The Nasal–Brain Drug Delivery Route: Mechanisms and Applications to Central Nervous System Diseases

Yi Qiu , Shiyuan Huang , Li Peng , Li Yang , Guosong Zhang , Tao Liu , Fang Yan , Xi Peng

MedComm ›› 2025, Vol. 6 ›› Issue (6) : e70213

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (6) :e70213 DOI: 10.1002/mco2.70213
REVIEW

The Nasal–Brain Drug Delivery Route: Mechanisms and Applications to Central Nervous System Diseases

Author information +
History +
PDF

Abstract

The blood–brain barrier (BBB) is a highly selective and protective barrier that restricts the entry of most therapeutic agents into the central nervous system (CNS), posing a significant challenge for the treatment of CNS diseases. The nose-to-brain drug delivery (NBDD) route has emerged as a promising strategy to bypass the BBB, offering direct, noninvasive, and efficient transport of drugs to the brain. This review begins with a concise overview of the BBB structure and its biofunctions, followed by an in-depth discussion of the mechanisms underlying the nose-to-brain pathway, including the olfactory and trigeminal nerve routes, and respiratory pathway. We further highlight the therapeutic research development of neurodegenerative diseases, acute neurological diseases, brain tumor, and psychiatric disorders when using NBDD drugs encompassing small-molecule drugs, proteins, peptides, nucleic acids, siRNA, and herbal compounds, in which we also introduce innovative delivery systems, including nanocarriers and novel platforms such as exosomes, which enhance drug stability, targeting efficiency, and bioavailability. In addition, we provide a comprehensive overview of recent clinical advancements in therapeutics delivered via the intranasal route for CNS diseases. Finally, we discuss the challenges and future directions of NBDD, emphasizing its potential to transform the treatment landscape for CNS disorders.

Keywords

blood–brain barrier / central nervous system diseases / drug delivery systems / intranasal administration / nose–brain drug delivery

Cite this article

Download citation ▾
Yi Qiu, Shiyuan Huang, Li Peng, Li Yang, Guosong Zhang, Tao Liu, Fang Yan, Xi Peng. The Nasal–Brain Drug Delivery Route: Mechanisms and Applications to Central Nervous System Diseases. MedComm, 2025, 6(6): e70213 DOI:10.1002/mco2.70213

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Global, Regional, and National Burden of Brain and Other CNS Cancer, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. The Lancet Neurology 2019; 18(4): 376-393.

[2]

H. Goel, V. Kalra, S. K. Verma, S. K. Dubey, and A. K. Tiwary, “Convolutions in the Rendition of Nose to Brain Therapeutics From Bench to Bedside: Feats & Fallacies,” Journal of Controlled Release 341 (2022): 782-811.

[3]

C. Wang, W. Cui, B. Yu, et al., “Role of Succinylation Modification in central Nervous System Diseases,” Ageing Research Reviews 95 (2024): 102242.

[4]

M. Agrawal, S. Saraf, S. Saraf, et al., “Nose-to-brain Drug Delivery: An Update on Clinical Challenges and Progress towards Approval of Anti-Alzheimer Drugs,” Journal of Controlled Release 281 (2018): 139-177.

[5]

J. Lu, X. Wang, A. Wu, et al., “Ginsenosides in central Nervous System Diseases: Pharmacological Actions, Mechanisms, and Therapeutics,” Phytotherapy Research PTR 36, no. 4 (2022): 1523-1544.

[6]

S. Won, J. An, H. Song, et al., “Transnasal Targeted Delivery of Therapeutics in central Nervous System Diseases: A Narrative Review,” Frontiers in Neuroscience 17 (2023): 1137096.

[7]

M. Raghav, V. Gupta, R. Awasthi, A. Singh, and G. T. Kulkarni, “Nose-to-brain Drug Delivery: Challenges and Progress towards Brain Targeting in the Treatment of Neurological Disorders,” Journal of Drug Delivery Science and Technology 86 (2023): 104756.

[8]

L. Du, L. Chen, F. Liu, W. Wang, and H. Huang. Chapter Eight—Nose-to-brain Drug Delivery for the Treatment of CNS Disease: New Development and strategies. In: Sharma HS, Wiklund L, Sharma A, eds. “International Review of Neurobiology”. (Academic Press, 2023): 255-297.

[9]

A. Patel, N. Surti, and A. Mahajan, “Intranasal Drug Delivery: Novel Delivery Route for Effective Management of Neurological Disorders,” Journal of Drug Delivery Science and Technology 52 (2019): 130-137.

[10]

P. G. Upadhaya, S. Pulakkat, and V. B. Patravale, “Nose-to-brain Delivery: Exploring Newer Domains for Glioblastoma Multiforme Management,” Drug Delivery and Translational Research 10, no. 4 (2020): 1044-1056.

[11]

Y. Chen, C. Zhang, Y. Huang, et al., “Intranasal Drug Delivery: The Interaction Between Nanoparticles and the Nose-to-brain Pathway,” Advanced Drug Delivery Reviews 207 (2024): 115196.

[12]

A. Fortuna, G. Alves, A. Serralheiro, J. Sousa, and A. Falcão, “Intranasal Delivery of Systemic-acting Drugs: Small-molecules and Biomacromolecules,” European Journal of Pharmaceutics and Biopharmaceutics 88, no. 1 (2014): 8-27.

[13]

J. Ahmad, N. Haider, M. A. Khan, et al., “Novel Therapeutic Interventions for Combating Parkinson's Disease and Prospects of Nose-to-Brain Drug Delivery,” Biochemical Pharmacology 195 (2022): 114849.

[14]

A. R. Khan, M. Liu, M. W. Khan, and G. Zhai, “Progress in Brain Targeting Drug Delivery System by Nasal Route,” Journal of Controlled Release 268 (2017): 364-389.

[15]

M. Raghav, V. Gupta, R. Awasthi, A. Singh, and G. T. Kulkarni, “Nose-to-brain Drug Delivery: Challenges and Progress towards Brain Targeting in the Treatment of Neurological Disorders,” Journal of Drug Delivery Science and Technology 86 (2023): 104756.

[16]

G. Li, N. Bonamici, M. Dey, M. S. Lesniak, and I. V. Balyasnikova, “Intranasal Delivery of Stem Cell-based Therapies for the Treatment of Brain Malignancies,” Expert Opinion on Drug Delivery 15, no. 2 (2018): 163-172.

[17]

D. Preeti and S. Pravin, “Advances in Stem Cell Therapy for Brain Diseases via the Intranasal Route,” Current Pharmaceutical Biotechnology 22, no. 11 (2021): 1466-1481.

[18]

Y. Ge, X. Xu, M. Cao, et al., “Nasal Drug Delivery and Nose-to-Brain Delivery Technology Development Status and Trend Analysis: Based on Questionnaire Survey and Patent Analysis,” Pharmaceutics 16, no. 7 (2024): 929.

[19]

R. Upadhyay, P. Ghosh, and M. Desavathu, “Advancement in the Nose-to-Brain Drug Delivery of FDA-approved Drugs for the Better Management of Depression and Psychiatric Disorders,” International Journal of Pharmaceutics 667 (2024): 124866.

[20]

S. Craft, A. Claxton, L. D. Baker, et al., “Effects of Regular and Long-Acting Insulin on Cognition and Alzheimer's Disease Biomarkers: A Pilot Clinical Trial,” Journal of Alzheimer's Disease 57 (2017): 1325-1334.

[21]

M. D. Sweeney, Z. Zhao, A. Montagne, A. R. Nelson, and B. V. Zlokovic, “Blood-Brain Barrier: From Physiology to Disease and Back,” Physiological Reviews 99, no. 1 (2019): 21-78.

[22]

W. J. Geldenhuys, A. S. Mohammad, C. E. Adkins, and P. R. Lockman, “Molecular Determinants of Blood-brain Barrier Permeation,” Therapeutic Delivery 6, no. 8 (2015): 961-971.

[23]

M. M. Miyake and B. S. Bleier, “The Blood-brain Barrier and Nasal Drug Delivery to the central Nervous System,” American Journal of Rhinology & Allergy 29, no. 2 (2015): 124-127.

[24]

S. Ding, A. I. Khan, X. Cai, et al., “Overcoming Blood-brain Barrier Transport: Advances in Nanoparticle-based Drug Delivery Strategies,” Materials Today 37 (2020): 112-125.

[25]

M. Agrawal, Ajazuddin, D. K. Tripathi, et al., “Recent Advancements in Liposomes Targeting Strategies to Cross Blood-brain Barrier (BBB) for the Treatment of Alzheimer's Disease,” Journal of Controlled Release 260 (2017): 61-77.

[26]

C. V. Pardeshi and V. S. Belgamwar, “Direct Nose to Brain Drug Delivery via Integrated Nerve Pathways Bypassing the Blood-brain Barrier: An Excellent Platform for Brain Targeting,” Expert Opinion on Drug Delivery 10, no. 7 (2013): 957-972.

[27]

F. Gosselet, R. A. Loiola, A. Roig, A. Rosell, and M. Culot, “Central Nervous System Delivery of Molecules Across the Blood-brain Barrier,” Neurochemistry International 144 (2021): 104952.

[28]

M. Segarra, M. R. Aburto, and A. Acker-Palmer, “Blood-Brain Barrier Dynamics to Maintain Brain Homeostasis,” Trends in Neurosciences 44, no. 5 (2021): 393-405.

[29]

I. Mäger, A. H. Meyer, J. Li, et al., “Targeting Blood-brain-barrier Transcytosis - perspectives for Drug Delivery,” Neuropharmacology 120 (2017): 4-7.

[30]

X. Zeng, G. He, X. Yang, et al., “Zebularine Protects Against Blood-brain-barrier (BBB) Disruption Through Increasing the Expression of Zona Occludens-1 (ZO-1) and Vascular Endothelial (VE)-cadherin,” Bioengineering 13, no. 2 (2022): 4441-4454.

[31]

E. Candelario-Jalil and R. M. Dijkhuizen, “Neuroinflammation, Stroke, Blood-Brain Barrier Dysfunction, and Imaging Modalities,” Stroke; A Journal of Cerebral Circulation 53, no. 5 (2022): 1473-1486.

[32]

N. I. Mansor, N. Nordin, F. Mohamed, K. H. Ling, R. Rosli, and Z. Hassan, “Crossing the Blood-brain Barrier: A Review on Drug Delivery Strategies for Treatment of the central Nervous System Diseases,” Current Drug Delivery 16, no. 8 (2019): 698-711.

[33]

K. Mishra, R. Rana, S. Tripathi, et al., “Recent Advancements in Nanocarrier-assisted Brain Delivery of Phytochemicals Against Neurological Diseases,” Neurochemical Research 48, no. 10 (2023): 2936-2968.

[34]

T.-T. Zhang, W. Li, G. Meng, P. Wang, and W. Liao, “Strategies for Transporting Nanoparticles Across the Blood-brain Barrier,” Biomaterials Science 4, no. 2 (2016): 219-229.

[35]

R. Villaseñor, J. Lampe, M. Schwaninger, and L. Collin, “Intracellular Transport and Regulation of Transcytosis Across the Blood-brain Barrier,” Cellular and Molecular Life Sciences 76, no. 6 (2018): 1081-1092.

[36]

H. Sunakawa, K. Mizoi, R. Takahashi, S. Takahashi, and T. Ogihara, “Impact of P-Glycoprotein-mediated Drug-endogenous Substrate Interactions on Androgen and Blood-brain Barrier Permeability,” Journal of Pharmaceutical Sciences 113, no. 1 (2024): 228-234.

[37]

W. M. Pardridge, “Blood-brain Barrier Endogenous Transporters as Therapeutic Targets: A New Model for Small Molecule CNS Drug Discovery,” Expert Opinion on Therapeutic Targets 19, no. 8 (2015): 1059-1072.

[38]

S. Ayloo and C. Gu, “Transcytosis at the Blood-brain Barrier,” Current Opinion in Neurobiology 57 (2019): 32-38.

[39]

A. G. Sorets, J. C. Rosch, C. L. Duvall, and E. S. Lippmann, “Caveolae-mediated Transport at the Injured Blood-brain Barrier as an Underexplored Pathway for central Nervous System Drug Delivery,” Current Opinion in Chemical Engineering 30 (2020): 86-95.

[40]

W.-Y. Liu, Z.-B. Wang, Y. Wang, et al., “Increasing the Permeability of the Blood-brain Barrier in Three Different Models in Vivo,” CNS Neuroscience & Therapeutics 21, no. 7 (2015): 568-574.

[41]

M. D. Sweeney, A. P. Sagare, and B. V. Zlokovic, “Blood-brain Barrier Breakdown in Alzheimer Disease and Other Neurodegenerative Disorders,” Nature Reviews Neurology 14, no. 3 (2018): 133-150.

[42]

K. Shiraishi, Z. Wang, D. Kokuryo, I. Aoki, and M. Yokoyama, “A Polymeric Micelle Magnetic Resonance Imaging (MRI) Contrast Agent Reveals Blood-brain Barrier (BBB) Permeability for Macromolecules in Cerebral Ischemia-reperfusion Injury,” Journal of Controlled Release 253 (2017): 165-171.

[43]

A. Rani, S. Ergün, S. Karnati, and H. C. Jha, “Understanding the Link Between Neurotropic Viruses, BBB Permeability, and MS Pathogenesis,” Journal of NeuroVirology 30, no. 1 (2024): 22-38.

[44]

E. A. Winkler, Y. Nishida, A. P. Sagare, et al., “GLUT1 reductions Exacerbate Alzheimer's Disease Vasculo-neuronal Dysfunction and Degeneration,” Nature Neuroscience 18, no. 4 (2015): 521-530.

[45]

H. J. Lee, J. S. Ryu, and P. J. S. Vig, “Current Strategies for Therapeutic Drug Delivery after Traumatic CNS Injury,” Therapeutic Delivery 10, no. 4 (2019): 251-263.

[46]

A. Cash and M. H. Theus, “Mechanisms of Blood-Brain Barrier Dysfunction in Traumatic Brain Injury,” International Journal of Molecular Sciences 21, no. 9 (2020): 3344.

[47]

B. J. Umlauf and E. V. Shusta, “Exploiting BBB Disruption for the Delivery of Nanocarriers to the Diseased CNS,” Current Opinion in Biotechnology 60 (2019): 146-152.

[48]

Y. Long, Q. Yang, Y. Xiang, et al., “Nose to Brain Drug Delivery—A Promising Strategy for Active Components From Herbal Medicine for Treating Cerebral Ischemia Reperfusion,” Pharmacological Research 159 (2020): 104795.

[49]

Q. Huang, X. Chen, S. Yu, G. Gong, and H. Shu, “Research Progress in Brain-targeted Nasal Drug Delivery,” Frontiers in Aging Neuroscience 15 (2024): 1341295.

[50]

Z. Jin, Y. Han, D. Zhang, et al., “Application of Intranasal Administration in the Delivery of Antidepressant Active Ingredients,” pharmacy 14, no. 10 (2022): 2070.

[51]

A. Rajput, P. Pingale, and V. Dhapte-Pawar, “Nasal Delivery of Neurotherapeutics via Nanocarriers: Facets, Aspects, and Prospects,” Frontiers in Pharmacology 13 (2022): 979682.

[52]

X.-C. Yu, J.-J. Yang, B.-H. Jin, et al., “A Strategy for Bypassing the Blood-brain Barrier: Facial Intradermal Brain-targeted Delivery via the Trigeminal Nerve,” Journal of Controlled Release 258 (2017): 22-33.

[53]

L. H. Schulte, C. Sprenger, and A. May, “Physiological Brainstem Mechanisms of Trigeminal Nociception: An fMRI Study at 3T,” Neuroimage 124 (2016): 518-525.

[54]

T. Akita, Y. Oda, R. Kimura, et al., “Involvement of Trigeminal Axons in Nose-to-brain Delivery of Glucagon-Like Peptide-2 Derivative,” Journal of Controlled Release 351 (2022): 573-580.

[55]

X. Yang, J. Tan, and J. Guan, “Lipid-based Nanoparticles via Nose-to-brain Delivery: A Mini Review,” Frontiers in Cell and Developmental Biology 11 (2023): 1214450.

[56]

B. Chatterjee, B. Gorain, K. Mohananaidu, P. Sengupta, U. K. Mandal, and H. Choudhury, “Targeted Drug Delivery to the Brain via Intranasal Nanoemulsion: Available Proof of Concept and Existing Challenges,” International Journal of Pharmaceutics 565 (2019): 258-268.

[57]

M. Agrawal, S. Saraf, S. Saraf, et al., “Nose-to-brain Drug Delivery: An Update on Clinical Challenges and Progress towards Approval of Anti-Alzheimer Drugs,” Journal of Controlled Release 281 (2018): 139-177.

[58]

F. Maigler, S. Ladel, J. Flamm, et al., “Selective CNS Targeting and Distribution With a Refined Region-specific Intranasal Delivery Technique via the Olfactory Mucosa,” Pharmacy 13, no. 11 (2021): 1904.

[59]

H. Jain, B. Prabhakar, and P. Shende, “Modulation of Olfactory Area for Effective Transportation of Actives in CNS Disorders,” Journal of Drug Delivery Science and Technology 68 (2022): 103091.

[60]

W. Su, T. Wei, J. Jing, Z. Meng, and X. Chen, “Effect of N-acetyl-L-cysteine on Bioavailability and Brain Distribution of Curcumin by Nasal Delivery,” China Journal of Chinese Materia Medica 44, no. 13 (2019): 2841-2848.

[61]

S. Han, J. T.-W. Wang, E. Yavuz, et al., “Spatiotemporal Tracking of Gold Nanorods After Intranasal Administration for Brain Targeting,” Journal of Controlled Release 357 (2023): 606-619.

[62]

S.-H. Jeong, J.-H. Jang, and Y.-B. Lee, “Drug Delivery to the Brain via the Nasal Route of Administration: Exploration of Key Targets and Major Consideration Factors,” Journal of Pharmaceutical Investigation 53, no. 1 (2022): 119-152.

[63]

T. P. Crowe, M. H. W. Greenlee, A. G. Kanthasamy, and W. H. Hsu, “Mechanism of Intranasal Drug Delivery Directly to the Brain,” Life Sciences 195 (2018): 44-52.

[64]

C. Crespo, T. Liberia, J. M. Blasco-Ibáñez, J. Nácher, and E. Varea, “Cranial Pair I: The Olfactory Nerve,” The Anatomical Record 302, no. 3 (2019): 405-427.

[65]

Z. Abolhasanzadeh, H. Ashrafi, P. Badr, and A. Azadi, “Traditional Neurotherapeutics Approach Intended for Direct Nose to Brain Delivery,” Journal of Ethnopharmacology 209 (2017): 116-123.

[66]

J. Xu, J. Tao, and J. Wang, “Design and Application in Delivery System of Intranasal Antidepressants,” Frontiers in Bioengineering and Biotechnology 8 (2020): 626882.

[67]

K. Kanchan and S. Rahul, “Drug Delivery and Targeting to the Brain through Nasal Route: Mechanisms, Applications and Challenges,” Current Drug Delivery 16, no. 10 (2019): 887-901.

[68]

P. D. Ward, T. K. Tippin, and D. R. Thakker, “Enhancing Paracellular Permeability by Modulating Epithelial Tight Junctions,” Pharmaceutical Science & Technology Today 3, no. 10 (2000): 346-358.

[69]

R. A. Yokel, “Direct Nose to the Brain Nanomedicine Delivery Presents a Formidable Challenge,” WIREs Nanomedicine and Nanobiotechnology 14, no. 2 (2022): e1767.

[70]

J. A. Falcone, T. S. Salameh, X. Yi, et al., “Intranasal Administration as a Route for Drug Delivery to the Brain: Evidence for a Unique Pathway for Albumin,” The Journal of Pharmacology and Experimental Therapeutics 351, no. 1 (2014): 54-60.

[71]

V. P. Chavda, G. Jogi, N. Shah, et al., “Advanced Particulate Carrier-mediated Technologies for Nasal Drug Delivery,” Journal of Drug Delivery Science and Technology 74 (2022): 103569.

[72]

S. Jadhav, S. Sahoo, and S. K. Mishra, A Review: Nose to Brain Drug Delivery for Various CNS Disorders. (Springer International Publishing, 2020): 375-385.

[73]

X. Dong, “Current Strategies for Brain Drug Delivery,” Theranostics 8, no. 6 (2018): 1481-1493.

[74]

J.-H. Wang, D. J. Gessler, W. Zhan, T. L. Gallagher, and G. Gao, “Adeno-associated Virus as a Delivery Vector for Gene Therapy of human Diseases,” Signal Transduction and Targeted Therapy 9, no. 1 (2024): 78.

[75]

T. Hollon, “Researchers and Regulators Reflect on First Gene Therapy Death,” American Journal of Ophthalmology 129, no. 5 (2000): 701.

[76]

D. Ha, N. Yang, and V. Nadithe, “Exosomes as Therapeutic Drug Carriers and Delivery Vehicles Across Biological Membranes: Current Perspectives and Future Challenges,” Acta Pharmaceutica Sinica B 6, no. 4 (2016): 287-296.

[77]

M. Kim, Y. Lee, and M. Lee, “Hypoxia-specific Anti-RAGE Exosomes for Nose-to-brain Delivery of Anti-miR-181a Oligonucleotide in an Ischemic Stroke Model,” Nanoscale 13, no. 33 (2021): 14166-14178.

[78]

E. Marcello and V. Chiono, “Biomaterials-Enhanced Intranasal Delivery of Drugs as a Direct Route for Brain Targeting,” International Journal of Molecular Sciences 24, no. 4 (2023): 3390.

[79]

E. Taha, A. Shetta, S. A. Nour, M. J. Naguib, and W. Mamdouh, “Versatile Nanoparticulate Systems as a Prosperous Platform for Targeted Nose-Brain Drug Delivery,” Molecular Pharmaceutics 21, no. 3 (2024): 999-1014.

[80]

H. Omidian, E. J. Gill, S. Dey Chowdhury, and L. X. Cubeddu, “Chitosan Nanoparticles for Intranasal Drug Delivery,” Pharmaceutics 16, no. 6 (2024): 746.

[81]

R. Maher, A. Moreno-Borrallo, D. Jindal, B. T. Mai, E. Ruiz-Hernandez, and A. Harkin, “Intranasal Polymeric and Lipid-Based Nanocarriers for CNS Drug Delivery,” Pharmaceutics 15, no. 3 (2023): 746.

[82]

M. Agrawal, S. Saraf, S. Saraf, et al., “Stimuli-responsive in Situ Gelling System for Nose-to-brain Drug Delivery,” Journal of Controlled Release 327 (2020): 235-265.

[83]

X. Shen, Z. Cui, Y. Wei, et al., “Exploring the Potential to Enhance Drug Distribution in the Brain Subregion via Intranasal Delivery of Nanoemulsion in Combination With borneol as a Guider,” Asian Journal of Pharmaceutical Sciences 18, no. 6 (2023): 100778.

[84]

N. Ahmad, R. Ahmad, A. A. Naqvi, et al., “Intranasal Delivery of Quercetin-loaded Mucoadhesive Nanoemulsion for Treatment of Cerebral Ischaemia,” Artificial Cells, Nanomedicine, and Biotechnology 46, no. 4 (2017): 717-729.

[85]

V. Deshmukh, N. S. Pathan, N. Haldar, et al., “Exploring Intranasal Drug Delivery via Nanocarriers: A Promising Glioblastoma Therapy,” Colloids and Surfaces B: Biointerfaces 245 (2025): 114285.

[86]

N. Maisto and D. Mango, “Nose to Brain Strategy Coupled to Nano Vesicular System for Natural Products Delivery: Focus on Synaptic Plasticity in Alzheimer's Disease,” Journal of Pharmaceutical Analysis 14, no. 12 (2024): 101057.

[87]

N. A. Emad, B. Ahmed, A. Alhalmi, N. Alzobaidi, and S. S. Al-Kubati, “Recent Progress in Nanocarriers for Direct Nose to Brain Drug Delivery,” Journal of Drug Delivery Science and Technology 64 (2021): 102642.

[88]

H. Gao, “Progress and Perspectives on Targeting Nanoparticles for Brain Drug,” Acta Pharmacologica Sinica 6, no. 4 (2016): 268-286.

[89]

F. Rinaldi, A. Oliva, M. Sabatino, et al., “Antimicrobial Essential Oil Formulation: Chitosan Coated Nanoemulsions for Nose to Brain Delivery,” Pharmaceutics 12, no. 7 (2020): 678.

[90]

C. P. Costa, J. N. Moreira, J. M. Sousa Lobo, and A. C. Silva, “Intranasal Delivery of Nanostructured Lipid Carriers, Solid Lipid Nanoparticles and Nanoemulsions: A Current Overview of in Vivo Studies,” Acta Pharmaceutica Sinica B 11, no. 4 (2021): 925-940.

[91]

M. Pandey, N. Jain, J. Kanoujia, Z. Hussain, and B. Gorain, “Advances and Challenges in Intranasal Delivery of Antipsychotic Agents Targeting the Central Nervous System,” Frontiers in Pharmacology 13 (2022): 865590.

[92]

Q.-R. Hu, H. Hong, Z.-H. Zhang, et al., “Methods on Improvements of the Poor Oral Bioavailability of Ginsenosides: Pre-processing, Structural Modification, Drug Combination, and Micro- or Nano- delivery System,” Journal of Ginseng Research 47, no. 6 (2023): 694-705.

[93]

D. E. ElMosbah, M. S. Khattab, M. A. Ibrahim, M. I. El-Asssal, and H. Miniawy, “Preclinical Efficacy of Oral and Nasal Rivastigmine-loaded Chitosan Nano-particles on AlCl3-induced Alzheimer's-Like Disease in Rats,” Inflammopharmacology 32, no. 6 (2024): 3943-3952.

[94]

A. Anand, M. Arya, G. Kaithwas, G. Singh, and S. A. Saraf, “Sucrose Stearate as a Biosurfactant for Development of Rivastigmine Containing Nanostructured Lipid Carriers and Assessment of Its Activity Against Dementia in C. elegans Model,” Journal of Drug Delivery Science and Technology 49 (2019): 219-226.

[95]

Z.-Z. Yang, Y.-Q. Zhang, Z.-Z. Wang, K. Wu, J.-N. Lou, and X.-R. Qi, “Enhanced Brain Distribution and Pharmacodynamics of rivastigmine by Liposomes Following Intranasal Administration,” International Journal of Pharmaceutics 452, no. 1 (2013): 344-354.

[96]

Y. Gao, W. H. Almalki, O. Afzal, et al., “Systematic Development of Lectin Conjugated Microspheres for Nose-to-brain Delivery of rivastigmine for the Treatment of Alzheimer's Disease,” Biomedicine & Pharmacotherapy 141 (2021): 111829.

[97]

S. K. L. Rompicherla, K. Arumugam, S. L. Bojja, N. Kumar, and C. M. Rao, “Pharmacokinetic and Pharmacodynamic Evaluation of Nasal Liposome and Nanoparticle Based Rivastigmine Formulations in Acute and Chronic Models of Alzheimer's Disease,” Naunyn-Schmiedeberg's Archives of Pharmacology 394, no. 8 (2021): 1737-1755.

[98]

S. O. El-Ganainy, M. A. Gowayed, M. Agami, et al., “Galantamine Nanoparticles Outperform Oral Galantamine in an Alzheimer'S Rat Model: Pharmacokinetics and Pharmacodynamics,” Nanomedicine 16, no. 15 (2021): 1281-1296.

[99]

M. Agami, R. A. Shaalan, S. F. Belal, and M. A. A. Ragab, “LC-MS Bioanalysis of Targeted Nasal Galantamine Bound Chitosan Nanoparticles in Rats' brain Homogenate and Plasma,” Analytical and Bioanalytical Chemistry 413, no. 20 (2021): 5181-5191.

[100]

M. Elhabak, A. A. A. Salama, and A. H. Salama, “Nose-to-brain Delivery of Galantamine Loaded Nanospray Dried Polyacrylic Acid/Taurodeoxycholate Mixed Matrix as a Protective Therapy in Lipopolysaccharide-induced Alzheimer's in Mice Model,” International Journal of Pharmaceutics 632 (2023): 122588.

[101]

A. Kaur, K. Nigam, I. Bhatnagar, et al., “Treatment of Alzheimer's Diseases Using Donepezil Nanoemulsion: An Intranasal Approach,” Drug Delivery and Translational Research 10, no. 6 (2020): 1862-1875.

[102]

T. Avinash, S. Ram, K. Gajanan, S. Samiksha, and G. Anil, “Nanostructured Lipid Carriers of Donepezil Hydrochloride for the Treatment of Alzheimer's Disease,” Current Alzheimer Research 21 (2024): 1-12.

[103]

A. Kaur, K. Nigam, S. Srivastava, A. Tyagi, and S. Dang, “Memantine Nanoemulsion: A New Approach to Treat Alzheimer's Disease,” Journal of Microencapsulation 37, no. 5 (2020): 355-365.

[104]

M. K. Shehata, A. A. Ismail, and M. A. Kamel, “Combined Donepezil With Astaxanthin via Nanostructured Lipid Carriers Effective Delivery to Brain for Alzheimer's Disease in Rat Model,” International Journal of Nanomedicine 18 (2023): 4193-4227.

[105]

H. Yang, W. Mu, D. Wei, et al., “A Novel Targeted and High-Efficiency Nanosystem for Combinational Therapy for Alzheimer's Disease,” Advanced Science 7, no. 19 (2020): 1902906.

[106]

T. Jamshidnejad-Tosaramandani, S. Kashanian, I. Karimi, and H. B. Schiöth, “Synthesis of a Rivastigmine and Insulin Combinational Mucoadhesive Nanoparticle for Intranasal Delivery,” Polymers 16, no. 4 (2024): 510.

[107]

C. Braschi, S. Capsoni, R. Narducci, et al., “Intranasal Delivery of BDNF Rescues Memory Deficits in AD11 Mice and Reduces Brain Microgliosis,” Aging Clinical and Experimental Research 33, no. 5 (2021): 1223-1238.

