

K. N. Yu, S. H. Chang, S. J. Park, et al., “Titanium Dioxide Nanoparticles Induce Endoplasmic Reticulum Stress-Mediated Autophagic Cell Death via Mitochondria-Associated Endoplasmic Reticulum Membrane Disruption in Normal Lung Cells,” PLoS ONE 10, no. 6 (2015): e0131208.

[225]

G. An, J. Park, J. Song, T. Hong, G. Song, and W. Lim, “Relevance of the Endoplasmic Reticulum-Mitochondria Axis in Cancer Diagnosis and Therapy,” Experimental & Molecular Medicine 56, no. 1 (2024): 40-50.

[226]

G. R. Monteith, N. Prevarskaya, and S. J. Roberts-Thomson, “The Calcium-Cancer Signalling Nexus,” Nature Reviews Cancer 17, no. 6 (2017): 373-380.

[227]

S. Kuchay, C. Giorgi, D. Simoneschi, et al., “PTEN Counteracts FBXL2 to Promote IP3R3- and Ca2+-Mediated Apoptosis Limiting Tumour Growth,” Nature 546, no. 7659 (2017): 554-558.

[228]

P. Pinton, C. Giorgi, R. Siviero, E. Zecchini, and R. Rizzuto, “Calcium and Apoptosis: ER-Mitochondria Ca2+ Transfer in the Control of Apoptosis,” Oncogene 27, no. 50 (2008): 6407-6418.

[229]

L. Salmena, A. Carracedo, and P. P. Pandolfi, “Tenets of PTEN Tumor Suppression,” Cell 133, no. 3 (2008): 403-414.

[230]

N. Arbel and V. Shoshan-Barmatz, “Voltage-Dependent Anion Channel 1-Based Peptides Interact With Bcl-2 to Prevent Antiapoptotic Activity *,” Journal of Biological Chemistry 285, no. 9 (2010): 6053-6062.

[231]

A. Mound, L. Rodat-Despoix, S. Bougarn, H. Ouadid-Ahidouch, and F. Matifat, “Molecular Interaction and Functional Coupling Between Type 3 Inositol 1,4,5-Trisphosphate Receptor and BKCa Channel Stimulate Breast Cancer Cell Proliferation,” European Journal of Cancer 49, no. 17 (2013): 3738-3751.

[232]

C. Wang, X. Dai, S. Wu, et al., “FUNDC1-Dependent Mitochondria-Associated Endoplasmic Reticulum Membranes Are Involved in Angiogenesis and Neoangiogenesis,” Nature Communications 12, no. 1 (2021): 2616.

[233]

Y. Chen, P. Li, X. Chen, et al., “Endoplasmic Reticulum-Mitochondrial Calcium Transport Contributes to Soft Extracellular Matrix-Triggered Mitochondrial Dynamics and Mitophagy in Breast Carcinoma Cells,” Acta Biomaterialia 169 (2023): 192-208.

[234]

M. L. Sassano, B. Felipe-Abrio, and P. Agostinis, “ER-Mitochondria Contact Sites; a Multifaceted Factory for Ca2+ Signaling and Lipid Transport,” Frontiers in Cell and Developmental Biology 10 (2022): 988014.

[235]

C. Potting, T. Tatsuta, T. König, et al., “TRIAP1/PRELI Complexes Prevent Apoptosis by Mediating Intramitochondrial Transport of Phosphatidic Acid,” Cell Metabolism 18, no. 2 (2013): 287-295.

[236]

J. Çoku, D. M. Booth, J. Skoda, et al., “Reduced ER-Mitochondria Connectivity Promotes Neuroblastoma Multidrug Resistance,” Embo Journal 41, no. 8 (2022): e108272.

[237]

W. L. Carroll and N. A. Evensen, “Targeting a Major Hub of Cell Fate Decisions - the Mitochondrial-Associated Membrane,” Haematologica 104, no. 3 (2019): 419-421.

[238]

H. J. Lee, Y. H. Jung, G. E. Choi, et al., “Urolithin A Suppresses High Glucose-Induced Neuronal Amyloidogenesis by Modulating TGM2-Dependent ER-Mitochondria Contacts and Calcium Homeostasis,” Cell Death and Differentiation 28, no. 1 (2021): 184-202.

