Differences of the 6N and 6J Substrains of C57BL/6 Mice in the Development of Experimental Autoimmune Encephalomyelitis

Ana Isabel Álvarez-López , Eduardo Ponce-España , Ivan Cruz-Chamorro , Guillermo Santos-Sánchez , Ignacio Bejarano , Nuria Álvarez-Sánchez , Patricia Judith Lardone , Antonio Carrillo-Vico

MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70228

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70228 DOI: 10.1002/mco2.70228
ORIGINAL ARTICLE

Differences of the 6N and 6J Substrains of C57BL/6 Mice in the Development of Experimental Autoimmune Encephalomyelitis

Author information +
History +
PDF

Abstract

Multiple sclerosis (MS) is an autoimmune disease causing neuroinflammation and demyelination in the central nervous system (CNS). It is traditionally considered CD4+ T cell-mediated, but several immune cells, such as CD8+ cells, B cells, macrophages, and dendritic cells (DC) also contribute to the pathogenesis. Moreover, altered gut microbiota, including changes in specific genera, has been observed in MS patients. The murine model of MS, experimental autoimmune encephalomyelitis (EAE), is mainly carried out in C57BL/6 mice. Historically, N and J substrains have been used interchangeably, and many laboratories are not even aware of which strain they are using. Therefore, the objective of this study was to evaluate the differences between the 6J and 6N substrains subjected to myelin oligodendrocyte glycoprotein (MOG35–55) induced EAE in the composition of neuroinflammatory cells and microbiota. 6J substrain presented a more severe EAE than the 6N substrain, accompanied by an increase in the frequency of macrophages, CD8+, and B cells within the infiltrated immune cells compartment. In addition, 6J animals have a higher proinflammatory profile and a lower anti-inflammatory profile compared with the 6N substrain. Consistent with this, the differences observed in the basal microbial taxa between both substrains support the differences observed in the immunological response.

Keywords

C57BL/6J / C57BL/6N / multiple sclerosis / microbiota / mouse model / neuroinflammation

Cite this article

Download citation ▾
Ana Isabel Álvarez-López, Eduardo Ponce-España, Ivan Cruz-Chamorro, Guillermo Santos-Sánchez, Ignacio Bejarano, Nuria Álvarez-Sánchez, Patricia Judith Lardone, Antonio Carrillo-Vico. Differences of the 6N and 6J Substrains of C57BL/6 Mice in the Development of Experimental Autoimmune Encephalomyelitis. MedComm, 2025, 6(7): e70228 DOI:10.1002/mco2.70228

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Walton, R. King, L. Rechtman, et al., “Rising Prevalence of Multiple Sclerosis Worldwide: Insights From the Atlas of MS,” Multiple Sclerosis Journal 26, no. 14 (2020): 1816-1821.

[2]

T. Zhang, H. X. Yan, Y. An, et al., “The Efficacy and Safety of Manual Therapy for Symptoms Associated With Multiple Sclerosis: A Systematic Review and Meta-Analysis,” Journal of Integrative and Complementary Medicine 28, no. 10 (2022): 780-790.

[3]

J. D. Lutton, R. Winston, and T. C. Rodman, “Multiple Sclerosis: Etiological Mechanisms and Future Directions,” Experimental Biology and Medicine (Maywood, N.J.) 229, no. 1 (2004): 12-20.

[4]

G. Houen, N. H. Trier, and J. L. Frederiksen, “Epstein-Barr Virus and Multiple Sclerosis,” Frontiers in Immunology 11 (2020): 587078.

[5]

B. N. Dittel, “CD4 T Cells: Balancing the Coming and Going of Autoimmune-Mediated Inflammation in the CNS,” Brain, Behavior, and Immunity 22, no. 4 (2008): 421-430.

[6]

H. L. Weiner, “Multiple Sclerosis Is an Inflammatory T-cell-Mediated Autoimmune Disease,” Archives of Neurology 61, no. 10 (2004): 1613-1615.

[7]

B. J. Kaskow and C. Baecher-Allan, “Effector T Cells in Multiple Sclerosis,” Cold Spring Harbor Perspectives in Medicine 8, no. 4 (2018).

[8]

C. A. Dendrou, L. Fugger, and M. A. Friese, “Immunopathology of Multiple Sclerosis,” Nature Reviews Immunology 15, no. 9 (2015): 545-558.

[9]

N. Álvarez-Sánchez, I. Cruz-Chamorro, A. López-González, et al., “Melatonin Controls Experimental Autoimmune Encephalomyelitis by Altering the T Effector/Regulatory Balance,” Brain, Behavior, and Immunity 50 (2015): 101-114.