[108]

G. D. Vitaliano, J. K. Kim, M. J. Kaufman, et al., “Clathrin-nanoparticles Deliver BDNF to Hippocampus and Enhance Neurogenesis, Synaptogenesis and Cognition in HIV/neuroAIDS Mouse Model,” Communications Biology 5, no. 1 (2022): 236.

[109]

S. O. El-Ganainy, O. A. Soliman, A. A. Ghazy, et al., “Intranasal Oxytocin Attenuates Cognitive Impairment, β-Amyloid Burden and Tau Deposition in Female Rats With Alzheimer's Disease: Interplay of ERK1/2/GSK3β/Caspase-3,” Neurochemical Research 47, no. 8 (2022): 2345-2356.

[110]

D. Pankaj, T. Rakesh Kumar, and J. Narendra Kumar, “Nanoparticulate Carrier Mediated Intranasal Delivery of Insulin for the Restoration of Memory Signaling in Alzheimer's Disease,” Current Nanoscience 9, no. 1 (2013): 46-55.

[111]

H. L. Weiner, C. A. Lemere, R. Maron, et al., “Nasal Administration of Amyloid-β Peptide Decreases Cerebral Amyloid Burden in a Mouse Model of Alzheimer's Disease,” Annals of Neurology 48, no. 4 (2000): 567-579.

[112]

J. Li, H. Peng, W. Zhang, et al., “Enhanced Nose-to-Brain Delivery of Combined Small Interfering RNAs Using Lesion-Recognizing Nanoparticles for the Synergistic Therapy of Alzheimer's Disease,” ACS Applied Materials & Interfaces 15, no. 46 (2023): 53177-53188.

[113]

G. Rassu, E. Soddu, A. M. Posadino, et al., “Nose-to-brain Delivery of BACE1 siRNA Loaded in Solid Lipid Nanoparticles for Alzheimer's Therapy,” Colloids and Surfaces B: Biointerfaces 152 (2017): 296-301.

[114]

D. Peng, T. Liu, H. Lu, et al., “Intranasal Delivery of Engineered Extracellular Vesicles Loaded With miR-206-3p Antagomir Ameliorates Alzheimer's Disease Phenotypes,” Theranostics 14, no. 19 (2024): 7623-7644.

[115]

L. Otaegui, T. Urgin, T. Zaiter, et al., “Nose-to-brain Delivery of DHA-loaded Nanoemulsions: A Promising Approach Against Alzheimer's Disease,” International Journal of Pharmaceutics 670 (2025): 125125.

[116]

R. De Rosa, A. A. Garcia, C. Braschi, et al., “Intranasal Administration of Nerve Growth Factor (NGF) Rescues Recognition Memory Deficits in AD11 Anti-NGF Transgenic Mice,” Proceedings of the National Academy of Sciences 102, no. 10 (2005): 3811-3816.

[117]

G. Lou, Q. Zhang, F. Xiao, Q. Xiang, Z. Su, and Y. Huang, “Intranasal TAT-haFGF Improves Cognition and Amyloid-β Pathology in an AβPP/PS1 Mouse Model of Alzheimer's Disease,” Journal of Alzheimer's Disease 51 (2016): 985-990.

[118]

X. Yang, W. Yang, X. Xia, et al., “Intranasal Delivery of BACE1 siRNA and Rapamycin by Dual Targets Modified Nanoparticles for Alzheimer's Disease Therapy,” Small 18, no. 30 (2022): 2203182.

[119]

R. Islamie, S. L. L. Myint, T. Rojanaratha, et al., “Neuroprotective Effect of Nose-to-brain Delivery of Asiatic Acid in Solid Lipid Nanoparticles and Its Mechanisms Against Memory Dysfunction Induced by Amyloid Beta1-42 in Mice,” BMC Complementary Medicine and Therapies 23, no. 1 (2023): 294.

[120]

Y. S. R. Elnaggar, S. M. Etman, D. A. Abdelmonsif, and O. Y. Abdallah, “Intranasal Piperine-loaded Chitosan Nanoparticles as Brain-targeted Therapy in Alzheimer's Disease: Optimization, Biological Efficacy, and Potential Toxicity,” Journal of Pharmaceutical Sciences 104, no. 10 (2015): 3544-3556.

[121]

S. R. Gad, R. I. El-Gogary, M. Y. George, and R. M. Hathout, “Nose-to-brain Delivery of 18β-Glycyrrhetinic Acid Using Optimized Lipid Nanocapsules: A Novel Alternative Treatment for Alzheimer's Disease,” International Journal of Pharmaceutics 645 (2023): 123387.

[122]

F. Wu, M. Huang, X. Zuo, et al., “Osthole/Borneol Thermosensitive Gel via Intranasal Administration Enhances Intracerebral Bioavailability to Improve Cognitive Impairment in APP/PS1 Transgenic Mice,” Frontiers in Pharmacology 14 (2023): 1224856.

[123]

X. Hou, L. Xu, X. Liu, and H.-T. Zhang, “Effects of Osthole Microemulsion by Nasal Administration on the Cholinergic Pathway in Mice Treated With Scopolamine,” The FASEB Journal 34, no. S1 (2020): 1-1.

[124]

H. Abbas, H. Refai, N. El Sayed, L. A. Rashed, M. R. Mousa, and M. Zewail, “Superparamagnetic Iron Oxide Loaded Chitosan Coated Bilosomes for Magnetic Nose to Brain Targeting of Resveratrol,” International Journal of Pharmaceutics 610 (2021): 121244.

[125]

Y. Jiang, Y. Jiang, Z. Ding, and Q. Yu, “Investigation of the “Nose-to-brain” Pathways in Intranasal HupA Nanoemulsions and Evaluation of Their in Vivo Pharmacokinetics and Brain-targeting Ability,” International Journal of Nanomedicine 17 (2022): 3443-3456.

[126]

Q. Meng, A. Wang, H. Hua, et al., “Intranasal Delivery of Huperzine A to the Brain Using Lactoferrin-conjugated N-trimethylated Chitosan Surface-modified PLGA Nanoparticles for Treatment of Alzheimer's Disease,” International Journal of Nanomedicine 13 (2018): 705-718.

[127]

Y. Chen, G. Cheng, R. Hu, et al., “A Nasal Temperature and pH Dual-Responsive in Situ Gel Delivery System Based on Microemulsion of Huperzine A: Formulation, Evaluation, and in Vivo Pharmacokinetic Study,” AAPS PharmSciTech 20, no. 7 (2019): 301.

[128]

S. Ruan, J. Li, H. Ruan, et al., “Microneedle-mediated Nose-to-brain Drug Delivery for Improved Alzheimer's Disease Treatment,” Journal of Controlled Release 366 (2024): 712-731.

[129]

G. Mishra, R. Awasthi, A. K. Singh, et al., “Intranasally Co-administered Berberine and Curcumin Loaded in Transfersomal Vesicles Improved Inhibition of Amyloid Formation and BACE-1,” ACS Omega 7, no. 47 (2022): 43290-43305.

[130]

W. Chen, R. Li, S. Zhu, et al., “Nasal Timosaponin BII Dually Sensitive in Situ Hydrogels for the Prevention of Alzheimer's Disease Induced by Lipopolysaccharides,” International Journal of Pharmaceutics 578 (2020): 119115.

[131]

H. Abbas, N. S. E. Sayed, N. Youssef, et al., “Novel Luteolin-Loaded Chitosan Decorated Nanoparticles for Brain-Targeting Delivery in a Sporadic Alzheimer's Disease Mouse Model: Focus on Antioxidant, Anti-Inflammatory, and Amyloidogenic Pathways,” Pharmaceutics 14, no. 5 (2022): 1003.

[132]

R. Li, F. Lu, X. Sun, et al., “Development and in Vivo Evaluation of Hydroxy-alpha-Sanshool Intranasal Liposomes as a Potential Remedial Treatment for Alzheimer's Disease,” International Journal of Nanomedicine 17 (2022): 185-201.

[133]

S. Saini, T. Sharma, A. Jain, H. Kaur, O. P. Katare, and B. Singh, “Systematically Designed Chitosan-coated Solid Lipid Nanoparticles of Ferulic Acid for Effective Management of Alzheimer's Disease: A Preclinical Evidence,” Colloids and Surfaces B: Biointerfaces 205 (2021): 111838.

[134]

S. Arisoy, O. Sayiner, T. Comoglu, D. Onal, O. Atalay, and B. Pehlivanoglu, “In Vitro and in Vivo Evaluation of Levodopa-loaded Nanoparticles for Nose to Brain Delivery,” Pharmaceutical Development and Technology 25, no. 6 (2020): 735-747.

[135]

X. Xia, Z. Zhong, C. Wei, et al., “Lyotropic Liquid Crystalline Based Nasal Spray for Improved Parkinson's Treatment: Enhanced Superior Nasal Tract Deposition and Antioxidation Strategy,” Advanced Functional Materials 35, no. 1 (2024): 2411426.

[136]

O. Jafarieh, S. Md, M. Ali, et al., “Design, Characterization, and Evaluation of Intranasal Delivery of Ropinirole-loaded Mucoadhesive Nanoparticles for Brain Targeting,” Drug Development and Industrial Pharmacy 41, no. 10 (2015): 1674-1681.

[137]

S. Khan, K. Patil, N. Bobade, P. Yeole, and R. Gaikwad, “Formulation of Intranasal Mucoadhesive Temperature-mediated in Situ Gel Containing Ropinirole and Evaluation of Brain Targeting Efficiency in Rats,” Journal of Drug Targeting 18, no. 3 (2010): 223-234.

[138]

V. Sridhar, A. Tiwari, S. Wairkar, G. L. Gupta, and R. Gaud, “Pramipexole Thermosensitive Nasal Gel for Experimental Parkinsonism in Rats,” Journal of Drug Delivery Science and Technology 59 (2020): 101954.

[139]

R. Raj, S. Wairkar, V. Sridhar, and R. Gaud, “Pramipexole Dihydrochloride Loaded Chitosan Nanoparticles for Nose to Brain Delivery: Development, Characterization and in Vivo Anti-Parkinson Activity,” International Journal of Biological Macromolecules 109 (2018): 27-35.

[140]

V. G. Sita, D. Jadhav, and P. Vavia, “Niosomes for Nose-to-brain Delivery of Bromocriptine: Formulation Development, Efficacy Evaluation and Toxicity Profiling,” Journal of Drug Delivery Science and Technology 58 (2020): 101791.

[141]

S. Md, R. A. Khan, G. Mustafa, et al., “Bromocriptine Loaded Chitosan Nanoparticles Intended for Direct Nose to Brain Delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy Study in Mice Model,” European Journal of Pharmaceutical Sciences 48, no. 3 (2013): 393-405.

[142]

S. Raman, A. A. Khan, and S. Mahmood, “Nose to Brain Delivery of Selegiline Loaded PLGA/Lipid Nanoparticles: Synthesis, Characterisation and Brain Pharmacokinetics Evaluation,” Journal of Drug Delivery Science and Technology 77 (2022): 103923.

[143]

S. K. Bhattamisra, A. T. Shak, L. W. Xi, et al., “Nose to Brain Delivery of Rotigotine Loaded Chitosan Nanoparticles in human SH-SY5Y Neuroblastoma Cells and Animal Model of Parkinson's Disease,” International Journal of Pharmaceutics 579 (2020): 119148.

[144]

J. B. Prajapati and G. C. Patel, “Nose to Brain Delivery of Rotigotine Loaded Solid Lipid Nanoparticles: Quality by Design Based Optimization and Characterization,” Journal of Drug Delivery Science and Technology 63 (2021): 102377.

[145]

N. Ahmad, “Rasagiline-encapsulated Chitosan-coated PLGA Nanoparticles Targeted to the Brain in the Treatment of parkinson's Disease,” Journal of Liquid Chromatography & Related Technologies 40, no. 13 (2017): 677-690.

[146]

S. Tang, A. Wang, X. Yan, et al., “Brain-targeted Intranasal Delivery of Dopamine With Borneol and Lactoferrin co-modified Nanoparticles for Treating Parkinson's Disease,” Drug Delivery 26, no. 1 (2019): 700-707.

[147]

P.-H. Yang, J.-X. Zhu, Y.-D. Huang, et al., “Human Basic Fibroblast Growth Factor Inhibits Tau Phosphorylation via the PI3K/Akt-GSK3β Signaling Pathway in a 6-Hydroxydopamine-Induced Model of Parkinson's Disease,” Neurodegenerative Diseases 16, no. 5-6 (2016): 357-369.

[148]

J.-C. Chang, Y.-C. Chao, H.-S. Chang, et al., “Intranasal Delivery of Mitochondria for Treatment of Parkinson's Disease Model Rats Lesioned With 6-hydroxydopamine,” Scientific Reports 11, no. 1 (2021): 10597.

[149]

W. Huang, T. Zhang, X. Li, et al., “Intranasal Administration of Umbilical Cord Mesenchymal Stem Cell Exosomes Alleviates Parkinson's Disease,” Neuroscience 549 (2024): 1-12.

[150]

S. Bagheri-Mohammadi, B. Alani, M. Karimian, R. Moradian-Tehrani, and M. Noureddini, “RETRACTED ARTICLE: Intranasal Administration of Endometrial Mesenchymal Stem Cells as a Suitable Approach for Parkinson's Disease Therapy,” Molecular Biology Reports 46, no. 4 (2019): 4293-4302.

[151]

J. ERdO, E. Truzzi, L. Ferraro, et al., “Nasal Administration of Nanoencapsulated Geraniol/Ursodeoxycholic Acid Conjugate: Towards a New Approach for the Management of Parkinson's Disease,” Journal of Controlled Release 321 (2020): 540-552.

[152]

E. Truzzi, C. Rustichelli, E. R. de Oliveira Junior, et al., “Nasal Biocompatible Powder of Geraniol Oil Complexed With Cyclodextrins for Neurodegenerative Diseases: Physicochemical Characterization and in Vivo Evidences of Nose to Brain Delivery,” Journal of Controlled Release 335 (2021): 191-202.

[153]

B. Gaba, T. Khan, M. F. Haider, et al., “Vitamin E Loaded Naringenin Nanoemulsion via Intranasal Delivery for the Management of Oxidative Stress in a 6-OHDA Parkinson's Disease Model,” BioMed Research International 2019, no. 1 (2019): 2382563.

[154]

S. Md, N. A. Alhakamy, H. M. Aldawsari, and H. Z. Asfour, “Neuroprotective and Antioxidant Effect of Naringenin-loaded Nanoparticles for Nose-to-brain Delivery,” Brain Sciences 9, no. 10 (2019): 275.

[155]

H. Lin, L. Xie, L. Lv, et al., “Intranasally Administered Thermosensitive Gel for Brain-targeted Delivery of Rhynchophylline to Treat Parkinson's Disease,” Colloids and Surfaces B: Biointerfaces 222 (2023): 113065.

[156]

D. G. Gadhave and C. R. Kokare, “Nanostructured Lipid Carriers Engineered for Intranasal Delivery of Teriflunomide in Multiple Sclerosis: Optimization and in Vivo Studies,” Drug Development and Industrial Pharmacy 45, no. 5 (2019): 839-851.

[157]

D. Rassy, B. Bárcena, I. N. Pérez-Osorio, et al., “Intranasal Methylprednisolone Effectively Reduces Neuroinflammation in Mice with Experimental Autoimmune Encephalitis,” Journal of Neuropathology & Experimental Neurology 79, no. 2 (2019): 226-237.

[158]

N. Nieto González, G. Rassu, M. Cossu, et al., “A Thermosensitive Chitosan Hydrogel: An Attempt for the Nasal Delivery of Dimethyl Fumarate,” International Journal of Biological Macromolecules 278 (2024): 134908.

[159]

M. Ghasemi-Kasman, N. Nosratiyan, M. Hashemian, S.-R. Ahmadian, H. Parsian, and S. Rostami-Mansoor, “Intranasal Administration of fingolimod (FTY720) Attenuates Demyelination Area in Lysolecithin-induced Demyelination Model of Rat Optic Chiasm,” Multiple Sclerosis and Related Disorders 59 (2022): 103518.

[160]

P. Papakyriakopoulou, E. Balafas, N. Kostomitsopoulos, D. M. Rekkas, K. K. Dev, and G. Valsami, “Pharmacokinetic Study of Fingolimod Nasal Films Administered via Nose-to-Brain Route in C57BL/6 J Mice as Potential Treatment for Multiple Sclerosis,” Pharmaceutical Research 41, no. 10 (2024): 1951-1963.

[161]

L. R. Abdelalim, Y. S. R. Elnaggar, and O. Y. Abdallah, “Lactoferrin, Chitosan Double-coated Oleosomes Loaded With Clobetasol Propionate for Remyelination in Multiple Sclerosis: Physicochemical Characterization and in-vivo Assessment in a Cuprizone-induced Demyelination Model,” International Journal of Biological Macromolecules 277 (2024): 134144.

[162]

D. Zarini, P. Pasbakhsh, M. Shabani, et al., “Glial Response to Intranasal Mesenchymal Stem Cells in Intermittent Cuprizone Model of Demyelination,” Neurotoxicity Research 40, no. 5 (2022): 1415-1426.

[163]

F. Beigi Boroujeni, P. Pasbakhsh, K. Mortezaee, et al., “Intranasal Delivery of SDF-1α-preconditioned Bone Marrow Mesenchymal Cells Improves Remyelination in the Cuprizone-induced Mouse Model of multiple Sclerosis,” Cell Biology International 44, no. 2 (2020): 499-511.

[164]

M. Borhani-Haghighi and Y. Mohamadi, “Intranasal Administration of Conditioned Medium Derived From Mesenchymal Stem Cells-differentiated Oligodendrocytes Ameliorates Experimental Autoimmune Encephalomyelitis,” Journal of Chemical Neuroanatomy 106 (2020): 101792.

[165]

A. Fathollahi, S. M. Hashemi, M. Haji Molla Hoseini, S. Tavakoli, E. Farahani, and F. Yeganeh, “Intranasal Administration of Small Extracellular Vesicles Derived From Mesenchymal Stem Cells Ameliorated the Experimental Autoimmune Encephalomyelitis,” International Immunopharmacology 90 (2021): 107207.

[166]

R. S. Khan, K. Dine, B. Bauman, et al., “Intranasal Delivery of a Novel Amnion Cell Secretome Prevents Neuronal Damage and Preserves Function in a Mouse Multiple Sclerosis Model,” Scientific Reports 7, no. 1 (2017): 41768.

[167]

L. F. González, E. Acuña, G. Arellano, et al., “Intranasal Delivery of Interferon-β-loaded Nanoparticles Induces Control of Neuroinflammation in a Preclinical Model of Multiple Sclerosis: A Promising Simple, Effective, Non-invasive, and Low-cost Therapy,” Journal of Controlled Release 331 (2021): 443-459.

[168]

Y. Labrak, M. Alhouayek, A. Mwema, et al., “The Combined Administration of LNC-encapsulated Retinoic Acid and Calcitriol Stimulates Oligodendrocyte Progenitor Cell Differentiation in Vitro and in Vivo After Intranasal Administration,” International Journal of Pharmaceutics 659 (2024): 124237.

[169]

Y. Zhai, Q. Wang, Z. Zhu, et al., “High-efficiency Brain-targeted Intranasal Delivery of BDNF Mediated by Engineered Exosomes to Promote Remyelination,” Biomaterials Science 10, no. 19 (2022): 5707-5718.

[170]

E. Shamsher, R. S. Khan, B. M. Davis, et al., “Intranasal Resveratrol Nanoparticles Enhance Neuroprotection in a Model of Multiple Sclerosis,” International Journal of Molecular Sciences 25, no. 7 (2024): 4047.

[171]

X. Zheng, K. Sun, Y. Liu, et al., “Resveratrol-loaded Macrophage Exosomes Alleviate Multiple Sclerosis Through Targeting Microglia,” Journal of Controlled Release 353 (2023): 675-684.

[172]

X. Zhao, L. Sun, J. Wang, et al., “Nose to Brain Delivery of Astragaloside IV by β-Asarone Modified Chitosan Nanoparticles for Multiple Sclerosis Therapy,” International Journal of Pharmaceutics 644 (2023): 123351.

[173]

V. Sava, O. Fihurka, A. Khvorova, and J. Sanchez-Ramos, “Enriched Chitosan Nanoparticles Loaded With siRNA Are Effective in Lowering Huntington's disease Gene Expression Following Intranasal Administration,” Nanomedicine: Nanotechnology, Biology and Medicine 24 (2020): 102119.

[174]

R. Bhatt, D. Singh, A. Prakash, and N. Mishra, “Development, Characterization and Nasal Delivery of Rosmarinic Acid-loaded Solid Lipid Nanoparticles for the Effective Management of Huntington's Disease,” Drug Delivery 22, no. 7 (2015): 931-939.

[175]

T. Kurano, T. Kanazawa, S. Iioka, H. Kondo, Y. Kosuge, and T. Suzuki, “Intranasal Administration of N-acetyl-L-cysteine Combined With Cell-Penetrating Peptide-Modified Polymer Nanomicelles as a Potential Therapeutic Approach for Amyotrophic Lateral Sclerosis,” Pharmaceutics 14, no. 12 (2022): 2590.

[176]

J. Zhou, F. Li, B. Jia, et al., “Intranasal Delivery of Small Extracellular Vesicles Reduces the Progress of Amyotrophic Lateral Sclerosis and the Overactivation of Complement-coagulation Cascade and NF-ĸB Signaling in SOD1G93A Mice,” Journal of Nanobiotechnology 22, no. 1 (2024): 503.

[177]

J. A. Martinez, G. J. Francis, W. Q. Liu, et al., “Intranasal Delivery of Insulin and a Nitric Oxide Synthase Inhibitor in an Experimental Model of Amyotrophic Lateral sclerosis,” Neuroscience 157, no. 4 (2008): 908-925.

[178]

S.-J. Zhong, Y.-H. Gong, and Y.-C. Lin, “Combined Intranasal Nerve Growth Factor and Ventricle Neural Stem Cell Grafts Prolong Survival and Improve Disease Outcome in amyotrophic Lateral sclerosis Transgenic Mice,” Neuroscience Letters 656 (2017): 1-8.

[179]

F. Gouel, K. Timmerman, P. Gosset, et al., “Whole and Fractionated human Platelet Lysate Biomaterials-based Biotherapy Induces Strong Neuroprotection in Experimental Models of Amyotrophic Lateral Sclerosis,” Biomaterials 280 (2022): 121311.

[180]

R. M. Clark, C. M. Clark, K. E. A. Lewis, et al., “Intranasal Neuropeptide Y1 Receptor Antagonism Improves Motor Deficits in Symptomatic SOD1 ALS Mice,” Annals of Clinical and Translational Neurology 10, no. 11 (2023): 1985-1999.

[181]

X. Li, Y. Zhu, Y. Wang, X. Xia, and J. C. Zheng, “Neural Stem/Progenitor Cell-derived Extracellular Vesicles: A Novel Therapy for Neurological Diseases and Beyond,” MedComm 4, no. 1 (2023): e214.

[182]

A. K. K. Das, D. Sharma, and L. Sharma, “Drug Repurposing Strategy for Treating Alzheimer's Disease,” Alzheimer's & Dementia 17, no. S9 (2021): e058503.

[183]

A. S. Hanafy, R. M. Farid, M. W. Helmy, and S. S. ElGamal, “Pharmacological, Toxicological and Neuronal Localization Assessment of Galantamine/Chitosan Complex Nanoparticles in Rats: Future Potential Contribution in Alzheimer's Disease Management,” Drug Delivery 23, no. 8 (2016): 3111-3122.

[184]

L. C. Fonseca, J. A. Lopes, J. Vieira, et al., “Intranasal Drug Delivery for Treatment of Alzheimer's Disease,” Drug Delivery and Translational Research 11, no. 2 (2021): 411-425.

[185]

J. C. Michaelian, D. McCade, C. M. Hoyos, et al., “Pilot Randomised, Double-Blind, Placebo-Controlled Crossover Trial Evaluating the Feasibility of an Intranasal Oxytocin in Improving Social Cognition in Individuals Living With Alzheimer's Disease,” Alzheimer's & Dementia 18, no. S10 (2022): e064386.

[186]

Y. Aboel-Azm, M. El-Samahy, N. I. Hendi, et al., “Safety and Efficacy of Intranasal Insulin in Patients With Alzheimer's Disease: A Meta-analysis of Randomized Controlled Trials,” Journal of the Neurological Sciences 455 (2023): 222-235.

[187]

M. Hallschmid, “Intranasal Insulin for Alzheimer's Disease,” CNS Drugs 35, no. 1 (2021): 21-37.

[188]

C. D. Chapman, H. B. Schiöth, C. A. Grillo, and C. Benedict, “Intranasal Insulin in Alzheimer's Disease: Food for Thought,” Neuropharmacology 136 (2018): 196-201.

[189]

C. M. Muntu, C. Avanti, Hayun, and S. Surini, “Promising Brain Biodistribution of Insulin via Intranasal Dry Powder for Nose-to-brain Delivery,” Heliyon 10, no. 13 (2024): e33657.

[190]

S. Craft, R. Raman, T. W. Chow, et al., “Safety, Efficacy, and Feasibility of Intranasal Insulin for the Treatment of Mild Cognitive Impairment and Alzheimer Disease Dementia: A Randomized Clinical Trial,” JAMA Neurology 77, no. 9 (2020): 1099-1109.

[191]

D. Kellar, T. Register, S. N. Lockhart, et al., “Intranasal Insulin Modulates Cerebrospinal Fluid Markers of Neuroinflammation in Mild Cognitive Impairment and Alzheimer's Disease: A Randomized Trial,” Scientific Reports 12, no. 1 (2022): 1346.

[192]

J. A. Nicoll, D. Wilkinson, C. Holmes, P. Steart, H. Markham, and R. O. Weller, “Neuropathology of human Alzheimer Disease After Immunization With Amyloid-beta Peptide: A Case Report,” Nature Medicine 9, no. 4 (2003): 448-452.

[193]

V. Doshi, G. Joshi, S. Sharma, and D. Choudhary, “Gene Therapy: An Alternative to Treat Alzheimer's Disease,” Naunyn-Schmiedeberg's Archives of Pharmacology 397, no. 6 (2024): 3675-3693.

[194]

N. Ahmadi, M.-J. Hosseini, K. Rostamizadeh, and M. Anoush, “Investigation of Therapeutic Effect of Curcumin α and β Glucoside Anomers Against Alzheimer's Disease by the Nose to Brain Drug Delivery,” Brain Research 1766 (2021): 147517.

[195]

P. Kamla and A. Nida, “Nose to Brain Delivery of Nanoformulations for Neurotherapeutics in Parkinson's Disease: Defining the Preclinical, Clinical and Toxicity Issues,” Current Drug Delivery 13, no. 8 (2016): 1205-1221.

[196]

K. K. Dharmendra, P. Kumari, T. Shivraj, et al., “Nanotechnological Advances for Nose to Brain Delivery of Therapeutics to Improve the Parkinson Therapy,” Current Neuropharmacology 21, no. 3 (2023): 493-516.

[197]

A. E. E. Aly, B. T. Harmon, L. Padegimas, O. Sesenoglu-Laird, M. J. Cooper, and B. L. Waszczak, “Intranasal Delivery of pGDNF DNA Nanoparticles Provides Neuroprotection in the Rat 6-Hydroxydopamine Model of Parkinson's Disease,” Molecular Neurobiology 56, no. 1 (2019): 688-701.

[198]

Z. Wen, Z. Yan, K. Hu, et al., “Odorranalectin-conjugated Nanoparticles: Preparation, Brain Delivery and Pharmacodynamic Study on Parkinson's Disease Following Intranasal Administration,” Journal of Controlled Release 151, no. 2 (2011): 131-138.

[199]

H. Peng, Y. Li, W. Ji, et al., “Intranasal Administration of Self-Oriented Nanocarriers Based on Therapeutic Exosomes for Synergistic Treatment of Parkinson's Disease,” ACS Nano 16, no. 1 (2022): 869-884.

[200]

J. Liu, C. Liu, J. Zhang, et al., “A Self-Assembled α-Synuclein Nanoscavenger for Parkinson's Disease,” ACS Nano 14, no. 2 (2020): 1533-1549.

[201]

I. Consortium, N. A. Patsopoulos, S. E. Baranzini, et al., “Multiple Sclerosis Genomic Map Implicates Peripheral Immune Cells and Microglia in Susceptibility,” Science 365, no. 6460 (2019): eaav7188.

[202]

M. A. E. Rahman Ahmed Mekawy, S. M. Shaker Mohammed, G. G. Hamam, and N. M. Mohamed, “Histological Study on the Protective Role of Intranasally Applied Adipose-Derived Mesenchymal Stem Cells on Demyelinated Corpus Callosum in a Mouse Model of Multiple Sclerosis,” QJM: An International Journal of Medicine 117, no. Supplement_ 2 (2024): hcae175.336.

[203]

L. B. Saito, J. P. Fernandes, M. J. Smith, et al., “Intranasal Anti-caspase-1 Therapy Preserves Myelin and Glucose Metabolism in a Model of Progressive Multiple Sclerosis,” Glia 69, no. 1 (2021): 216-229.

[204]

S. Mojaverrostami, M. N. Bojnordi, M. Ghasemi-Kasman, M. A. Ebrahimzadeh, and H. G. Hamidabadi, “A Review of Herbal Therapy in Multiple Sclerosis,” Advanced Pharmaceutical Bulletin 8, no. 4 (2018): 575-590.

[205]

L. Fabiana, U. Hammad, K. Haroon, et al., “Therapeutic and Mechanistic Effects of Curcumin in Huntington's Disease,” Current Neuropharmacology 19, no. 7 (2021): 1007-1018.

