Persistent Activation of Sphingosine-1-Phosphate Receptor 1 by Phytosphingosine-3,4-Cyclic Phosphate Ameliorates Sepsis by Inhibiting Hyperinflammation and Vascular Hyperpermeability
Suhong Duan , Seung-Gook Kim , Jiaying Bao , Hyung-Jin Lim , Joon Woo Kim , Sung-Il Yoon , Young Jun Park , Sanguk Yun , Kye-Seong Kim , Hwa-Ryung Song , Myeong Jun Choi , Myung-Kwan Han
MedComm ›› 2025, Vol. 6 ›› Issue (6) : e70238
Persistent Activation of Sphingosine-1-Phosphate Receptor 1 by Phytosphingosine-3,4-Cyclic Phosphate Ameliorates Sepsis by Inhibiting Hyperinflammation and Vascular Hyperpermeability
Sepsis is a life-threatening disease characterized by multiorgan dysfunction caused by an abnormal immune response to microbial infection. Sphingosine-1-phosphate (S1P) levels are significantly lower in patients with sepsis and are negatively correlated with the severity of sepsis. However, whether the S1P signaling pathway is a target for sepsis treatment remains unknown. Here, we show that our newly synthesized phytosphingosine-3,4-cyclic phosphate (3,4-cPP), a functional agonist of S1P receptor 1 (S1P1), exerts a strong protective effect against severe cecal ligation and puncture (CLP)-induced sepsis. 3,4-cPP persistently activates S1P1 without inducing internalization. 3,4-cPP upregulates SIRT1 expression in macrophages and endothelial cells via S1P1 activation. Additionally, 3,4-cPP decreases serum levels of proinflammatory cytokines, including IL-6 and TNF-α, and inhibits endothelial permeability in CLP-induced septic mice. Conditional knockout of SIRT1, an NAD+-dependent deacetylase, in macrophages or endothelial cells counteracts the inhibition of inflammatory cytokine secretion and prevention of endothelial cell permeability by 3,4-cPP in CLP-induced septic mice, indicating that the S1P1/SIRT1 axis in both the endothelium and macrophages is essential for survival in sepsis. Collectively, the data suggest that prolonged activation of the S1P1/SIRT1 signaling pathway protects against sepsis by inhibiting hyperinflammation and vascular hyperpermeability.
cecal ligation and puncture / phytosphingosine-3,4-cyclic phosphate / sepsis / sirtuin 1 (SIRT1) / sphingosine-1-phosphate / sphingosine-1-phosphate receptor 1
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |