Carotid Plaque-Derived Small Extracellular Vesicles Mediate Atherosclerosis and Correlate With Plaque Vulnerability

Xin Xu , Taoyuan Lu , Yao Feng , Wenbo Cao , Dianwei Liu , Peng Gao , Yan Ma , Yabing Wang , Bin Yang , Yanfei Chen , Jian Chen , Ran Xu , Xinyu Wang , Lebin Chen , Yuanyuan Ji , Liqun Jiao

MedComm ›› 2025, Vol. 6 ›› Issue (6) : e70220

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (6) :e70220 DOI: 10.1002/mco2.70220
ORIGINAL ARTICLE

Carotid Plaque-Derived Small Extracellular Vesicles Mediate Atherosclerosis and Correlate With Plaque Vulnerability

Author information +
History +
PDF

Abstract

Carotid plaque-derived small extracellular vesicles (psEVs) offer insights into tissue- and disease-specific pathobiology, but their roles in plaque vulnerability and their diagnostic potential remain unclear. Herein, we isolated psEVs from stable and vulnerable (intraplaque hemorrhage [IPH] or fibrous cap rupture [FCR]) plaques in patients with asymptomatic carotid artery stenosis (aCAS). Our findings demonstrated that psEVs alone were sufficient to induce inflammatory endothelial dysfunction in vitro and exacerbate atherogenesis in ApoE-deficient mice. MicroRNA sequencing of psEVs (sequencing cohort, n = 18) identified 21 differentially expressed microRNAs (DEmiRNAs) distinguishing stable and vulnerable plaques, and 41 DEmiRNAs differentiating IPH from FCR subtypes. Subsequent validation using qRT-PCR and the High-throughput nano-bio chip integrated system for liquid biopsy system revealed that plasma-derived sEV miR-497-5p, miR-152-3p, and miR-204-5p effectively differentiated stable plaques from vulnerable plaques, while miR-23a-3p and miR-143-5p further distinguished IPH from FCR subtypes, in both the discovery cohort (n = 178) and an independent external cohort (n = 82). Mechanistic investigations identified miR-497-5p as a key mediator of vulnerable psEVs' proinflammatory and proatherogenic effects through directly targeting atheroprotective uncoupling protein 2 (UCP2). These findings highlight the roles of psEVs in atherogenesis and plaque vulnerability, providing valuable insights for risk stratification and therapeutic decision-making in aCAS patients.

Keywords

asymptomatic carotid artery stenosis / atherosclerosis / biomarker / extracellular vesicle / microRNA / plaque vulnerability

Cite this article

Download citation ▾
Xin Xu, Taoyuan Lu, Yao Feng, Wenbo Cao, Dianwei Liu, Peng Gao, Yan Ma, Yabing Wang, Bin Yang, Yanfei Chen, Jian Chen, Ran Xu, Xinyu Wang, Lebin Chen, Yuanyuan Ji, Liqun Jiao. Carotid Plaque-Derived Small Extracellular Vesicles Mediate Atherosclerosis and Correlate With Plaque Vulnerability. MedComm, 2025, 6(6): e70220 DOI:10.1002/mco2.70220

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

R. W. Chang, L. Y. Tucker, K. A. Rothenberg, et al., “Incidence of Ischemic Stroke in Patients With Asymptomatic Severe Carotid Stenosis Without Surgical Intervention,” Jama 327, no. 20 (2022): 1974-1982.

[2]

T. Reiff, H. H. Eckstein, U. Mansmann, et al., “Carotid Endarterectomy or Stenting or Best Medical Treatment Alone for Moderate-to-severe Asymptomatic Carotid Artery Stenosis: 5-year Results of a Multicentre, Randomised Controlled Trial,” Lancet Neurology 21, no. 10 (2022): 877-888.

[3]

S. Keyhani, E. M. Cheng, K. J. Hoggatt, et al., “Comparative Effectiveness of Carotid Endarterectomy vs Initial Medical Therapy in Patients With Asymptomatic Carotid Stenosis,” JAMA Neurology 77, no. 9 (2020): 1110-1121.

[4]

K. I. Paraskevas, M. M. Brown, B. K. Lal, et al., “Recent Advances and Controversial Issues in the Optimal Management of Asymptomatic Carotid Stenosis,” Journal of Vascular Surgery 79, no. 3 (2024): 695-703.

[5]

D. P. J. Howard, L. Gaziano, and P. M. Rothwell, “Oxford Vascular S. Risk of Stroke in Relation to Degree of Asymptomatic Carotid Stenosis: A Population-based Cohort Study, Systematic Review, and Meta-analysis,” The Lancet Neurology 20, no. 3 (2021): 193-202.