[239]

L. T. Chen, T. T. Xu, Y. Q. Qiu, et al., “Homocysteine Induced a Calcium-Mediated Disruption of Mitochondrial Function and Dynamics in Endothelial Cells,” Journal of Biochemical and Molecular Toxicology 35, no. 5 (2021): e22737.

[240]

X. Li, Q. Li, X. Jiang, et al., “Inhibition of SGLT2 Protects Podocytes in Diabetic Kidney Disease by Rebalancing Mitochondria-Associated Endoplasmic Reticulum Membranes,” Cell Communication and Signaling 22 (2024): 534.

[241]

M. Cherubini, L. Lopez-Molina, and S. Gines, “Mitochondrial Fission in Huntington's Disease Mouse Striatum Disrupts ER-Mitochondria Contacts Leading to Disturbances in Ca2+ Efflux and Reactive Oxygen Species (ROS) Homeostasis,” Neurobiology of Disease 136 (2020): 104741.

[242]

S. Sbiera, E. Leich, G. Liebisch, et al., “Mitotane Inhibits Sterol-O-Acyl Transferase 1 Triggering Lipid-Mediated Endoplasmic Reticulum Stress and Apoptosis in Adrenocortical Carcinoma Cells,” Endocrinology 156, no. 11 (2015): 3895-3908.

[243]

Z. Liu, J. Ma, X. Zuo, et al., “IP3R-Dependent Mitochondrial Dysfunction Mediates C5b-9-Induced Ferroptosis in Trichloroethylene-Caused Immune Kidney Injury,” Frontiers in Immunology 14 (2023): 1106693.

[244]

N. Oleinik, J. Kim, B. M. Roth, et al., “Mitochondrial Protein Import Is Regulated by p17/PERMIT to Mediate Lipid Metabolism and Cellular Stress,” Science Advances 5, no. 9 (2019): eaax1978.

[245]

J. H. Lim, H. M. Kang, D. H. Kim, et al., “ARL6IP1 gene Delivery Reduces Neuroinflammation and Neurodegenerative Pathology in Hereditary Spastic Paraplegia Model,” Journal of Experimental Medicine 221, no. 1 (2023): e20230367.

[246]

X. Li, J. Y. Yang, W. Z. Hu, et al., “Mitochondria-Associated Membranes Contribution to Exercise-Mediated Alleviation of Hepatic Insulin Resistance: Contrasting High-Intensity Interval Training With Moderate-Intensity Continuous Training in a High-Fat Diet Mouse Model,” Journal of Diabetes 16, no. 4 (2024): e13540.

[247]

Y. Sun and S. Ding, “ER-Mitochondria Contacts and Insulin Resistance Modulation Through Exercise Intervention,” International Journal of Molecular Sciences 21, no. 24 (2020): 9587.

[248]

D. F. Maluf, B. H. de Oliveira, and E. Lalli, “Therapy of Adrenocortical Cancer: Present and Future,” American Journal of Cancer Research 1, no. 2 (2010): 222-232.

[249]

T. C. Harned, R. V. Stan, Z. Cao, et al., “Acute ACAT1/SOAT1 Blockade Increases MAM Cholesterol and Strengthens ER-Mitochondria Connectivity,” International Journal of Molecular Sciences 24, no. 6 (2023): 5525.

[250]

F. Koczian, O. Nagło, J. Vomacka, et al., “Targeting the Endoplasmic Reticulum-Mitochondria Interface Sensitizes Leukemia Cells to Cytostatics,” Haematologica 104, no. 3 (2019): 546-555.

[251]

E. L. Wilson, Y. Yu, N. S. Leal, et al., “Genome-Wide CRISPR/Cas9 Screen Shows That Loss of GET4 Increases Mitochondria-Endoplasmic Reticulum Contact Sites and Is Neuroprotective,” Cell Death & Disease 15, no. 3 (2024): 1-16.

[252]

S. Chen, S. Che, S. Li, J. Wan, and Z. Ruan, “High-Fat Diet Exacerbated Decabromodiphenyl Ether-Induced Hepatocyte Apoptosis via Intensifying the Transfer of Ca2+ From Endoplasmic Reticulum to Mitochondria,” Environmental Pollution 292 (2022): 118297.

[253]

A. Beaulant, M. Dia, B. Pillot, et al., “Endoplasmic Reticulum-Mitochondria Miscommunication Is an Early and Causal Trigger of Hepatic Insulin Resistance and Steatosis,” Journal of Hepatology 77, no. 3 (2022): 710-722.

[254]

J. Tao, H. Chen, Y. J. Wang, et al., “Ketogenic Diet Suppressed T-Regulatory Cells and Promoted Cardiac Fibrosis via Reducing Mitochondria-Associated Membranes and Inhibiting Mitochondrial Function,” Oxidative Medicine and Cellular Longevity 2021, no. 1 (2021): 5512322.

[255]

M. Lepretti, S. Martucciello, M. A. Burgos Aceves, R. Putti, and L. Lionetti, “Omega-3 Fatty Acids and Insulin Resistance: Focus on the Regulation of Mitochondria and Endoplasmic Reticulum Stress,” Nutrients 10, no. 3 (2018): 350.

[256]

A. R. Krysler, C. R. Cromwell, T. Tu, J. Jovel, and B. P. Hubbard, “Guide RNAs Containing Universal Bases Enable Cas9/Cas12a Recognition of Polymorphic Sequences,” Nature Communications 13 (2022): 1617.

[257]

L. Xu, Y. S. Lau, Y. Gao, H. Li, and R. Han, “Life-Long AAV-Mediated CRISPR Genome Editing in Dystrophic Heart Improves Cardiomyopathy Without Causing Serious Lesions in Mdx Mice,” Molecular Therapy 27, no. 8 (2019): 1407-1414.

[258]

P. Morcillo, K. Kabra, K. Velasco, et al., “Aberrant ER-Mitochondria Communication Is a Common Pathomechanism in Mitochondrial Disease,” Cell Death & Disease 15, no. 6 (2024): 1-17.

[259]

A. Markovinovic, S. M. Martín-Guerrero, G. M. Mórotz, et al., “Stimulating VAPB-PTPIP51 ER-Mitochondria Tethering Corrects FTD/ALS Mutant TDP43 Linked Ca2+ and Synaptic Defects,” Acta Neuropathologica Communications 12, no. 1 (2024): 32.

[260]

S. Casellas-Díaz, R. Larramona-Arcas, G. Riqué-Pujol, et al., “Mfn2 localization in the ER Is Necessary for Its Bioenergetic Function and Neuritic Development,” Embo Reports 22, no. 9 (2021): e51954.

[261]

P. Mishra, A. Sivakumar, A. Johnson, et al., “Gene Editing Improves Endoplasmic Reticulum-Mitochondrial Contacts and Unfolded Protein Response in Friedreich's Ataxia iPSC-Derived Neurons,” Frontiers in Pharmacology 15 (2024): 1323491.

[262]

J. R. Lim, C. W. Chae, J. Y. Park, et al., “Ethanol-Induced Ceramide Production Causes Neuronal Apoptosis by Increasing MCL-1S-Mediated ER-Mitochondria Contacts,” Neurobiology of Disease 177 (2023): 106009.

[263]

Y. Shi, Z. Luo, and J. You, “Subcellular Delivery of Lipid Nanoparticles to Endoplasmic Reticulum and Mitochondria,” WIREs Nanomedicine Nanobiotechnology 14, no. 5 (2022): e1803.

[264]

B. A. Barad, M. Medina, D. Fuentes, R. L. Wiseman, and D. A. Grotjahn, “Quantifying Organellar Ultrastructure in Cryo-Electron Tomography Using a Surface Morphometrics Pipeline,” Journal of Cell Biology 222, no. 4 (2023): e202204093.

[265]

A. Goujon, A. Colom, K. Straková, et al., “Mechanosensitive Fluorescent Probes to Image Membrane Tension in Mitochondria, Endoplasmic Reticulum, and Lysosomes,” Journal of the American Chemical Society 141, no. 8 (2019): 3380-3384.

[266]

J. C. Zellmer, M. B. Tarantino, M. Kim, et al., “Stabilization of Mitochondria-Associated Endoplasmic Reticulum Membranes Regulates Aβ Generation in a Three-Dimensional Neural Model of Alzheimer's Disease,” Alzheimers Dement 21, no. 2 (2025): e14417.

[267]

A. Lee, G. Sung, S. Shin, et al., “OrthoID: Profiling Dynamic Proteomes Through Time and Space Using Mutually Orthogonal Chemical Tools,” Nature Communications 15, no. 1 (2024): 1851.

