Mitochondria as Regulators of Nonapoptotic Cell Death in Cancer

Saloni Malla , Rabin Neupane , Saloni Sood , Noor Hussein , Mariam Abou-Dahech , David Terrero , Charles R. Ashby Jr. , R. Jayachandra Babu , Amit K. Tiwari

MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70244

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (8) : e70244 DOI: 10.1002/mco2.70244
REVIEW

Mitochondria as Regulators of Nonapoptotic Cell Death in Cancer

Author information +
History +
PDF

Abstract

Mitochondria are involved in cell survival and metabolic processes including adenosine triphosphate production, heme biosynthesis, reactive oxygen species, and iron and calcium homeostasis. Although mitochondria are well known to contribute to apoptosis, a growing body of evidence indicates that mitochondria modulate nonapoptotic cell death (NACD) mechanisms, including autophagy, necroptosis, ferroptosis, paraptosis, pyroptosis, parthanatosis, and cuproptosis. These NACD pathways differ in molecular triggers, morphological characteristics, and immunological consequences, but they all involve mitochondria. For example, mitochondrial ROS and lipid peroxidation play a role in ferroptosis, whereas mitochondrial depolarization and the release of apoptosis inducing factor are paramount to parthanatosis. Mitochondrial swelling is a hallmark of paraptosis, whereas mitochondrial disruption is associated with pyroptosis. Autophagy, though primarily a survival mechanism, is also regulated by mitochondrial dynamics in cancer cells. In cuproptosis, mitochondrial protein aggregates when iron–sulfur cluster proteins are disrupted, resulting in copper-dependent cell death. There are many factors that influence NACD, including mitochondrial membrane potential, bioenergetics, calcium flux, metabolites, and interactions with the endoplasmic reticulum. The review comprehensively summarizes our understanding of mitochondrial and NACD interactions, particularly in cells resistant to classical apoptosis agents. Therapeutic vulnerabilities associated with mitochondria-mediated NACD could lead to next-generation therapies.

Keywords

autophagy / cancer / ferroptosis / mitochondria / necroptosis / nonapoptotic cell death

Cite this article

Download citation ▾
Saloni Malla, Rabin Neupane, Saloni Sood, Noor Hussein, Mariam Abou-Dahech, David Terrero, Charles R. Ashby Jr., R. Jayachandra Babu, Amit K. Tiwari. Mitochondria as Regulators of Nonapoptotic Cell Death in Cancer. MedComm, 2025, 6(8): e70244 DOI:10.1002/mco2.70244

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

P. Siekevitz, “Powerhouse of the cell,” Scientific American 197, no. 1 (1957): 131-144.

[2]

R. Acin-Perez, E. Salazar, M. Kamenetsky, J. Buck, L. R. Levin, and G. Manfredi, “Cyclic AMP Produced inside Mitochondria Regulates Oxidative Phosphorylation,” Cell Metabolism 9, no. 3 (2009): 265-276.

[3]

I. Martínez-Reyes, N. S. Chandel, “Mitochondrial TCA Cycle Metabolites Control Physiology and Disease,” Nature Communications 11, no. 1 (2020): 102.

[4]

G. Vandecasteele, G. Szabadkai, and R. Rizzuto, “Mitochondrial Calcium Homeostasis: Mechanisms and Molecules,” Iubmb Life 52, no. 3-5 (2001): 213-219.

[5]

S. Ravera, C. Dufour, S. Cesaro, et al., “Evaluation of Energy Metabolism and Calcium Homeostasis in Cells Affected by Shwachman-Diamond Syndrome,” Scientific Reports 6, no. 1 (2016): 25441.

[6]

B. T. Paul, D. H. Manz, F. M. Torti, and S. V. Torti, “Mitochondria and Iron: Current Questions,” Expert Review of Hematology 10, no. 1 (2017): 65-79.

[7]

C. Wang and R. J. Youle, “The Role of Mitochondria in Apoptosis,” Annual Review of Genetics 43 (2009): 95-118.

[8]

A. P. West, G. S. Shadel, and S. Ghosh, “Mitochondria in Innate Immune Responses,” Nature Reviews Immunology 11, no. 6 (2011): 389-402.

[9]

M. M. Adeva-Andany, N. Carneiro-Freire, M. Seco-Filgueira, C. Fernández-Fernández, and D. Mouriño-Bayolo, “Mitochondrial β-oxidation of Saturated Fatty Acids in Humans,” Mitochondrion 46 (2019): 73-90.

[10]

L. Tilokani, S. Nagashima, V. Paupe, and J. Prudent, “Mitochondrial Dynamics: Overview of Molecular Mechanisms,” Essays in Biochemistry 62, no. 3 (2018): 341-360.

[11]

T. T. Nguyen, S. Wei, T. H. Nguyen, et al., “Mitochondria-associated Programmed Cell Death as a Therapeutic Target for Age-related Disease,” Experimental & Molecular Medicine 55, no. 8 (2023): 1595-1619.

[12]

R. J. Youle, A. M. Van Der Bliek, “Mitochondrial Fission, Fusion, and Stress,” Science 337, no. 6098 (2012): 1062-1065.

[13]

J. Nunnari, A. Suomalainen, “Mitochondria: In Sickness and in Health,” Cell 148, no. 6 (2012): 1145-1159.

[14]

D. C. Chan, “Mitochondria: Dynamic Organelles in Disease, Aging, and Development,” Cell 125, no. 7 (2006): 1241-1252.

[15]

A. Hall, N. Burke, R. Dongworth, and D. Hausenloy, “Mitochondrial Fusion and Fission Proteins: Novel Therapeutic Targets for Combating Cardiovascular Disease,” British Journal of Pharmacology 171, no. 8 (2014): 1890-1906.

[16]

K. Ma, G. Chen, W. Li, O. Kepp, Y. Zhu, and Q. Chen, “Mitophagy, Mitochondrial Homeostasis, and Cell Fate,” Frontiers in Cell and Developmental Biology 8 (2020): 467.

[17]

G. C. Brown, M. P. Murphy, F. R. Jornayvaz, and G. I. Shulman, “Regulation of Mitochondrial Biogenesis,” Essays in Biochemistry 47 (2010): 69-84.

[18]

K. Palikaras, N. Tavernarakis, “Mitochondrial Homeostasis: The Interplay Between Mitophagy and Mitochondrial Biogenesis,” Experimental Gerontology 56 (2014): 182-188.

[19]

I. G. Onyango, J. Lu, M. Rodova, E. Lezi, A. B. Crafter, and R. H. Swerdlow, “Regulation of Neuron Mitochondrial Biogenesis and Relevance to Brain Health,” Biochimica Et Biophysica Acta (BBA)-Molecular Basis of Disease 1802, no. 1 (2010): 228-234.

[20]

A. Al-Mehdi, V. M. Pastukh, B. M. Swiger, et al., “Perinuclear Mitochondrial Clustering Creates an Oxidant-rich Nuclear Domain Required for Hypoxia-induced Transcription,” Science Signaling 5, no. 231 (2012): ra47-ra47.

[21]

K. Todkar, H. S. Ilamathi, and M. Germain, “Mitochondria and Lysosomes: Discovering Bonds,” Frontiers in Cell and Developmental Biology 5 (2017): 106.

[22]

G. Son and J. Han, “Roles of Mitochondria in Neuronal Development,” BMB Reports 51, no. 11 (2018): 549.

[23]

Z. Li, K. Okamoto, Y. Hayashi, and M. Sheng, “The Importance of Dendritic Mitochondria in the Morphogenesis and Plasticity of Spines and Synapses,” Cell 119, no. 6 (2004): 873-887.

[24]

J. Kang, J. Tian, P. Pan, et al., “Docking of Axonal Mitochondria by Syntaphilin Controls Their Mobility and Affects Short-term Facilitation,” Cell 132, no. 1 (2008): 137-148.

[25]

D. T. Chang, A. S. Honick, and I. J. Reynolds, “Mitochondrial Trafficking to Synapses in Cultured Primary Cortical Neurons,” Journal of Neuroscience 26, no. 26 (2006): 7035-7045.

[26]

J. Perfettini, T. Roumier, and G. Kroemer, “Mitochondrial Fusion and Fission in the Control of Apoptosis,” Trends in Cell Biology 15, no. 4 (2005): 179-183.

[27]

E. Zacharioudakis and E. Gavathiotis, “Mitochondrial Dynamics Proteins as Emerging Drug Targets,” Trends in Pharmacological Sciences 44, no. 2 (2023): 112-127.

[28]

M. Escobar-Henriques and F. Anton, “Mechanistic Perspective of Mitochondrial Fusion: Tubulation vs. fragmentation,” Biochimica Et Biophysica Acta 1833, no. 1 (2013): 162-175.

[29]

N. Wang, X. Wang, B. Lan, Y. Gao, and Y. Cai, “DRP1, fission and Apoptosis,” Cell Death Discovery 11, no. 1 (2025): 150.

[30]

Q. Zhou, C. Ren, J. Li, et al., “The Crosstalk Between Mitochondrial Quality Control and Metal-dependent Cell Death,” Cell Death & Disease 15, no. 4 (2024): 299.

[31]

L. Pedrera, L. Prieto Clemente, A. Dahlhaus, et al., “Ferroptosis Triggers Mitochondrial Fragmentation via Drp1 Activation,” Cell Death & Disease 16, no. 1 (2025): 40.

[32]

S. Tang, A. Fuss, Z. Fattahi, and C. Culmsee, “Drp1 depletion Protects Against Ferroptotic Cell Death by Preserving Mitochondrial Integrity and Redox Homeostasis,” Cell Death & Disease 15, no. 8 (2024): 626.

[33]

C. Li, J. Liu, W. Hou, R. Kang, and D. Tang, “STING1 Promotes Ferroptosis through MFN1/2-Dependent Mitochondrial Fusion,” Frontiers in Cell and Developmental Biology 9 (2021): 698679.

[34]

R. Zhang, R. Kang, and D. Tang, “STING1 in Different Organelles: Location Dictates Function,” Frontiers in Immunology 13 (2022): 842489.

[35]

G. Twig, A. Elorza, A. J. A. Molina, et al., “Fission and Selective Fusion Govern Mitochondrial Segregation and Elimination by Autophagy,” The EMBO Journal 27, no. 2: 433-446. (1460-2075 (Electronic)).

[36]

F. Basit, L. M. Van Oppen, L. Schöckel, et al., “Mitochondrial Complex I Inhibition Triggers a Mitophagy-dependent ROS Increase Leading to Necroptosis and Ferroptosis in Melanoma Cells,” Cell Death & Disease 8, no. 3 (2017): e2716-e2716.

[37]

H. G. Kim, M. H. Ro, and M. A. Lee, “Atg5 knockout Induces Alternative Autophagy via the Downregulation of Akt Expression,” Toxicological Research 39, no. 4: 637-647. (1976-8257 (Print)).

[38]

Y. Chen and G. W. Dorn, “PINK1-phosphorylated Mitofusin 2 Is a Parkin Receptor for Culling Damaged Mitochondria,” Science 340, no. 6131 (2013): 471-475.

[39]

A. S. Rambold, J. Lippincott-Schwartz, “Mechanisms of Mitochondria and Autophagy Crosstalk,” Cell Cycle 10, no. 23 (2011): 4032-4038.

[40]

S. Geisler, K. M. Holmström, D. Skujat, et al., “PINK1/Parkin-mediated Mitophagy Is Dependent on VDAC1 and p62/SQSTM1,” Nature Cell Biology 12, no. 2 (2010): 119-131.

[41]

D. Narendra, L. A. Kane, D. N. Hauser, I. M. Fearnley, and R. J. Youle, “p62/SQSTM1 is Required for Parkin-induced Mitochondrial Clustering but Not Mitophagy; VDAC1 is Dispensable for Both,” Autophagy 6, no. 8 (2010): 1090-1106.

[42]

S. A. Liu, K. Joshi, M. F. Denning, and J. Zhang, “RIPK3 signaling and Its Role in the Pathogenesis of Cancers,” Cellular and Molecular Life Sciences: CMLS 78, no. 23: 7199-7217. (1420-9071 (Electronic)).

[43]

J. Belizário, L. Vieira-Cordeiro, and S. Enns, “Necroptotic Cell Death Signaling and Execution Pathway: Lessons From Knockout Mice,” Mediators of Inflammation (2015): 128076. (1466-1861 (Electronic)).

[44]

Z. Wang, H. Jiang, S. Chen, F. Du, and X. Wang, “The Mitochondrial Phosphatase PGAM5 Functions at the Convergence Point of Multiple Necrotic Death Pathways,” Cell 148, no. 1-2 (2012): 228-243.

[45]

M. Cheng, N. Lin, D. Dong, J. Ma, J. Su, and L. Sun, “PGAM5: A Crucial Role in Mitochondrial Dynamics and Programmed Cell Death,” European Journal of Cell Biology 100, no. 1 (2021): 151144.

[46]

S. W. Tait, A. Oberst, G. Quarato, et al., “Widespread Mitochondrial Depletion via Mitophagy Does Not Compromise Necroptosis,” Cell Reports 5, no. 4 (2013): 878-885.

[47]

N. Holler, R. Zaru, O. Micheau, et al., “Fas Triggers an Alternative, Caspase-8-independent Cell Death Pathway Using the Kinase RIP as Effector Molecule,” Nature Immunology 1, no. 6 (2000): 489-495.

[48]

S. Jouan-Lanhouet, M. Arshad, C. Piquet-Pellorce, et al., “TRAIL Induces Necroptosis Involving RIPK1/RIPK3-dependent PARP-1 Activation,” Cell Death & Differentiation 19, no. 12 (2012): 2003-2014.

[49]

W. J. Kaiser, H. Sridharan, C. Huang, et al., “Toll-Like Receptor 3-mediated Necrosis via TRIF, RIP3, and MLKL,” Journal of Biological Chemistry 288, no. 43 (2013): 31268-31279.

[50]

S. He, Y. Liang, F. Shao, and X. Wang, “Toll-Like Receptors Activate Programmed Necrosis in Macrophages Through a Receptor-interacting Kinase-3-mediated Pathway,” Proceedings of the National Academy of Sciences 108, no. 50 (2011): 20054-20059.

[51]

J. W. Upton, W. J. Kaiser, and E. S. Mocarski, “Virus Inhibition of RIP3-dependent Necrosis,” Cell Host & Microbe 7, no. 4 (2010): 302-313.