[206]

O. Fatoba, E. Kloster, C. Saft, R. Gold, L. Arning, and G. Ellrichmann, “L22 Intranasal Application of NPY and NPY13-36 Ameliorate Disease Pathology in R6/2 Mouse Model of huntington's Disease,” Journal of Neurology, Neurosurgery & Psychiatry 87, no. Suppl 1 (2016): A97-A98.

[207]

M. Fréchou, S. Zhang, P. Liere, et al., “Intranasal Delivery of Progesterone After Transient Ischemic Stroke Decreases Mortality and Provides Neuroprotection,” Neuropharmacology 97 (2015): 394-403.

[208]

M. Fréchou, X. Zhu, P. Liere, et al., “Dose-dependent and Long-term Cerebroprotective Effects of Intranasal Delivery of Progesterone After Ischemic Stroke in Male Mice,” Neuropharmacology 170 (2020): 108038.

[209]

C. Teng, W. Lv, Y. Chen, et al., “Enhanced the Treatment of Ischemic Stroke Through Intranasal Temperature-sensitive Hydrogels of edaravone and borneol Inclusion Complex,” International Journal of Pharmaceutics 651 (2024): 123748.

[210]

M. Fréchou, X. Zhu, N. Kumar, et al., “Sex Differences in the Cerebroprotection by Nestorone Intranasal Delivery Following Stroke in Mice,” Neuropharmacology 198 (2021): 108760.

[211]

L. R. Hanson, A. Roeytenberg, P. M. Martinez, et al., “Intranasal Deferoxamine Provides Increased Brain Exposure and Significant Protection in Rat Ischemic Stroke,” Journal of Pharmacology and Experimental Therapeutics 330, no. 3 (2009): 679-686.

[212]

A. Espinosa, G. Meneses, A. Chavarría, et al., “Intranasal Dexamethasone Reduces Mortality and Brain Damage in a Mouse Experimental Ischemic Stroke Model,” Neurotherapeutics 17, no. 4 (2020): 1907-1918.

[213]

A. Prakash, M. Muthu, G. Raja, and J. Gopal, “Preparation and Characterization of Carbon Nanodots From Turmeric Soot for Anti-coliform and Anti-oral Bacterial Applications and as Anti-staphylococcal Coatings,” Nanotheranostics 9, no. 1 (2025): 31-37.

[214]

S. M. Mousavi, B. Akbarpour, S. Karimi-Haghighi, et al., “Therapeutic Potential of Hair Follicle-derived Stem Cell Intranasal Transplantation in a Rat Model of Ischemic Stroke,” BMC Neuroscience 23, no. 1 (2022): 47.

[215]

M. Zhang, Y. Song, C. Xie, and Y. Guan, “Comparative Outcomes of Intravenous, Intranasal, and Intracerebroventricular Transplantation of Human Neural Stem Cells in Mice Model of Ischemic Stroke,” Current Stem Cell Research & Therapy 20, no. 2 (2025): 183-198.

[216]

M. J. Chau, T. C. Deveau, X. Gu, et al., “Delayed and Repeated Intranasal Delivery of Bone Marrow Stromal Cells Increases Regeneration and Functional Recovery After Ischemic Stroke in Mice,” BMC Neuroscience 19, no. 1 (2018): 20.

[217]

N. Wei, S. P. Yu, X. Gu, et al., “Delayed Intranasal Delivery of Hypoxic-preconditioned Bone Marrow Mesenchymal Stem Cells Enhanced Cell Homing and Therapeutic Benefits After Ischemic Stroke in Mice,” Cell Transplantation 22, no. 6 (2013): 977-991.

[218]

H. Shen, X. Gu, Z. Z. Wei, A. Wu, X. Liu, and L. Wei, “Combinatorial Intranasal Delivery of Bone Marrow Mesenchymal Stem Cells and Insulin-Like Growth Factor-1 Improves Neurovascularization and Functional Outcomes Following Focal Cerebral Ischemia in Mice,” Experimental Neurology 337 (2021): 113542.

[219]

Y. Gomez-Galvez, M. Gupta, M. Kaur, et al., “Recovery After human Bone Marrow Mesenchymal Stem Cells (hBM-MSCs)-derived Extracellular Vesicles (EVs) Treatment in Post-MCAO Rats Requires Repeated Handling,” PLoS ONE 19, no. 10 (2024): e0312298.

[220]

F. Rohden, L. V. Teixeira, L. P. Bernardi, et al., “Functional Recovery Caused by Human Adipose Tissue Mesenchymal Stem Cell-Derived Extracellular Vesicles Administered 24 h After Stroke in Rats,” International Journal of Molecular Sciences 22, no. 23 (2021): 12860.

[221]

G. Yafarova, Y. Tokalchik, T. Filipovich, et al., “The Effects of Intranasal Implantation of Mesenchymal Stem Cells on Nitric Monoxide Levels in the Hippocampus, Control of Cognitive Functions, and Motor Activity in a Model of Cerebral Ischemia in Rats,” BioNanoScience 13, no. 2 (2023): 393-404.

[222]

Y. Wang, H. Niu, L. Li, et al., “Anti-CHAC1 Exosomes for Nose-to-brain Delivery of miR-760-3p in Cerebral Ischemia/Reperfusion Injury Mice Inhibiting Neuron Ferroptosis,” Journal of Nanobiotechnology 21, no. 1 (2023): 109.

[223]

K. Chung, I. Ullah, Y. Yi, et al., “Intranasal Delivery of Anti-Apoptotic siRNA Complexed With Fas-Signaling Blocking Peptides Attenuates Cellular Apoptosis in Brain Ischemia,” Pharmaceutics 16, no. 2 (2024): 290.

[224]

Y. Zhang, X. Guo, Z. Peng, et al., “Nicotinamide Mononucleotide Adenylyltransferase 1 Regulates Cerebral Ischemia-Induced Blood-Brain Barrier Disruption through NAD+/SIRT1 Signaling Pathway,” Molecular Neurobiology 59, no. 8 (2022): 4879-4891.

[225]

Y. S. Choi, D. Y. Cho, H.-K. Lee, et al., “Enhanced Cell Survival of pH-sensitive Bioenergetic Nucleotide Nanoparticles in Energy/Oxygen-depleted Cells and Their Intranasal Delivery for Reduced Brain Infarction,” Acta Biomaterialia 41 (2016): 147-160.

[226]

R. Hao, B. Sun, L. Yang, C. Ma, and S. Li, “RVG29-modified microRNA-loaded Nanoparticles Improve Ischemic Brain Injury by Nasal Delivery,” Drug Delivery 27, no. 1 (2020): 772-781.

[227]

E. A. Bseiso, S. A. AbdEl-Aal, M. Nasr, O. A. Sammour, and N. A. A. El Gawad, “Nose to Brain Delivery of Melatonin Lipidic Nanocapsules as a Promising Post-ischemic Neuroprotective Therapeutic Modality,” Drug Delivery 29, no. 1 (2022): 2469-2480.

[228]

E. A. Bseiso, S. A. Abd El-Aal, M. Nasr, O. A. Sammour, and N. A. Abd El Gawad, “Intranasally Administered Melatonin Core-shell Polymeric Nanocapsules: A Promising Treatment Modality for Cerebral Ischemia,” Life Sciences 306 (2022): 120797.

[229]

G. C. Müller, S. O. Loureiro, L. F. Pettenuzzo, et al., “Effects of Intranasal Guanosine Administration on Brain Function in a Rat Model of Ischemic Stroke,” Purinergic Signalling 17, no. 2 (2021): 255-271.

[230]

D. B. Ramos, G. C. Muller, G. B. M. Rocha, et al., “Intranasal Guanosine Administration Presents a Wide Therapeutic Time Window to Reduce Brain Damage Induced by Permanent Ischemia in Rats,” Purinergic Signalling 12, no. 1 (2016): 149-159.

[231]

R. Li, Y. Huang, L. Chen, et al., “Targeted Delivery of Intranasally Administered Nanoparticles-mediated Neuroprotective Peptide NR2B9c to Brain and Neuron for Treatment of Ischemic Stroke,” Nanomedicine: Nanotechnology, Biology and Medicine 18 (2019): 380-390.

[232]

I. Ullah, K. Chung, J. Oh, et al., “Intranasal Delivery of a Fas-blocking Peptide Attenuates Fas-mediated Apoptosis in Brain Ischemia,” Scientific Reports 8, no. 1 (2018): 15041.

[233]

D. Chen, J. Lee, X. Gu, L. Wei, and S. P. Yu, “Intranasal Delivery of Apelin-13 Is Neuroprotective and Promotes Angiogenesis after Ischemic Stroke in Mice,” ASN Neuro 7, no. 5 (2015): 1759091415605114.

[234]

N. Zhao, X. Zhuo, Y. Lu, et al., “Intranasal Delivery of a Caspase-1 Inhibitor in the Treatment of Global Cerebral Ischemia,” Molecular Neurobiology 54, no. 7 (2017): 4936-4952.

[235]

J.-M. Yu, G.-H. Jiang, Y. Zhu, et al., “Intranasal Insulin Ameliorates Neurological Impairment After Intracerebral Hemorrhage in Mice,” Neural Regeneration Research 17, 1 (2022): 210, https://doi.org/10.4103/1673-5374.314320.

[236]

B. Sun, M. He, X. Han, et al., “Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats,” Molecular Neurobiology 53, no. 1 (2014): 320-330, https://doi.org/10.1007/s12035-014-8984-2.

[237]

X.-F. Liu, J. R. Fawcett, R. G. Thorne, and W. H. Frey, “Intranasal IGF-1 Protects Against Transient Focal Cerebral Ischemia in Rats Following Middle Cerebral Artery Occlusion (MCAO),” Stroke; A Journal of Cerebral Circulation 32, no. suppl_1 (2001): 352-352.

[238]

W. Zhu, S. Cheng, G. Xu, et al., “Intranasal Nerve Growth Factor Enhances Striatal Neurogenesis in Adult Rats With Focal Cerebral Ischemia,” Drug Delivery 18, no. 5 (2011): 338-343.

[239]

X. Zhou, X. Deng, M. Liu, et al., “Intranasal Delivery of BDNF-loaded Small Extracellular Vesicles for Cerebral Ischemia Therapy,” Journal of Controlled Release 357 (2023): 1-19.

[240]

J. H. Lee, E. H. Kam, J. M. Kim, et al., “Intranasal Administration of Interleukin-1 Receptor Antagonist in a Transient Focal Cerebral Ischemia Rat Model,” Biomolecules & Therapeutics 25, no. 2 (2017): 149-157.

[241]

I. F. Belenichev, B. S. Burlaka, N. V. Bukhtiyarova, et al., “Pharmacological Correction of Thiol-Disulphide Imbalance in the Rat Brain by Intranasal Form of Il-1b Antagonist in a Model of Chronic Cerebral Ischemia,” Neurochemical Journal 15, no. 1 (2021): 30-36.

[242]

M. Saffari, S. Momenabadi, A. A. Vafaei, A. Vakili, and M. Zahedi Khorasani, “Prophylactic Effect of Intranasal Oxytocin on Brain Damage and Neurological Disorders in Global Cerebral Ischemia in Mice,” Iranian Journal of Basic Medical Sciences 24, no. 1 (2021): 79-84.

[243]

H. Zhang, J. Meng, S. Zhou, et al., “Intranasal Delivery of Exendin-4 Confers Neuroprotective Effect against Cerebral Ischemia in Mice,” The AAPS Journal 18, no. 2 (2016): 385-394.

[244]

Z.-L. Wang, S.-M. Cheng, M.-M. Ma, et al., “Intranasally Delivered bFGF Enhances Neurogenesis in Adult Rats Following Cerebral Ischemia,” Neuroscience Letters 446, no. 1 (2008): 30-35.

[245]

X. Cheng, Z. Wang, J. Yang, et al., “Acidic Fibroblast Growth Factor Delivered Intranasally Induces Neurogenesis and Angiogenesis in Rats After Ischemic Stroke,” Neurological Research 33, no. 7 (2011): 675-680.

[246]

Y. Zhou, B. Sun, J. Guo, and G. Zhou, “Intranasal Injection of Recombinant human Erythropoietin Improves Cognitive and Visual Impairments in Chronic Cerebral Ischemia Rats,” Biomedical Reports 13, no. 5 (2020): 40.

[247]

Y.-P. Yu, Q.-Q. Xu, Q. Zhang, W.-P. Zhang, L.-H. Zhang, and E.-Q. Wei, “Intranasal Recombinant human Erythropoietin Protects Rats Against Focal Cerebral Ischemia,” Neuroscience Letters 387, no. 1 (2005): 5-10.

[248]

R. J. Macias-Velez, M. C. Rivera-Cervantes, A. G. Marín-López, and J. Murguía-Castillo, “Intranasal Erythropoietin Protects Granular Cells and Reduces Astrogliosis in the Dentate Gyrus After Ischemic Damage, an Effect Associated With Molecular Changes in Erythropoietin and Its Receptor,” Neuroscience Letters 812 (2023): 137366.

[249]

M. Chen, B. Lei, M. Wang, et al., “Using PCG-Arginine Nanoparticle Mediated Intranasal Delivery of Dynorphin A (1-8) to Improve Neuroprotection in MCAO Rats,” Journal of Drug Delivery Science and Technology 68 (2022): 103059.

[250]

M. Chen, X. Zhang, J. Fan, et al., “Dynorphin A (1-8) Inhibits Oxidative Stress and Apoptosis in MCAO Rats, Affording Neuroprotection Through NMDA Receptor and κ-opioid Receptor Channels,” Neuropeptides 89 (2021): 102182.

[251]

A. Cherait, J. Maucotel, B. Lefranc, J. Leprince, and D. Vaudry, “Intranasal Administration of PACAP Is an Efficient Delivery Route to Reduce Infarct Volume and Promote Functional Recovery after Transient and Permanent Middle Cerebral Artery Occlusion,” Frontiers in Endocrinology 11 (2021): 585082.

[252]

M. Salman, A. S. Stayton, K. Parveen, et al., “Intranasal Delivery of Mitochondria Attenuates Brain Injury by AMPK and SIRT1/PGC-1α Pathways in a Murine Model of Photothrombotic Stroke,” Molecular Neurobiology 61, no. 5 (2024): 2822-2838.

[253]

X. Guo, Y. Zhang, C. Liu, et al., “Intranasal Administration of β-1, 3-galactosyltransferase 2 Confers Neuroprotection Against Ischemic Stroke by Likely Inhibiting Oxidative Stress and NLRP3 Inflammasome Activation,” The FASEB Journal 36, no. 10 (2022): e22542.

[254]

E. Joachim, I.-D. Kim, Y. Jin, K. Kim, J.-K. Lee, and H. Choi, “Gelatin Nanoparticles Enhance the Neuroprotective Effects of Intranasally Administered Osteopontin in Rat Ischemic Stroke Model,” Drug Delivery and Translational Research 4, no. 5 (2014): 395-399.

[255]

D. Davaanyam, I.-D. Kim, and J.-K. Lee, “Intranasal Delivery of RGD-Containing Osteopontin Heptamer Peptide Confers Neuroprotection in the Ischemic Brain and Augments Microglia M2 Polarization,” International Journal of Molecular Sciences 22, no. 18 (2021): 9999.

[256]

N. Matei, J. Camara, D. McBride, et al., “Intranasal wnt3a Attenuates Neuronal Apoptosis Through Frz1/PIWIL1a/FOXM1 Pathway in MCAO Rats,” The Journal of Neuroscience 38, no. 30 (2018): 6787-6801.

[257]

D. Zhang, Z. Lu, J. Man, et al., “Wnt-3a Alleviates Neuroinflammation After Ischemic Stroke by Modulating the Responses of Microglia/Macrophages and Astrocytes,” International Immunopharmacology 75 (2019): 105760.

[258]

Z. Z. Wei, J. Y. Zhang, T. M. Taylor, X. Gu, Y. Zhao, and L. Wei, “Neuroprotective and Regenerative Roles of Intranasal Wnt-3a Administration After Focal Ischemic Stroke in Mice,” Journal of Cerebral Blood Flow and Metabolism 38, no. 3 (2018): 404-421.

[259]

S. Yu, D. Li, A. Shi, et al., “Multidrug-loaded Liposomes Prevent Ischemic Stroke Through Intranasal Administration,” Biomedicine & Pharmacotherapy 162 (2023): 114542.

[260]

D. Misilimu, W. Li, D. Chen, et al., “Intranasal Salvinorin A Improves Long-term Neurological Function via Immunomodulation in a Mouse Ischemic Stroke Model,” Journal of Neuroimmune Pharmacology 17, no. 1 (2022): 350-366.

[261]

L. Wu, D. Wu, J. Chen, et al., “Intranasal Salvinorin A Improves Neurological Outcome in rhesus Monkey Ischemic Stroke Model Using Autologous Blood Clot,” Journal of Cerebral Blood Flow and Metabolism 41, no. 4 (2021): 723-730.

[262]

N. Ahmad, R. Ahmad, M. A. Alam, M. Samim, Z. Iqbal, and F. J. Ahmad, “Quantification and Evaluation of Thymoquinone Loaded Mucoadhesive Nanoemulsion for Treatment of Cerebral Ischemia,” International Journal of Biological Macromolecules 88 (2016): 320-332.

[263]

T. Liu, M. Zhang, J. Zhang, N. Kang, L. Zheng, and Z. Ding, “Targeted Delivery of Macrophage Membrane Biomimetic Liposomes through Intranasal Administration for Treatment of Ischemic Stroke,” International Journal of Nanomedicine 19 (2024): 6177-6199.

[264]

C. Huang, C. Wang, W. Zhang, et al., “Preparation, in Vitro and in Vivo Evaluation of Nanoemulsion in Situ Gel for Transnasal Delivery of Traditional Chinese Medicine Volatile Oil From Ligusticum Sinense Oliv.Cv. Chaxiong,” Molecules (Basel, Switzerland) 27, no. 21 (2022): 7644.

[265]

J. Wang, Y. Zhang, M. Zhang, et al., “Feasibility of Catalpol Intranasal Administration and Its Protective Effect on Acute Cerebral Ischemia in Rats via Anti-Oxidative and Anti-Apoptotic Mechanisms,” Drug Design, Development and Therapy 16 (2022): 279-296.

[266]

M. Wu, S. Zhao, W. Gao, R. Wang, H. Han, and X. Shi, “Feasibility of Nasal Brain Targeted Drug Delivery Through the Nose-brain Channel in the Nasal Olfactory Region Using Cimicifugoside H-1,” Chinese Journal of Tissue Engineering Research 20, no. 05 (2016): 688-693.

[267]

M. Owjfard, Z. Rahimian, R. Ghaderpanah, et al., “Therapeutic Effects of Intranasal Administration of Resveratrol on the Rat Model of Brain Ischemia,” Heliyon 10, no. 12 (2024): e32592.

[268]

S. Liu and P. C. Ho, “Intranasal Administration of Brain-targeted HP-β-CD/Chitosan Nanoparticles for Delivery of Scutellarin, a Compound With Protective Effect in Cerebral Ischaemia,” Journal of Pharmacy and Pharmacology 69, no. 11 (2017): 1495-1501.

[269]

Y. Chen, Y. Liu, J. Xie, et al., “Nose-to-brain Delivery by Nanosuspensions-based in Situ Gel for Breviscapine,” International Journal of Nanomedicine 15 (2020): 10435-10451.

[270]

N. Ahmad, R. Ahmad, A. A. Naqvi, et al., “Rutin-encapsulated Chitosan Nanoparticles Targeted to the Brain in the Treatment of Cerebral Ischemia,” International Journal of Biological Macromolecules 91 (2016): 640-655.

[271]

A. Ju, S. Geng, X. Yang, et al., “Effect of Salvianolic Acid B by Intranasal Administration on Cognitive Function and Neurogenesis of Cerebral Ischemia Rats,” Chinese Traditional and Herbal Drugs 48, no. 12 (2017): 2481-2485.

[272]

N. Ahmad, R. Ahmad, M. Alam, and F. Ahmad, “Quantification and Brain Targeting of Eugenol-loaded Surface Modified Nanoparticles Through Intranasal Route in the Treatment of Cerebral Ischemia,” Drug Research (Stuttgart) 68, no. 10 (2018): 584-595.

[273]

A. Dehnadi Moghadam, H. Hasanzadeh, and F. Dehnadi Moghadam, “Evaluation of the Effect of Intranasal Lidocaine in the Treatment of Spasticity in Patients With Traumatic Brain Injury,” Anesthesia and Pain Medicine 11, no. 4 (2021): e115849.

[274]

M. Song, J. Wang, J. Chen, X.-L. Xu, and Q. Yu, “Intranasal Administration of the SUR1 Inhibitor Glibenclamide for the Treatment of Traumatic Brain Injury,” Proceedings for Annual Meeting of The Japanese Pharmacological Society WCP2018 (2018). PO2-1-18.

[275]

J. L. Morris, H. L. Letson, and G. P. Dobson, “Safety Evaluation of Adenosine, Lidocaine and Magnesium (ALM) Intranasal Therapy Toward human Nasal Epithelial Cells in Vitro,” Basic & Clinical Pharmacology & Toxicology 135, no. 1 (2024): 98-108.

[276]

Y. Meng, M. Chopp, Y. Zhang, et al., “Subacute Intranasal Administration of Tissue Plasminogen Activator Promotes Neuroplasticity and Improves Functional Recovery Following Traumatic Brain Injury in Rats,” PLoS ONE 9, no. 9 (2014): e106238.

[277]

M. Amirbekyan, V. Adhikarla, J. P. Cheng, et al., “Neuroprotective Potential of Intranasally Delivered L-myc Immortalized human Neural Stem Cells in Female Rats After a Controlled Cortical Impact Injury,” Scientific Reports 13, no. 1 (2023): 17874.

[278]

M. Kodali, L. N. Madhu, R. L. Reger, et al., “A Single Intranasal Dose of human Mesenchymal Stem Cell-derived Extracellular Vesicles After Traumatic Brain Injury Eases Neurogenesis Decline, Synapse Loss, and BDNF-ERK-CREB Signaling,” Frontiers in Molecular Neuroscience 16 (2023): 1185883.

[279]

L. D. Moss, D. Sode, R. Patel, et al., “Intranasal Delivery of Exosomes From human Adipose Derived Stem Cells at Forty-eight Hours post Injury Reduces Motor and Cognitive Impairments Following Traumatic Brain Injury,” Neurochemistry International 150 (2021): 105173.

[280]

D. I. Salikhova, A. V. Timofeeva, V. V. Golovicheva, et al., “Extracellular Vesicles of human Glial Cells Exert Neuroprotective Effects via Brain miRNA Modulation in a Rat Model of Traumatic Brain Injury,” Scientific Reports 13, no. 1 (2023): 20388.

[281]

L. Delila, O. Nebie, N. T. N. Le, et al., “Neuroprotective Effects of Intranasal Extracellular Vesicles From human Platelet Concentrates Supernatants in Traumatic Brain Injury and Parkinson's Disease Models,” Journal of Biomedical Science 31, no. 1 (2024): 87.

[282]

Q. Lv, W. Lan, W. Sun, et al., “Intranasal Nerve Growth Factor Attenuates Tau Phosphorylation in Brain After Traumatic Brain Injury in Rats,” Journal of the Neurological Sciences 345, no. 1 (2014): 48-55.

[283]

L. Manni, E. Leotta, I. Mollica, et al., “Acute Intranasal Treatment With Nerve Growth Factor Limits the Onset of Traumatic Brain Injury in Young Rats,” British Journal of Pharmacology 180, no. 15 (2023): 1949-1964.

[284]

F. Brabazon, C. M. Wilson, S. Jaiswal, J. Reed, W. H. N. Frey, and K. R. Byrnes, “Intranasal Insulin Treatment of an Experimental Model of Moderate Traumatic Brain Injury,” Journal of Cerebral Blood Flow and Metabolism 37, no. 9 (2017): 3203-3218.

[285]

X. Ding, L. Zhang, X. Zhang, Y. Qin, K. Yu, and X. Yang, “Intranasal Insulin Alleviates Traumatic Brain Injury by Inhibiting Autophagy and Endoplasmic Reticulum Stress-Mediated Apoptosis through the PI3K/Akt/mTOR Signaling Pathway,” Neuroscience 529 (2023): 23-36.

[286]

H. M. Jahromi, A. Rafati, S. Karbalay-Doust, S. Keshavarz, and M. Naseh, “The Combination Treatment of Hypothermia and Intranasal Insulin Ameliorates the Structural and Functional Changes in a Rat Model of Traumatic Brain Injury,” Brain Structure and Function 229, no. 4 (2024): 947-957.

[287]

A. C. Meidahl, A. Eisenried, M. Klukinov, L. Cao, A. Z. Tzabazis, and D. C. Yeomans, “Intranasal Oxytocin Attenuates Reactive and Ongoing, Chronic Pain in a Model of Mild Traumatic Brain Injury,” Headache: The Journal of Head and Face Pain 58, no. 4 (2018): 545-558.

[288]

X.-C. He, J. Wang, H.-Z. Du, C.-M. Liu, and Z.-Q. Teng, “Intranasal Administration of Agomir-let-7i Improves Cognitive Function in Mice With Traumatic Brain Injury,” Cells 11, no. 8 (2022): 1348.

[289]

O. Nebie, K. Carvalho, L. Barro, et al., “Human Platelet Lysate Biotherapy for Traumatic Brain Injury: Preclinical Assessment,” Brain 144, no. 10 (2021): 3142-3158.

[290]

Y. Yanamadala, R. Roy, A. A. Williams, et al., “Intranasal Delivery of Cell-Penetrating Therapeutic Peptide Enhances Brain Delivery, Reduces Inflammation, and Improves Neurologic Function in Moderate Traumatic Brain Injury,” Pharmaceutics 16, no. 6 (2024): 774.

[291]

F. Clausen, H.-A. Hansson, J. Raud, and N. Marklund, “Intranasal Administration of the Antisecretory Peptide AF-16 Reduces Edema and Improves Cognitive Function Following Diffuse Traumatic Brain Injury in the Rat,” Frontiers in Neurology 8 (2017): 39.

[292]

S. J. Won, B. Y. Choi, B. H. Yoo, et al., “Prevention of Traumatic Brain Injury-Induced Neuron Death by Intranasal Delivery of Nicotinamide Adenine Dinucleotide,” Journal of Neurotrauma 29, no. 7 (2012): 1401-1409.

[293]

J. Y. Zhang, J. H. Lee, X. Gu, et al., “Intranasally Delivered Wnt3a Improves Functional Recovery After Traumatic Brain Injury by Modulating Autophagic, Apoptotic, and Regenerative Pathways in the Mouse Brain,” Journal of Neurotrauma 35, no. 5 (2017): 802-813.

[294]

A. Jullienne, M. Hamer, E. Haddad, et al., “Acute Intranasal Osteopontin Treatment in Male Rats Following TBI Increases the Number of Activated Microglia but Does Not Alter Lesion Characteristics,” Journal of Neuroscience Research 98, no. 1 (2020): 141-154.

[295]

H. Pu, C. Ma, Y. Zhao, et al., “Intranasal Delivery of Interleukin-4 Attenuates Chronic Cognitive Deficits via Beneficial Microglial Responses in Experimental Traumatic Brain Injury,” Journal of Cerebral Blood Flow and Metabolism 41, no. 11 (2021): 2870-2886.

[296]

N. G. Bazan, A. Obenaus, L. Khoutorova, et al., “Elovanoids, a Novel Class of Lipid Mediators, Are Neuroprotective in a Traumatic Brain Injury Model in Rats,” Biomedicines 12, no. 11 (2024): 2555.

[297]

D. J. Cross, J. S. Meabon, M. M. Cline, et al., “Paclitaxel Reduces Brain Injury From Repeated Head Trauma in Mice,” Journal of Alzheimer's Disease 67, no. 3 (2019): 859-874.

[298]

W. Yang, Y.-H. Han, H.-C. Wang, C.-T. Lu, X.-C. Yu, and Y.-Z. Zhao, “Intradermal Injection of Icariin-HP-β-Cyclodextrin Improved Traumatic Brain Injury via the Trigeminal Epineurium-Brain Dura Pathway,” Journal of Drug Targeting 30, no. 5 (2022): 557-566, https://doi.org/10.1080/1061186x.2021.2023159.

[299]

M. Xiao, Q. Li, H. Feng, L. Zhang, and Y. Chen, “Neural Vascular Mechanism for the Cerebral Blood Flow Autoregulation After Hemorrhagic Stroke,” Neural Plasticity 2017, no. 1 (2017): 5819514.

[300]

J. P. Marto, D. Strambo, F. Livio, and P. Michel, “Drugs Associated with Ischemic Stroke,” Stroke; A Journal of Cerebral Circulation 52, no. 10 (2021): e646-e659.

[301]

I. I. Zorina, N. F. Avrova, I. O. Zakharova, and A. O. Shpakov, “Prospects for the Use of Intranasally Administered Insulin and Insulin-Like Growth Factor-1 in Cerebral Ischemia,” Biochemistry (Moscow) 88, no. 3 (2023): 374-391.

[302]

Y. Zhu, Y. Huang, J. Yang, et al., “Intranasal Insulin Ameliorates Neurological Impairment After Intracerebral Hemorrhage in Mice,” Neural Regeneration Research 17, no. 1 (2022): 210-216.

[303]

A. S. Das, J. C. Vicenty-Padilla, M. M. J. Chua, et al., “Cerebrovascular Injuries in Traumatic Brain Injury,” Clinical Neurology and Neurosurgery 223 (2022): 107479.

[304]

R. Guennoun, M. Fréchou, P. Gaignard, et al., “Intranasal Administration of Progesterone: A Potential Efficient Route of Delivery for Cerebroprotection After Acute Brain Injuries,” Neuropharmacology 145 (2019): 283-291.

[305]

L. Manni, G. Conti, A. Chiaretti, and M. Soligo, “Intranasal Nerve Growth Factor for Prevention and Recovery of the Outcomes of Traumatic Brain Injury,” Neural Regeneration Research 18, no. 4 (2023): 773-778.

