Advancing Design Strategy of PROTACs for Cancer Therapy

Hang Luo , Yuan Tian , Razack Abdullah , Baoting Zhang , Yuan Ma , Ge Zhang

MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70258

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70258 DOI: 10.1002/mco2.70258
REVIEW

Advancing Design Strategy of PROTACs for Cancer Therapy

Author information +
History +
PDF

Abstract

Proteolysis targeting chimeras (PROTACs) have emerged as a groundbreaking class of anticancer therapeutics. These bifunctional molecules harness the endogenous ubiquitin–proteasome system to facilitate the degradation of targeted proteins of interest (POIs). Notably, the clinical translation of PROTACs has gained substantial momentum, with many PROTAC candidates targeting various cancers currently undergoing clinical trials (Phase I–III). However, the rational design of high-efficacy PROTAC compounds remains a significant challenge. In this review, we presented a comprehensive overview of POI ligands, E3 ligands, and their interconnected linkers in PROTAC design, including their generation, structural optimization, and contribution to degradation efficiency and selectivity. Particularly, we analyzed the distinct preferences of various types of POI ligands (small molecule, nucleic acid, and peptide) toward specific targets. Furthermore, we emphasized the significant role of artificial intelligence technology in PROTAC design, including POI/E3 ligands discovery and linkers generation or optimization. We also summarized the applications and challenges of PROTACs in cancer therapy. Finally, we discussed the future development of PROTAC by combining multidisciplinary technologies and novel modalities for cancer therapy. Overall, this review aims to provide valuable insights for advancing PROTAC design strategies for cancer therapy.

Keywords

artificial intelligence / cancer therapy / E3 ligand / linker design / POI ligand / proteolysis targeting chimeras (PROTACs)

Cite this article

Download citation ▾
Hang Luo, Yuan Tian, Razack Abdullah, Baoting Zhang, Yuan Ma, Ge Zhang. Advancing Design Strategy of PROTACs for Cancer Therapy. MedComm, 2025, 6(7): e70258 DOI:10.1002/mco2.70258

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. M. Sakamoto, K. B. Kim, A. Kumagai, F. Mercurio, C. M. Crews, and R. J. Deshaies, “Protacs: Chimeric Molecules That Target Proteins to the Skp1-Cullin-F Box Complex for Ubiquitination and Degradation,” PNAS 98, no. 15 (2001): 8554-8559.

[2]

M. S. Gadd, A. Testa, X. Lucas, et al., “Structural Basis of PROTAC Cooperative Recognition for Selective Protein Degradation,” Nature Chemical Biology 13, no. 5 (2017): 514-521.

[3]

M. H. Glickman and A. Ciechanover, “The Ubiquitin-proteasome Proteolytic Pathway: Destruction for the Sake of Construction,” Physiological Reviews 82, no. 2 (2002): 373-428.

[4]

B. Ma, Y. Fan, D. Zhang, et al., “De Novo Design of an Androgen Receptor DNA Binding Domain-targeted Peptide PROTAC for Prostate Cancer Therapy,” Advancement of Science 9, no. 28 (2022): 2201859.

[5]

S. Lee, H. R. Kim, Y. Woo, et al., “UBX-390: A Novel Androgen Receptor Degrader for Therapeutic Intervention in Prostate Cancer,” Advancement of Science 11, no. 33 (2024): 2400398.

[6]

S. M. Gough, J. J. Flanagan, J. Teh, et al., “Oral Estrogen Receptor PROTAC Vepdegestrant (ARV-471) Is Highly Efficacious as Monotherapy and in Combination With CDK4/6 or PI3K/mTOR Pathway Inhibitors in Preclinical ER+ Breast Cancer Models,” Clinical Cancer Research 30, no. 16 (2024): 3549-3563.

[7]

T. H. Pillow, P. Adhikari, R. A. Blake, et al., “Antibody Conjugation of a Chimeric BET Degrader Enables in Vivo Activity,” Chemmedchem 15, no. 1 (2020): 17-25.

[8]

K. Raina, J. Lu, Y. Qian, et al., “PROTAC-induced BET Protein Degradation as a Therapy for Castration-resistant Prostate Cancer,” PNAS 113, no. 26 (2016): 7124-7129.

[9]

W. Fiskus, C. P. Mill, D. Perera, et al., “BET Proteolysis Targeted Chimera-based Therapy of Novel Models of Richter Transformation-diffuse Large B-cell Lymphoma,” Leukemia 35, no. 9 (2021): 2621-2634.

[10]

A. Zorba, C. Nguyen, Y. Xu, et al., “Delineating the Role of Cooperativity in the Design of Potent PROTACs for BTK,” PNAS U S A 115, no. 31 (2018): E7285-E7292.

[11]

C. P. Tinworth, H. Lithgow, L. Dittus, et al., “PROTAC-Mediated Degradation of Bruton's Tyrosine Kinase Is Inhibited by Covalent Binding,” Acs Chemical Biology 14, no. 3 (2019): 342-347.

[12]

Y. Sun, N. Ding, Y. Song, et al., “Degradation of Bruton's Tyrosine Kinase Mutants by PROTACs for Potential Treatment of Ibrutinib-resistant non-Hodgkin Lymphomas,” Leukemia 33, no. 8 (2019): 2105-2110.

[13]

A. D. Buhimschi, H. A. Armstrong, M. Toure, et al., “Targeting the C481S Ibrutinib-Resistance Mutation in Bruton's Tyrosine Kinase Using PROTAC-Mediated Degradation,” Biochemistry 57, no. 26 (2018): 3564-3575.

[14]

K. Shimokawa, N. Shibata, T. Sameshima, et al., “Targeting the Allosteric Site of Oncoprotein BCR-ABL as an Alternative Strategy for Effective Target Protein Degradation,” Acs Medicinal Chemistry Letters 8, no. 10 (2017): 1042-1047.

[15]

H. Zhou, L. Bai, R. Xu, et al., “Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein,” Journal of Medicinal Chemistry 62, no. 24 (2019): 11280-11300.

[16]

C. E. Powell, Y. Gao, L. Tan, et al., “Chemically Induced Degradation of Anaplastic Lymphoma Kinase (ALK),” Journal of Medicinal Chemistry 61, no. 9 (2018): 4249-4255.

[17]

M. J. Bond, L. Chu, D. A. Nalawansha, K. Li, and C. M. Crews, “Targeted Degradation of Oncogenic KRAS(G12C) by VHL-Recruiting PROTACs,” ACS Cent Sci 6, no. 8 (2020): 1367-1375.

[18]

P. Jänne, I. I. Rybkin, A. Spira, et al., “KRYSTAL-1: Activity and Safety of adagrasib (MRTX849) in Advanced/Metastatic Non-small-cell Lung Cancer (NSCLC) Harboring KRAS G12C Mutation,” European Journal of Cancer 138 (2020): S1-S2.

[19]

C. M. Robb, J. I. Contreras, S. Kour, et al., “Chemically Induced Degradation of CDK9 by a Proteolysis Targeting Chimera (PROTAC),” Chemical Communications (Cambridge, England) 53, no. 54 (2017): 7577-7580.