[52]

J. W. Upton, W. J. Kaiser, and E. S. Mocarski, “DAI/ZBP1/DLM-1 Complexes With RIP3 to Mediate Virus-induced Programmed Necrosis That Is Targeted by Murine cytomegalovirus vIRA,” Cell Host & Microbe 11, no. 3 (2012): 290-297.

[53]

F. Martinon, O. Gaide, V. Pétrilli, A. Mayor, and J. Tschopp. NALP Inflammasomes: A Central Role in Innate Immunity. (Springer, 2007): 213-229.

[54]

P. Vandenabeele, L. Galluzzi, T. Vanden Berghe, and G. Kroemer, “Molecular Mechanisms of Necroptosis: An Ordered Cellular Explosion,” Nature Reviews Molecular Cell Biology 11, no. 10 (2010): 700-714.

[55]

J. Dai, C. Zhang, L. Guo, et al., “A Necroptotic-independent Function of MLKL in Regulating Endothelial Cell Adhesion Molecule Expression,” Cell Death & Disease 11, no. 4 (2020): 282.

[56]

H. Meng, Z. Liu, X. Li, et al., “Death-domain Dimerization-mediated Activation of RIPK1 Controls Necroptosis and RIPK1-dependent Apoptosis,” Proceedings of the National Academy of Sciences 115, no. 9 (2018): E2001-E2009.

[57]

J. Li, T. McQuade, A. B. Siemer, et al., “The RIP1/RIP3 Necrosome Forms a Functional Amyloid Signaling Complex Required for Programmed Necrosis,” Cell 150, no. 2 (2012): 339-350.

[58]

A. Oberst, C. P. Dillon, R. Weinlich, et al., “Catalytic Activity of the Caspase-8-FLIPL Complex Inhibits RIPK3-dependent Necrosis,” Nature 471, no. 7338 (2011): 363-367.

[59]

W. J. Kaiser, J. W. Upton, A. B. Long, et al., “RIP3 Mediates the Embryonic Lethality of Caspase-8-deficient Mice,” Nature 471, no. 7338 (2011): 368-372.

[60]

Y. Cho, S. Challa, D. Moquin, et al., “Phosphorylation-driven Assembly of the RIP1-RIP3 Complex Regulates Programmed Necrosis and Virus-induced Inflammation,” Cell 137, no. 6 (2009): 1112-1123.

[61]

D. Rodriguez, R. Weinlich, S. Brown, et al., “Characterization of RIPK3-mediated Phosphorylation of the Activation Loop of MLKL During Necroptosis,” Cell Death & Differentiation 23, no. 1 (2016): 76-88.

[62]

J. Zhao, S. Jitkaew, Z. Cai, et al., “Mixed Lineage Kinase Domain-Like Is a Key Receptor Interacting Protein 3 Downstream Component of TNF-induced Necrosis,” Proceedings of the National Academy of Sciences 109, no. 14 (2012): 5322-5327.

[63]

J. M. Murphy, P. E. Czabotar, J. M. Hildebrand, et al., “The Pseudokinase MLKL Mediates Necroptosis via a Molecular Switch Mechanism,” Immunity 39, no. 3 (2013): 443-453.

[64]

Z. Cai, S. Jitkaew, J. Zhao, et al., “Plasma Membrane Translocation of Trimerized MLKL Protein Is Required for TNF-induced Necroptosis,” Nature Cell Biology 16, no. 1 (2014): 55-65.

[65]

Y. Dondelinger, W. Declercq, S. Montessuit, et al., “MLKL Compromises Plasma Membrane Integrity by Binding to Phosphatidylinositol Phosphates,” Cell Reports 7, no. 4 (2014): 971-981.

[66]

C. C. Smith, D. M. Yellon, “Necroptosis, Necrostatins and Tissue Injury,” Journal of Cellular and Molecular Medicine 15, no. 9 (2011): 1797-1806.

[67]

C. P. Baines, “Role of the Mitochondrion in Programmed Necrosis,” Frontiers in Physiology 1 (2010): 156.

[68]

C. Xue, X. Gu, G. Li, Z. Bao, and L. Li, “Mitochondrial Mechanisms of Necroptosis in Liver Diseases,” International Journal of Molecular Sciences 22, no. 1 (2020): 66.

[69]

S. C. Enns, L. A. V. Cordeiro, A. M. Sarr, et al., “Tumor Necrosis Factor-α Signaling Cascades in Apoptosis, Necrosis, Necroptosis and Cell Proliferation,” Journal of Morphological Sciences 23, no. 1 (2017): 0-0.

[70]

K. Schulze-Osthoff, A. Bakker, B. Vanhaesebroeck, R. Beyaert, W. A. Jacob, and W. Fiers, “Cytotoxic Activity of Tumor Necrosis Factor Is Mediated by Early Damage of Mitochondrial Functions. Evidence for the Involvement of Mitochondrial Radical Generation,” Journal of Biological Chemistry 267, no. 8 (1992): 5317-5323.

[71]

A. Lyu, T. H. Kim, S. J. Park, et al., “Mitochondrial Damage and Necroptosis in Aging Cochlea,” International Journal of Molecular Sciences 21, no. 7 (2020): 2505.

[72]

A. Maeda and B. Fadeel, “Mitochondria Released by Cells Undergoing TNF-α-induced Necroptosis Act as Danger Signals,” Cell Death & Disease 5, no. 7 (2014): e1312-e1312.

[73]

S. He, L. Wang, L. Miao, et al., “Receptor Interacting Protein Kinase-3 Determines Cellular Necrotic Response to TNF-α,” Cell 137, no. 6 (2009): 1100-1111.

[74]

J. Karch, O. Kanisicak, M. J. Brody, M. A. Sargent, D. M. Michael, and J. D. Molkentin, “Necroptosis Interfaces With MOMP and the MPTP in Mediating Cell Death,” PLoS ONE 10, no. 6 (2015): e0130520.

[75]

I. Chefetz, E. Grimley, K. Yang, et al., “A Pan-ALDH1A Inhibitor Induces Necroptosis in Ovarian Cancer Stem-Like Cells,” Cell Reports 26, no. 11 (2019): 3061-3075.

[76]

W. Han, J. Xie, L. Li, Z. Liu, and X. Hu, “Necrostatin-1 Reverts Shikonin-induced Necroptosis to Apoptosis,” Apoptosis 14 (2009): 674-686.

[77]

K. D. Marshall and C. P. Baines, “Necroptosis: Is There a Role for Mitochondria?” Frontiers in Physiology 5 (2014): 323.

[78]

Y. Kaku, A. Tsuchiya, T. Kanno, T. Nakano, and T. Nishizaki, “Diarachidonoylphosphoethanolamine Induces Necrosis/Necroptosis of Malignant Pleural Mesothelioma Cells,” Cellular Signalling 27, no. 9 (2015): 1713-1719.

[79]

I. Gan, J. Jiang, D. Lian, et al., “Mitochondrial Permeability Regulates Cardiac Endothelial Cell Necroptosis and Cardiac Allograft Rejection,” American Journal of Transplantation 19, no. 3 (2019): 686-698.

[80]

H. Zhou, D. Li, P. Zhu, et al., “Inhibitory Effect of Melatonin on Necroptosis via Repressing the Ripk3-PGAM5-CypD-mPTP Pathway Attenuates Cardiac Microvascular Ischemia-reperfusion Injury,” Journal of Pineal Research 65, no. 3 (2018): e12503.

[81]

A. P. Halestrap, “What Is the Mitochondrial Permeability Transition Pore?” Journal of Molecular and Cellular Cardiology 46, no. 6 (2009): 821-831.

[82]

M. Bonora, P. Pinton, “The Mitochondrial Permeability Transition Pore and Cancer: Molecular Mechanisms Involved in Cell Death,” Frontiers in Oncology 4 (2014): 302.

[83]

B. C. Albensi, “Dysfunction of Mitochondria: Implications for Alzheimer's Disease,” International Review of Neurobiology 145 (2019): 13-27.

[84]

C. P. Baines, “The Cardiac Mitochondrion: Nexus of Stress,” Annual Review of Physiology 72 (2010): 61-80.

[85]

G. Amanakis and E. Murphy, “Cyclophilin D: An Integrator of Mitochondrial Function,” Frontiers in Physiology 11 (2020): 595.

[86]

S. Hurst, F. Gonnot, M. Dia, C. Crola Da Silva, L. Gomez, and S. Sheu, “Phosphorylation of Cyclophilin D at Serine 191 Regulates Mitochondrial Permeability Transition Pore Opening and Cell Death After Ischemia-reperfusion,” Cell Death & Disease 11, no. 8 (2020): 661.

[87]

R. Dhingra, B. Lieberman, and L. A. Kirshenbaum, “Cyclophilin D Phosphorylation Is Critical for Mitochondrial Calcium Uniporter Regulated Permeability Transition Pore Sensitivity,” Cardiovascular Research 115, no. 2 (2018): 261-263.

[88]

L. Zhang, Y. Liu, R. Zhou, B. He, W. Wang, and B. Zhang, “Cyclophilin D: Guardian or Executioner for Tumor Cells?” Frontiers in Oncology 12 (2022): 939588.

[89]

S. Zhang, H. Tang, J. Hu, et al., “PGAM5-CypD Pathway Is Involved in Bromocriptine-induced RIP3/MLKL-dependent Necroptosis of Prolactinoma Cells,” Biomedicine & Pharmacotherapy 111 (2019): 638-648.

[90]

Q. Remijsen, V. Goossens, S. Grootjans, et al., “Depletion of RIPK3 or MLKL Blocks TNF-driven Necroptosis and Switches towards a Delayed RIPK1 Kinase-dependent Apoptosis,” Cell Death & Disease 5, no. 1 (2014): e1004-e1004.

[91]

G. Fu, B. Wang, B. He, M. Feng, and Y. Yu, “LPS Induces Cardiomyocyte Necroptosis Through the Ripk3/Pgam5 Signaling Pathway,” Journal of Receptors and Signal Transduction 41, no. 1 (2021): 32-37.

[92]

B. Yan, L. Liu, S. Huang, et al., “Discovery of a New Class of Highly Potent Necroptosis Inhibitors Targeting the Mixed Lineage Kinase Domain-Like Protein,” Chemical Communications 53, no. 26 (2017): 3637-3640.

[93]

B. Schenk, S. Fulda, “Reactive Oxygen Species Regulate Smac Mimetic/TNFα-induced Necroptotic Signaling and Cell Death,” Oncogene 34, no. 47 (2015): 5796-5806.

[94]

V. Goossens, J. Grooten, K. De Vos, and W. Fiers, “Direct Evidence for Tumor Necrosis Factor-induced Mitochondrial Reactive Oxygen Intermediates and Their Involvement in Cytotoxicity,” Proceedings of the National Academy of Sciences 92, no. 18 (1995): 8115-8119.

[95]

H. Kamata, H. S-i, S. Maeda, L. Chang, H. Hirata, and M. Karin, “Reactive Oxygen Species Promote TNFα-induced Death and Sustained JNK Activation by Inhibiting MAP Kinase Phosphatases,” Cell 120, no. 5 (2005): 649-661.

[96]

Y. Lin, S. Choksi, H. Shen, et al., “Tumor Necrosis Factor-induced Nonapoptotic Cell Death Requires Receptor-interacting Protein-mediated Cellular Reactive Oxygen Species Accumulation,” Journal of Biological Chemistry 279, no. 11 (2004): 10822-10828.

[97]

N. Vanlangenakker, T. Vanden Berghe, P. Bogaert, et al., “cIAP1 and TAK1 Protect Cells From TNF-induced Necrosis by Preventing RIP1/RIP3-dependent Reactive Oxygen Species Production,” Cell Death & Differentiation 18, no. 4 (2011): 656-665.

[98]

C. M. Anderson, B. A. Norquist, S. Vesce, et al., “Barbiturates Induce Mitochondrial Depolarization and Potentiate Excitotoxic Neuronal Death,” Journal of Neuroscience 22, no. 21 (2002): 9203-9209.

[99]

Y. Zhang, S. S. Su, S. Zhao, et al., “RIP1 autophosphorylation Is Promoted by Mitochondrial ROS and Is Essential for RIP3 Recruitment Into Necrosome,” Nature Communications 8, no. 1 (2017): 14329.

[100]

K. Rohde, L. Kleinesudeik, S. Roesler, et al., “A Bak-dependent Mitochondrial Amplification Step Contributes to Smac Mimetic/Glucocorticoid-induced Necroptosis,” Cell Death & Differentiation 24, no. 1 (2017): 83-97.

[101]

L. Li, R. M. Thomas, H. Suzuki, J. K. De Brabander, X. Wang, and P. G. Harran, “A Small Molecule Smac Mimic Potentiates TRAIL-and TNFα-mediated Cell Death,” Science 305, no. 5689 (2004): 1471-1474.

[102]

S. Ardestani, D. L. Deskins, and P. P. Young, “Membrane TNF-alpha-activated Programmed Necrosis Is Mediated by Ceramide-induced Reactive Oxygen Species,” Journal of Molecular Signaling 8 (2013): 12.

[103]

P. Ellinghaus, I. Heisler, K. Unterschemmann, et al., “BAY 87-2243, a Highly Potent and Selective Inhibitor of Hypoxia-induced Gene Activation Has Antitumor Activities by Inhibition of Mitochondrial Complex I,” Cancer Medicine 2, no. 5 (2013): 611-624.

[104]

F. Basit, L. M. Van Oppen, L. Schöckel, et al., “Mitochondrial Complex I Inhibition Triggers a Mitophagy-dependent ROS Increase Leading to Necroptosis and Ferroptosis in Melanoma Cells,” Cell Death & Disease 8, no. 3 (2017): e2716-e2716.

[105]

Y. Ding, C. He, S. Lu, et al., “MLKL Contributes to Shikonin-Induced Glioma Cell Necroptosis via Promotion of Chromatinolysis,” Cancer Letters 467 (2019): 58-71.

[106]

D. Zhang, J. Shao, J. Lin, et al., “RIP3, an Energy Metabolism Regulator That Switches TNF-induced Cell Death From Apoptosis to Necrosis,” Science 325, no. 5938 (2009): 332-336.

[107]

J. Lee, S. Lee, S. Min, and S. W. Kang, “RIP3-Dependent Accumulation of Mitochondrial Superoxide Anions in TNF-α-Induced Necroptosis,” Molecules and Cells 45, no. 4 (2022): 193.