[10]

E. S. Huseby, P. G. Huseby, S. Shah, R. Smith, and B. D. Stadinski, “Pathogenic CD8 T Cells in Multiple Sclerosis and Its Experimental Models,” Frontiers in Immunology 3 (2012): 64.

[11]

R. Li, A. Rezk, Y. Miyazaki, et al., “Proinflammatory GM-CSF-Producing B Cells in Multiple Sclerosis and B Cell Depletion Therapy,” Science Translational Medicine 7, no. 310 (2015): 310ra166.

[12]

C. S. Constantinescu, N. Farooqi, K. O'Brien, and B. Gran, “Experimental Autoimmune Encephalomyelitis (EAE) as a Model for Multiple Sclerosis (MS),” British Journal of Pharmacology 164, no. 4 (2011): 1079-1106.

[13]

C. J. De Groot, S. R. Ruuls, J. W. Theeuwes, C. D. Dijkstra, and P. Van der Valk, “Immunocytochemical Characterization of the Expression of Inducible and Constitutive Isoforms of Nitric Oxide Synthase in Demyelinating Multiple Sclerosis Lesions,” Journal of Neuropathology and Experimental Neurology 56, no. 1 (1997): 10-20.

[14]

G. K. Vasileiadis, E. Dardiotis, A. Mavropoulos, et al., “Regulatory B and T Lymphocytes in Multiple Sclerosis: Friends or Foes?,” Auto Immunity Highlights 9, no. 1 (2018): 9.

[15]

F. Aydınlı, S. Er, and B. E. Kerman, “Two Phases of Macrophages: Inducing Maturation and Death of Oligodendrocytes in Vitro Co-Culture,” Journal of Neuroscience Methods (2022): 109723.

[16]

E. Ersoy, C. N. Kuş, U. Sener, I. Coker, and Y. Zorlu, “The Effects of Interferon-beta on Interleukin-10 in Multiple Sclerosis Patients,” European Journal of Neurology 12, no. 3 (2005): 208-211.

[17]

S. Jangi, R. Gandhi, L. M. Cox, et al., “Alterations of the human Gut Microbiome in Multiple Sclerosis,” Nature Communications 7 (2016): 12015.

[18]

K. M. Maslowski and C. R. Mackay, “Diet, Gut Microbiota and Immune Responses,” Nature Immunology 12, no. 1 (2011): 5-9.

[19]

J. Chen, N. Chia, K. R. Kalari, et al., “Multiple Sclerosis Patients Have a Distinct Gut Microbiota Compared to Healthy Controls,” Scientific Reports 6 (2016): 28484.

[20]

B. L. Cantarel, E. Waubant, C. Chehoud, et al., “Gut Microbiota in Multiple Sclerosis: Possible Influence of Immunomodulators,” Journal of Investigative Medicine 63, no. 5 (2015): 729-734.

[21]

S. Miyake, S. Kim, W. Suda, et al., “Dysbiosis in the Gut Microbiota of Patients With Multiple Sclerosis, With a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters,” PLoS ONE 10, no. 9 (2015): e0137429.

[22]

T. Reynders, L. Devolder, M. Valles-Colomer, et al., “Gut Microbiome Variation Is Associated to Multiple Sclerosis Phenotypic Subtypes,” Annals of Clinical and Translational Neurology 7, no. 4 (2020): 406-419.

[23]

S. Khadka, S. Omura, F. Sato, K. Nishio, H. Kakeya, and I. Tsunoda, “Curcumin β-D-Glucuronide Modulates an Autoimmune Model of Multiple Sclerosis With Altered Gut Microbiota in the Ileum and Feces,” Frontiers in Cellular and Infection Microbiology 11 (2021): 772962.

[24]

F. Ghadiri, Z. Ebadi, E. Asadollahzadeh, and A. Naser Moghadasi, “Gut Microbiome in Multiple Sclerosis-Related Cognitive Impairment,” Multiple Sclerosis and Related Disorders 67 (2022): 104165.

[25]

F. D. Lublin, S. C. Reingold, J. A. Cohen, et al., “Defining the Clinical Course of Multiple Sclerosis: The 2013 Revisions,” Neurology 83, no. 3 (2014): 278-286.

[26]

K. Mekada and A. Yoshiki, “Substrains Matter in Phenotyping of C57BL/6 Mice,” Experimental Animals 70, no. 2 (2021): 145-160.

[27]

M. M. Simon, S. Greenaway, J. K. White, et al., “A Comparative Phenotypic and Genomic Analysis of C57BL/6J and C57BL/6N Mouse Strains,” Genome Biology 14, no. 7 (2013): 1-22.