[20]

M. Wei, R. Zhao, Y. Cao, et al., “First Orally Bioavailable Prodrug of Proteolysis Targeting Chimera (PROTAC) Degrades Cyclin-dependent Kinases 2/4/6 in Vivo,” European Journal of Medicinal Chemistry 209 (2021): 112903.

[21]

V. Kumarasamy, Z. Gao, B. Zhao, et al., “PROTAC-mediated CDK Degradation Differentially Impacts Cancer Cell Cycles due to Heterogeneity in Kinase Dependencies,” British Journal of Cancer 129, no. 8 (2023): 1238-1250.

[22]

G. Weng, C. Shen, D. Cao, et al., “PROTAC-DB: An Online Database of PROTACs,” Nucleic Acids Res. 49, no. D1 (2021): D1381-d1387.

[23]

G. Weng, X. Cai, D. Cao, et al., “PROTAC-DB 2.0: An Updated Database of PROTACs,” Nucleic Acids Res. 51, no. D1 (2023): D1367-d1372.

[24]

J. Ge, S. Li, G. Weng, et al., “PROTAC-DB 3.0: An Updated Database of PROTACs With Extended Pharmacokinetic Parameters,” Nucleic Acids Res. 53, no. D1 (2025): D1510-d1515.

[25]

H. Xie, J. Liu, D. M. Alem Glison, and J. B. Fleming, “The Clinical Advances of Proteolysis Targeting Chimeras in Oncology,” Explor Target Antitumor Ther 2, no. 6 (2021): 511-521.

[26]

D. Chirnomas, K. R. Hornberger, and C. M. Crews, “Protein Degraders Enter the Clinic—a New Approach to Cancer Therapy,” Nature reviews Clinical oncology 20, no. 4 (2023): 265-278.

[27]

S. L. Paiva and C. M. Crews, “Targeted Protein Degradation: Elements of PROTAC Design,” Current Opinion in Chemical Biology 50 (2019): 111-119.

[28]

C. Cao, M. He, L. Wang, Y. He, and Y. Rao, “Chemistries of Bifunctional PROTAC Degraders,” Chem. Soc. Rev. 51, no. 16 (2022): 7066-7114.

[29]

D. P. Bondeson, B. E. Smith, G. M. Burslem, et al., “Lessons in PROTAC Design From Selective Degradation With a Promiscuous Warhead,” Cell Chemical Biology 25, no. 1 (2018): 78-87.e75.

[30]

J. Ge, C. Y. Hsieh, M. Fang, H. Sun, and T. Hou, “Development of PROTACs Using Computational Approaches,” Trends in Pharmacological Sciences 45, no. 12 (2024): 1162-1174.

[31]

B. Ma, D. Liu, Z. Wang, et al., “A Top-Down Design Approach for Generating a Peptide PROTAC Drug Targeting Androgen Receptor for Androgenetic Alopecia Therapy,” Journal of Medicinal Chemistry 67, no. 12 (2024): 10336-10349.

[32]

F. Li, Q. Hu, X. Zhang, et al., “DeepPROTACs Is a Deep Learning-based Targeted Degradation Predictor for PROTACs,” Nature Communications 13, no. 1 (2022): 7133.

[33]

M. Duran-Frigola, M. Cigler, and G. E. Winter, “Advancing Targeted Protein Degradation via Multiomics Profiling and Artificial Intelligence,” Journal of the American Chemical Society 145, no. 5 (2023): 2711-2732.

[34]

X. Wang, Z. L. Qin, N. Li, et al., “Annual Review of PROTAC Degraders as Anticancer Agents in 2022,” European Journal of Medicinal Chemistry 267 (2024): 116166.

[35]

Y. Zou, D. Ma, and Y. Wang, “The PROTAC Technology in Drug Development,” Cell Biochemistry and Function 37, no. 1 (2019): 21-30.

[36]

X. Han and Y. Sun, “PROTACs: A Novel Strategy for Cancer Drug Discovery and Development,” MedComm 4, no. 3 (2023): e290.

[37]

A. T. S. Vicente and J. A. R. Salvador, “PROteolysis-Targeting Chimeras (PROTACs) in Leukemia: Overview and Future Perspectives,” MedComm 5, no. 6 (2024): e575.

[38]

K. G. Coleman and C. M. Crews, “Proteolysis-targeting Chimeras: Harnessing the Ubiquitin-proteasome System to Induce Degradation of Specific Target Proteins,” Annu Rev Cancer Biol 2, no. 1 (2018): 41-58.

[39]

X. Liang, H. Ren, F. Han, R. Liang, J. Zhao, and H. Liu, “The New Direction of Drug Development: Degradation of Undruggable Targets Through Targeting Chimera Technology,” Medicinal Research Reviews 44, no. 2 (2024): 632-685.

[40]

T. Sobierajski, J. Małolepsza, M. Pichlak, E. Gendaszewska-Darmach, and K. M. Błażewska, “The Impact of E3 Ligase Choice on PROTAC Effectiveness in Protein Kinase Degradation,” Drug Discov Today 29, no. 7 (2024): 104032.

[41]

W. Farnaby, M. Koegl, M. J. Roy, et al., “BAF Complex Vulnerabilities in Cancer Demonstrated via Structure-based PROTAC Design,” Nature Chemical Biology 15, no. 7 (2019): 672-680.

[42]

C.-w Chung, H. Dai, E. Fernandez, et al., “Structural Insights Into PROTAC-mediated Degradation of Bcl-xL,” Acs Chemical Biology 15, no. 9 (2020): 2316-2323.

[43]

J. Schiemer, R. Horst, Y. Meng, et al., “Snapshots and Ensembles of BTK and cIAP1 Protein Degrader Ternary Complexes,” Nature Chemical Biology 17, no. 2 (2021): 152-160.

[44]

X. Yu, D. Li, J. Kottur, et al., “A Selective WDR5 Degrader Inhibits Acute Myeloid Leukemia in Patient-derived Mouse Models,” Science Translational Medicine 13, no. 613 (2021): eabj1578.

[45]

C. Kofink, N. Trainor, B. Mair, et al., “A Selective and Orally Bioavailable VHL-recruiting PROTAC Achieves SMARCA2 Degradation in Vivo,” Nature Communications 13, no. 1 (2022): 5969.

[46]

A. Testa, S. J. Hughes, X. Lucas, J. E. Wright, and A. Ciulli, “Structure-based Design of a Macrocyclic PROTAC,” Angew Chem Int Edit 59, no. 4 (2020): 1727-1734.

[47]

M. J. Roy, S. Winkler, S. J. Hughes, et al., “SPR-measured Dissociation Kinetics of PROTAC Ternary Complexes Influence Target Degradation Rate,” Acs Chemical Biology 14, no. 3 (2019): 361-368.

[48]

R. R. Stein, M. Fouché, J. D. Kearns, and H.-J. Roth, “A Model-informed Method to Retrieve Intrinsic From Apparent Cooperativity and Project Cellular Target Occupancy for Ternary Complex-forming Compounds,” RSC Chem Biol 4, no. 7 (2023): 512-523.