[108]

W. D. McCaig, P. S. Patel, S. A. Sosunov, et al., “Hyperglycemia Potentiates a Shift From Apoptosis to RIP1-dependent Necroptosis,” Cell Death Discovery 4, no. 1 (2018): 55.

[109]

B. Baliga, A. Pronczuk, and H. Munro, “Mechanism of Cycloheximide Inhibition of Protein Synthesis in a Cell-free System Prepared From Rat Liver,” Journal of Biological Chemistry 244, no. 16 (1969): 4480-4489.

[110]

M. A. Deragon, W. D. McCaig, P. S. Patel, et al., “Mitochondrial ROS Prime the Hyperglycemic Shift From Apoptosis to Necroptosis,” Cell Death Discovery 6, no. 1 (2020): 132.

[111]

Q. Huang, Y. Wu, H. Tan, C. Ong, and H. Shen, “A Novel Function of Poly (ADP-ribose) Polymerase-1 in Modulation of Autophagy and Necrosis Under Oxidative Stress,” Cell Death & Differentiation 16, no. 2 (2009): 264-277.

[112]

H. Zhou, R. A. Swanson, U. Simonis, X. Ma, G. Cecchini, and G. M. O. Poly, “(ADP-ribose) Polymerase-1 Hyperactivation and Impairment of Mitochondrial respiratory Chain Complex I Function in Reperfused Mouse Hearts,” American Journal of Physiology-Heart and Circulatory Physiology 291, no. 2 (2006): H714-H723.

[113]

L. Virág, A. L. Salzman, and C. Szabó, “Poly (ADP-ribose) Synthetase Activation Mediates Mitochondrial Injury During Oxidant-induced Cell Death,” The Journal of Immunology 161, no. 7 (1998): 3753-3759.

[114]

E. Szabados, P. Literati-Nagy, B. Farkas, and B. Sumegi, “BGP-15, a Nicotinic Amidoxime Derivate Protecting Heart From Ischemia Reperfusion Injury Through Modulation of Poly (ADP-ribose) Polymerase,” Biochemical Pharmacology 59, no. 8 (2000): 937-945.

[115]

B. Zingarelli, S. Cuzzocrea, Z. Zsengeller, A. Salzman, and C. Szabó, “Inhibition of Poly (ADP ribose) Synthetase Protects Against Myocardial Ischemia and Reperfusion Injury,” Cardiovascular Research 36 (1997): 205-212.

[116]

M. Cohen-Armon, “The Modified Phenanthridine PJ34 Unveils an Exclusive Cell-Death Mechanism in Human Cancer Cells,” Cancers 12, no. 6 (2020): 1628.

[117]

X. Xu, C. C. Chua, M. Zhang, et al., “The Role of PARP Activation in Glutamate-induced Necroptosis in HT-22 Cells,” Brain Research 1343 (2010): 206-212.

[118]

S. Tan, D. Schubert, and P. Maher, “Oxytosis: A Novel Form of Programmed Cell Death,” Current Topics in Medicinal Chemistry 1, no. 6 (2001): 497-506.

[119]

D. Tischner, C. Manzl, C. Soratroi, A. Villunger, and G. Krumschnabel, “Necrosis-Like Death Can Engage Multiple Pro-apoptotic Bcl-2 Protein family Members,” Apoptosis 17 (2012): 1197-1209.

[120]

J. Karch, J. D. Molkentin, “Regulated Necrotic Cell Death: The Passive Aggressive Side of Bax and Bak,” Circulation Research 116, no. 11 (2015): 1800-1809.

[121]

C. Shi, J. H. Kehrl, “Bcl-2 Regulates Pyroptosis and Necroptosis by Targeting BH3-Like Domains in GSDMD and MLKL,” Cell Death Discovery 5, no. 1 (2019): 151.

[122]

J. Kale, E. J. Osterlund, and D. W. Andrews, “BCL-2 family Proteins: Changing Partners in the Dance towards Death,” Cell Death & Differentiation 25, no. 1 (2018): 65-80.

[123]

M. Adachi and K. Imai, “The Proapoptotic BH3-only Protein BAD Transduces Cell Death Signals Independently of Its Interaction With Bcl-2,” Cell Death & Differentiation 9, no. 11 (2002): 1240-1247.

[124]

T. Vo, A. Letai, “BH3-only Proteins and Their Effects on Cancer,” BCL-2 Protein Family: Essential Regulators of Cell Death (2010): 49-63.

[125]

J. Hitomi, D. E. Christofferson, A. Ng, et al., “Identification of a Molecular Signaling Network That Regulates a Cellular Necrotic Cell Death Pathway,” Cell 135, no. 7 (2008): 1311-1323.

[126]

W. Lin and S. Tongyi, “Role of Bax/Bcl-2 family Members in Green Tea Polyphenol Induced Necroptosis of p53-deficient Hep3B Cells,” Tumor Biology 35 (2014): 8065-8075.

[127]

J. Kim, Y. Kim, S. Lee, and J. Park, “BNip3 is a Mediator of TNF-induced Necrotic Cell Death,” Apoptosis 16 (2011): 114-126.

[128]

Y. Xu, Q. Wu, Z. Tang, et al., “Comprehensive Analysis of Necroptosis-Related Genes as Prognostic Factors and Immunological Biomarkers in Breast Cancer,” Journal of Personalized Medicine 13, no. 1 (2022): 44.

[129]

D. A. Kubli, J. E. Ycaza, and Å. B. Gustafsson, “Bnip3 mediates Mitochondrial Dysfunction and Cell Death Through Bax and Bak,” Biochemical Journal 405, no. 3 (2007): 407-415.

[130]

C. Vande Velde, J. Cizeau, D. Dubik, et al., “BNIP3 and Genetic Control of Necrosis-Like Cell Death Through the Mitochondrial Permeability Transition Pore,” Molecular and Cellular Biology 20, no. 15 (2000): 5454-5468.

[131]

J. Seo, D. Seong, Y. W. Nam, et al., “Beclin 1 Functions as a Negative Modulator of MLKL Oligomerisation by Integrating Into the Necrosome Complex,” Cell Death & Differentiation 27, no. 11 (2020): 3065-3081.

[132]

L. Zhang, T. Cui, and X. Wang, “The Interplay between Autophagy and Regulated Necrosis,” Antioxidants & Redox Signaling (2022).

[133]

J. Mann, N. Yang, R. Montpetit, R. Kirschenman, H. Lemieux, and I. S. Goping, “BAD Sensitizes Breast Cancer Cells to Docetaxel With Increased Mitotic Arrest and Necroptosis,” Scientific Reports 10, no. 1 (2020): 355.

[134]

D. Liao, L. Sun, W. Liu, S. He, X. Wang, and X. Lei, “Necrosulfonamide Inhibits Necroptosis by Selectively Targeting the Mixed Lineage Kinase Domain-Like Protein,” MedChemComm 5, no. 3 (2014): 333-337.

[135]

A. Kelekar, “Autophagy,” Annals of the New York Academy of Sciences 1066, no. 1 (2006): 259-271.

[136]

D. J. Klionsky and S. D. Emr, “Autophagy as a Regulated Pathway of Cellular Degradation,” Science 290, no. 5497 (2000): 1717-1721.

[137]

T. Shintani, D. J. Klionsky, “Autophagy in Health and Disease: A Double-edged Sword,” Science 306, no. 5698 (2004): 990-995.

[138]

D. Glick, S. Barth, and K. F. Macleod, “Autophagy: Cellular and Molecular Mechanisms,” The Journal of Pathology 221, no. 1 (2010): 3-12.

[139]

K. R. Parzych, D. J. Klionsky, “An Overview of Autophagy: Morphology, Mechanism, and Regulation,” Antioxidants & Redox Signaling 20, no. 3 (2014): 460-473.

[140]

J. Kim, M. Kundu, B. Viollet, and K. L. Guan, “AMPK and mTOR Regulate Autophagy Through Direct Phosphorylation of Ulk1,” Nature Cell Biology 13, no. 2 (2011): 132-141.

[141]

K. Inoki, T. Zhu, and K. L. Guan, “TSC2 mediates Cellular Energy Response to Control Cell Growth and Survival,” Cell 115, no. 5 (2003): 577-590.

[142]

D. M. Gwinn, D. B. Shackelford, D. F. Egan, et al., “AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint,” Molecular Cell 30, no. 2 (2008): 214-226.

[143]

Z. Yang, D. J. Klionsky, “Mammalian Autophagy: Core Molecular Machinery and Signaling Regulation,” Current Opinion in Cell Biology 22, no. 2 (2010): 124-131.

[144]

K. Sun, W. Deng, S. Zhang, et al., “Paradoxical Roles of Autophagy in Different Stages of Tumorigenesis: Protector for Normal or Cancer Cells,” Cell & Bioscience 3, no. 1 (2013): 1-8.

[145]

J. M. M. Levy, C. G. Towers, and A. Thorburn, “Targeting Autophagy in Cancer,” Nature Reviews Cancer 17, no. 9 (2017): 528-542.

[146]

N. Mizushima, “Autophagy: Process and Function,” Genes & Development 21, no. 22 (2007): 2861-2873.

[147]

E. L. Axe, S. A. Walker, M. Manifava, et al., “Autophagosome Formation From Membrane Compartments Enriched in Phosphatidylinositol 3-phosphate and Dynamically Connected to the Endoplasmic Reticulum,” The Journal of Cell Biology 182, no. 4 (2008): 685-701.

[148]

M. Hayashi-Nishino, N. Fujita, T. Noda, A. Yamaguchi, T. Yoshimori, and A. Yamamoto, “A Subdomain of the Endoplasmic Reticulum Forms a Cradle for Autophagosome Formation,” Nature Cell Biology 11, no. 12 (2009): 1433-1437.

[149]

N. Mizushima and D. J. Klionsky, “Protein Turnover via Autophagy: Implications for Metabolism,” Annual Review of Nutrition 27 (2007): 19-40.

[150]

P. Ylä-Anttila, H. Vihinen, E. Jokitalo, and E. L. Eskelinen, “3D tomography Reveals Connections Between the Phagophore and Endoplasmic Reticulum,” Autophagy 5, no. 8 (2009): 1180-1185.

[151]

C. He and B. Levine, “The Beclin 1 Interactome,” Current Opinion in Cell Biology 22, no. 2 (2010): 140-149.

[152]

Z. Xie, D. J. Klionsky, “Autophagosome Formation: Core Machinery and Adaptations,” Nature Cell Biology 9, no. 10 (2007): 1102-1109.

[153]

J. Romanov, M. Walczak, I. Ibiricu, et al., “Mechanism and Functions of Membrane Binding by the Atg5-Atg12/Atg16 Complex During Autophagosome Formation,” The EMBO Journal 31, no. 22 (2012): 4304-4317.

[154]

M. Walczak and S. Martens, “Dissecting the Role of the Atg12-Atg5-Atg16 Complex During Autophagosome Formation,” Autophagy 9, no. 3 (2013): 424-425.

[155]

I. Tanida, T. Ueno, and E. Kominami, “LC3 conjugation System in Mammalian Autophagy,” The International Journal of Biochemistry & Cell Biology 36, no. 12 (2004): 2503-2518.

[156]

S. Pankiv, T. H. Clausen, T. Lamark, et al., “p62/SQSTM1 binds Directly to Atg8/LC3 to Facilitate Degradation of Ubiquitinated Protein Aggregates by Autophagy,” Journal of Biological Chemistry 282, no. 33 (2007): 24131-24145.

[157]

E. Itakura, C. Kishi-Itakura, and N. Mizushima, “The Hairpin-type Tail-anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion With Endosomes/Lysosomes,” Cell 151, no. 6 (2012): 1256-1269.

[158]

Y. Tanaka, G. Guhde, A. Suter, et al., “Accumulation of Autophagic Vacuoles and Cardiomyopathy in LAMP-2-deficient Mice,” Nature 406, no. 6798 (2000): 902-906.

[159]

D. J. Wible, S. B. Bratton, “Reciprocity in ROS and Autophagic Signaling,” Current Opinion in Toxicology 7 (2018): 28-36.

[160]

G. Filomeni, D. De Zio, and F. Cecconi, “Oxidative Stress and Autophagy: The Clash Between Damage and Metabolic Needs,” Cell Death & Differentiation 22, no. 3 (2015): 377-388.

[161]

Z. Li, Y. Yang, M. Ming, and B. Liu, “Mitochondrial ROS Generation for Regulation of Autophagic Pathways in Cancer,” Biochemical and Biophysical Research Communications 414, no. 1 (2011): 5-8.

[162]

M. Redza-Dutordoir, D. A. Averill-Bates, “Interactions Between Reactive Oxygen Species and Autophagy: Special Issue: Death Mechanisms in Cellular Homeostasis,” Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research 1868, no. 8 (2021): 119041.

[163]

Y. Kim, Y. S. Kim, D. E. Kim, et al., “BIX-01294 Induces Autophagy-associated Cell Death via EHMT2/G9a Dysfunction and Intracellular Reactive Oxygen Species Production,” Autophagy 9, no. 12 (2013): 2126-2139.

[164]

M. Akimoto, M. Iizuka, R. Kanematsu, M. Yoshida, and K. Takenaga, “Anticancer Effect of Ginger Extract Against Pancreatic Cancer Cells Mainly Through Reactive Oxygen Species-mediated Autotic Cell Death,” PLoS ONE 10, no. 5 (2015): e0126605.

[165]

S. Kim, K. Kim, S. Park, et al., “Mitochondrial ROS Activates ERK/Autophagy Pathway as a Protected Mechanism Against Deoxypodophyllotoxin-induced Apoptosis,” Oncotarget 8, no. 67 (2017): 111581.

[166]

M. Choi and J. A. Bonanno, “Mitochondrial Targeting of the Ammonia-sensitive Uncoupler SLC4A11 by the Chaperone-mediated Carrier Pathway in Corneal Endothelium,” Investigative Ophthalmology & Visual Science 62, no. 12 (2021): 4-4.

[167]

R. Shyam, D. G. Ogando, M. Choi, P. B. Liton, and J. A. Bonanno, “Mitochondrial ROS Induced Lysosomal Dysfunction and Autophagy Impairment in an Animal Model of Congenital Hereditary Endothelial Dystrophy,” Investigative Ophthalmology & Visual Science 62, no. 12 (2021): 15-15.