[306]

A. Chiaretti, G. Conti, B. Falsini, et al., “Intranasal Nerve Growth Factor Administration Improves Cerebral Functions in a Child With Severe Traumatic Brain Injury: A Case Report,” Brain Injury 31, no. 11 (2017): 1538-1547.

[307]

L. Capossela, B. Graglia, S. Ferretti, and L. D. Sarno, “Intranasal human-recombinant Nerve Growth Factor Administration Improves Cognitive Functions in a Child With Severe Traumatic Brain Injury,” European Review for Medical and Pharmacological Sciences 28, no. 18 (2024): 4302-4312.

[308]

W. Yang, Y.-H. Han, H.-C. Wang, C.-T. Lu, X.-C. Yu, and Y.-Z. Zhao, “Intradermal Injection of Icariin-HP-β-cyclodextrin Improved Traumatic Brain Injury via the Trigeminal Epineurium-brain Dura Pathway,” Journal of Drug Targeting 30, no. 5 (2022): 557-566.

[309]

V. Sorrenti, G. Contarini, S. Sut, et al., “Curcumin Prevents Acute Neuroinflammation and Long-Term Memory Impairment Induced by Systemic Lipopolysaccharide in Mice,” Frontiers in Pharmacology 9 (2018): 183.

[310]

X. Zhang, K. Ding, J. Wang, X. Li, and P. Zhao, “Chemoresistance Caused by the Microenvironment of Glioblastoma and the Corresponding Solutions,” Biomedicine & Pharmacotherapy 109 (2019): 39-46.

[311]

O. D. Akilo, Y. E. Choonara, A. M. Strydom, et al., “AN in Vitro Evaluation of a Carmustine-loaded Nano-co-Plex for Potential Magnetic-targeted Intranasal Delivery to the Brain,” International Journal of Pharmaceutics 500, no. 1 (2016): 196-209.

[312]

S. Ahmad, I. Khan, J. Pandit, et al., “Brain Targeted Delivery of Carmustine Using Chitosan Coated Nanoparticles via Nasal Route for Glioblastoma Treatment,” International Journal of Biological Macromolecules 221 (2022): 435-445.

[313]

A. Mali and A. Bhanwase, “In-Vitro, Ex-Vivo & In-Vivo Assessment of Brain Targeted Thermoreversible Mucoadhesive In-Situ Intranasal Gel of Carmustine for the Treatment of Glioblastoma,” BioNanoScience 14, no. 3 (2024): 2571-2581.

[314]

F. A. Bruinsmann, A. de Cristo Soares Alves, A. de Fraga Dias, et al., “Nose-to-brain Delivery of Simvastatin Mediated by chitosan-coated Lipid-core Nanocapsules Allows for the Treatment of Glioblastoma in Vivo,” International Journal of Pharmaceutics 616 (2022): 121563.

[315]

D. Gadhave, B. Gorain, A. Tagalpallewar, and C. Kokare, “Intranasal Teriflunomide Microemulsion: An Improved Chemotherapeutic Approach in Glioblastoma,” Journal of Drug Delivery Science and Technology 51 (2019): 276-289.

[316]

E. Seidkhani, F. Moradi, A. Rustamzadeh, et al., “Intranasal Delivery of sunitinib: A New Therapeutic Approach for Targeting Angiogenesis of Glioblastoma,” Toxicology and Applied Pharmacology 481 (2023): 116754.

[317]

K. Chung, I. Ullah, N. Kim, et al., “Intranasal Delivery of Cancer-targeting Doxorubicin-loaded PLGA Nanoparticles Arrests Glioblastoma Growth,” Journal of Drug Targeting 28, no. 6 (2020): 617-626.

[318]

J. Mena-Hernández, H. Jung-Cook, M. Llaguno-Munive, et al., “Preparation and Evaluation of Mebendazole Microemulsion for Intranasal Delivery: An Alternative Approach for Glioblastoma Treatment,” Aaps Pharmscitech [Electronic Resource] 21, no. 7 (2020): 264.

[319]

S. Desai, P. Thorat, and A. Majumdar, “A Promise of Nose to Brain Delivery of bevacizumab Intranasal Sol-gel Formulation Substantiated in Rat C6 Glioma Model,” Naunyn-Schmiedeberg's Archives of Pharmacology 398, no. 4 (2024): 4123-4148.

[320]

F. Sousa, H. K. Dhaliwal, F. Gattacceca, B. Sarmento, and M. M. Amiji, “Enhanced Anti-angiogenic Effects of Bevacizumab in Glioblastoma Treatment Upon Intranasal Administration in Polymeric Nanoparticles,” Journal of Controlled Release 309 (2019): 37-47.

[321]

I. B. Mikhel, E. O. Bakhrushina, D. A. Petrusevich, et al., “Development of an Intranasal in Situ System for Ribavirin Delivery: In Vitro and in Vivo Evaluation,” Pharmaceutics 16, no. 9 (2024): 1125.

[322]

M. J. Ramalho, É. Serra, J. Lima, J. A. Loureiro, and M. C. Pereira, “Chitosan-PLGA Mucoadhesive Nanoparticles for Gemcitabine Repurposing for Glioblastoma Therapy,” European Journal of Pharmaceutics and Biopharmaceutics 200 (2024): 114326.

[323]

Y. Qu, A. Li, L. Ma, et al., “Nose-to-brain Delivery of Disulfiram Nanoemulsion in Situ Gel Formulation for Glioblastoma Targeting Therapy,” International Journal of Pharmaceutics 597 (2021): 120250.

[324]

P. Sandbhor, J. Goda, B. Mohanty, P. Chaudhari, S. Dutt, and R. Banerjee, “Non-invasive Transferrin Targeted Nanovesicles Sensitize Resistant Glioblastoma Multiforme Tumors and Improve Survival in Orthotopic Mouse Models,” Nanoscale 14, no. 1 (2022): 108-126.

[325]

L. Wang, S. Tang, Y. Yu, et al., “Intranasal Delivery of Temozolomide-Conjugated Gold Nanoparticles Functionalized With Anti-EphA3 for Glioblastoma Targeting,” Molecular Pharmaceutics 18, no. 3 (2021): 915-927.

[326]

S. Wang, Y. Yu, A. Wang, et al., “Temozolomide Hexadecyl Ester Targeted Plga Nanoparticles for Drug-resistant Glioblastoma Therapy via Intranasal Administration,” Frontiers in Pharmacology 13 (2022): 965789.

[327]

J. L. Duarte, L. D. Di Filippo, K. J. Azevedo Vilella, et al., “Chitosan-coated Nanoemulsion for Intranasal Administration Increases Temozolomide Mucosal Permeation, Cellular Uptake, and in Vitro Cytotoxicity in Glioblastoma Multiforme Cells,” Journal of Drug Delivery Science and Technology 102 (2024): 106390.

[328]

Y. Yu, A. Wang, S. Wang, et al., “Efficacy of Temozolomide-Conjugated Gold Nanoparticle Photothermal Therapy of Drug-Resistant Glioblastoma and Its Mechanism Study,” Molecular Pharmaceutics 19, no. 4 (2022): 1219-1229.

[329]

X. Duan, A. Wang, L. Jiang, et al., “Targeted Thermosensitive Liposomes Loaded With Gold Nanoparticles and Temozolomide Hexadecanoate for the Synergistic Photothermal-chemotherapy Treatment of Glioblastoma,” Journal of Pharmaceutical Sciences 114, no. 2 (2025): 1196-1204.

[330]

B. Sánchez-Dengra, M. Alfonso, I. González-Álvarez, M. Bermejo, M. González-Álvarez, and R. Martínez-Máñez, “Intranasal Administration of Molecular-Gated Mesoporous Nanoparticles to Increase Ponatinib Delivery to the Brain,” Nanomedicine 18, no. 25 (2023): 1799-1813.

[331]

G. Katona, F. Sabir, B. Sipos, et al., “Development of Lomustine and n-Propyl Gallate Co-Encapsulated Liposomes for Targeting Glioblastoma Multiforme via Intranasal Administration,” Pharmaceutics 14, no. 3 (2022): 631.

[332]

D. S. Jain, A. N. Bajaj, R. B. Athawale, et al., “Thermosensitive PLA Based Nanodispersion for Targeting Brain Tumor via Intranasal Route,” Materials Science and Engineering: C 63 (2016): 411-421.

[333]

X. Zhuang, Y. Teng, A. Samykutty, et al., “Grapefruit-derived Nanovectors Delivering Therapeutic miR17 through an Intranasal Route Inhibit Brain Tumor Progression,” Molecular Therapy 24, no. 1 (2016): 96-105.

[334]

Y. Hu, K. Jiang, D. Wang, et al., “Core-shell Lipoplexes Inducing Active Macropinocytosis Promote Intranasal Delivery of c-Myc siRNA for Treatment of Glioblastoma,” Acta Biomaterialia 138 (2022): 478-490.

[335]

M. Van Woensel, N. Wauthoz, R. Rosière, et al., “Development of siRNA-loaded Chitosan Nanoparticles Targeting Galectin-1 for the Treatment of Glioblastoma Multiforme via Intranasal Administration,” Journal of Controlled Release 227 (2016): 71-81.

[336]

M. Van Woensel, T. Mathivet, N. Wauthoz, et al., “Sensitization of Glioblastoma Tumor Micro-environment to Chemo- and Immunotherapy by Galectin-1 Intranasal Knock-Down Strategy,” Scientific Reports 7, no. 1 (2017): 1217.

[337]

L. Tang, R. Zhang, Y. Wang, et al., “A Simple Self-assembly Nanomicelle Based on Brain Tumor-targeting Peptide-mediated siRNA Delivery for Glioma Immunotherapy via Intranasal Administration,” Acta Biomaterialia 155 (2023): 521-537.

[338]

U. K. Sukumar, R. J. C. Bose, M. Malhotra, et al., “Intranasal Delivery of Targeted Polyfunctional Gold-iron Oxide Nanoparticles Loaded With Therapeutic microRNAs for Combined Theranostic Multimodality Imaging and Presensitization of Glioblastoma to Temozolomide,” Biomaterials 218 (2019): 119342.

[339]

K. Wang, U. S. Kumar, N. Sadeghipour, T. F. Massoud, and R. Paulmurugan, “A Microfluidics-Based Scalable Approach to Generate Extracellular Vesicles With Enhanced Therapeutic MicroRNA Loading for Intranasal Delivery to Mouse Glioblastomas,” ACS Nano 15, no. 11 (2021): 18327-18346.

[340]

I. V. Balyasnikova, M. S. Prasol, S. D. Ferguson, et al., “Intranasal Delivery of Mesenchymal Stem Cells Significantly Extends Survival of Irradiated Mice With Experimental Brain Tumors,” Molecular Therapy 22, no. 1 (2014): 140-148.

[341]

M. Dey, D. Yu, D. Kanojia, et al., “Intranasal Oncolytic Virotherapy With CXCR4-Enhanced Stem Cells Extends Survival in Mouse Model of Glioma,” Stem Cell Reports 7, no. 3 (2016): 471-482.

[342]

J. Ha, M. Kim, Y. Lee, and M. Lee, “Intranasal Delivery of Self-assembled Nanoparticles of Therapeutic Peptides and Antagomirs Elicits Anti-tumor Effects in an Intracranial Glioblastoma Model,” Nanoscale 13, no. 35 (2021): 14745-14759.

[343]

E. R. de Oliveira Junior, T. L. Nascimento, M. A. Salomão, A. C. G. da Silva, M. C. Valadares, and E. M. Lima, “Increased Nose-to-Brain Delivery of Melatonin Mediated by Polycaprolactone Nanoparticles for the Treatment of Glioblastoma,” Pharmaceutical Research 36, no. 9 (2019): 131.

[344]

H. Taki, T. Kanazawa, F. Akiyama, Y. Takashima, and H. Okada, “Intranasal Delivery of Camptothecin-Loaded Tat-Modified Nanomicells for Treatment of Intracranial Brain Tumors,” Pharmaceuticals 5, no. 10 (2012): 1092-1102.

[345]

C. Diedrich, I. Camargo Zittlau, C. Schineider Machado, et al., “Mucoadhesive Nanoemulsion Enhances Brain Bioavailability of Luteolin After Intranasal Administration and Induces Apoptosis to SH-SY5Y Neuroblastoma Cells,” International Journal of Pharmaceutics 626 (2022): 122142.

[346]

Y. Song, Q. Huang, Q. Pu, et al., “Gastrodin Liposomes Block Crosstalk Between Astrocytes and Glioma Cells via Downregulating Cx43 to Improve Antiglioblastoma Efficacy of Temozolomide,” Bioconjugate Chemistry 35, no. 9 (2024): 1380-1390.

[347]

S. Mittal, S. Shah, H. N. Yadav, J. Ali, M. M. Gupta, and S. Baboota, “Quality by Design Engineered, Enhanced Anticancer Activity of Temozolomide and Resveratrol Coloaded NLC and Brain Targeting via Lactoferrin Conjugation in Treatment of Glioblastoma,” European Journal of Pharmaceutics and Biopharmaceutics 191 (2023): 175-188.

[348]

M. Colombo, F. Figueiró, A. de Fraga Dias, H. F. Teixeira, A. M. O. Battastini, and L. S. Koester, “Kaempferol-loaded Mucoadhesive Nanoemulsion for Intranasal Administration Reduces Glioma Growth in Vitro,” International Journal of Pharmaceutics 543, no. 1 (2018): 214-223.

[349]

A. Ibrahim, S. A. Abdel Gaber, M. Fawzi Kabil, et al., “Baicalin Lipid Nanocapsules for Treatment of Glioma: Characterization, Mechanistic Cytotoxicity, and Pharmacokinetic Evaluation,” Expert Opinion on Drug Delivery 19, no. 11 (2022): 1549-1560.

[350]

S. Trivedi, S. Kause, and V. Belgamwar, “Intranasal Delivery of Poly (d-glucosamine) Encrusted Self-assembled Lipidic Nanovesicles to Enhanced Brain Uptake of Thymoquinone for Management of Glioblastoma Multiforme,” Journal of Drug Delivery Science and Technology 90 (2023): 105149.

[351]

S. Trivedi, R. Agade, and V. Belgamwar, “A Bioanalytical Assay for Estimation of Thymoquinone in Rats Cerebrospinal Fluid and Brain Tissues of Nasally Administrated Thymoquinone Loaded Lipo-polymeric Nanoshells and Its Pharmacokinetic Profiling,” Journal of Pharmacological and Toxicological Methods 127 (2024): 107519.

[352]

G. Nehra, S. Andrews, J. Rettig, et al., “Intranasal Administration of the Chemotherapeutic Perillyl Alcohol Results in Selective Delivery to the Cerebrospinal Fluid in Rats,” Scientific Reports 11, no. 1 (2021): 6351.

[353]

I. Ullah, K. Chung, S. Bae, et al., “Nose-to-Brain Delivery of Cancer-Targeting Paclitaxel-Loaded Nanoparticles Potentiates Antitumor Effects in Malignant Glioblastoma,” Molecular Pharmaceutics 17, no. 4 (2020): 1193-1204.