[28]

M. Gharagozloo, T. M. Mahvelati, E. Imbeault, et al., “The Nod-Like Receptor, Nlrp12, Plays an Anti-inflammatory Role in Experimental Autoimmune Encephalomyelitis,” Journal of Neuroinflammation 12 (2015): 198.

[29]

C. Schmitt, N. Strazielle, and J.-F. Ghersi-Egea, “Brain Leukocyte Infiltration Initiated by Peripheral Inflammation or Experimental Autoimmune Encephalomyelitis Occurs Through Pathways Connected to the CSF-filled Compartments of the Forebrain and Midbrain,” Journal of Neuroinflammation 9, no. 1 (2012): 1-15.

[30]

H. Babbe, A. Roers, A. Waisman, et al., “Clonal Expansions of CD8(+) T Cells Dominate the T Cell Infiltrate in Active Multiple Sclerosis Lesions as Shown by Micromanipulation and Single Cell Polymerase Chain Reaction,” Journal of Experimental Medicine 192, no. 3 (2000): 393-404.

[31]

L. H. Kasper and J. Shoemaker, “Multiple Sclerosis Immunology: The Healthy Immune System vs the MS Immune System,” Neurology 74, no. Suppl 1 (2010): S2-8.

[32]

L. Michel, H. Touil, N. B. Pikor, J. L. Gommerman, A. Prat, and A. Bar-Or, “B Cells in the Multiple Sclerosis Central Nervous System: Trafficking and Contribution to CNS-Compartmentalized Inflammation,” Frontiers in Immunology 6 (2015): 636.

[33]

J. J. Archelos, M. K. Storch, and H. P. Hartung, “The Role of B Cells and Autoantibodies in Multiple Sclerosis,” Annals of Neurology 47, no. 6 (2000): 694-706.

[34]

M. Duddy, M. Niino, F. Adatia, et al., “Distinct Effector Cytokine Profiles of Memory and Naive human B Cell Subsets and Implication in Multiple Sclerosis,” Journal of Immunology 178, no. 10 (2007): 6092-6099.

[35]

S. Knippenberg, E. Peelen, J. Smolders, et al., “Reduction in IL-10 Producing B Cells (Breg) in Multiple Sclerosis Is Accompanied by a Reduced Naïve/Memory Breg Ratio During a Relapse but Not in Remission,” Journal of Neuroimmunology 239, no. 1-2 (2011): 80-86.

[36]

F. M. Hofman, D. R. Hinton, K. Johnson, and J. E. Merrill, “Tumor Necrosis Factor Identified in Multiple Sclerosis Brain,” Journal of Experimental Medicine 170, no. 2 (1989): 607-612.

[37]

H. Link, “The Cytokine Storm in Multiple Sclerosis,” Multiple Sclerosis 4, no. 1 (1998): 12-15.

[38]

F. Weber and P. Rieckmann, “[Pathogenesis and therapy of multiple sclerosis. The role of cytokines],” Der Nervenarzt 66, no. 2 (1995): 150-155.

[39]

S. Barati, I. Ragerdi Kashani, F. Moradi, et al., “Mesenchymal Stem Cell Mediated Effects on Microglial Phenotype in Cuprizone-induced Demyelination Model,” Journal of Cellular Biochemistry 120, no. 8 (2019): 13952-13964.

[40]

M. Radandish, P. Khalilian, and N. Esmaeil, “The Role of Distinct Subsets of Macrophages in the Pathogenesis of MS and the Impact of Different Therapeutic Agents on these Populations,” Frontiers in immunology 12 (2021): 667705.

[41]

J. Che, D. Li, W. Hong, et al., “Discovery of New Macrophage M2 Polarization Modulators as Multiple Sclerosis Treatment Agents That Enable the Inflammation Microenvironment Remodeling,” European Journal of Medicinal Chemistry 243 (2022): 114732.

[42]

E. Kamma, W. Lasisi, C. Libner, H. S. Ng, and J. R. Plemel, “Central Nervous System Macrophages in Progressive Multiple Sclerosis: Relationship to Neurodegeneration and Therapeutics,” Journal of Neuroinflammation 19, no. 1 (2022): 45.

[43]

A. C. Murphy, S. J. Lalor, M. A. Lynch, and K. H. Mills, “Infiltration of Th1 and Th17 Cells and Activation of Microglia in the CNS During the Course of Experimental Autoimmune Encephalomyelitis,” Brain, Behavior, and Immunity 24, no. 4 (2010): 641-651.