[168]

E. J. Gwak, D. Kim, H. Hwang, and H. J. Kwon, “Mitochondrial ROS Produced in human Colon Carcinoma Associated With Cell Survival via Autophagy,” Cancers 14, no. 8 (2022): 1883.

[169]

J. Chang, H. J. Jung, S. H. Jeong, H. K. Kim, J. Han, and H. J. Kwon, “A Mutation in the Mitochondrial Protein UQCRB Promotes Angiogenesis Through the Generation of Mitochondrial Reactive Oxygen Species,” Biochemical and Biophysical Research Communications 455, no. 3-4 (2014): 290-297.

[170]

E. R. Hahm, K. Sakao, and S. V. Singh, “Honokiol Activates Reactive Oxygen Species-mediated Cytoprotective Autophagy in human Prostate Cancer Cells,” The Prostate 74, no. 12 (2014): 1209-1221.

[171]

Z. Wang, X. Shi, Y. Li, et al., “Involvement of Autophagy in Recombinant human Arginase-induced Cell Apoptosis and Growth Inhibition of Malignant Melanoma Cells,” Applied Microbiology and Biotechnology 98, no. 6 (2014): 2485-2494.

[172]

P. Karna, S. Zughaier, V. Pannu, R. Simmons, S. Narayan, and R. Aneja, “Induction of Reactive Oxygen Species-mediated Autophagy by a Novel Microtubule-modulating Agent,” Journal of Biological Chemistry 285, no. 24 (2010): 18737-18748.

[173]

I. A. Ciechomska, P. Przanowski, J. Jackl, B. Wojtas, and B. Kaminska, “BIX01294, an Inhibitor of Histone Methyltransferase, Induces Autophagy-dependent Differentiation of Glioma Stem-Like Cells,” Scientific Reports 6, no. 1 (2016): 38723.

[174]

Y. Yuan, Y. Chen, T. Peng, et al., “Mitochondrial ROS-induced Lysosomal Dysfunction Impairs Autophagic Flux and Contributes to M1 Macrophage Polarization in a Diabetic Condition,” Clinical Science 133, no. 15 (2019): 1759-1777.

[175]

S. Salcher, J. Hagenbuchner, K. Geiger, et al., “C10ORF10/DEPP, a Transcriptional Target of FOXO3, Regulates ROS-sensitivity in human Neuroblastoma,” Molecular Cancer 13, no. 1 (2014): 1-17.

[176]

V. Roca-Agujetas, C. de Dios, L. Lestón, M. Marí, A. Morales, and A. Colell, “Recent Insights Into the Mitochondrial Role in Autophagy and Its Regulation by Oxidative Stress,” Oxidative Medicine and Cellular Longevity 2019 (2019): 3809308.

[177]

J. E. Hachmeister, L. Valluru, F. Bao, and D. Liu, “Mn (III) Tetrakis (4-benzoic acid) Porphyrin Administered Into the Intrathecal Space Reduces Oxidative Damage and Neuron Death After Spinal Cord Injury: A Comparison With Methylprednisolone,” Journal of Neurotrauma 23, no. 12 (2006): 1766-1778.

[178]

L. Bonet-Ponce, S. Saez-Atienzar, C. da Casa, et al., “On the Mechanism Underlying Ethanol-induced Mitochondrial Dynamic Disruption and Autophagy Response,” Biochimica Et Biophysica Acta (BBA)-Molecular Basis of Disease 1852, no. 7 (2015): 1400-1409.

[179]

M. Nishida, N. Yamashita, T. Ogawa, et al., “Mitochondrial Reactive Oxygen Species Trigger Metformin-dependent Antitumor Immunity via Activation of Nrf2/mTORC1/p62 Axis in Tumor-infiltrating CD8T Lymphocytes,” Journal for Immunotherapy of Cancer 9, no. 9 (2021): e002954.

[180]

Y. Zhao, T. Qu, P. Wang, et al., “Unravelling the Relationship Between Macroautophagy and Mitochondrial ROS in Cancer Therapy,” Apoptosis 21 (2016): 517-531.

[181]

W. Liu, A. Akhand, K. Takeda, et al., “Protein Phosphatase 2A-linked and-unlinked Caspase-dependent Pathways for Downregulation of Akt Kinase Triggered by 4-hydroxynonenal,” Cell Death & Differentiation 10, no. 7 (2003): 772-781.

[182]

T. Shimura, M. Sasatani, K. Kamiya, H. Kawai, Y. Inaba, and N. Kunugita, “Mitochondrial Reactive Oxygen Species Perturb AKT/Cyclin D1 Cell Cycle Signaling via Oxidative Inactivation of PP2A in Lowdose Irradiated human Fibroblasts,” Oncotarget 7, no. 3 (2016): 3559.

[183]

V. Papalazarou, O. D. Maddocks, “Supply and Demand: Cellular Nutrient Uptake and Exchange in Cancer,” Molecular Cell 81, no. 18 (2021): 3731-3748.

[184]

P. O. Seglen, P. B. Gordon, and A. Poli, “Amino Acid Inhibition of the Autophagic/Lysosomal Pathway of Protein Degradation in Isolated Rat Hepatocytes,” Biochimica Et Biophysica Acta (BBA)-General Subjects 630, no. 1 (1980): 103-118.

[185]

J. Li, P. Song, L. Zhu, et al., “Synthetic Lethality of Glutaminolysis Inhibition, Autophagy Inactivation and Asparagine Depletion in Colon Cancer,” Oncotarget 8, no. 26 (2017): 42664-42672.

[186]

J. Seo, J. Choi, S. Lee, et al., “Autophagy Is Required for PDAC Glutamine Metabolism,” Scientific Reports 6, no. 1 (2016): 1-14.

[187]

H. W. S. Tan, A. Y. L. Sim, and Y. C. Long, “Glutamine Metabolism Regulates Autophagy-dependent mTORC1 Reactivation During Amino Acid Starvation,” Nature Communications 8, no. 1 (2017): 338.

[188]

V. H. Villar, F. Merhi, M. Djavaheri-Mergny, and R. V. Durán, “Glutaminolysis and Autophagy in Cancer,” Autophagy 11, no. 8 (2015): 1198-1208.

[189]

A. Y. Choo, S. G. Kim, M. G. Vander Heiden, et al., “Glucose Addiction of TSC Null Cells Is Caused by Failed mTORC1-dependent Balancing of Metabolic Demand With Supply,” Molecular Cell 38, no. 4 (2010): 487-499.

[190]

R. Durán, E. MacKenzie, H. Boulahbel, et al., “HIF-independent Role of Prolyl Hydroxylases in the Cellular Response to Amino Acids,” Oncogene 32, no. 38 (2013): 4549-4556.

[191]

K. G. de la Cruz López, M. E. Toledo Guzmán, and E. O. Sánchez, “García Carrancá A. mTORC1 as a Regulator of Mitochondrial Functions and a Therapeutic Target in Cancer,” Frontiers in Oncology 9 (2019): 1373.

[192]

S. Han, L. Zhu, Y. Zhu, et al., “Targeting ATF4-dependent Pro-survival Autophagy to Synergize Glutaminolysis Inhibition,” Theranostics 11, no. 17 (2021): 8464.

[193]

S. Lorin, M. J. Tol, C. Bauvy, et al., “Glutamate Dehydrogenase Contributes to Leucine Sensing in the Regulation of Autophagy,” Autophagy 9, no. 6 (2013): 850-860.

[194]

A. J. Meijer, “Amino Acid Regulation of Autophagosome Formation,” Autophagosome and Phagosome (2008): 89-109.

[195]

K. E. Van Der Vos, P. Eliasson, T. Proikas-Cezanne, et al., “Modulation of Glutamine Metabolism by the PI (3) K-PKB-FOXO Network Regulates Autophagy,” Nature Cell Biology 14, no. 8 (2012): 829-837.

[196]

P. Cardol, F. Figueroa, C. Remacle, L. Franzén, and D González-Halphen. Chapter 13 - Oxidative Phosphorylation: Building Blocks and Related Components. In: Harris E. H., Stern D. B., Witman G. B., eds. “The Chlamydomonas Sourcebook (Second Edition)”. (Academic Press, 2009): 469-502.

[197]

L. Fernandez-Mosquera, K. F. Yambire, R. Couto, et al., “Mitochondrial respiratory Chain Deficiency Inhibits Lysosomal Hydrolysis,” Autophagy 15, no. 9 (2019): 1572-1591.

[198]

S. Patergnani, S. Marchi, A. Rimessi, et al., “PRKCB/Protein Kinase C, Beta and the Mitochondrial Axis as Key Regulators of Autophagy,” Autophagy 9, no. 9 (2013): 1367-1385.

[199]

I. Kim, S. Rodriguez-Enriquez, and J. J. Lemasters, “Selective Degradation of Mitochondria by Mitophagy,” Archives of Biochemistry and Biophysics 462, no. 2 (2007): 245-253.

[200]

J. J. Lemasters, “Selective Mitochondrial Autophagy, or Mitophagy, as a Targeted Defense Against Oxidative Stress, Mitochondrial Dysfunction, and Aging,” Rejuvenation Research 8, no. 1 (2005): 3-5.

[201]

L. C. Gomes, L. Scorrano, “Mitochondrial Morphology in Mitophagy and Macroautophagy,” Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research 1833, no. 1 (2013): 205-212.

[202]

G. Ashrafi, T. Schwarz, “The Pathways of Mitophagy for Quality Control and Clearance of Mitochondria,” Cell Death & Differentiation 20, no. 1 (2013): 31-42.

[203]

K. Okatsu, M. Uno, F. Koyano, et al., “A Dimeric PINK1-containing Complex on Depolarized Mitochondria Stimulates Parkin Recruitment,” Journal of Biological Chemistry 288, no. 51 (2013): 36372-36384.

[204]

T. N. Nguyen, B. S. Padman, S. Zellner, et al., “ATG4 family Proteins Drive Phagophore Growth Independently of the LC3/GABARAP Lipidation System,” Molecular Cell 81, no. 9 (2021): 2013-2030. e9.

[205]

J. N. S. Vargas, C. Wang, E. Bunker, et al., “Spatiotemporal Control of ULK1 Activation by NDP52 and TBK1 During Selective Autophagy,” Molecular Cell 74, no. 2 (2019): 347-362. e6.

[206]

V. V. Rogov, H. Suzuki, M. Marinković, et al., “Phosphorylation of the Mitochondrial Autophagy Receptor Nix Enhances Its Interaction With LC3 Proteins,” Scientific Reports 7, no. 1 (2017): 1-12.

[207]

A. Diwan, S. J. Matkovich, Q. Yuan, et al., “Endoplasmic Reticulum-mitochondria Crosstalk in NIX-mediated Murine Cell Death,” The Journal of Clinical Investigation 119, no. 1 (2009): 203-212.

[208]

Y. Chen, W. Lewis, A. Diwan, E. H. Cheng, S. J. Matkovich, and G. W. Dorn, “Dual Autonomous Mitochondrial Cell Death Pathways Are Activated by Nix/BNip3L and Induce Cardiomyopathy,” Proceedings of the National Academy of Sciences 107, no. 20 (2010): 9035-9042.

[209]

K. Fujimoto, E. L. Ford, H. Tran, et al., “Loss of Nix in Pdx1-deficient Mice Prevents Apoptotic and Necrotic β Cell Death and Diabetes,” The Journal of Clinical Investigation 120, no. 11 (2010): 4031-4039.

[210]

W. Wang, Y. Wang, H. Chen, et al., “Orphan Nuclear Receptor TR3 Acts in Autophagic Cell Death via Mitochondrial Signaling Pathway,” Nature Chemical Biology 10, no. 2 (2014): 133-140.

[211]

Y. Li, W. Zheng, Y. Lu, et al., “BNIP3L/NIX-mediated Mitophagy: Molecular Mechanisms and Implications for human Disease,” Cell Death & Disease 13, no. 1 (2021): 14.

[212]

M. A. Lampert, A. M. Orogo, R. H. Najor, et al., “BNIP3L/NIX and FUNDC1-mediated Mitophagy Is Required for Mitochondrial Network Remodeling During Cardiac Progenitor Cell Differentiation,” Autophagy 15, no. 7 (2019): 1182-1198.

[213]

Y. Li, Y. Wang, E. Kim, et al., “Bnip3 mediates the Hypoxia-induced Inhibition on Mammalian Target of Rapamycin by Interacting With Rheb,” Journal of Biological Chemistry 282, no. 49 (2007): 35803-35813.

[214]

G. Bellot, R. Garcia-Medina, P. Gounon, et al., “Hypoxia-induced Autophagy Is Mediated Through Hypoxia-inducible Factor Induction of BNIP3 and BNIP3L via Their BH3 Domains,” Molecular and Cellular Biology 29, no. 10 (2009): 2570-2581.

[215]

N. M. Mazure, J. Pouysségur, “Atypical BH3-domains of BNIP3 and BNIP3L Lead to Autophagy in Hypoxia,” Autophagy 5, no. 6 (2009): 868-869.

[216]

H. Zhang, M. Bosch-Marce, L. A. Shimoda, et al., “Mitochondrial Autophagy Is an HIF-1-dependent Adaptive Metabolic Response to Hypoxia,” Journal of Biological Chemistry 283, no. 16 (2008): 10892-10903.

[217]

I. Papandreou, A. L. Lim, K. Laderoute, and N. C. Denko, “Hypoxia Signals Autophagy in Tumor Cells via AMPK Activity, Independent of HIF-1, BNIP3, and BNIP3L,” Cell Death & Differentiation 15, no. 10 (2008): 1572-1581.

[218]

F. Strappazzon, M. Vietri-Rudan, S. Campello, et al., “Mitochondrial BCL-2 Inhibits AMBRA1-induced Autophagy,” The EMBO Journal 30, no. 7 (2011): 1195-1208.

[219]

F. Strappazzon, F. Nazio, M. Corrado, et al., “AMBRA1 is Able to Induce Mitophagy via LC3 Binding, Regardless of PARKIN and p62/SQSTM1,” Cell Death & Differentiation 22, no. 3 (2015): 419-432.

[220]

L. Liu, D. Feng, G. Chen, et al., “Mitochondrial Outer-membrane Protein FUNDC1 Mediates Hypoxia-induced Mitophagy in Mammalian Cells,” Nature Cell Biology 14, no. 2 (2012): 177-185.