[6]

B. Yang, Y. Ma, T. Wang, et al., “Carotid Endarterectomy and Stenting in a Chinese Population: Safety Outcome of the Revascularization of Extracranial Carotid Artery Stenosis Trial,” Translational Stroke Research 12, no. 2 (2021): 239-247.

[7]

D. Bos, B. Arshi, Q. J. A. van den Bouwhuijsen, et al., “Atherosclerotic Carotid Plaque Composition and Incident Stroke and Coronary Events,” Journal of the American College of Cardiology 77, no. 11 (2021): 1426-1435.

[8]

P. Gaba, B. J. Gersh, J. Muller, J. Narula, and G. W. Stone, “Evolving Concepts of the Vulnerable Atherosclerotic Plaque and the Vulnerable Patient: Implications for Patient Care and Future Research,” Nature Reviews Cardiology 20, no. 3 (2023): 181-196.

[9]

J. M. Cai, T. S. Hatsukami, M. S. Ferguson, R. Small, N. L. Polissar, and C. Yuan, “Classification of human Carotid Atherosclerotic Lesions With in Vivo Multicontrast Magnetic Resonance Imaging,” Circulation 106, no. 11 (2002): 1368-1373.

[10]

L. Saba, R. Cau, A. Murgia, et al., “Carotid Plaque-RADS: A Novel Stroke Risk Classification System,” JACC Cardiovascular Imaging 17, no. 1 (2024): 62-75.

[11]

D. Pakizer, J. Kozel, P. Taffe, et al., “Diagnostic Accuracy of Carotid Plaque Instability by Noninvasive Imaging: A Systematic Review and Meta-analysis,” European Heart Journal Cardiovascular Imaging 25, no. 10 (2024): 1325-1335.

[12]

H. Khan, F. Shaikh, M. H. Syed, M. Mamdani, G. Saposnik, and M. Qadura, “Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature,” Metabolites 13, no. 8 (2023): 919.

[13]

V. Della Corte, F. Todaro, M. Cataldi, and A. Tuttolomondo, “Atherosclerosis and Its Related Laboratory Biomarkers,” International Journal of Molecular Sciences 24, no. 21 (2023): 15546.

[14]

J. A. Welsh, D. C. I. Goberdhan, L. O'Driscoll, et al., “Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches,” Journal of Extracellular Vesicles 13, no. 2 (2024): e12404.

[15]

G. van Niel, D. R. F. Carter, A. Clayton, D. W. Lambert, G. Raposo, and P. Vader, “Challenges and Directions in Studying Cell-cell Communication by Extracellular Vesicles,” Nature Reviews Molecular Cell Biology 23, no. 5 (2022): 369-382.

[16]

S. M. Davidson, C. M. Boulanger, E. Aikawa, et al., “Methods for the Identification and Characterization of Extracellular Vesicles in Cardiovascular Studies: From Exosomes to Microvesicles,” Cardiovascular Research 119, no. 1 (2023): 45-63.

[17]

D. Zheng, M. Huo, B. Li, et al., “The Role of Exosomes and Exosomal MicroRNA in Cardiovascular Disease,” Frontiers in Cell and Developmental Biology 8 (2020): 616161.

[18]

S. Patel, M. K. Guo, M. Abdul Samad, and K. L. Howe, “Extracellular Vesicles as Biomarkers and Modulators of Atherosclerosis Pathogenesis,” Frontiers in Cardiovascular Medicine 10 (2023): 1202187.

[19]

L. Zisser, C. J. Binder, “Extracellular Vesicles as Mediators in Atherosclerotic Cardiovascular Disease,” Journal of Lipid and Atherosclerosis 13, no. 3 (2024): 232-261.

[20]

Z. Wehbe, M. Wehbe, A. Al Khatib, et al., “Emerging Understandings of the Role of Exosomes in Atherosclerosis,” Journal of Cellular Physiology (2024): e31454.

[21]

F. Buffolo, S. Monticone, G. Camussi, and E. Aikawa, “Role of Extracellular Vesicles in the Pathogenesis of Vascular Damage,” Hypertension 79, no. 5 (2022): 863-873.

[22]

J. C. Lee, R. M. Ray, and T. A. Scott, “Prospects and Challenges of Tissue-derived Extracellular Vesicles,” Molecular Therapy: the Journal of the American Society of Gene Therapy 32, no. 9 (2024): 2950-2978.