[44]

M. Gharagozloo, K. V. Gris, T. Mahvelati, A. Amrani, J. R. Lukens, and D. Gris, “NLR-Dependent Regulation of Inflammation in Multiple Sclerosis,” Frontiers in immunology 8 (2017): 2012.

[45]

X. Zhang, D. Zhang, H. Jia, et al., “The Oral and Gut Microbiomes Are Perturbed in Rheumatoid Arthritis and Partly Normalized After Treatment,” Nature Medicine 21, no. 8 (2015): 895-905.

[46]

K. Berer, M. Mues, M. Koutrolos, et al., “Commensal Microbiota and Myelin Autoantigen Cooperate to Trigger Autoimmune Demyelination,” Nature 479, no. 7374 (2011): 538-541.

[47]

L. M. Cox, A. H. Maghzi, S. Liu, et al., “Gut Microbiome in Progressive Multiple Sclerosis,” Annals of Neurology 89, no. 6 (2021): 1195-1211.

[48]

E. M. Velazquez, H. Nguyen, K. T. Heasley, et al., “Endogenous Enterobacteriaceae Underlie Variation in Susceptibility to Salmonella Infection,” Nature Microbiology 4, no. 6 (2019): 1057-1064.

[49]

M. Kriss, K. Z. Hazleton, N. M. Nusbacher, C. G. Martin, and C. A. Lozupone, “Low Diversity Gut Microbiota Dysbiosis: Drivers, Functional Implications and Recovery,” Current Opinion in Microbiology 44 (2018): 34-40.

[50]

H. Tremlett, D. W. Fadrosh, A. A. Faruqi, et al., “Gut Microbiota in Early Pediatric Multiple Sclerosis: A Case-Control Study,” European Journal of Neurology 23, no. 8 (2016): 1308-1321.

[51]

S. N. Choileáin, M. Kleinewietfeld, K. Raddassi, D. A. Hafler, W. E. Ruff, and E. E. Longbrake, “CXCR3+ T Cells in Multiple Sclerosis Correlate With Reduced Diversity of the Gut Microbiome,” Journal of Translational Autoimmunity 3 (2020): 100032.

[52]

M. G. Rooks and W. S. Garrett, “Gut Microbiota, Metabolites and Host Immunity,” Nature Reviews Immunology 16, no. 6 (2016): 341-352.

[53]

M. Mizuno, D. Noto, N. Kaga, A. Chiba, and S. Miyake, “The Dual Role of Short Fatty Acid Chains in the Pathogenesis of Autoimmune Disease Models,” PLoS ONE 12, no. 2 (2017): e0173032.

[54]

P. M. Smith, M. R. Howitt, N. Panikov, et al., “The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis,” Science 341, no. 6145 (2013): 569-573.

[55]

V. Braniste, M. Al-Asmakh, C. Kowal, et al., “The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice,” Science Translational Medicine 6, no. 263 (2014): 263ra158.

[56]

A. Haghikia, S. Jörg, A. Duscha, et al., “Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine,” Immunity 43, no. 4 (2015): 817-829.

[57]

K. A. O. Gandy, J. Zhang, P. Nagarkatti, and M. Nagarkatti, “The Role of Gut Microbiota in Shaping the Relapse-Remitting and Chronic-Progressive Forms of Multiple Sclerosis in Mouse Models,” Scientific Reports 9, no. 1 (2019): 6923.

[58]

D. Deng, H. Su, Y. Song, et al., “Altered Fecal Microbiota Correlated with Systemic Inflammation in Male Subjects with Methamphetamine Use Disorder,” Frontiers in Cellular and Infection Microbiology 11 (2021): 783917.

[59]

J. R. P. Vieira, A. T. O. Rezende, M. R. Fernandes, and N. A. da Silva, “Intestinal Microbiota and Active Systemic Lupus Erythematosus: A Systematic Review,” Advances in Rheumatology 61, no. 1 (2021): 42.

[60]

Z. Ling, Y. Cheng, X. Yan, et al., “Alterations of the Fecal Microbiota in Chinese Patients with Multiple Sclerosis,” Frontiers in Immunology 11 (2020): 590783.

[61]

N. Oezguen, N. Yalcinkaya, C. I. Kücükali, et al., “Microbiota Stratification Identifies Disease-Specific Alterations in Neuro-Behçet's Disease and Multiple Sclerosis,” Clinical and Experimental Rheumatology 37 Suppl 121, no. 6 (2019): 58-66.

[62]

Y. Liu, T. Li, A. Alim, D. Ren, Y. Zhao, and X. Yang, “Regulatory Effects of Stachyose on Colonic and Hepatic Inflammation, Gut Microbiota Dysbiosis, and Peripheral CD4(+) T Cell Distribution Abnormality in High-Fat Diet-Fed Mice,” Journal of Agricultural and Food Chemistry 67, no. 42 (2019): 11665-11674.