[221]

M. Chen, Z. Chen, Y. Wang, et al., “Mitophagy Receptor FUNDC1 Regulates Mitochondrial Dynamics and Mitophagy,” Autophagy 12, no. 4 (2016): 689-702.

[222]

D. W. Hailey, A. S. Rambold, P. Satpute-Krishnan, et al., “Mitochondria Supply Membranes for Autophagosome Biogenesis During Starvation,” Cell 141, no. 4 (2010): 656-667.

[223]

L. Ge and R. Schekman, “The ER-Golgi Intermediate Compartment Feeds the Phagophore Membrane,” Autophagy 10, no. 1 (2014): 170-172.

[224]

B. Ravikumar, K. Moreau, L. Jahreiss, C. Puri, and D. C. Rubinsztein, “Plasma Membrane Contributes to the Formation of Pre-autophagosomal Structures,” Nature Cell Biology 12, no. 8 (2010): 747-757.

[225]

A. C. Nascimbeni, F. Giordano, N. Dupont, et al., “ER-plasma Membrane Contact Sites Contribute to Autophagosome Biogenesis by Regulation of Local PI 3P Synthesis,” The EMBO Journal 36, no. 14 (2017): 2018-2033.

[226]

M. Hamasaki, N. Furuta, A. Matsuda, et al., “Autophagosomes Form at ER-mitochondria Contact Sites,” Nature 495, no. 7441 (2013): 389-393.

[227]

P. Gomez-Suaga, S. Paillusson, R. Stoica, W. Noble, D. P. Hanger, and C. C. Miller, “The ER-mitochondria Tethering Complex VAPB-PTPIP51 Regulates Autophagy,” Current Biology 27, no. 3 (2017): 371-385.

[228]

R. Stoica, K. J. De Vos, S. Paillusson, et al., “ER-mitochondria Associations Are Regulated by the VAPB-PTPIP51 Interaction and Are Disrupted by ALS/FTD-associated TDP-43,” Nature Communications 5, no. 1 (2014): 3996.

[229]

K. J. De Vos, G. M. Morotz, R. Stoica, et al., “VAPB Interacts With the Mitochondrial Protein PTPIP51 to Regulate Calcium Homeostasis,” Human Molecular Genetics 21, no. 6 (2012): 1299-1311.

[230]

R. Stoica, S. Paillusson, P. Gomez-Suaga, et al., “ALS/FTD-associated FUS Activates GSK-3β to Disrupt the VAPB-PTPIP 51 Interaction and ER-mitochondria Associations,” EMBO Reports 17, no. 9 (2016): 1326-1342.

[231]

C. Cardenas, R. A. Miller, I. Smith, et al., “Essential Regulation of Cell Bioenergetics by Constitutive InsP3 Receptor Ca2+ Transfer to Mitochondria,” Cell 142, no. 2 (2010): 270-283.

[232]

C. Cárdenas, M. Müller, A. McNeal, et al., “Selective Vulnerability of Cancer Cells by Inhibition of Ca2+ Transfer From Endoplasmic Reticulum to Mitochondria,” Cell Reports 14, no. 10 (2016): 2313-2324.

[233]

S. Sarkar, R. A. Floto, Z. Berger, et al., “Lithium Induces Autophagy by Inhibiting Inositol Monophosphatase,” The Journal of Cell Biology 170, no. 7 (2005): 1101-1111.

[234]

L. Yuan, Q. Liu, Z. Wang, J. Hou, and P. Xu, “EI24 tethers Endoplasmic Reticulum and Mitochondria to Regulate Autophagy Flux,” Cellular and Molecular Life Sciences 77 (2020): 1591-1606.

[235]

S. Gr, K. Bianchi, P. Várnai, et al., “Chaperone-mediated Coupling of Endoplasmic Reticulum and Mitochondrial Ca2+ Channels,” The Journal of Cell Biology 175, no. 6 (2006): 901-911.

[236]

H. Yang, H. Shen, J. Li, and L. Guo, “SIGMAR1/Sigma-1 Receptor Ablation Impairs Autophagosome Clearance,” Autophagy 15, no. 9 (2019): 1539-1557.

[237]

T. D. MacVicar, L. V. Mannack, R. M. Lees, and J. D. Lane, “Targeted siRNA Screens Identify ER-to-mitochondrial Calcium Exchange in Autophagy and Mitophagy Responses in RPE1 Cells,” International Journal of Molecular Sciences 16, no. 6 (2015): 13356-13380.

[238]

O. M. de Brito and L. Scorrano, “Mitofusin 2 Tethers Endoplasmic Reticulum to Mitochondria,” Nature 456, no. 7222 (2008): 605-610.

[239]

Y. Hu, H. Chen, L. Zhang, et al., “The AMPK-MFN2 Axis Regulates MAM Dynamics and Autophagy Induced by Energy Stresses,” Autophagy 17, no. 5 (2021): 1142-1156.

[240]

M. Sorice, T. Garofalo, R. Misasi, V. Manganelli, R. Vona, and W. Malorni, “Ganglioside GD3 as a Raft Component in Cell Death Regulation,” Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 12, no. 4 (2012): 376-382.

[241]

T. Garofalo, P. Matarrese, V. Manganelli, et al., “Evidence for the Involvement of Lipid Rafts Localized at the ER-mitochondria Associated Membranes in Autophagosome Formation,” Autophagy 12, no. 6 (2016): 917-935.

[242]

P. Matarrese, T. Garofalo, V. Manganelli, et al., “Evidence for the Involvement of GD3 Ganglioside in Autophagosome Formation and Maturation,” Autophagy 10, no. 5 (2014): 750-765.

[243]

W. S. Yang and B. R. Stockwell, “Ferroptosis: Death by Lipid Peroxidation,” Trends in Cell Biology 26, no. 3 (2016): 165-176.

[244]

H. Sato, M. Tamba, T. Ishii, and S. Bannai, “Cloning and Expression of a Plasma Membrane Cystine/Glutamate Exchange Transporter Composed of Two Distinct Proteins,” Journal of Biological Chemistry 274, no. 17 (1999): 11455-11458.

[245]

M. Conrad, H. Sato, “The Oxidative Stress-inducible Cystine/Glutamate Antiporter, System Xc−: Cystine Supplier and Beyond,” Amino Acids 42 (2012): 231-246.

[246]

M. H. Stipanuk, J. E. Dominy, J. I. Lee, and R. M. Coloso, “Mammalian Cysteine Metabolism: New Insights Into Regulation of Cysteine Metabolism,” Journal of Nutrition 136, no. 6 Suppl (2006): 1652s-1659s.

[247]

R. Brigelius-Flohé and M. Maiorino, “Glutathione Peroxidases,” Biochimica Et Biophysica Acta 1830, no. 5 (2013): 3289-3303.

[248]

H. Wu, F. Wang, N. Ta, T. Zhang, and W. Gao, “The Multifaceted Regulation of Mitochondria in Ferroptosis,” Life 11, no. 3 (2021): 222.

[249]

V. A. Kraft, C. T. Bezjian, S. Pfeiffer, et al., “GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis Through Lipid Remodeling,” ACS Central Science 6, no. 1 (2019): 41-53.

[250]

S. Doll, F. P. Freitas, R. Shah, et al., “FSP1 is a Glutathione-independent Ferroptosis Suppressor,” Nature 575, no. 7784 (2019): 693-698.

[251]

K. Bersuker, J. M. Hendricks, Z. Li, et al., “The CoQ Oxidoreductase FSP1 Acts Parallel to GPX4 to Inhibit Ferroptosis,” Nature 575, no. 7784 (2019): 688-692.

[252]

W. S. Yang, K. J. Kim, M. M. Gaschler, M. Patel, M. S. Shchepinov, and B. R. Stockwell, “Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives Ferroptosis,” Proceedings of the National Academy of Sciences 113, no. 34 (2016): E4966-E4975.

[253]

V. E. Kagan, G. Mao, F. Qu, et al., “Oxidized Arachidonic and Adrenic PEs Navigate Cells to Ferroptosis,” Nature Chemical Biology 13, no. 1 (2017): 81-90.

[254]

S. Doll, B. Proneth, Y. Y. Tyurina, et al., “ACSL4 dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition,” Nature Chemical Biology 13, no. 1 (2017): 91-98.

[255]

S. J. Dixon, G. E. Winter, L. S. Musavi, et al., “Human Haploid Cell Genetics Reveals Roles for Lipid Metabolism Genes in Nonapoptotic Cell Death,” ACS Chemical Biology 10, no. 7 (2015): 1604-1609.

[256]

H. Feng and B. R. Stockwell, “Unsolved Mysteries: How Does Lipid Peroxidation Cause Ferroptosis?” PLoS Biology 16, no. 5 (2018): e2006203.

[257]

A. Catalá, M. Díaz, Impact of Lipid Peroxidation on the Physiology and Pathophysiology of Cell Membranes. (Frontiers Media SA, 2016): 423.

[258]

S. J. Dixon, K. M. Lemberg, M. R. Lamprecht, et al., “Ferroptosis: An Iron-dependent Form of Nonapoptotic Cell Death,” Cell 149, no. 5 (2012): 1060-1072.

[259]

J. P. Friedmann Angeli, M. Schneider, B. Proneth, et al., “Inactivation of the Ferroptosis Regulator Gpx4 Triggers Acute Renal Failure in Mice,” Nature Cell Biology 16, no. 12 (2014): 1180-1191.

[260]

J. J. Haddad, “L-Buthionine-(S, R)-sulfoximine, an Irreversible Inhibitor of Gamma-glutamylcysteine Synthetase, Augments LPS-mediated Pro-inflammatory Cytokine Biosynthesis: Evidence for the Implication of an IkappaB-alpha/NF-kappaB Insensitive Pathway,” European Cytokine Network 12, no. 4 (2002): 614-624.

[261]

G. Wu, Y. Fang, S. Yang, J. R. Lupton, and N. D. Turner, “Glutathione Metabolism and Its Implications for Health,” The Journal of Nutrition 134, no. 3 (2004): 489-492.

[262]

B. Niu, X. Lei, Q. Xu, et al., “Protecting Mitochondria via Inhibiting VDAC1 Oligomerization Alleviates Ferroptosis in Acetaminophen-induced Acute Liver Injury,” Cell Biology and Toxicology (2022): 1-26.

[263]

S. Neitemeier, A. Jelinek, V. Laino, et al., “BID Links Ferroptosis to Mitochondrial Cell Death Pathways,” Redox Biology 12 (2017): 558-570.

[264]

J. Grohm, N. Plesnila, and C. Culmsee, “Bid Mediates Fission, Membrane Permeabilization and Peri-nuclear Accumulation of Mitochondria as a Prerequisite for Oxidative Neuronal Cell Death,” Brain, Behavior, and Immunity 24, no. 5 (2010): 831-838.

[265]

A. Jelinek, L. Heyder, M. Daude, et al., “Mitochondrial Rescue Prevents Glutathione Peroxidase-dependent Ferroptosis,” Free Radical Biology and Medicine 117 (2018): 45-57.

[266]

A. M. Battaglia, R. Chirillo, I. Aversa, A. Sacco, F. Costanzo, and F. Biamonte, “Ferroptosis and Cancer: Mitochondria Meet the “Iron Maiden” Cell Death,” Cells 9, no. 6 (2020): 1505.

[267]

M. M. Gaschler, A. A. Andia, H. Liu, et al., “FINO2 initiates Ferroptosis Through GPX4 Inactivation and Iron Oxidation,” Nature Chemical Biology 14, no. 5 (2018): 507-515.

[268]

P. Hsu, X. Liu, J. Zhang, H. Wang, J. Ye, and Y. Shi, “Cardiolipin Remodeling by TAZ/tafazzin Is Selectively Required for the Initiation of Mitophagy,” Autophagy 11, no. 4 (2015): 643-652.

[269]

M. Gao, J. Yi, J. Zhu, et al., “Role of Mitochondria in Ferroptosis,” Molecular Cell 73, no. 2 (2019): 354-363. e3.

[270]

T. Tadokoro, M. Ikeda, T. Ide, et al., “Mitochondria-dependent Ferroptosis Plays a Pivotal Role in Doxorubicin Cardiotoxicity,” JCI Insight 5, no. 9 (2020): e132747.

[271]

X. Fang, H. Wang, D. Han, et al., “Ferroptosis as a Target for Protection Against Cardiomyopathy,” Proceedings of the National Academy of Sciences 116, no. 7 (2019): 2672-2680.

[272]

C. McCarthy and L. C. Kenny, “Therapeutically Targeting Mitochondrial Redox Signalling Alleviates Endothelial Dysfunction in Preeclampsia,” Scientific Reports 6, no. 1 (2016): 32683.

[273]

T. Krainz, M. M. Gaschler, C. Lim, J. R. Sacher, B. R. Stockwell, and P. Wipf, “A Mitochondrial-targeted Nitroxide Is a Potent Inhibitor of Ferroptosis,” ACS Central Science 2, no. 9 (2016): 653-659.

[274]

L. D. Zorova, V. A. Popkov, E. Y. Plotnikov, et al., “Mitochondrial Membrane Potential,” Analytical Biochemistry 552 (2018): 50-59.

[275]

L. Chen, K. Ma, J. Han, Q. Chen, and Y. Zhu, “Monitoring Mitophagy in Mammalian Cells,” Methods in Enzymology (2017): 187-208.

[276]

N. Yagoda, M. von Rechenberg, E. Zaganjor, et al., “RAS-RAF-MEK-dependent Oxidative Cell Death Involving Voltage-dependent Anion Channels,” Nature 447, no. 7146 (2007): 865-869.

[277]

Y. Chen, Y. Liu, T. Lan, et al., “Quantitative Profiling of Protein Carbonylations in Ferroptosis by an Aniline-derived Probe,” Journal of the American Chemical Society 140, no. 13 (2018): 4712-4720.

[278]

D. N. DeHart, D. Fang, K. Heslop, L. Li, J. J. Lemasters, and E. N. Maldonado, “Opening of Voltage Dependent Anion Channels Promotes Reactive Oxygen Species Generation, Mitochondrial Dysfunction and Cell Death in Cancer Cells,” Biochemical Pharmacology 148 (2018): 155-162.