[23]

L. Shen, H. Huang, Z. Wei, et al., “Integrated Transcriptomics, Proteomics, and Functional Analysis to Characterize the Tissue-specific Small Extracellular Vesicle Network of Breast Cancer,” MedComm 4, no. 6 (2023): e433.

[24]

M. C. Verwer, J. Mekke, N. Timmerman, et al., “Comparison of Cardiovascular Biomarker Expression in Extracellular Vesicles, Plasma and Carotid Plaque for the Prediction of MACE in CEA Patients,” Scientific Reports 13, no. 1 (2023): 1010.

[25]

R. Crescitelli, C. Lasser, and J. Lotvall, “Isolation and Characterization of Extracellular Vesicle Subpopulations From Tissues,” Nature Protocols 16, no. 3 (2021): 1548-1580.

[26]

Y. Huang, L. Cheng, A. Turchinovich, et al., “Influence of Species and Processing Parameters on Recovery and Content of Brain Tissue-derived Extracellular Vesicles,” Journal of Extracellular Vesicles 9, no. 1 (2020): 1785746.

[27]

S. R. Li, Q. W. Man, X. Gao, et al., “Tissue-derived Extracellular Vesicles in Cancers and Non-Cancer Diseases: Present and Future,” Journal of Extracellular Vesicles 10, no. 14 (2021): e12175.

[28]

L. Gan, D. Liu, D. Xie, et al., “Ischemic Heart-Derived Small Extracellular Vesicles Impair Adipocyte Function,” Circulation Research 130, no. 1 (2022): 48-66.

[29]

L. Perdomo, X. Vidal-Gomez, R. Soleti, et al., “Large Extracellular Vesicle-Associated Rap1 Accumulates in Atherosclerotic Plaques, Correlates With Vascular Risks and Is Involved in Atherosclerosis,” Circulation Research 127, no. 6 (2020): 747-760.

[30]

A. S. Leroyer, H. Isobe, G. Leseche, et al., “Cellular Origins and Thrombogenic Activity of Microparticles Isolated From human Atherosclerotic Plaques,” Journal of the American College of Cardiology 49, no. 7 (2007): 772-777.

[31]

A. S. Leroyer, P. E. Rautou, J. S. Silvestre, et al., “CD40 ligand+ Microparticles From human Atherosclerotic Plaques Stimulate Endothelial Proliferation and Angiogenesis a Potential Mechanism for Intraplaque Neovascularization,” Journal of the American College of Cardiology 52, no. 16 (2008): 1302-1311.

[32]

P. E. Rautou, A. S. Leroyer, B. Ramkhelawon, et al., “Microparticles From human Atherosclerotic Plaques Promote Endothelial ICAM-1-dependent Monocyte Adhesion and Transendothelial Migration,” Circulation Research 108, no. 3 (2011): 335-343.

[33]

M. C. Blaser, F. Buffolo, A. Halu, et al., “Multiomics of Tissue Extracellular Vesicles Identifies Unique Modulators of Atherosclerosis and Calcific Aortic Valve Stenosis,” Circulation 148, no. 8 (2023): 661-678.

[34]

M. Peng, R. Sun, Y. Hong, et al., “Extracellular Vesicles Carrying Proinflammatory Factors May Spread Atherosclerosis to Remote Locations,” Cellular and Molecular Life Sciences: CMLS 79, no. 8 (2022): 430.

[35]

J. Guo, C. Wu, X. Lin, et al., “Establishment of a Simplified Dichotomic Size-exclusion Chromatography for Isolating Extracellular Vesicles Toward Clinical Applications,” Journal of Extracellular Vesicles 10, no. 11 (2021): e12145.

[36]

A. Di Nubila, G. Dilella, R. Simone, and S. S. Barbieri, “Vascular Extracellular Matrix in Atherosclerosis,” International Journal of Molecular Sciences 25, no. 22 (2024): 12017.

[37]

S. Guo, L. Wang, K. Cao, et al., “Endothelial NLRP3 Inflammasome Regulation in Atherosclerosis,” Cardiovascular Research (2024).

[38]

S. Xu, I. Ilyas, P. J. Little, et al., “Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and beyond: From Mechanism to Pharmacotherapies,” Pharmacological Reviews 73, no. 3 (2021): 924-967.

[39]

B. Huang, Z. Zou, Y. Li, et al., “Gasdermin D-Mediated Pyroptosis Promotes the Development of Atherosclerosis,” Laboratory Investigation; a Journal of Technical Methods and Pathology 104, no. 4 (2024): 100337.