[49]

G. E. Winter, A. Mayer, D. L. Buckley, et al., “BET Bromodomain Proteins Function as Master Transcription Elongation Factors Independent of CDK9 Recruitment,” Molecular Cell 67, no. 1 (2017): 5-18. e19.

[50]

A. D. Cotton, D. P. Nguyen, J. A. Gramespacher, I. B. Seiple, and J. A. Wells, “Development of Antibody-based PROTACs for the Degradation of the Cell-surface Immune Checkpoint Protein PD-L1,” Journal of the American Chemical Society 143, no. 2 (2021): 593-598.

[51]

C. M. Robb, J. I. Contreras, S. Kour, et al., “Chemically Induced Degradation of CDK9 by a Proteolysis Targeting Chimera (PROTAC),” Chemical Communications 53, no. 54 (2017): 7577-7580.

[52]

C. Crowe, M. Nakasone, S. Chandler, et al., “Mechanism of Degrader-Targeted Protein Ubiquitinability,” Science Advances 10, no. 41 (2024): eado6492.

[53]

M. Tanaka, J. M. Roberts, H.-S. Seo, et al., “Design and Characterization of Bivalent BET Inhibitors,” Nature Chemical Biology 12, no. 12 (2016): 1089-1096.

[54]

A. Inoue-Yamauchi, P. S. Jeng, K. Kim, et al., “Targeting the Differential Addiction to Anti-apoptotic BCL-2 family for Cancer Therapy,” Nature Communications 8, no. 1 (2017): 16078.

[55]

A. Akinleye, Y. Chen, N. Mukhi, Y. Song, and D. Liu, “Ibrutinib and Novel BTK Inhibitors in Clinical Development,” Journal of hematology & oncology 6 (2013): 1-9.

[56]

G. E. Winter, D. L. Buckley, J. Paulk, et al., “Phthalimide Conjugation as a Strategy for in Vivo Target Protein Degradation,” Science 348, no. 6241 (2015): 1376-1381.

[57]

A. C. Lai, M. Toure, D. Hellerschmied, et al., “Modular PROTAC Design for the Degradation of Oncogenic BCR-ABL,” Angew Chem Int Edit 55, no. 2 (2016): 807-810.

[58]

G. M. Burslem, D. P. Bondeson, and C. M. Crews, “Scaffold Hopping Enables Direct Access to More Potent PROTACs With in Vivo Activity,” Chemical Communications 56, no. 50 (2020): 6890-6892.

[59]

Y. Yang, H. Gao, X. Sun, et al., “Global PROTAC Toolbox for Degrading BCR-ABL Overcomes Drug-resistant Mutants and Adverse Effects,” Journal of Medicinal Chemistry 63, no. 15 (2020): 8567-8583.

[60]

R. Gabizon, A. Shraga, P. Gehrtz, et al., “Efficient Targeted Degradation via Reversible and Irreversible Covalent PROTACs,” Journal of the American Chemical Society 142, no. 27 (2020): 11734-11742.

[61]

R. Gabizon and N. London, “The Rise of Covalent Proteolysis Targeting Chimeras,” Current Opinion in Chemical Biology 62 (2021): 24-33.

[62]

G. Xue, J. Chen, L. Liu, et al., “Protein Degradation Through Covalent Inhibitor-based PROTACs,” Chemical Communications (Cambridge, England) 56, no. 10 (2020): 1521-1524.

[63]

M. Mammen, S. K. Choi, and G. M. Whitesides, “Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors,” Angewandte Chemie (International ed in English) 37, no. 20 (1998): 2754-2794.

[64]

J. K. Nair, J. L. Willoughby, A. Chan, et al., “Multivalent N-acetylgalactosamine-conjugated siRNA Localizes in Hepatocytes and Elicits Robust RNAi-mediated Gene Silencing,” Journal of the American Chemical Society 136, no. 49 (2014): 16958-16961.

[65]

M. Florio, K. Gunasekaran, M. Stolina, et al., “A Bispecific Antibody Targeting Sclerostin and DKK-1 Promotes Bone Mass Accrual and Fracture Repair,” Nature Communications 7 (2016): 11505.

[66]

A. G. Bond, I. O. M. Muñoz, C. M. Bisbach, et al., “Leveraging Dual-Ligase Recruitment to Enhance Protein Degradation via a Heterotrivalent Proteolysis Targeting Chimera,” Journal of the American Chemical Society 146, no. 49 (2024): 33675-33711.

[67]

M. Zheng, J. Huo, X. Gu, et al., “Rational Design and Synthesis of Novel Dual PROTACs for Simultaneous Degradation of EGFR and PARP,” Journal of Medicinal Chemistry 64, no. 11 (2021): 7839-7852.

[68]

Y. Chen, Z. Xia, U. Suwal, et al., “Dual-ligand PROTACS Mediate Superior Target Protein Degradation in Vitro and Therapeutic Efficacy in Vivo,” Chemical Science 15, no. 42 (2024): 17691-17701.

[69]

J. S. Lazo and E. R. Sharlow, “Drugging Undruggable Molecular Cancer Targets,” Annual Review of Pharmacology and Toxicology 56 (2016): 23-40.

[70]

S. Gerstberger, M. Hafner, and T. Tuschl, “A Census of human RNA-binding Proteins,” Nature Reviews Genetics 15, no. 12 (2014): 829-845.

[71]

A. N. Koehler, “A Complex Task? Direct Modulation of Transcription Factors With Small Molecules,” Current Opinion in Chemical Biology 14, no. 3 (2010): 331-340.

[72]

M. Chen, P. Zhou, Y. Kong, et al., “Inducible Degradation of Oncogenic Nucleolin Using an Aptamer-Based PROTAC,” Journal of Medicinal Chemistry 66, no. 2 (2023): 1339-1348.

[73]

R. Peng, Q. Huang, L. Wang, et al., “G-Quadruplex RNA Based PROTAC Enables Targeted Degradation of RNA Binding Protein FMRP for Tumor Immunotherapy,” Angewandte Chemie (International ed in English) 63, no. 47 (2024): e202402715.

[74]

X. Xue, C. Zhang, X. Li, et al., “mRNA PROTACs: Engineering PROTACs for High-efficiency Targeted Protein Degradation,” MedComm 5, no. 2 (2024): e478.

[75]

J. Xu, X. Zhao, X. Liang, et al., “Development of miRNA-based PROTACs Targeting Lin28 for Breast Cancer Therapy,” Science Advances 10, no. 38 (2024): eadp0334.

[76]

Y. Wang, G. Yang, X. Zhang, et al., “Antitumor Effect of Anti-c-Myc Aptamer-Based PROTAC for Degradation of the c-Myc Protein,” Adv Sci (Weinh) 11, no. 26 (2024): e2309639.

[77]

X. Li, Z. Zhang, F. Gao, et al., “c-Myc-targeting PROTAC Based on a TNA-DNA Bivalent Binder for Combination Therapy of Triple-negative Breast Cancer,” Journal of the American Chemical Society 145, no. 16 (2023): 9334-9342.

[78]

Y. Liu, X. Qian, C. Ran, et al., “Aptamer-Based Targeted Protein Degradation,” ACS Nano 17, no. 7 (2023): 6150-6164.

[79]

A. Ghidini, A. Cléry, F. Halloy, F. H. T. Allain, and J. Hall, “RNA-PROTACs: Degraders of RNA-Binding Proteins,” Angewandte Chemie (International ed in English) 60, no. 6 (2021): 3163-3169.

[80]

K. T. G. Samarasinghe, S. Jaime-Figueroa, M. Burgess, et al., “Targeted Degradation of Transcription Factors by TRAFTACs: TRAnscription Factor TArgeting Chimeras,” Cell Chem Biol 28, no. 5 (2021): 648-661. e645.

[81]

K. T. G. Samarasinghe, E. An, M. A. Genuth, L. Chu, S. A. Holley, and C. M. Crews, “OligoTRAFTACs: A Generalizable Method for Transcription Factor Degradation,” RSC Chem Biol 3, no. 9 (2022): 1144-1153.

[82]

J. Shao, Y. Yan, D. Ding, et al., “Destruction of DNA-Binding Proteins by Programmable Oligonucleotide PROTAC (O'PROTAC): Effective Targeting of LEF1 and ERG,” Adv Sci (Weinh) 8, no. 20 (2021): e2102555.

[83]

O. Mendoza, A. Bourdoncle, J. B. Boulé, R. M. Brosh,, and J. L. Mergny, “G-quadruplexes and Helicases,” Nucleic Acids Res. 44, no. 5 (2016): 1989-2006.

[84]

K. M. Patil, D. Chin, H. L. Seah, Q. Shi, K. W. Lim, and A. T. Phan, “G4-PROTAC: Targeted Degradation of a G-quadruplex Binding Protein,” Chemical Communications (Cambridge, England) 57, no. 95 (2021): 12816-12819.

[85]

M. Sola, A. P. Menon, B. Moreno, et al., “Aptamers against Live Targets: Is in Vivo SELEX Finally Coming to the Edge?,” Mol Ther Nucleic Acids 21 (2020): 192-204.

[86]

P. Röthlisberger and M. Hollenstein, “Aptamer Chemistry,” Advanced Drug Delivery Reviews 134 (2018): 3-21.

[87]

G. Mayer, “The Chemical Biology of Aptamers,” Angewandte Chemie (International ed in English) 48, no. 15 (2009): 2672-2689.

[88]

S. Ni, Z. Zhuo, Y. Pan, et al., “Recent Progress in Aptamer Discoveries and Modifications for Therapeutic Applications,” ACS Appl Mater Interfaces 13, no. 8 (2021): 9500-9519.

[89]

Y. Ma, D. Xie, Z. Chen, et al., “Advancing Targeted Combination Chemotherapy in Triple Negative Breast Cancer: Nucleolin Aptamer-mediated Controlled Drug Release,” Journal of translational medicine 22, no. 1 (2024): 604.

[90]

G. Amu, G. Zhang, N. Jing, and Y. Ma, “Developing Stapled Aptamers With a Constrained Conformation for Osteogenesis Imperfect Therapeutics,” Journal of Medicinal Chemistry 67, no. 21 (2024): 18883-18894.

[91]

L. Zhang, L. Li, X. Wang, et al., “Development of a Novel PROTAC Using the Nucleic Acid Aptamer as a Targeting Ligand for Tumor Selective Degradation of Nucleolin,” Molecular therapy. Nucleic acids 30 (2022): 66-79.

[92]

Y. Ma, Y. Zhu, C. Wang, et al., “Annealing Novel Nucleobase-lipids With Oligonucleotides or Plasmid DNA Based on H-bonding or π-π Interaction: Assemblies and Transfections,” Biomaterials 178 (2018): 147-157.

[93]

X. Shen, Y. Ma, H. Luo, et al., “Peptide Aptamer-Paclitaxel Conjugates for Tumor Targeted Therapy,” Pharmaceutics 17, no. 1 (2024): 40.

[94]

J. Jin, Y. Wu, J. Chen, et al., “The Peptide PROTAC Modality: A Novel Strategy for Targeted Protein Ubiquitination,” Theranostics 10, no. 22 (2020): 10141-10153.

[95]

K. Wang, X. Dai, A. Yu, C. Feng, K. Liu, and L. Huang, “Peptide-based PROTAC Degrader of FOXM1 Suppresses Cancer and Decreases GLUT1 and PD-L1 Expression,” Journal of Experimental & Clinical Cancer Research 41, no. 1 (2022): 289.

[96]

D. Ma, Y. Zou, Y. Chu, et al., “A Cell-permeable Peptide-based PROTAC Against the Oncoprotein CREPT Proficiently Inhibits Pancreatic Cancer,” Theranostics 10, no. 8 (2020): 3708-3721.

[97]

P. Gunasekaran, Y. S. Hwang, G. H. Lee, et al., “Degradation of Polo-Like Kinase 1 by the Novel Poly-Arginine N-Degron Pathway PROTAC Regulates Tumor Growth in Nonsmall Cell Lung Cancer,” Journal of Medicinal Chemistry 67, no. 5 (2024): 3307-3320.

[98]

Y. T. Kwon and A. Ciechanover, “The Ubiquitin Code in the Ubiquitin-Proteasome System and Autophagy,” Trends in Biochemical Sciences 42, no. 11 (2017): 873-886.

[99]

M. Essawy, L. Chesner, D. Alshareef, S. Ji, N. Tretyakova, and C. Campbell, “Ubiquitin Signaling and the Proteasome Drive human DNA-protein Crosslink Repair,” Nucleic Acids Res. 51, no. 22 (2023): 12174-12184.

[100]

E. S. Fischer, K. Böhm, J. R. Lydeard, et al., “Structure of the DDB1-CRBN E3 Ubiquitin Ligase in Complex With Thalidomide,” Nature 512, no. 7512 (2014): 49-53.

[101]

T. A. F. Cardote, M. S. Gadd, and A Ciulli. Crystal Structure of the Cul2-Rbx1-EloBC-VHL Ubiquitin Ligase Complex. Structure (London, England) 2017; 25(6): 901-911.e903.

[102]

J. Hines, S. Lartigue, H. Dong, Y. Qian, and C. M. Crews, “MDM2-Recruiting PROTAC Offers Superior, Synergistic Antiproliferative Activity via Simultaneous Degradation of BRD4 and Stabilization of p53,” Cancer Research 79, no. 1 (2019): 251-262.

[103]

N. Ohoka, K. Okuhira, M. Ito, et al., “In Vivo Knockdown of Pathogenic Proteins via Specific and Nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent Protein Erasers (SNIPERs),” Journal of Biological Chemistry 292, no. 11 (2017): 4556-4570.

[104]

J. Wei, F. Meng, K. S. Park, et al., “Harnessing the E3 Ligase KEAP1 for Targeted Protein Degradation,” Journal of the American Chemical Society 143, no. 37 (2021): 15073-15083.

[105]

X. Zhang, L. M. Luukkonen, C. L. Eissler, et al., “DCAF11 Supports Targeted Protein Degradation by Electrophilic Proteolysis-Targeting Chimeras,” Journal of the American Chemical Society 143, no. 13 (2021): 5141-5149.

[106]

C. C. Ward, J. I. Kleinman, S. M. Brittain, et al., “Covalent Ligand Screening Uncovers a RNF4 E3 Ligase Recruiter for Targeted Protein Degradation Applications,” Acs Chemical Biology 14, no. 11 (2019): 2430-2440.

[107]

N. J. Henning, A. G. Manford, J. N. Spradlin, et al., “Discovery of a Covalent FEM1B Recruiter for Targeted Protein Degradation Applications,” Journal of the American Chemical Society 144, no. 2 (2022): 701-708.

[108]

F. Ohtake, A. Baba, I. Takada, et al., “Dioxin Receptor Is a Ligand-dependent E3 Ubiquitin Ligase,” Nature 446, no. 7135 (2007): 562-566.

[109]

C. Heim, A. K. Spring, S. Kirchgäßner, D. Schwarzer, and M. D. Hartmann, “Cereblon Neo-substrate Binding Mimics the Recognition of the Cyclic Imide Degron,” Biochemical and Biophysical Research Communications 646 (2023): 30-35.

[110]

J. Lu, Y. Qian, M. Altieri, et al., “Hijacking the E3 Ubiquitin Ligase Cereblon to Efficiently Target BRD4,” Chemistry & Biology 22, no. 6 (2015): 755-763.

[111]

S. A. Kim, A. Go, S. H. Jo, et al., “A Novel Cereblon Modulator for Targeted Protein Degradation,” European Journal of Medicinal Chemistry 166 (2019): 65-74.

[112]

J. A. Jarusiewicz, S. Yoshimura, A. Mayasundari, et al., “Phenyl Dihydrouracil: An Alternative Cereblon Binder for PROTAC Design,” Acs Medicinal Chemistry Letters 14, no. 2 (2023): 141-145.

[113]

M. Ishoey, S. Chorn, N. Singh, et al., “Translation Termination Factor GSPT1 Is a Phenotypically Relevant Off-Target of Heterobifunctional Phthalimide Degraders,” Acs Chemical Biology 13, no. 3 (2018): 553-560.

[114]

Y. Ma, H. Zhang, X. Shen, et al., “Aptamer Functionalized Hypoxia-potentiating Agent and Hypoxia-inducible Factor Inhibitor Combined With Hypoxia-activated Prodrug for Enhanced Tumor Therapy,” Cancer Letters 598 (2024): 217102.

[115]

W. G. Kaelin, “The von Hippel-Lindau Tumour Suppressor Protein: O2 Sensing and Cancer,” Nature Reviews Cancer 8, no. 11 (2008): 865-873.

[116]

D. L. Buckley, I. Van Molle, P. C. Gareiss, et al., “Targeting the von Hippel-Lindau E3 Ubiquitin Ligase Using Small Molecules to Disrupt the VHL/HIF-1α Interaction,” Journal of the American Chemical Society 134, no. 10 (2012): 4465-4468.

[117]

D. P. Bondeson, A. Mares, I. E. Smith, et al., “Catalytic in Vivo Protein Knockdown by Small-molecule PROTACs,” Nature Chemical Biology 11, no. 8 (2015): 611-617.

[118]

P. Soares, M. S. Gadd, J. Frost, et al., “Group-Based Optimization of Potent and Cell-Active Inhibitors of the von Hippel-Lindau (VHL) E3 Ubiquitin Ligase: Structure-Activity Relationships Leading to the Chemical Probe (2S,4R)-1-((S)-2-(1-Cyanocyclopropanecarboxamido)-3,3-dimethylbutanoyl)-4-hydroxy-N-(4-(4-methylthiazol-5-yl)benzyl)Pyrrolidine-2-carboxamide (VH298),” Journal of Medicinal Chemistry 61, no. 2 (2018): 599-618.

[119]

R. R. Shah, E. De Vita, P. S. Sathyamurthi, et al., “Structure-Guided Design and Optimization of Covalent VHL-Targeted Sulfonyl Fluoride PROTACs,” Journal of Medicinal Chemistry 67, no. 6 (2024): 4641-4654.

[120]

Y. Dong, T. Ma, T. Xu, et al., “Characteristic Roadmap of linker Governs the Rational Design of PROTACs,” Acta Pharm Sin B 14, no. 10 (2024): 4266-4295.

[121]

C. Maniaci, S. J. Hughes, A. Testa, et al., “Homo-PROTACs: Bivalent Small-molecule Dimerizers of the VHL E3 Ubiquitin Ligase to Induce Self-degradation,” Nature Communications 8, no. 1 (2017): 830.

[122]

B. E. Smith, S. L. Wang, S. Jaime-Figueroa, et al., “Differential PROTAC Substrate Specificity Dictated by Orientation of Recruited E3 Ligase,” Nature Communications 10, no. 1 (2019): 131.

[123]

C. Donoghue, M. Cubillos-Rojas, N. Gutierrez-Prat, et al., “Optimal Linker Length for Small Molecule PROTACs That Selectively Target p38α and p38β for Degradation,” European Journal of Medicinal Chemistry 201 (2020): 112451.

[124]

Z. Zhou, G. Zhou, C. Zhou, et al., “Discovery of a Potent, Cooperative, and Selective SOS1 PROTAC ZZ151 With in Vivo Antitumor Efficacy in KRAS-Mutant Cancers,” Journal of Medicinal Chemistry 66, no. 6 (2023): 4197-4214.

[125]

X. Han, C. Wang, C. Qin, et al., “Discovery of ARD-69 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Androgen Receptor (AR) for the Treatment of Prostate Cancer,” Journal of Medicinal Chemistry 62, no. 2 (2019): 941-964.

[126]

D. Zaidman, J. Prilusky, and N. London, “PRosettaC: Rosetta Based Modeling of PROTAC Mediated Ternary Complexes,” Journal of Chemical Information and Modeling 60, no. 10 (2020): 4894-4903.

[127]

W. Li, J. Zhang, L. Guo, and Q. Wang, “Importance of Three-Body Problems and Protein-Protein Interactions in Proteolysis-Targeting Chimera Modeling: Insights From Molecular Dynamics Simulations,” Journal of Chemical Information and Modeling 62, no. 3 (2022): 523-532.

[128]

C. T. Kao, C. T. Lin, C. L. Chou, and C. C. Lin, “Fragment Linker Prediction Using the Deep Encoder-Decoder Network for PROTACs Drug Design,” Journal of Chemical Information and Modeling 63, no. 10 (2023): 2918-2927.

[129]

M. L. Drummond and C. I. Williams, “In Silico Modeling of PROTAC-Mediated Ternary Complexes: Validation and Application,” Journal of Chemical Information and Modeling 59, no. 4 (2019): 1634-1644.

[130]

Y. Gao, B. Jiang, H. Kim, et al., “Catalytic Degraders Effectively Address Kinase Site Mutations in EML4-ALK Oncogenic Fusions,” Journal of Medicinal Chemistry 66, no. 8 (2023): 5524-5535.

[131]

Y. Li, J. Qu, L. Jiang, et al., “Application and Challenges of Nitrogen Heterocycles in PROTAC Linker,” European Journal of Medicinal Chemistry (2024): 116520.