[279]

W. Tan and M. Colombini, “VDAC Closure Increases Calcium Ion Flux,” Biochimica Et Biophysica Acta (BBA)-Biomembranes 1768, no. 10 (2007): 2510-2515.

[280]

T. Xu, W. Ding, X. Ji, et al., “Molecular Mechanisms of Ferroptosis and Its Role in Cancer Therapy,” Journal of Cellular and Molecular Medicine 23, no. 8 (2019): 4900-4912.

[281]

M. Asperti, S. Bellini, E. Grillo, et al., “H-ferritin Suppression and Pronounced Mitochondrial Respiration Make Hepatocellular Carcinoma Cells Sensitive to RSL3-induced Ferroptosis,” Free Radical Biology and Medicine 169 (2021): 294-303.

[282]

N. Ta, C. Qu, H. Wu, et al., “Mitochondrial Outer Membrane Protein FUNDC2 Promotes Ferroptosis and Contributes to Doxorubicin-induced Cardiomyopathy,” Proceedings of the National Academy of Sciences 119, no. 36 (2022): e2117396119.

[283]

M. Ahmad, A. Wolberg, and C. I Kahwaji. " Biochemistry, Electron Transport Chain." (StatPearls, 2018).

[284]

A. J. Lambert, M. D Brand. Reactive Oxygen Species Production by Mitochondria. In: Stuart JA, ed. “Mitochondrial DNA: Methods and Protocols”. (Humana Press, 2009): 165-181.

[285]

V. Jaquet, L. Scapozza, R. A. Clark, K. Krause, and J. D. Lambeth, “Small-Molecule NOX Inhibitors: ROS-generating NADPH Oxidases as Therapeutic Targets,” Antioxidants & Redox Signaling 11, no. 10 (2009): 2535-2552.

[286]

T. Aoyama, Y. H. Paik, S. Watanabe, et al., “Nicotinamide Adenine Dinucleotide Phosphate Oxidase in Experimental Liver Fibrosis: GKT137831 as a Novel Potential Therapeutic Agent,” Hepatology 56, no. 6 (2012): 2316-2327.

[287]

C. Zuurbier, O. Eerbeek, P. Goedhart, et al., “Inhibition of the Pentose Phosphate Pathway Decreases Ischemia-reperfusion-induced Creatine Kinase Release in the Heart,” Cardiovascular Research 62, no. 1 (2004): 145-153.

[288]

W. Tian, L. D. Braunstein, J. Pang, et al., “Importance of Glucose-6-phosphate Dehydrogenase Activity for Cell Growth,” Journal of Biological Chemistry 273, no. 17 (1998): 10609-10617.

[289]

J. Chu, C. Liu, R. Song, and Q. Li, “Ferrostatin-1 Protects HT-22 Cells From Oxidative Toxicity,” Neural Regeneration Research 15, no. 3 (2020): 528.

[290]

X. Yao, W. Li, D. Fang, et al., “Emerging Roles of Energy Metabolism in Ferroptosis Regulation of Tumor Cells,” Advanced Science 8, no. 22 (2021): 2100997.

[291]

O. Warburg and F. Dickens. The M etabolism of Tumors. (Constable & Co. Ltd,1930).

[292]

C. Larsson, A. Nilsson, A. Blomberg, and L. Gustafsson, “Glycolytic Flux Is Conditionally Correlated With ATP Concentration in Saccharomyces Cerevisiae: A Chemostat Study Under Carbon-or Nitrogen-limiting Conditions,” Journal of Bacteriology 179, no. 23 (1997): 7243-7250.

[293]

E. N. Maldonado, K. L. Sheldon, D. N. DeHart, et al., “Voltage-dependent Anion Channels Modulate Mitochondrial Metabolism in Cancer Cells: Regulation by Free Tubulin and Erastin,” Journal of Biological Chemistry 288, no. 17 (2013): 11920-11929.

[294]

M. Gao, P. Monian, Q. Pan, W. Zhang, J. Xiang, and X. Jiang, “Ferroptosis Is an Autophagic Cell Death Process,” Cell Research 26, no. 9 (2016): 1021-1032.

[295]

M. Gao, P. Monian, N. Quadri, R. Ramasamy, and X. Jiang, “Glutaminolysis and Transferrin Regulate Ferroptosis,” Molecular Cell 59, no. 2 (2015): 298-308.

[296]

Y. Zhu, T. Li, S. Ramos da Silva, et al., “A Critical Role of Glutamine and Asparagine γ-nitrogen in Nucleotide Biosynthesis in Cancer Cells Hijacked by an Oncogenic Virus,” MBio 8, no. 4 (2017): e01179-17.

[297]

R. J. DeBerardinis, T. Cheng, “Q's next: The Diverse Functions of Glutamine in Metabolism, Cell Biology and Cancer,” Oncogene 29, no. 3 (2010): 313-324.

[298]

B. J. Altman, Z. E. Stine, and C. V. Dang, “From Krebs to Clinic: Glutamine Metabolism to Cancer Therapy,” Nature Reviews Cancer 16, no. 10 (2016): 619-634.

[299]

L. Jin, G. Alesi, and S. Kang, “Glutaminolysis as a Target for Cancer Therapy,” Oncogene 35, no. 28 (2016): 3619-3625.

[300]

R. J. DeBerardinis, J. J. Lum, G. Hatzivassiliou, and C. B. Thompson, “The Biology of Cancer: Metabolic Reprogramming Fuels Cell Growth and Proliferation,” Cell Metabolism 7, no. 1 (2008): 11-20.

[301]

C. T. Hensley, A. T. Wasti, and R. J. DeBerardinis, “Glutamine and Cancer: Cell Biology, Physiology, and Clinical Opportunities,” The Journal of Clinical Investigation 123, no. 9 (2013): 3678-3684.

[302]

H. Zhang, N. Chen, Z. Deng, et al., “Suppression of ANT2 by miR-137 Inhibits Prostate Tumorigenesis,” Frontiers in Genetics 12 (2021): 687236.

[303]

M. Luo, L. Wu, K. Zhang, et al., “miR-137 Regulates Ferroptosis by Targeting Glutamine Transporter SLC1A5 in Melanoma,” Cell Death & Differentiation 25, no. 8 (2018): 1457-1472.

[304]

A. Bröer, F. Rahimi, and S. Bröer, “Deletion of Amino Acid Transporter ASCT2 (SLC1A5) Reveals an Essential Role for Transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to Sustain Glutaminolysis in Cancer Cells,” Journal of Biological Chemistry 291, no. 25 (2016): 13194-13205.

[305]

J. Wang, J. W. Erickson, R. Fuji, et al., “Targeting Mitochondrial Glutaminase Activity Inhibits Oncogenic Transformation,” Cancer Cell 18, no. 3 (2010): 207-219.

[306]

H. Lee, L. Zhuang, and B. Gan, “Energy Stress Inhibits Ferroptosis via AMPK,” Molecular & Cellular Oncology 7, no. 4 (2020): 1761242.

[307]

H. Lee, F. Zandkarimi, Y. Zhang, et al., “Energy-stress-mediated AMPK Activation Inhibits Ferroptosis,” Nature Cell Biology 22, no. 2 (2020): 225-234.

[308]

C. Li, X. Dong, W. Du, et al., “LKB1-AMPK Axis Negatively Regulates Ferroptosis by Inhibiting Fatty Acid Synthesis,” Signal Transduction and Targeted Therapy 5, no. 1 (2020): 187.

[309]

N. Li, D. Huang, N. Lu, and L. Luo, “Role of the LKB1/AMPK Pathway in Tumor Invasion and Metastasis of Cancer Cells,” Oncology Reports 34, no. 6 (2015): 2821-2826.

[310]

A. Lawen, D. J. Lane, “Mammalian Iron Homeostasis in Health and Disease: Uptake, Storage, Transport, and Molecular Mechanisms of Action,” Antioxid Redox Signaling 18, no. 18 (2013): 2473-2507.

[311]

M. D. Maines, “The Heme Oxygenase System: A Regulator of Second Messenger Gases,” Annual Review of Pharmacology and Toxicology 37, no. 1 (1997): 517-554.

[312]

H. Gunshin, B. Mackenzie, U. V. Berger, et al., “Cloning and Characterization of a Mammalian Proton-coupled Metal-ion Transporter,” Nature 388, no. 6641 (1997): 482-488.

[313]

A. T. McKie, D. Barrow, G. O. Latunde-Dada, et al., “An Iron-regulated Ferric Reductase Associated With the Absorption of Dietary Iron,” Science 291, no. 5509 (2001): 1755-1759.

[314]

S. J. Dixon, B. R. Stockwell, “The Role of Iron and Reactive Oxygen Species in Cell Death,” Nature Chemical Biology 10, no. 1 (2014): 9-17.

[315]

D. M. Ward, J. Kaplan, “Ferroportin-mediated Iron Transport: Expression and Regulation,” Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research 1823, no. 9 (2012): 1426-1433.

[316]

T. Nakamura, I. Naguro, and H. Ichijo, “Iron Homeostasis and Iron-regulated ROS in Cell Death, Senescence and human Diseases,” Biochimica Et Biophysica Acta (BBA)-General Subjects 1863, no. 9 (2019): 1398-1409.

[317]

G. O. Latunde-Dada, “Ferroptosis: Role of Lipid Peroxidation, Iron and Ferritinophagy,” Biochimica Et Biophysica Acta (BBA)-General Subjects 1861, no. 8 (2017): 1893-1900.

[318]

X. Chen, D. Li, H. Y. Sun, et al., “Relieving Ferroptosis May Partially Reverse Neurodegeneration of the Auditory Cortex,” The FEBS Journal 287, no. 21 (2020): 4747-4766.

[319]

N. Kory, G. A. Wyant, G. Prakash, et al., “SFXN1 is a Mitochondrial Serine Transporter Required for One-carbon Metabolism,” Science 362, no. 6416 (2018): eaat9528.

[320]

N. Li, W. Wang, H. Zhou, et al., “Ferritinophagy-mediated Ferroptosis Is Involved in Sepsis-induced Cardiac Injury,” Free Radical Biology and Medicine 160 (2020): 303-318.

[321]

M. B. Wysocka, K. Pietraszek-Gremplewicz, and D. Nowak, “The Role of Apelin in Cardiovascular Diseases, Obesity and Cancer,” Frontiers in Physiology 9 (2018): 557.

[322]

M. Tang, Z. Huang, X. Luo, et al., “Ferritinophagy Activation and sideroflexin1-dependent Mitochondria Iron Overload Is Involved in Apelin-13-induced Cardiomyocytes Hypertrophy,” Free Radical Biology and Medicine 134 (2019): 445-457.

[323]

S. Chiang, S. Chen, and L. Chang, “A Dual Role of Heme Oxygenase-1 in Cancer Cells,” International Journal of Molecular Sciences 20, no. 1 (2018): 39.

[324]

O. Adedoyin, R. Boddu, A. Traylor, et al., “Heme Oxygenase-1 Mitigates Ferroptosis in Renal Proximal Tubule Cells,” American Journal of Physiology-Renal Physiology 314, no. 5 (2018): F702-F714.

[325]

X. Sun, Z. Ou, R. Chen, et al., “Activation of the p62-Keap1-NRF2 Pathway Protects Against Ferroptosis in Hepatocellular Carcinoma Cells,” Hepatology 63, no. 1 (2016): 173-184.

[326]

M. Kwon, E. Park, S. Lee, and S. W. Chung, “Heme Oxygenase-1 Accelerates Erastin-induced Ferroptotic Cell Death,” Oncotarget 6, no. 27 (2015): 24393.

[327]

Y. K. Choi, D. Elaine, Y. Kwon, and Y. Kim, “Regulation of ROS Production and Vascular Function by Carbon Monoxide,” Oxidative Medicine and Cellular Longevity 2012 (2012).

[328]

V. Consoli, V. Sorrenti, V. Pittalà, et al., “Heme Oxygenase Modulation Drives Ferroptosis in TNBC Cells,” International Journal of Molecular Sciences 23, no. 10 (2022): 5709.

[329]

A. El-Hashim, W. Renno, H. Abduo, S. Jaffal, S. Akhtar, and I. Benter, “Effect of Inhibition of the Ubiquitin-proteasome-system and IκB Kinase on Airway Inflammation and Hyperresponsiveness in a Murine Model of Asthma,” International Journal of Immunopathology and Pharmacology 24, no. 1 (2011): 33-42.

[330]

L. Chang, S. Chiang, S. Chen, Y. Yu, R. Chou, and W. Chang, “Heme Oxygenase-1 Mediates BAY 11-7085 Induced Ferroptosis,” Cancer Letters 416 (2018): 124-137.

[331]

M. Zhang, Z. Liu, Y. Le, Z. Gu, and H. Zhao, “Iron-Sulfur Clusters: A Key Factor of Regulated Cell Death in Cancer,” Oxidative Medicine and Cellular Longevity 2022 (2022).

[332]

D. Lane, A. Merlot, M. Huang, et al., “Cellular Iron Uptake, Trafficking and Metabolism: Key Molecules and Mechanisms and Their Roles in Disease,” Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research 1853, no. 5 (2015): 1130-1144.

[333]

E. M. Terzi, V. O. Sviderskiy, S. W. Alvarez, G. C. Whiten, and R. Possemato, “Iron-sulfur Cluster Deficiency Can be Sensed by IRP2 and Regulates Iron Homeostasis and Sensitivity to Ferroptosis Independent of IRP1 and FBXL5,” Science Advances 7, no. 22 (2021): eabg4302.

[334]

J. Du, Y. Zhou, Y. Li, et al., “Identification of Frataxin as a Regulator of Ferroptosis,” Redox Biology 32 (2020): 101483.

[335]

N. Maio and T. A. Rouault, “Iron-sulfur Cluster Biogenesis in Mammalian Cells: New Insights Into the Molecular Mechanisms of Cluster Delivery,” Biochimica Et Biophysica Acta (BBA)-Molecular Cell Research 1853, no. 6 (2015): 1493-1512.

[336]

S. W. Alvarez, V. O. Sviderskiy, E. M. Terzi, et al., “NFS1 undergoes Positive Selection in Lung Tumours and Protects Cells From Ferroptosis,” Nature 551, no. 7682 (2017): 639-643.

[337]

H. Yuan, X. Li, X. Zhang, R. Kang, and D. Tang, “CISD1 inhibits Ferroptosis by Protection Against Mitochondrial Lipid Peroxidation,” Biochemical and Biophysical Research Communications 478, no. 2 (2016): 838-844.

[338]

B. Li, S. Wei, L. Yang, et al., “CISD2 promotes Resistance to Sorafenib-induced Ferroptosis by Regulating Autophagy in Hepatocellular Carcinoma,” Frontiers in Oncology 11 (2021): 657723.

[339]

Y. Li, B. Xu, X. Ren, et al., “Inhibition of CISD2 Promotes Ferroptosis Through Ferritinophagy-mediated Ferritin Turnover and Regulation of p62-Keap1-NRF2 Pathway,” Cellular & Molecular Biology Letters 27, no. 1 (2022): 81.

[340]

Y. Li, X. Wang, Z. Huang, et al., “CISD3 inhibition Drives Cystine-deprivation Induced Ferroptosis,” Cell Death & Disease 12, no. 9 (2021): 839.

[341]

S. M. Davidson, A. Adameová, L. Barile, et al., “Mitochondrial and Mitochondrial-independent Pathways of Myocardial Cell Death During Ischaemia and Reperfusion Injury,” Journal of Cellular and Molecular Medicine 24, no. 7 (2020): 3795-3806.

[342]

Y. Tan, Q. Chen, X. Li, et al., “Pyroptosis: A New Paradigm of Cell Death for Fighting Against Cancer,” Journal of Experimental & Clinical Cancer Research 40, no. 1 (2021): 153.

[343]

H. W-t, H. Wan, L. Hu, et al., “Gasdermin D Is an Executor of Pyroptosis and Required for Interleukin-1β Secretion,” Cell Research 25, no. 12 (2015): 1285-1298.

[344]

S. M. Man and T. Kanneganti, “Gasdermin D: The Long-awaited Executioner of Pyroptosis,” Cell Research 25, no. 11 (2015): 1183-1184.

[345]

S. B. Kovacs and E. A. Miao, “Gasdermins: Effectors of Pyroptosis,” Trends in Cell Biology 27, no. 9 (2017): 673-684.

[346]

S. M. Man, R. Karki, and T. D. Kanneganti, “Molecular Mechanisms and Functions of Pyroptosis, Inflammatory Caspases and Inflammasomes in Infectious Diseases,” Immunological Reviews 277, no. 1 (2017): 61-75.

[347]

K. Nakahira, J. A. Haspel, V. A. Rathinam, et al., “Autophagy Proteins Regulate Innate Immune Responses by Inhibiting the Release of Mitochondrial DNA Mediated by the NALP3 Inflammasome,” Nature Immunology 12, no. 3 (2011): 222-230.

[348]

W. Zhang, G. Li, R. Luo, et al., “Cytosolic Escape of Mitochondrial DNA Triggers cGAS-STING-NLRP3 Axis-dependent Nucleus Pulposus Cell Pyroptosis,” Experimental & Molecular Medicine 54, no. 2 (2022): 129-142.

[349]

C. de Torre-Minguela, A. I. Gómez, I. Couillin, and P. Pelegrín, “Gasdermins Mediate Cellular Release of Mitochondrial DNA During Pyroptosis and Apoptosis,” The FASEB Journal 35, no. 8 (2021): e21757.

[350]

Y. Zhang, L. Zhou, H. Mao, F. Yang, Z. Chen, and L. Zhang, “Mitochondrial DNA Leakage Exacerbates Odontoblast Inflammation Through Gasdermin D-mediated Pyroptosis,” Cell Death Discovery 7, no. 1 (2021): 381.

[351]

V. Adam-Vizi, A. A. Starkov, “Calcium and Mitochondrial Reactive Oxygen Species Generation: How to Read the Facts,” Journal of Alzheimer's Disease 20, no. s2 (2010): S413-S426.

[352]

S. Kausar, F. Wang, and H. Cui, “The Role of Mitochondria in Reactive Oxygen Species Generation and Its Implications for Neurodegenerative Diseases,” Cells 7, no. 12 (2018): 274.

[353]

M. T. Sorbara and S. E. Girardin, “Mitochondrial ROS Fuel the Inflammasome,” Cell Research 21, no. 4 (2011): 558-560.

[354]

J. M. Yuk, P. Silwal, and E. K. Jo, “Inflammasome and Mitophagy Connection in Health and Disease,” International Journal of Molecular Sciences 21, no. 13 (2020), https://doi.org/10.3390/ijms21134714.

[355]

Y. Wang, P. Shi, Q. Chen, et al., “Mitochondrial ROS Promote Macrophage Pyroptosis by Inducing GSDMD Oxidation,” Journal of Molecular Cell Biology 11, no. 12 (2019): 1069-1082.

[356]

Q. Li, N. Shi, C. Cai, et al., “The Role of Mitochondria in Pyroptosis,” Frontiers in Cell and Developmental Biology 8 (2020): 630771.

[357]

J. Yu, H. Nagasu, T. Murakami, et al., “Inflammasome Activation Leads to Caspase-1-dependent Mitochondrial Damage and Block of Mitophagy,” PNAS 111, no. 43 (2014): 15514-15519.

[358]

M. E. Heid, P. A. Keyel, C. Kamga, S. Shiva, S. C. Watkins, and R. D. Salter, “Mitochondrial Reactive Oxygen Species Induces NLRP3-dependent Lysosomal Damage and Inflammasome Activation,” Journal of Immunology 191, no. 10 (2013): 5230-5238.

[359]

X. Yu, M. Hao, Y. Liu, et al., “Liraglutide Ameliorates Non-alcoholic Steatohepatitis by Inhibiting NLRP3 Inflammasome and Pyroptosis Activation via Mitophagy,” European Journal of Pharmacology 864 (2019): 172715.

[360]

N. T. Hoa, J. G. Zhang, C. L. Delgado, et al., “Human Monocytes Kill M-CSF-expressing Glioma Cells by BK Channel Activation,” Laboratory Investigation 87, no. 2 (2007): 115-129.

[361]

E. Kim, D. M. Lee, M. J. Seo, H. J. Lee, and K. S. Choi, “Intracellular Ca2 + Imbalance Critically Contributes to Paraptosis,” Frontiers in Cell and Developmental Biology 8, no. 1703 (2021): 607844. Review.

[362]

M. Khalili, J. A. Radosevich, “Paraptosis,” Apoptosis and Beyond (2018): 343-366.

[363]

M. J. Seo, D. M. Lee, I. Y. Kim, et al., “Gambogic Acid Triggers Vacuolization-associated Cell Death in Cancer Cells via Disruption of Thiol Proteostasis,” Cell Death & Disease 10, no. 3 (2019): 187.

[364]

N. Hoa, M. P. Myers, T. G. Douglass, et al., “Molecular Mechanisms of Paraptosis Induction: Implications for a Non-genetically Modified Tumor Vaccine,” PLoS ONE 4, no. 2 (2009): e4631.

[365]

D. Lee, I. Y. Kim, S. Saha, and K. S. Choi, “Paraptosis in the Anti-cancer Arsenal of Natural Products,” Pharmacology & Therapeutics 162 (2016): 120-133.

[366]

F. Fontana, M. Raimondi, M. Marzagalli, A. Di Domizio, and P. Limonta, “The Emerging Role of Paraptosis in Tumor Cell Biology: Perspectives for Cancer Prevention and Therapy With Natural Compounds,” Biochimica Et Biophysica Acta (BBA)-Reviews on Cancer 1873, no. 2 (2020): 188338.

[367]

S. Sperandio, I. de Belle, and D. E. Bredesen, “An Alternative, Nonapoptotic Form of Programmed Cell Death,” PNAS 97, no. 26 (2000): 14376-14381.

[368]

S. Sperandio, K. Poksay, I. de Belle, et al., “Paraptosis: Mediation by MAP Kinases and Inhibition by AIP-1/Alix,” Cell Death and Differentiation 11, no. 10 (2004): 1066-1075.

[369]

M. J. Yoon, A. R. Lee, S. A. Jeong, et al., “Release of Ca2+ From the Endoplasmic Reticulum and Its Subsequent Influx Into Mitochondria Trigger Celastrol-induced Paraptosis in Cancer Cells,” Oncotarget 5, no. 16 (2014): 6816.

[370]

E. Jambrina, R. Alonso, M. Alcalde, et al., “Calcium Influx Through Receptor-operated Channel Induces Mitochondria-triggered Paraptotic Cell Death,” Journal of Biological Chemistry 278, no. 16 (2003): 14134-14145.

[371]

D. Kessel, “Apoptosis, Paraptosis and Autophagy: Death and Survival Pathways Associated With Photodynamic Therapy,” Photochemistry and Photobiology 95, no. 1 (2019): 119-125.

[372]

H. Hou, D. Li, W. Jiang, Y. Liang, D. Chen, and Y. Mo, “1, 8-dihydroxy-3-acetyl-6-methyl-9, 10 Anthraquinone Exhibits a Potent Radiosensitizing Effect With Induced Oncosis in human Nasopharyngeal Carcinoma Cells,” Molecular Medicine Reports 10, no. 2 (2014): 965-970.

[373]

M. J. Yoon, E. H. Kim, T. K. Kwon, S. A. Park, and K. S. Choi, “Simultaneous Mitochondrial Ca2+ Overload and Proteasomal Inhibition Are Responsible for the Induction of Paraptosis in Malignant Breast Cancer Cells,” Cancer Letters 324, no. 2 (2012): 197-209.

[374]

J. A. Radosevich, Apoptosis and Beyond, 2 Volume Set: The Many Ways Cells Die. (John Wiley & Sons, 2018).

[375]

E. Rapizzi, P. Pinton, G. Szabadkai, et al., “Recombinant Expression of the Voltage-dependent Anion Channel Enhances the Transfer of Ca2+ Microdomains to Mitochondria,” The Journal of Cell Biology 159, no. 4 (2002): 613-624.

[376]

T. Pathak and M. Trebak, “Mitochondrial Ca2+ Signaling,” Pharmacology & Therapeutics 192 (2018): 112-123.

[377]

E. Kim, D. M. Lee, M. J. Seo, H. J. Lee, and K. S. Choi, “Intracellular Ca(2 +) Imbalance Critically Contributes to Paraptosis,” Frontiers in Cell and Developmental Biology 8 (2021): 607844-607844.

[378]

Y. Wang, X. Wen, N. Zhang, et al., “Small-molecule Compounds Target Paraptosis to Improve Cancer Therapy,” Biomedicine & Pharmacotherapy 118 (2019): 109203.

[379]

D. Nedungadi, A. Binoy, V. Vinod, et al., “Ginger Extract Activates Caspase Independent Paraptosis in Cancer Cells via ER Stress, Mitochondrial Dysfunction, AIF Translocation and DNA Damage,” Nutrition and Cancer 73, no. 1 (2021): 147-159.

[380]

W. Park, A. R. Amin, Z. G. Chen, and D. M. Shin, “New Perspectives of Curcumin in Cancer Prevention,” Cancer Prevention Research 6, no. 5 (2013): 387-400.

[381]

M. J. Yoon, E. H. Kim, J. H. Lim, T. K. Kwon, and K. S. Choi, “Superoxide Anion and Proteasomal Dysfunction Contribute to Curcumin-induced Paraptosis of Malignant Breast Cancer Cells,” Free Radical Biology and Medicine 48, no. 5 (2010): 713-726.

[382]

S. Chen, Y. Dai, J. Zhao, L. Lin, Y. Wang, and Y. Wang, “A Mechanistic Overview of Triptolide and Celastrol, Natural Products From Tripterygium wilfordii Hook F,” Frontiers in Pharmacology 9 (2018): 104.

[383]

T. Morita, “Celastrol: A New Therapeutic Potential of Traditional Chinese Medicine,” American Journal of Hypertension 23, no. 8 (2010): 821-821.

[384]

A. Ahmadi, A. Shadboorestan, “Oxidative Stress and Cancer; the Role of Hesperidin, a Citrus Natural Bioflavonoid, as a Cancer Chemoprotective Agent,” Nutrition and Cancer 68, no. 1 (2016): 29-39.

[385]

A. A. Zanwar, S. L. Badole, P. S. Shende, M. V. Hegde, and S. L. Bodhankar, “Cardiovascular Effects of Hesperidin: A Flavanone glycoside,” Polyphenols in Human Health and Disease. (Elsevier, 2014): 989-992.

[386]

S. Yumnam, G. E. Hong, S. Raha, et al., “Mitochondrial Dysfunction and Ca2+ Overload Contributes to Hesperidin Induced Paraptosis in Hepatoblastoma Cells, HepG2,” Journal of Cellular Physiology 231, no. 6 (2016): 1261-1268.

[387]

J. Xue, R. Li, X. Zhao, et al., “Morusin Induces Paraptosis-Like Cell Death Through Mitochondrial Calcium Overload and Dysfunction in Epithelial Ovarian Cancer,” Chemico-Biological Interactions 283 (2018): 59-74.

[388]

F. Fontana, M. Raimondi, M. Marzagalli, et al., “Mitochondrial Functional and Structural Impairment Is Involved in the Antitumor Activity of δ-tocotrienol in Prostate Cancer Cells,” Free Radical Biology and Medicine 160 (2020): 376-390.

[389]

M. Raimondi, F. Fontana, M. Marzagalli, et al., “Ca 2+ Overload-and ROS-associated Mitochondrial Dysfunction Contributes to δ-tocotrienol-mediated Paraptosis in Melanoma Cells,” Apoptosis 26 (2021): 277-292.

[390]

H. Han, C. Chou, R. Li, et al., “Chalcomoracin Is a Potent Anticancer Agent Acting Through Triggering Oxidative Stress via a Mitophagy- and Paraptosis-dependent Mechanism,” Scientific Reports 8, no. 1 (2018): 9566.

[391]

S. Kumar, C. J. Seal, M. Howes, G. C. Kite, and E. J. Okello, “In Vitro Protective Effects of Withania Somnifera (L.) Dunal Root Extract Against Hydrogen Peroxide and β-amyloid (1-42)-induced Cytotoxicity in Differentiated PC12 Cells,” Phytotherapy Research 24, no. 10 (2010): 1567-1574.

[392]

K. Ghosh, S. De, S. Das, S. Mukherjee, and S. Sengupta Bandyopadhyay, “Withaferin A Induces ROS-mediated Paraptosis in human Breast Cancer Cell-lines MCF-7 and MDA-MB-231,” PLoS ONE 11, no. 12 (2016): e0168488.