[40]

P. Li, J. Hong, C. Liang, et al., “Endothelial Cell-released Extracellular Vesicles Trigger Pyroptosis and Vascular Inflammation to Induce Atherosclerosis Through the Delivery of HIF1A-AS2,” FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 37, no. 6 (2023): e22942.

[41]

X. Osteikoetxea, B. Sodar, A. Nemeth, et al., “Differential Detergent Sensitivity of Extracellular Vesicle Subpopulations,” Organic & Biomolecular Chemistry 13, no. 38 (2015): 9775-9782.

[42]

T. Li, X. Li, Y. Feng, G. Dong, Y. Wang, and J. Yang, “The Role of Matrix Metalloproteinase-9 in Atherosclerotic Plaque Instability,” Mediators of Inflammation 2020 (2020): 3872367.

[43]

S. A. Dabravolski, V. A. Khotina, A. V. Omelchenko, V. A. Kalmykov, and A. N. Orekhov, “The Role of the VEGF Family in Atherosclerosis Development and Its Potential as Treatment Targets,” International Journal of Molecular Sciences 23, no. 2 (2022): 931.

[44]

K. Jingushi, M. Uemura, N. Ohnishi, et al., “Extracellular Vesicles Isolated From human Renal Cell Carcinoma Tissues Disrupt Vascular Endothelial Cell Morphology via Azurocidin,” International Journal of Cancer 142, no. 3 (2018): 607-617.

[45]

J. Zhou, Z. Wu, J. Hu, et al., “High-throughput Single-EV Liquid Biopsy: Rapid, Simultaneous, and Multiplexed Detection of Nucleic Acids, Proteins, and Their Combinations,” Science Advances 6, no. 47 (2020): eabc1204.

[46]

J. Y. Luo, C. K. Cheng, L. He, et al., “Endothelial UCP2 Is a Mechanosensitive Suppressor of Atherosclerosis,” Circulation Research 131, no. 5 (2022): 424-441.

[47]

T. J. Van De Parre, W. Martinet, S. Verheye, et al., “Mitochondrial Uncoupling Protein 2 Mediates Temperature Heterogeneity in Atherosclerotic Plaques,” Cardiovascular Research 77, no. 2 (2008): 425-431.

[48]

J. Blanc, M. C. Alves-Guerra, B. Esposito, et al., “Protective Role of Uncoupling Protein 2 in Atherosclerosis,” Circulation 107, no. 3 (2003): 388-390.

[49]

R. H. Du, F. F. Wu, M. Lu, et al., “Uncoupling Protein 2 Modulation of the NLRP3 Inflammasome in Astrocytes and Its Implications in Depression,” Redox Biology 9 (2016): 178-187.

[50]

S. Yang, W. Qin, X. Li, et al., “A Cryostat-based Frozen Section Method to Increase the Yield of Extracellular Vesicles Extracted From Different Tissues,” Biotechniques 73, no. 2 (2022): 90-98.

[51]

R. Wei, L. Zhao, G. Kong, et al., “Combination of Size-Exclusion Chromatography and Ultracentrifugation Improves the Proteomic Profiling of Plasma-Derived Small Extracellular Vesicles,” Biological Procedures Online 22 (2020): 12.

[52]

N. Karimi, A. Cvjetkovic, S. C. Jang, et al., “Detailed Analysis of the Plasma Extracellular Vesicle Proteome After Separation From Lipoproteins,” Cellular and Molecular Life Sciences: CMLS 75, no. 15 (2018): 2873-2886.

[53]

P. D'Acunzo, Y. Kim, J. M. Ungania, R. Perez-Gonzalez, C. N. Goulbourne, and E. Levy, “Isolation of Mitochondria-derived Mitovesicles and Subpopulations of Microvesicles and Exosomes From Brain Tissues,” Nature Protocols 17, no. 11 (2022): 2517-2549.

[54]

F. Jansen, X. Yang, S. Proebsting, et al., “MicroRNA Expression in Circulating Microvesicles Predicts Cardiovascular Events in Patients With Coronary Artery Disease,” Journal of the American Heart Association 3, no. 6 (2014): e001249.

[55]

X. Chen, S. Chen, J. Pang, et al., “Hepatic Steatosis Aggravates Atherosclerosis via Small Extracellular Vesicle-mediated Inhibition of Cellular Cholesterol Efflux,” Journal of Hepatology 79, no. 6 (2023): 1491-1501.