[132]

D. A. Erlanson, S. W. Fesik, R. E. Hubbard, W. Jahnke, and H. Jhoti, “Twenty Years On: The Impact of Fragments on Drug Discovery,” Nat Rev Drug Discovery 15, no. 9 (2016): 605-619.

[133]

L. Li, E. Gupta, J. Spaeth, et al., “Machine Learning Optimization of Candidate Antibody Yields Highly Diverse Sub-nanomolar Affinity Antibody Libraries,” Nature Communications 14, no. 1 (2023): 3454.

[134]

P. Szymański, M. Markowicz, and E. Mikiciuk-Olasik, “Adaptation of High-throughput Screening in Drug Discovery-toxicological Screening Tests,” International Journal of Molecular Sciences 13, no. 1 (2012): 427-452.

[135]

G. Amu, X. Yang, H. Luo, et al., “Machine Learning-powered, High-affinity Modification Strategies for Aptamers,” Acta Materia Medica 4, no. 1 (2025): 122-136.

[136]

M. K. G. Abbas, A. Rassam, F. Karamshahi, R. Abunora, and M. Abouseada, “The Role of AI in Drug Discovery,” Chembiochem 25, no. 14 (2024): e202300816.

[137]

Y. Q. Song, C. Wu, K. J. Wu, et al., “Ubiquitination Regulators Discovered by Virtual Screening for the Treatment of Cancer,” Frontiers in Cell and Developmental Biology 9 (2021): 665646.

[138]

S. Kori, Y. Shibahashi, T. Ekimoto, et al., “Structure-based Screening Combined With Computational and Biochemical Analyses Identified the Inhibitor Targeting the Binding of DNA Ligase 1 to UHRF1,” Bioorganic & Medicinal Chemistry 52 (2021): 116500.

[139]

S. Gul and K. Hadian, “Protein-protein Interaction Modulator Drug Discovery: Past Efforts and Future Opportunities Using a Rich Source of Low- and High-throughput Screening Assays,” Expert Opin Drug Discov 9, no. 12 (2014): 1393-1404.

[140]

P. Chen, Q. Li, and X. Lei, “Review of the Impact of Fragment-based Drug Design on PROTAC Degrader Discovery,” Trac-trend Anal Chem 171 (2024): 117539.

[141]

J. Yim, S. Kim, H. H. Lee, J. S. Chung, and J. Park, “Fragment-based Approaches to Discover Ligands for Tumor-specific E3 Ligases,” Expert Opin Drug Dis 19, no. 12 (2024): 1471-1484.

[142]

A. Gubu, Y. Ma, S. Yu, et al., “Unique Quinoline Orientations Shape the Modified Aptamer to Sclerostin for Enhanced Binding Affinity and Bone Anabolic Potential,” Mol Ther-Nucl Acids 35, no. 1 (2024).

[143]

Z. Chen, H. Luo, A. Gubu, et al., “Chemically Modified Aptamers for Improving Binding Affinity to the Target Proteins via Enhanced Non-covalent Bonding,” Frontiers in Cell and Developmental Biology 11 (2023): 1091809.

[144]

Z. Chen, L. Hu, B.-T. Zhang, et al., “Artificial Intelligence in Aptamer-target Binding Prediction,” International Journal of Molecular Sciences 22, no. 7 (2021): 3605.

[145]

A. Bashir, Q. Yang, J. Wang, et al., “Machine Learning Guided Aptamer Refinement and Discovery,” Nature Communications 12, no. 1 (2021): 2366.

[146]

V. G. Klein, A. G. Bond, C. Craigon, R. S. Lokey, and A. Ciulli, “Amide-to-ester Substitution as a Strategy for Optimizing PROTAC Permeability and Cellular Activity,” Journal of Medicinal Chemistry 64, no. 24 (2021): 18082-18101.

[147]

A. Toropov, A. Toropova, S. Martyanov, et al., “Comparison of SMILES and Molecular Graphs as the Representation of the Molecular Structure for QSAR Analysis for Mutagenic Potential of Polyaromatic Amines,” Chemometrics and Intelligent Laboratory 109, no. 1 (2011): 94-100.

[148]

Ó. Álvarez-Machancoses and J. L. Fernández-Martínez, “Using Artificial Intelligence Methods to Speed up Drug Discovery,” Expert opinion on Drug Discovery 14, no. 8 (2019): 769-777.

[149]

Y. Huang, X. Peng, J. Ma, and M. Zhang, 3DLinker: an E (3) equivariant variational autoencoder for molecular linker design. arXiv preprint arXiv: 220507309. 2022.

[150]

D. Nori, C. W. Coley, and R. Mercado, De novo PROTAC design using graph-based deep generative models. arXiv preprint arXiv: 221102660. 2022.

[151]

F. Imrie, A. R. Bradley, M. van der Schaar, and C. M. Deane, “Deep Generative Models for 3D Linker Design,” Journal of Chemical Information and Modeling 60, no. 4 (2020): 1983-1995.

[152]

B. Li, T. Ran, and H. Chen, “3D based Generative PROTAC Linker Design With Reinforcement Learning,” Briefings in Bioinformatics 24, no. 5 (2023): bbad323.

[153]

Y. Tan, L. Dai, W. Huang, et al., “DRlinker: Deep Reinforcement Learning for Optimization in Fragment Linking Design,” Journal of Chemical Information and Modeling 62, no. 23 (2022): 5907-5917.

[154]

S. Zheng, Y. Tan, Z. Wang, et al., “Accelerated Rational PROTAC Design via Deep Learning and Molecular Simulations,” Nat Mach Intell 4, no. 9 (2022): 739-748.

[155]

X.-M. Qi, F. Wang, M. Mortensen, R. Wertz, and G. Chen, “Targeting an Oncogenic Kinase/Phosphatase Signaling Network for Cancer Therapy,” Acta Pharm Sin B 8, no. 4 (2018): 511-517.

[156]

H. Zhang, H.-Y. Zhao, X.-X. Xi, et al., “Discovery of Potent Epidermal Growth Factor Receptor (EGFR) Degraders by Proteolysis Targeting Chimera (PROTAC),” European Journal of Medicinal Chemistry 189 (2020): 112061.

[157]

S. Xie, Y. Sun, Y. Liu, et al., “Development of Alectinib-based PROTACs as Novel Potent Degraders of Anaplastic Lymphoma Kinase (ALK),” Journal of Medicinal Chemistry 64, no. 13 (2021): 9120-9140.

[158]

S. Alabi, S. Jaime-Figueroa, Z. Yao, et al., “Mutant-selective Degradation by BRAF-targeting PROTACs,” Nature Communications 12, no. 1 (2021): 920.

[159]

B. Jiang, Y. Gao, J. Che, et al., “Discovery and Resistance Mechanism of a Selective CDK12 Degrader,” Nature Chemical Biology 17, no. 6 (2021): 675-683.

[160]

M. A. Dawson, T. Kouzarides, and B. J. Huntly, “Targeting Epigenetic Readers in Cancer,” New England Journal of Medicine 367, no. 7 (2012): 647-657.