[393]

B. A. Weaver, “How Taxol/paclitaxel Kills Cancer Cells,” Molecular Biology of the Cell 25, no. 18 (2014): 2677-2681.

[394]

Y. Quan, C. Wang, X. Wang, and T. Chen, “Taxol Induces Cell Death with Cytoplasm Vacuolization In Paraptosis-Like but Not Oncosis Fashion in ASTC-a-1 CELLS,” Journal of Innovative Optical Health Sciences 6, no. 04 (2013): 1350046.

[395]

A. Ruiz, E. Alberdi, and C. Matute, “CGP37157, an Inhibitor of the Mitochondrial Na+/Ca2+ Exchanger, Protects Neurons From Excitotoxicity by Blocking Voltage-gated Ca2+ Channels,” Cell Death & Disease 5, no. 4 (2014): e1156-e1156.

[396]

K. Yokoi, K. Yamaguchi, M. Umezawa, K. Tsuchiya, and S. Aoki, “Induction of Paraptosis by Cyclometalated Iridium Complex-Peptide Hybrids and CGP37157 via a Mitochondrial Ca2+ Overload Triggered by Membrane Fusion Between Mitochondria and the Endoplasmic Reticulum,” Biochemistry 61, no. 8 (2022): 639-655.

[397]

S. W. Yu, H. Wang, M. F. Poitras, et al., “Mediation of Poly(ADP-ribose) Polymerase-1-dependent Cell Death by Apoptosis-inducing Factor,” Science 297, no. 5579 (2002): 259-263.

[398]

S. A. Andrabi, T. M. Dawson, and V. L. Dawson, “Mitochondrial and Nuclear Cross Talk in Cell Death: Parthanatos,” Annals of the New York Academy of Sciences 1147 (2008): 233-241.

[399]

K. K. David, S. A. Andrabi, T. M. Dawson, and V. L. Dawson, “Parthanatos, a Messenger of Death,” Frontiers in Bioscience (Landmark Edition) 14 (2009): 1116.

[400]

W. G. Land and W. G. Land, “Regulated Cell Death,” Damage-Associated Molecular Patterns in Human Diseases: Volume 1: Injury-Induced Innate Immune Responses (2018): 427-466.

[401]

W. L. Kraus, “PARPs and ADP-Ribosylation: 50 Years … and Counting,” Molecular Cell 58, no. 6 (2015): 902-910.

[402]

M. O. Hottiger, “SnapShot: ADP-Ribosylation Signaling,” Molecular Cell 58, no. 6 (2015): 1134-1134. e1.

[403]

H. L. Ko, E. C. Ren, “Functional Aspects of PARP1 in DNA Repair and Transcription,” Biomolecules 2, no. 4 (2012): 524-548.

[404]

T. Eisemann, J. M. Pascal, “Poly(ADP-ribose) Polymerase Enzymes and the Maintenance of Genome Integrity,” Cellular and Molecular Life Sciences 77, no. 1 (2020): 19-33.

[405]

Y. Wang, W. Luo, and Y. Wang, “PARP-1 and Its Associated Nucleases in DNA Damage Response,” DNA Repair 81 (2019): 102651.

[406]

B. A. Gibson, W. L. Kraus, “New Insights Into the Molecular and Cellular Functions of Poly(ADP-ribose) and PARPs,” Nature Reviews Molecular Cell Biology 13, no. 7 (2012): 411-424.

[407]

M. S. Cohen, P. Chang, “Insights Into the Biogenesis, Function, and Regulation of ADP-ribosylation,” Nature Chemical Biology 14, no. 3 (2018): 236-243.

[408]

L. Virag, A. Robaszkiewicz, J. M. Rodriguez-Vargas, and F. J. Oliver, “Poly(ADP-ribose) Signaling in Cell Death,” Molecular Aspects of Medicine 34, no. 6 (2013): 1153-1167.

[409]

A. Burkle, L. Virag, “Poly(ADP-ribose): PARadigms and PARadoxes,” Molecular Aspects of Medicine 34, no. 6 (2013): 1046-1065.

[410]

T. Jubin, A. Kadam, A. R. Gani, M. Singh, M. Dwivedi, and R. Begum, “Poly ADP-ribose Polymerase-1: Beyond Transcription and towards Differentiation,” Seminars in Cell & Developmental Biology 63 (2017): 167-179.

[411]

A. Vida, J. Marton, E. Miko, and P. Bai, “Metabolic Roles of Poly(ADP-ribose) Polymerases,” Seminars in Cell & Developmental Biology 63 (2017): 135-143.

[412]

F. Dona, I. Chiodi, C. Belgiovine, et al., “Poly(ADP-ribosylation) and Neoplastic Transformation: Effect of PARP Inhibitors,” Current Pharmaceutical Biotechnology 14, no. 5 (2013): 524-536.

[413]

M. I. Rodriguez, J. Majuelos-Melguizo, J. M. Marti Martin-Consuegra, M. Ruiz de Almodovar, A. Lopez-Rivas, and F. Javier Oliver, “Deciphering the Insights of Poly(ADP-ribosylation) in Tumor Progression,” Medicinal Research Reviews 35, no. 4 (2015): 678-697.

[414]

M. Rose, J. T. Burgess, K. O'Byrne, D. J. Richard, and E. Bolderson, “PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance,” Frontiers in Cell and Developmental Biology 8 (2020): 564601.

[415]

P. G. Jain and B. D. Patel, “Medicinal Chemistry Approaches of Poly ADP-Ribose Polymerase 1 (PARP1) Inhibitors as Anticancer Agents—A Recent Update,” European Journal of Medicinal Chemistry 165 (2019): 198-215.

[416]

B. Zingarelli, S. Cuzzocrea, Z. Zsengeller, A. L. Salzman, and C. Szabo, “Protection Against Myocardial Ischemia and Reperfusion Injury by 3-aminobenzamide, an Inhibitor of Poly (ADP-ribose) Synthetase,” Cardiovascular Research 36, no. 2 (1997): 205-215.

[417]

B. Zingarelli, A. L. Salzman, and C. Szabo, “Genetic Disruption of Poly (ADP-ribose) Synthetase Inhibits the Expression of P-selectin and Intercellular Adhesion Molecule-1 in Myocardial Ischemia/Reperfusion Injury,” Circulation Research 83, no. 1 (1998): 85-94.

[418]

T. A. Khan, M. Ruel, C. Bianchi, et al., “Poly(ADP-ribose) Polymerase Inhibition Improves Postischemic Myocardial Function After Cardioplegia-cardiopulmonary Bypass,” Journal of the American College of Surgeons 197, no. 2 (2003): 270-277.

[419]

C. Szabo, V. L. Dawson, “Role of Poly(ADP-ribose) Synthetase in Inflammation and Ischaemia-reperfusion,” Trends in Pharmacological Sciences 19, no. 7 (1998): 287-298.

[420]

N. J. Curtin, C. Szabo, “Poly(ADP-ribose) Polymerase Inhibition: Past, Present and Future,” Nature Reviews Drug Discovery 19, no. 10 (2020): 711-736.

[421]

Y. Wang, V. L. Dawson, and T. M. Dawson, “Poly (ADP-ribose) Signals to Mitochondrial AIF: A Key Event in Parthanatos,” Experimental Neurology 218, no. 2 (2009): 193-202.

[422]

P. Huang, G. Chen, W. Jin, K. Mao, H. Wan, and Y. He, “Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases,” International Journal of Molecular Sciences 23, no. 13 (2022): 7292.

[423]

S. A. Andrabi, N. S. Kim, S. W. Yu, et al., “Poly(ADP-ribose) (PAR) Polymer Is a Death Signal,” PNAS 103, no. 48 (2006): 18308-18313.

[424]

L. Virag and C. Szabo, “The Therapeutic Potential of Poly(ADP-ribose) Polymerase Inhibitors,” Pharmacological Reviews 54, no. 3 (2002): 375-429.

[425]

Y. Wang, N. S. Kim, J. F. Haince, et al., “Poly(ADP-ribose) (PAR) Binding to Apoptosis-inducing Factor Is Critical for PAR Polymerase-1-dependent Cell Death (parthanatos),” Science Signaling 4, no. 167 (2011): ra20.

[426]

Y. Zhou, L. Liu, S. Tao, et al., “Parthanatos and Its Associated Components: Promising Therapeutic Targets for Cancer,” Pharmacological Research 163 (2021): 105299.

[427]

K. Modis, D. Gero, K. Erdelyi, P. Szoleczky, D. DeWitt, and C. Szabo, “Cellular Bioenergetics Is Regulated by PARP1 Under Resting Conditions and During Oxidative Stress,” Biochemical Pharmacology 83, no. 5 (2012): 633-643.

[428]

L. Klaidman, M. Morales, S. Kem, J. Yang, and M. L. Chang, “Nicotinamide Offers Multiple Protective Mechanisms in Stroke as a Precursor for NAD+, as a PARP Inhibitor and by Partial Restoration of Mitochondrial Function,” Pharmacology 69, no. 3 (2003): 150-157.

[429]

H. Z. Zhou, R. A. Swanson, U. Simonis, X. Ma, G. Cecchini, and M. O. Gray, “Poly(ADP-ribose) Polymerase-1 Hyperactivation and Impairment of Mitochondrial respiratory Chain Complex I Function in Reperfused Mouse Hearts,” American Journal of Physiology. Heart and Circulatory Physiology 291, no. 2 (2006): H714-23.

[430]

P. Bai, L. Nagy, T. Fodor, L. Liaudet, and P. Pacher, “Poly(ADP-ribose) Polymerases as Modulators of Mitochondrial Activity,” Trends in Endocrinology and Metabolism 26, no. 2 (2015): 75-83.

[431]

L. Virág, A. L. Salzman, and C. Szabó, “Poly(ADP-Ribose) Synthetase Activation Mediates Mitochondrial Injury during Oxidant-Induced Cell Death,” The Journal of Immunology 161, no. 7 (1998): 3753-3759.

[432]

E. F. Fang, M. Scheibye-Knudsen, L. E. Brace, et al., “Defective Mitophagy in XPA via PARP-1 Hyperactivation and NAD(+)/SIRT1 Reduction,” Cell 157, no. 4 (2014): 882-896.

[433]

K. K. David, S. A. Andrabi, T. M. Dawson, and V. L. Dawson, “Parthanatos, a Messenger of Death,” Frontiers in Bioscience (Landmark edition) 14, no. 3 (2009): 1116-1128.

[434]

H. Wang, S. W. Yu, D. W. Koh, et al., “Apoptosis-inducing Factor Substitutes for Caspase Executioners in NMDA-triggered Excitotoxic Neuronal Death,” Journal of Neuroscience 24, no. 48 (2004): 10963-10973.

[435]

A. A. Fatokun, V. L. Dawson, and T. M. Dawson, “Parthanatos: Mitochondrial-linked Mechanisms and Therapeutic Opportunities,” British Journal of Pharmacology 171, no. 8 (2014): 2000-2016.

[436]

Y. Wang, R. An, G. K. Umanah, et al., “A Nuclease That Mediates Cell Death Induced by DNA Damage and Poly(ADP-ribose) Polymerase-1,” Science 354, no. 6308 (2016): aad6872.

[437]

Q. Zhao, T. Qi, “The Implications and Prospect of Cuproptosis-related Genes and Copper Transporters in Cancer Progression,” Frontiers in Oncology 13 (2023): 1117164.

[438]

D. Tang, X. Chen, and G. Kroemer, “Cuproptosis: A Copper-triggered Modality of Mitochondrial Cell Death,” Cell Research 32, no. 5 (2022): 417-418.

[439]

Z. Tian, S. Jiang, J. Zhou, and W. Zhang, “Copper Homeostasis and Cuproptosis in Mitochondria,” Life Sciences (2023): 122223.

[440]

K. Tsui, J. Hsiao, L. Lin, et al., “The Cross-Communication of Cuproptosis and Regulated Cell Death in Human Pathophysiology,” International Journal of Biological Sciences 20, no. 1 (2024): 218.

[441]

D. Luo, X. Wang, and W. Feng, “Comprehensive Analysis of Cuproptosis and Copper Homeostasis Genotyping and Related Immune Land Scape in Lung Adenocarcinoma,” Scientific Reports 13, no. 1 (2023): 16554.

[442]

Y. Wang, L. Zhang, and F. Zhou, “Cuproptosis: A New Form of Programmed Cell Death,” Cellular & Molecular Immunology 19, no. 8 (2022): 867-868.

[443]

P. Tsvetkov, S. Coy, B. Petrova, et al., “Copper Induces Cell Death by Targeting Lipoylated TCA Cycle Proteins,” Science 375, no. 6586 (2022): 1254-1261.

[444]

C. Springer, D. Humayun, and R. Skouta, “Cuproptosis: Unraveling the Mechanisms of Copper-Induced Cell Death and Its Implication in Cancer Therapy,” Cancers 16, no. 3 (2024): 647.

[445]

V. M. Gohil, “Repurposing elesclomol, an Investigational Drug for the Treatment of Copper Metabolism Disorders,” Expert Opinion on Investigational Drugs 30, no. 1 (2021): 1-4.

[446]

C. Bian, Z. Zheng, J. Su, et al., “Copper Homeostasis and Cuproptosis in Tumor Pathogenesis and Therapeutic Strategies,” Frontiers in Pharmacology 14 (2023): 1271613.

[447]

P. A. Cobine, D. C. Brady, “Cuproptosis: Cellular and Molecular Mechanisms Underlying Copper-induced Cell Death,” Molecular Cell 82, no. 10 (2022): 1786-1787.

[448]

M. Wang, L. Zheng, S. Ma, R. Lin, J. Li, and S. Yang, “Cuproptosis: Emerging Biomarkers and Potential Therapeutics in Cancers,” Frontiers in Oncology 13 (2023): 1288504.

[449]

M. Lo Iacono, S. Puglisi, P. Perotti, et al., “Molecular Mechanisms of Mitotane Action in Adrenocortical Cancer Based on in Vitro Studies,” Cancers 13, no. 21 (2021): 5255.

[450]

A. Mancini, A. Colapietro, L. Cristiano, et al., “Anticancer Effects of ABTL0812, a Clinical Stage Drug Inducer of Autophagy-mediated Cancer Cell Death, in Glioblastoma Models,” Frontiers in Oncology 12 (2022): 943064.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/