[56]

F. Jiang, Q. Chen, W. Wang, Y. Ling, Y. Yan, and P. Xia, “Hepatocyte-derived Extracellular Vesicles Promote Endothelial Inflammation and Atherogenesis via microRNA-1,” Journal of Hepatology 72, no. 1 (2020): 156-166.

[57]

R. Zhou, A. Tardivel, B. Thorens, I. Choi, and J. Tschopp, “Thioredoxin-Interacting Protein Links Oxidative Stress to Inflammasome Activation,” Nature Immunology 11, no. 2 (2010): 136-140.

[58]

Z. Shan, C. Yao, Z. L. Li, et al., “Differentially Expressed microRNAs at Different Stages of Atherosclerosis in ApoE-Deficient Mice,” Chinese Medical Journal 126, no. 3 (2013): 515-520.

[59]

W. Lu, G. Wan, H. Zhu, T. Zhu, and X. Zhang, “MiR-497-5p Regulates Ox-LDL-Induced Dysfunction in Vascular Endothelial Cells by Targeting VEGFA/p38/MAPK Pathway in Atherosclerosis,” Heliyon 10, no. 7 (2024): e28887.

[60]

Z. Zhao, C. Wu, X. He, et al., “miR-152-3p Aggravates Vascular Endothelial Cell Dysfunction by Targeting DEAD-box Helicase 6 (DDX6) Under Hypoxia,” Bioengineered 12, no. 1 (2021): 4899-4910.

[61]

R. Ban, C. Huo, J. Wang, G. Zhang, and X. Zhao, “Exploration of the Shared Gene Signatures and Molecular Mechanisms between Ischemic Stroke and Atherosclerosis,” International Journal of General Medicine 17 (2024): 2223-2239.

[62]

N. Wang, Y. Yuan, S. Sun, and G. Liu, “microRNA-204-5p Participates in Atherosclerosis via Targeting MMP-9,” Open Medicine 15 (2020): 231-239.

[63]

Y. Wu, F. Zhang, R. Lu, et al., “Functional lncRNA-miRNA-mRNA Networks in Rabbit Carotid Atherosclerosis,” Aging 12, no. 3 (2020): 2798-2813.

[64]

G. Lu, P. Tian, Y. Zhu, X. Zuo, and X. Li, “LncRNA XIST Knockdown Ameliorates Oxidative Low-density Lipoprotein-induced Endothelial Cells Injury by Targeting miR-204-5p/TLR4,” Journal of Biosciences 45 (2020): 52.

[65]

J. Guo, H. Mei, Z. Sheng, Q. Meng, M. M. Veniant, and H. Yin, “Hsa-miRNA-23a-3p Promotes Atherogenesis in a Novel Mouse Model of Atherosclerosis,” Journal of Lipid Research 61, no. 12 (2020): 1764-1775.

[66]

K. R. Cordes, N. T. Sheehy, M. P. White, et al., “miR-145 and miR-143 Regulate Smooth Muscle Cell Fate and Plasticity,” Nature 460, no. 7256 (2009): 705-710.

[67]

P. Song, Z. Fang, H. Wang, et al., “Global and Regional Prevalence, Burden, and Risk Factors for Carotid Atherosclerosis: A Systematic Review, Meta-analysis, and Modelling Study,” The Lancet Global Health 8, no. 5 (2020): e721-e729.

[68]

H. J. Barnett, D. W. Taylor, M. Eliasziw, et al., “Benefit of Carotid Endarterectomy in Patients With Symptomatic Moderate or Severe Stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators,” The New England Journal of Medicine 339, no. 20 (1998): 1415-1425.

[69]

B. A. Verhoeven, E. Velema, A. H. Schoneveld, et al., “Athero-express: Differential Atherosclerotic Plaque Expression of mRNA and Protein in Relation to Cardiovascular Events and Patient Characteristics. Rationale and Design,” European Journal of Epidemiology 19, no. 12 (2004): 1127-1133.

[70]

J. N. Redgrave, J. K. Lovett, P. J. Gallagher, and P. M. Rothwell, “Histological Assessment of 526 Symptomatic Carotid Plaques in Relation to the Nature and Timing of Ischemic Symptoms: The Oxford Plaque Study,” Circulation 113, no. 19 (2006): 2320-2328.

[71]

W. E. Hellings, W. Peeters, F. L. Moll, et al., “Composition of Carotid Atherosclerotic Plaque Is Associated With Cardiovascular Outcome: A Prognostic Study,” Circulation 121, no. 17 (2010): 1941-1950.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

54

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/