[63]

B. Cuffaro, A. L. W. Assohoun, D. Boutillier, et al., “In Vitro Characterization of Gut Microbiota-Derived Commensal Strains: Selection of Parabacteroides Distasonis Strains Alleviating TNBS-Induced Colitis in Mice,” Cells 9, no. 9 (2020): 2104.

[64]

I. Hamad, A. Cardilli, B. F. Côrte-Real, A. Dyczko, J. Vangronsveld, and M. Kleinewietfeld, “High-Salt Diet Induces Depletion of Lactic Acid-Producing Bacteria in Murine Gut,” Nutrients 14, no. 6 (2022): 1171.

[65]

S. G. Daniel, C. L. Ball, D. G. Besselsen, T. Doetschman, and B. L. Hurwitz, “Functional Changes in the Gut Microbiome Contribute to Transforming Growth Factor β-Deficient Colon Cancer,” Msystems 2, no. 5 (2017).

[66]

R. Caruso, T. Mathes, E. C. Martens, et al., “A Specific Gene-microbe Interaction Drives the Development of Crohn's Disease-Like Colitis in Mice,” Science Immunology 4, no. 34 (2019): eaaw4341.

[67]

C. M. Shintouo, T. Mets, D. Beckwee, et al., “Is Inflammageing Influenced by the Microbiota in the Aged Gut? A Systematic Review,” Experimental Gerontology 141 (2020): 111079.

[68]

Z. Salehipour, D. Haghmorad, M. Sankian, et al., “Bifidobacterium Animalis in Combination With human Origin of Lactobacillus Plantarum Ameliorate Neuroinflammation in Experimental Model of Multiple Sclerosis by Altering CD4+ T Cell Subset Balance,” Biomedicine & Pharmacotherapy 95 (2017): 1535-1548.

[69]

E. Kouchaki, O. R. Tamtaji, M. Salami, et al., “Clinical and Metabolic Response to Probiotic Supplementation in Patients With Multiple Sclerosis: A Randomized, Double-blind, Placebo-controlled Trial,” Clinical Nutrition 36, no. 5 (2017): 1245-1249.

[70]

Baum K, Rejmus R, Dörffel Y, eds., Commensal Gut Flora in MS: Spatial Organization and Composition (London, England: Sage Publications Ltd 1 Olivers Yard, 2015). Multiple Sclerosis Journal.

[71]

L. F. Mager, R. Burkhard, N. Pett, et al., “Microbiome-derived Inosine Modulates Response to Checkpoint Inhibitor Immunotherapy,” Science 369, no. 6510 (2020): 1481-1489.

[72]

E. Eckman, J. D. Laman, K. F. Fischer, et al., “Spinal Fluid IgG Antibodies From Patients With Demyelinating Diseases Bind Multiple Sclerosis-Associated Bacteria,” Journal of Molecular Medicine (Berlin) 99, no. 10 (2021): 1399-1411.

[73]

S. K. Mazmanian, C. H. Liu, A. O. Tzianabos, and D. L. Kasper, “An Immunomodulatory Molecule of Symbiotic Bacteria Directs Maturation of the Host Immune System,” Cell 122, no. 1 (2005): 107-118.

[74]

I. Cosorich, G. Dalla-Costa, C. Sorini, et al., “High Frequency of Intestinal T(H)17 Cells Correlates With Microbiota Alterations and Disease Activity in Multiple Sclerosis,” Science Advances 3, no. 7 (2017): e1700492.

[75]

N. Álvarez-Sánchez, I. Cruz-Chamorro, A. I. Álvarez-López, et al., “Seasonal Variations in Macrophages/Microglia Underlie Changes in the Mouse Model of Multiple Sclerosis Severity,” Molecular Neurobiology 57, no. 10 (2020): 4082-4089.

[76]

A. I. Álvarez-López, N. Álvarez-Sánchez, I. Cruz-Chamorro, et al., “Melatonin Synergistically Potentiates the Effect of Methylprednisolone on Reducing Neuroinflammation in the Experimental Autoimmune Encephalomyelitis Mouse Model of Multiple Sclerosis,” Journal of Autoimmunity 148 (2024): 103298.

[77]

A. Carrillo-Vico, M. D. Leech, and S. M. Anderton, “Contribution of Myelin Autoantigen Citrullination to T Cell Autoaggression in the Central Nervous System,” Journal of Immunology 184, no. 6 (2010): 2839-2846.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/