[161]

A. Vogelmann, D. Robaa, W. Sippl, and M. Jung, “Proteolysis Targeting Chimeras (PROTACs) for Epigenetics Research,” Current Opinion in Chemical Biology 57 (2020): 8-16.

[162]

J. P. Smalley, I. M. Baker, W. A. Pytel, et al., “Optimization of Class I Histone Deacetylase PROTACs Reveals That HDAC1/2 Degradation Is Critical to Induce Apoptosis and Cell Arrest in Cancer Cells,” Journal of Medicinal Chemistry 65, no. 7 (2022): 5642-5659.

[163]

Z. I. Bassi, M. C. Fillmore, A. H. Miah, et al., “Modulating PCAF/GCN5 Immune Cell Function Through a PROTAC Approach,” Acs Chemical Biology 13, no. 10 (2018): 2862-2867.

[164]

B. A. Carneiro and W. S. El-Deiry, “Targeting Apoptosis in Cancer Therapy,” Nature reviews Clinical oncology 17, no. 7 (2020): 395-417.

[165]

M. Njoka, D. Kamath, and S. H. Bossmann, “Anti-apoptotic Proteolysis Targeted Chimeras (PROTACs) in Cancer Therapy,” Med Res Arch 13, no. 1 (2025).

[166]

S. Khan, X. Zhang, D. Lv, et al., “A Selective BCL-XL PROTAC Degrader Achieves Safe and Potent Antitumor Activity,” Nature Medicine 25, no. 12 (2019): 1938-1947.

[167]

X. Zhang, D. Thummuri, X. Liu, et al., “Discovery of PROTAC BCL-XL Degraders as Potent Anticancer Agents With Low on-target Platelet Toxicity,” European Journal of Medicinal Chemistry 192 (2020): 112186.

[168]

D. Lv, P. Pal, X. Liu, et al., “Development of a BCL-xL and BCL-2 Dual Degrader With Improved Anti-leukemic Activity,” Nature Communications 12, no. 1 (2021): 6896.

[169]

J. W. Papatzimas, E. Gorobets, R. Maity, et al., “From Inhibition to Degradation: Targeting the Antiapoptotic Protein Myeloid Cell Leukemia 1 (MCL1),” Journal of Medicinal Chemistry 62, no. 11 (2019): 5522-5540.

[170]

S. Park, D. Kim, W. Lee, et al., “Discovery of Pan-IAP Degraders via a CRBN Recruiting Mechanism,” European Journal of Medicinal Chemistry 245 (2023): 114910.

[171]

Y. L. D. Ng, A. Bricelj, J. A. Jansen, et al., “Heterobifunctional Ligase Recruiters Enable Pan-degradation of Inhibitor of Apoptosis Proteins,” Journal of Medicinal Chemistry 66, no. 7 (2023): 4703-4733.

[172]

T. Neklesa, L. B. Snyder, R. R. Willard, et al., “ARV-110: An Androgen Receptor PROTAC Degrader for Prostate Cancer,” Cancer Research 78, no. Supplement_13 (2018): 5236-5236.

[173]

J. Flanagan, Y. Qian, S. Gough, et al., “Abstract P5-04-18: ARV-471, an Oral Estrogen Receptor PROTAC Degrader for Breast Cancer,” Cancer Research 79, no. Supplement_4 (2019): P5-04-18-P05-04-18.

[174]

D. W. Robbins, A. Kelly, M. Tan, et al., “Nx-2127, a Degrader of BTK and IMiD Neosubstrates, for the Treatment of B-cell Malignancies,” Blood 136 (2020): 34.

[175]

K. Garber, “The PROTAC Gold Rush,” Nature Biotechnology 40, no. 1 (2022): 12-16.

[176]

D. E. Scott, T. P. Rooney, E. D. Bayle, et al., “Systematic Investigation of the Permeability of Androgen Receptor PROTACs,” Acs Medicinal Chemistry Letters 11, no. 8 (2020): 1539-1547.

[177]

H. Lebraud, D. J. Wright, C. N. Johnson, and T. D. Heightman, “Protein Degradation by in-Cell Self-Assembly of Proteolysis Targeting Chimeras,” ACS Cent Sci 2, no. 12 (2016): 927-934.

[178]

H. Yokoo, M. Naito, and Y. Demizu, “Investigating the Cell Permeability of Proteolysis-targeting Chimeras (PROTACs),” Expert Opin Drug Dis 18, no. 4 (2023): 357-361.

[179]

J. Chen, M. Qiu, F. Ma, L. Yang, Z. Glass, and Q. Xu, “Enhanced Protein Degradation by Intracellular Delivery of Pre-fused PROTACs Using Lipid-Like Nanoparticles,” J Control Release 330 (2021): 1244-1249.

[180]

J. Shi, L. Wang, X. Zeng, et al., “Precision-engineered PROTACs Minimize off-tissue Effects in Cancer Therapy,” Frontiers in Molecular Biosciences 11 (2024): 1505255.

[181]

J. Gao, L. Yang, S. Lei, et al., Stimuli-activatable PROTACs for Precise Protein Degradation and Cancer Therapy. Sci Bull 2023; 68(10): 1069-1085.

[182]

B. Chen, W. Dai, B. He, et al., “Current Multistage Drug Delivery Systems Based on the Tumor Microenvironment,” Theranostics 7, no. 3 (2017): 538.

[183]

K. An, X. Deng, H. Chi, et al., “Stimuli-responsive PROTACs for Controlled Protein Degradation,” Angewandte Chemie 135, no. 39 (2023): e202306824.

[184]

H. Liu, C. Ren, R. Sun, et al., “Reactive Oxygen Species-responsive Pre-PROTAC for Tumor-specific Protein Degradation,” Chemical Communications 58, no. 72 (2022): 10072-10075.

[185]

C. Liang, Q. Zheng, T. Luo, W. Cai, L. Mao, and M. Wang, “Enzyme-catalyzed Activation of Pro-PROTAC for Cell-selective Protein Degradation,” Ccs Chemistry 4, no. 12 (2022): 3809-3819.

[186]

D. Yu, H. Fan, Z. Zhou, et al., “Hydrogen Peroxide-Inducible PROTACs for Targeted Protein Degradation in Cancer Cells,” Chembiochem 24, no. 17 (2023): e202300422.

[187]

W. Cheng, S. Li, X. Wen, et al., “Development of Hypoxia-activated PROTAC Exerting a More Potent Effect in Tumor Hypoxia Than in Normoxia,” Chemical Communications 57, no. 95 (2021): 12852-12855.

[188]

J. Liu, H. Chen, Y. Liu, et al., “Cancer Selective Target Degradation by Folate-caged PROTACs,” Journal of the American Chemical Society 143, no. 19 (2021): 7380-7387.

[189]

S. He, F. Gao, J. Ma, H. Ma, G. Dong, and C. Sheng, “Aptamer-protac Conjugates (apcs) for Tumor-specific Targeting in Breast Cancer,” Angewandte Chemie 133, no. 43 (2021): 23487-23493.

[190]

M. A. Maneiro, N. Forte, M. M. Shchepinova, et al., “Antibody-PROTAC Conjugates Enable HER2-dependent Targeted Protein Degradation of BRD4,” Acs Chemical Biology 15, no. 6 (2020): 1306-1312.