[268]

M. R. Wozny, A. Di Luca, D. R. Morado, et al., “In Situ Architecture of the ER-Mitochondria Encounter Structure,” Nature 618, no. 7963 (2023): 188-192.

[269]

R. Chen, S. Peng, L. Zhu, et al., “Enhancing Total Optical Throughput of Microscopy With Deep Learning for Intravital Observation,” Small Methods 7, no. 9 (2023): 2300172.

[270]

J. Liu, L. Li, Y. Yang, et al., “Automatic Reconstruction of Mitochondria and Endoplasmic Reticulum in Electron Microscopy Volumes by Deep Learning,” Frontiers in Neuroscience 14 (2020): 599.

[271]

R. G. Lee, D. L. Rudler, S. A. Raven, et al., “Quantitative Subcellular Reconstruction Reveals a Lipid Mediated Inter-Organelle Biogenesis Network,” Nature Cell Biology 26, no. 1 (2024): 57-71.

[272]

F. Zhu, Z. Yang, F. Wang, et al., “4-Dimensional Observation ER-Mitochondria Interaction in Living Cells Under Nanoscopy by a Stable Pyridium Salt as Biosensor,” Sensors and Actuators B: Chemical 305 (2020): 127492.

[273]

M. Damenti, G. Coceano, F. Pennacchietti, A. Bodén, and I. Testa, “STED and Parallelized RESOLFT Optical Nanoscopy of the Tubular Endoplasmic Reticulum and Its Mitochondrial Contacts in Neuronal Cells,” Neurobiology of Disease 155 (2021): 105361.

[274]

S. Chen, J. Wang, D. Guan, et al., “Near-Infrared Spontaneously Blinking Fluorophores for Live Cell Super-Resolution Imaging With Minimized Phototoxicity,” Analytical Chemistry 96, no. 26 (2024): 10860-10869.

[275]

K. F. Cho, T. C. Branon, S. Rajeev, et al., “Split-TurboID Enables Contact-Dependent Proximity Labeling in Cells,” Pnas 117, no. 22 (2020): 12143-12154.

[276]

K. F. Cho, T. C. Branon, N. D. Udeshi, S. A. Myers, S. A. Carr, and A. Y. Ting, “Proximity Labeling in Mammalian Cells With TurboID and Split-TurboID,” Nature Protocols 15, no. 12 (2020): 3971-3999.

[277]

X. Lu, Y. Gong, W. Hu, et al., “Ultrastructural and Proteomic Profiling of Mitochondria-Associated Endoplasmic Reticulum Membranes Reveal Aging Signatures in Striated Muscle,” Cell Death & Disease 13, no. 4 (2022): 1-15.

[278]

A. Ruiz, T. Quintela-López, M. V. Sánchez-Gómez, A. Gaminde-Blasco, E. Alberdi, and C. Matute, “Mitochondrial Division Inhibitor 1 Disrupts Oligodendrocyte Ca2+ Homeostasis and Mitochondrial Function,” Glia 68, no. 9 (2020): 1743-1756.

[279]

F. Y. Shen, M. M. Harrington, L. A. Walker, H. P. J. Cheng, E. S. Boyden, and D. Cai, “Light Microscopy Based Approach for Mapping Connectivity With Molecular Specificity,” Nature Communications 11 (2020): 4632.

[280]

M. E. Matlashov, D. M. Shcherbakova, J. Alvelid, et al., “A Set of Monomeric near-Infrared Fluorescent Proteins for Multicolor Imaging Across Scales,” Nature Communications 11 (2020): 239.

[281]

L. Barazzuol, F. Giamogante, and T. Calì, “Mitochondria Associated Membranes (MAMs): Architecture and Physiopathological Role,” Cell Calcium 94 (2021): 102343.

[282]

J. Rieusset, “The Role of Endoplasmic Reticulum-Mitochondria Contact Sites in the Control of Glucose Homeostasis: An Update,” Cell Death & Disease 9, no. 3 (2018): 1-12.

[283]

R. M. Monaghan, “The Fundamental Role of Mitochondria-Endoplasmic Reticulum Contacts in Ageing and Declining Healthspan,” Open Biology 15, no. 2 (2025): 240287.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

29

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/