[191]

K. Xu, Z. Wang, S. Xiang, et al., “Characterizing the Cooperative Effect of PROTAC Systems With End-point Binding Free Energy Calculation,” Journal of Chemical Information and Modeling 64, no. 19 (2024): 7666-7678.

[192]

K. Moreau, M. Coen, A. X. Zhang, et al., “Proteolysis-targeting Chimeras in Drug Development: A Safety Perspective,” British Journal of Pharmacology 177, no. 8 (2020): 1709-1718.

[193]

C. Schmitt, C. Tonnelle, A. Dalloul, C. Chabannon, P. Debre, and A. Rebollo, “Aiolos and Ikaros: Regulators of Lymphocyte Development, Homeostasis and Lymphoproliferation,” Apoptosis 7 (2002): 277-284.

[194]

K. A. Donovan, F. M. Ferguson, J. W. Bushman, et al., “Mapping the Degradable Kinome Provides a Resource for Expedited Degrader Development,” Cell 183, no. 6 (2020): 1714-1731. e1710.

[195]

J. Liu, H. Chen, L. Ma, et al., “Light-induced Control of Protein Destruction by Opto-PROTAC,” Science Advances 6, no. 8 (2020): eaay5154.

[196]

M. Reynders, B. S. Matsuura, M. Bérouti, et al., “PHOTACs Enable Optical Control of Protein Degradation,” Science Advances 6, no. 8 (2020): eaay5064.

[197]

Y. Naro, K. Darrah, and A. Deiters, “Optical Control of Small Molecule-induced Protein Degradation,” Journal of the American Chemical Society 142, no. 5 (2020): 2193-2197.

[198]

C. S. Kounde, M. M. Shchepinova, C. N. Saunders, et al., “A Caged E3 Ligase Ligand for PROTAC-mediated Protein Degradation With Light,” Chemical Communications 56, no. 41 (2020): 5532-5535.

[199]

P. Pfaff, K. T. Samarasinghe, C. M. Crews, and E. M. Carreira, “Reversible Spatiotemporal Control of Induced Protein Degradation by Bistable PhotoPROTACs,” ACS Cent Sci 5, no. 10 (2019): 1682-1690.

[200]

H. Li, J. Dong, M. Cai, Z. Xu, X.-D. Cheng, and J.-J. Qin, “Protein Degradation Technology: A Strategic Paradigm Shift in Drug Discovery,” Journal of hematology & oncology 14 (2021): 1-23.

[201]

S. N. Aleksakhina, A. Kashyap, and E. N. Imyanitov, “Mechanisms of Acquired Tumor Drug Resistance,” Bba-rev Cancer 1872, no. 2 (2019): 188310.

[202]

L. Zhang, B. Riley-Gillis, P. Vijay, and Y. Shen, “Acquired Resistance to BET-PROTACs (proteolysis-targeting chimeras) Caused by Genomic Alterations in Core Components of E3 Ligase Complexes,” Molecular Cancer Therapeutics 18, no. 7 (2019): 1302-1311.

[203]

R. Shirasaki, G. M. Matthews, S. Gandolfi, et al., “Functional Genomics Identify Distinct and Overlapping Genes Mediating Resistance to Different Classes of Heterobifunctional Degraders of Oncoproteins,” Cell reports 34, no. 1 (2021).

[204]

S. Khan, Y. He, X. Zhang, et al., “PROteolysis TArgeting Chimeras (PROTACs) as Emerging Anticancer Therapeutics,” Oncogene 39, no. 26 (2020): 4909-4924.

[205]

M. Schapira, M. F. Calabrese, A. N. Bullock, and C. M. Crews, “Targeted Protein Degradation: Expanding the Toolbox,” Nat Rev Drug Discovery 18, no. 12 (2019): 949-963.

[206]

J. Abramson, J. Adler, J. Dunger, et al., “Accurate Structure Prediction of Biomolecular Interactions With AlphaFold 3,” Nature 630, no. 8016 (2024): 493-500.

[207]

Y. Liu, J. Yang, T. Wang, et al., “Expanding PROTACtable Genome Universe of E3 Ligases,” Nature Communications 14, no. 1 (2023): 6509.

[208]

A. X. Zhang, K. Cassidy, G. Dahl, K. Moreau, F. Pachl, and A. M. Zuhl, “The Vital Role of Proteomics in Characterizing Novel Protein Degraders,” SLAS Discovery 26, no. 4 (2021): 518-523.

[209]

C. Song, Z. Jiao, Z. Hou, et al., “Versatile Split-and-Mix Liposome PROTAC Platform for Efficient Degradation of Target Protein in Vivo,” JACS Au 4, no. 8 (2024): 2915-2924.

[210]

Y. Yang, R. Zhang, and C. Fan, “Shaping Functional Materials With DNA Frameworks,” Trends Chem 2, no. 2 (2020): 137-147.

[211]

C. A. Dreiss, “Hydrogel Design Strategies for Drug Delivery,” Current Opinion in Colloid & Interface Science 48 (2020): 1-17.

[212]

G. Nifontova, T. Tsoi, A. Karaulov, I. Nabiev, and A. Sukhanova, “Structure-function Relationships in Polymeric Multilayer Capsules Designed for Cancer Drug Delivery,” Biomater Sci 10, no. 18 (2022): 5092-5115.

[213]

D. Reker, Y. Rybakova, A. R. Kirtane, et al., “Computationally Guided High-throughput Design of Self-assembling Drug Nanoparticles,” Nature Nanotechnology 16, no. 6 (2021): 725-733.

[214]

Y. Ding, D. Xing, Y. Fei, and B. Lu, “Emerging Degrader Technologies Engaging Lysosomal Pathways,” Chem. Soc. Rev. 51, no. 21 (2022): 8832-8876.

[215]

G. Ahn, S. M. Banik, C. L. Miller, N. M. Riley, J. R. Cochran, and C. R. Bertozzi, “LYTACs That Engage the Asialoglycoprotein Receptor for Targeted Protein Degradation,” Nature Chemical Biology 17, no. 9 (2021): 937-946.

[216]

Y. Miao, Q. Gao, M. Mao, et al., “Bispecific Aptamer Chimeras Enable Targeted Protein Degradation on Cell Membranes,” Angewandte Chemie 133, no. 20 (2021): 11367-11371.

[217]

Q. Duan, H. R. Jia, W. Chen, et al., “Multivalent Aptamer-Based Lysosome-Targeting Chimeras (LYTACs) Platform for Mono-or Dual-Targeted Proteins Degradation on Cell Surface,” Advancement of Science 11, no. 17 (2024): 2308924.

[218]

J. Lin, J. Jin, Y. Shen, et al., “Emerging Protein Degradation Strategies: Expanding the Scope to Extracellular and Membrane Proteins,” Theranostics 11, no. 17 (2021): 8337.

[219]

D. Takahashi, J. Moriyama, T. Nakamura, et al., “AUTACs: Cargo-specific Degraders Using Selective Autophagy,” Molecular Cell 76, no. 5 (2019): 797-810. e710.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

19

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/