[354]

M. AbdEl-haq, A. Kumar, F.-E. Ait Mohand, N. Kravchenko-Balasha, Y. Rottenberg, and A. J. Domb, “Paclitaxel Delivery to the Brain for Glioblastoma Treatment,” International Journal of Molecular Sciences 24, no. 14 (2023): 11722.

[355]

Y. Lee, J. Ha, M. Kim, S. Kang, M. Kang, and M. Lee, “Antisense-oligonucleotide co-micelles With Tumor Targeting Peptides Elicit Therapeutic Effects by Inhibiting microRNA-21 in the Glioblastoma Animal Models,” Journal of Advanced Research 53 (2023): 249-260.

[356]

A. Clavreul, M. Pourbaghi-Masouleh, E. Roger, N. Lautram, C. N. Montero-Menei, and P. Menei, “Human Mesenchymal Stromal Cells as Cellular Drug-delivery Vectors for Glioblastoma Therapy: A Good Deal?,” Journal of Experimental & Clinical Cancer Research 36, no. 1 (2017): 135.

[357]

C. O. Fonseca, “New Therapeutic Approach for Brain Tumors: Intranasal Administration of Ras Inhibitor Perillyl Alcohol,” Journal of Clinical Oncology 28, no. 15_suppl (2010): 2098-2098.

[358]

A. H. Schönthal, D. M. Peereboom, N. Wagle, et al., “Phase I Trial of Intranasal NEO100, Highly Purified Perillyl Alcohol, in Adult Patients With Recurrent Glioblastoma,” Neuro-Oncology Advances 3, no. 1 (2021): vdab005.

[359]

W. Wang, S. Swenson, H.-Y. Cho, F. M. Hofman, A. H. Schönthal, and T. C. Chen, “Efficient Brain Targeting and Therapeutic Intracranial Activity of bortezomib Through Intranasal co-delivery With NEO100 in Rodent Glioblastoma Models,” Journal of Neurosurgery JNS 132, no. 3 (2020): 959-967.

[360]

A. Thakur, N. Joshi, T. Shanmugam, and R. Banerjee, “Proapoptotic Miltefosine Nanovesicles Show Synergism With paclitaxel: Implications for Glioblastoma Multiforme Therapy,” Cancer Letters 334, no. 2 (2013): 274-283.

[361]

P. Sandbhor, J. Goda, B. Mohanty, et al., “Targeted Nano-delivery of Chemotherapy via Intranasal Route Suppresses in Vivo Glioblastoma Growth and Prolongs Survival in the Intracranial Mouse Model,” Drug Delivery and Translational Research 13, no. 2 (2023): 608-626.

[362]

S. Mukherjee, J. Baidoo, A. Fried, et al., “Curcumin Changes the Polarity of Tumor-associated Microglia and Eliminates Glioblastoma,” International Journal of Cancer 139, no. 12 (2016): 2838-2849.

[363]

A. Kisku, A. Nishad, S. Agrawal, et al., “Recent Developments in Intranasal Drug Delivery of Nanomedicines for the Treatment of Neuropsychiatric Disorders,” Frontiers in Medicine 11 (2024): 1463976.

[364]

H. Samin, S.-K. Ali Reza, and S. Sara, “Nanosystems for Intranasal Delivery of Therapeutics in Psychiatric Disorders,” Current Drug Delivery 22 (2025): 1-23.

[365]

M. Jawad, U. Shafique, F. Din, et al., “Nose to Brain Delivery of Escitalopram-loaded Nano-structured Lipid Carriers Thermosensitive Gel: Formulation, Physiochemical, Pharmacokinetic and Pharmacodynamics Evaluation,” Journal of Drug Delivery Science and Technology 97 (2024): 105800.

[366]

A. M. Fathi, R. G. Eissa, G. F. Balata, F.-E. S. Ghazy, and N. G. Eissa, “Intranasal Thermosensitive Hydrogel of Agomelatine Solid Dispersion for Better Management of Depression,” Journal of Drug Delivery Science and Technology 88 (2023): 104974.

[367]

S. Ahmed, A. Gull, M. Aqil, M. Danish Ansari, and Y. Sultana, “Poloxamer-407 Thickened Lipid Colloidal System of Agomelatine for Brain Targeting: Characterization, Brain Pharmacokinetic Study and Behavioral Study on Wistar Rats,” Colloids and Surfaces B: Biointerfaces 181 (2019): 426-436.

[368]

A. M. Fatouh, A. H. Elshafeey, and A. Abdelbary, “Intranasal Agomelatine Solid Lipid Nanoparticles to Enhance Brain Delivery: Formulation, Optimization and in Vivo Pharmacokinetics,” Drug Design, Development and Therapy 11 (2017): 1815-1825.

[369]

A. M. Fatouh, A. H. Elshafeey, and A. Abdelbary, “Agomelatine-based in Situ Gels for Brain Targeting via the Nasal Route: Statistical Optimization, in Vitro, and in Vivo Evaluation,” Drug Delivery 24, no. 1 (2017): 1077-1085.

[370]

R. B. Saudagar, A. B. Darekar, and B. R. Halde, “Design Development and Evaluation of Agomelatine Microemulsion for Intranasal Delivery,” Journal of Drug Delivery and Therapeutics 9, no. 1-s (2019): 132-138.

[371]

O. A. Alsaidan, M. H. Elkomy, R. M. Zaki, A. S. Tulbah, R. M. Yusif, and H. M. Eid, “Brain Targeting of venlafaxine via Intranasal Transbilosomes Thermogel for Improved Management of Depressive Disorder,” Journal of Pharmaceutical Sciences 113, no. 11 (2024): 3304-3314.

[372]

G. Mustafa, A. Rasul, G. Abbas, S. Shah, and Y. Mehmood, “Venlafaxine Loaded Novasomes for Intranasal Delivery: Mucoadhesion, Permeation and Pharmacokinetics Study,” Journal of Pharmaceutical Sciences 114, no. 2 (2024): 1077-1086.

[373]

B. Shah, D. Khunt, H. Bhatt, M. Misra, and H. Padh, “Intranasal Delivery of Venlafaxine Loaded Nanostructured Lipid Carrier: Risk Assessment and QbD Based Optimization,” Journal of Drug Delivery Science and Technology 33 (2016): 37-50.

[374]

S. Haque, S. Md, M. Fazil, et al., “Venlafaxine Loaded Chitosan NPs for Brain Targeting: Pharmacokinetic and Pharmacodynamic Evaluation,” Carbohydrate Polymers 89, no. 1 (2012): 72-79.

[375]

S. Haque, S. Md, J. K. Sahni, J. Ali, and S. Baboota, “Development and Evaluation of Brain Targeted Intranasal Alginate Nanoparticles for Treatment of Depression,” Journal of Psychiatric Research 48, no. 1 (2014): 1-12.

[376]

T. M. El-Nawawy, Y. A. Adel, M. Teaima, et al., “Intranasal Bilosomes in Thermosensitive Hydrogel: Advancing desvenlafaxine Succinate Delivery for Depression Management,” Pharmaceutical Development and Technology 29, no. 7 (2024): 663-674.

[377]

G.-F. Tong, N. Qin, and L.-W. Sun, “Development and Evaluation ofDesvenlafaxine Loaded PLGA-chitosan Nanoparticles for Brain Delivery,” Saudi Pharmaceutical Journal 25, no. 6 (2017): 844-851.

[378]

M. I. Alam, S. Baboota, A. Ahuja, et al., “Pharmacoscintigraphic Evaluation of Potential of Lipid Nanocarriers for Nose-to-brain Delivery of Antidepressant Drug,” International Journal of Pharmaceutics 470, no. 1 (2014): 99-106.

[379]

M. khatoon, M. F. Sohail, G. Shahnaz, et al., “Development and Evaluation of Optimized Thiolated Chitosan Proniosomal Gel Containing Duloxetine for Intranasal Delivery,” Aaps Pharmscitech [Electronic Resource] 20, no. 7 (2019): 288.

[380]

F. M. Elsenosy, G. A. Abdelbary, A. H. Elshafeey, I. Elsayed, and A. R. Fares, “Brain Targeting of Duloxetine HCL via Intranasal Delivery of Loaded Cubosomal Gel: In Vitro Characterization, Ex Vivo Permeation, and in Vivo Biodistribution Studies,” International Journal of Nanomedicine 15 (2020): 9517-9537.

[381]

S. Silva, C. Fonseca, J. Bicker, A. Falcão, and A. Fortuna, “Intranasal Administration of Sertraline Ensures Sustained Brain Delivery and Antidepressant Effect in a Mouse Model of Depression,” European Journal of Pharmaceutics and Biopharmaceutics 194 (2024): 118-130.

[382]

Y. R. Pandey, S. Kumar, B. K. Gupta, J. Ali, and S. Baboota, “Intranasal Delivery of Paroxetine Nanoemulsion via the Olfactory Region for the Management of Depression: Formulation, Behavioural and Biochemical Estimation,” Nanotechnology 27, no. 2 (2016): 025102.

[383]

S. Sharma, P. Gauba, A. Tyagi, and S. Dang, “Chitosan-modified Polymeric Nanoparticles for the Nose-to-brain Drug Delivery of Paroxetine: An in Vitro and in Vivo Evaluation,” Nanoscale 17, no. 3 (2025): 1687-1702.

[384]

P. Bhuiyan, W. Zhang, R. Chae, et al., “Intranasal Dantrolene Nanoparticles Abolished Depression Behavior and Memory Loss as a Disease-modifying Drug in 5XFAD Mice,” Alzheimer's & Dementia 20, no. S6 (2024): e089764.

[385]

A. Ali, N. Sultana, A. Waheed, et al., “Nanoliposomal in Situ Gel of Fluoxetine and Embelin as a Potent Intervention for Depression via the Intranasal Route in CUMS Animal Model,” Journal of Drug Delivery Science and Technology 99 (2024): 105947.

[386]

V. Brown and F. Liu, “Intranasal Delivery of a Peptide With Antidepressant-Like Effect,” Neuropsychopharmacology 39, no. 9 (2014): 2131-2141.

[387]

Y. Y. Grinberg, L. A. Zitzow, and R. P. Kraig, “Intranasally Administered IGF-1 Inhibits Spreading Depression in Vivo,” Brain Research 1677 (2017): 47-57.

[388]

G. Paslakis, W. F. Blum, and M. Deuschle, “Intranasal Insulin-Like Growth Factor I (IGF-I) as a Plausible Future Treatment of Depression,” Medical Hypotheses 79, no. 2 (2012): 222-225.

[389]

G. X. P. Ren, B. Wu, F. Yang, and X. Wu, “Intranasal Treatment of Lixisenatide Attenuated Emotional and Olfactory Symptoms via CREB-mediated Adult Neurogenesis in Mouse Depression Model,” Aging 13, no. 3 (2021): 3898-3908.

[390]

Y. Nakao, M. Horiguchi, R. Nakamura, et al., “LARETH-25 and β-CD Improve central Transitivity and central Pharmacological Effect of the GLP-2 Peptide,” International Journal of Pharmaceutics 515, no. 1 (2016): 37-45.

[391]

S. Sasaki-Hamada, R. Nakamura, Y. Nakao, et al., “Antidepressant-Like Effects Exerted by the Intranasal Administration of a Glucagon-Like Peptide-2 Derivative Containing Cell-penetrating Peptides and a Penetration-accelerating Sequence in Mice,” Peptides 87 (2017): 64-70.

[392]

T. Akita, R. Kimura, S. Akaguma, et al., “Usefulness of Cell-penetrating Peptides and Penetration Accelerating Sequence for Nose-to-brain Delivery of Glucagon-Like Peptide-2,” Journal of Controlled Release 335 (2021): 575-583.

[393]

X.-C. Ma, P. Liu, X.-L. Zhang, et al., “Intranasal Delivery of Recombinant AAV Containing BDNF Fused With HA2TAT: A Potential Promising Therapy Strategy for Major Depressive Disorder,” Scientific Reports 6, no. 1 (2016): 22404.

[394]

C. Chen, Y. Dong, F. Liu, et al., “A Study of Antidepressant Effect and Mechanism on Intranasal Delivery of BDNF-HA2TAT/AAV to Rats With Post-Stroke Depression,” Neuropsychiatric Disease and Treatment 16 (2020): 637-649.

[395]

X. L. Li, H. Liu, S. H. Liu, Y. Cheng, and G. J. Xie, “Intranasal Administration of Brain-Derived Neurotrophic Factor Rescues Depressive-Like Phenotypes in Chronic Unpredictable Mild Stress Mice,” Neuropsychiatric Disease and Treatment 18 (2022): 1885-1894.

[396]

S. Deyama, S. Aoki, R. Sugie, et al., “Intranasal Administration of Resolvin E1 Produces Antidepressant-Like Effects via BDNF/VEGF-mTORC1 Signaling in the Medial Prefrontal Cortex,” Neurotherapeutics 20, no. 2 (2023): 484-501.

[397]

C.-G. Shi, L.-M. Wang, Y. Wu, et al., “Intranasal Administration of Nerve Growth Factor Produces Antidepressant-Like Effects in Animals,” Neurochemical Research 35, no. 9 (2010): 1302-1314.

[398]

M. Zheng, T. Zhu, B. Chen, et al., “Intranasal Monophosphoryl Lipid a Administration Ameliorates Depression-Like Behavior in Chronically Stressed Mice through Stimulation of Microglia,” Neurochemical Research 48, no. 10 (2023): 3160-3176.

[399]

E. V. Markova, E. Y. Shevela, M. A. Knyazeva, et al., “Effect of M2 Macrophage-Derived Soluble Factors on Behavioral Patterns and Cytokine Production in Various Brain Structures in Depression-Like Mice,” Bulletin of Experimental Biology and Medicine 172, no. 3 (2022): 341-344.

[400]

T. Â. Smaniotto, A. M. Casaril, D. de Andrade Lourenço, et al., “Intranasal Administration of Interleukin-4 Ameliorates Depression-Like Behavior and Biochemical Alterations in Mouse Submitted to the Chronic Unpredictable Mild Stress: Modulation of Neuroinflammation and Oxidative Stress,” Psychopharmacology 240, no. 4 (2023): 935-950.

[401]

M. Ju, Z. Zhang, F. Gao, et al., “Intranasal Delivery of circATF7IP siRNA via Lipid Nanoparticles Alleviates LPS-induced Depressive-Like Behaviors,” Advanced Healthcare Materials 13, no. 30 (2024): 2402219.

[402]

D. Xu, T. Qiao, Y. Wang, Q.-S. Wang, and Y.-L. Cui, “Alginate Nanogels-based Thermosensitive Hydrogel to Improve Antidepressant-Like Effects of Albiflorin via Intranasal Delivery,” Drug Delivery 28, no. 1 (2021): 2137-2149.

[403]

D. Xu, Y.-R. Lu, N. Kou, M.-J. Hu, Q.-S. Wang, and Y.-L. Cui, “Intranasal Delivery of icariin via a Nanogel-thermoresponsive Hydrogel Compound System to Improve Its Antidepressant-Like Activity,” International Journal of Pharmaceutics 586 (2020): 119550.

[404]

X.-J. Qi, D. Xu, M.-L. Tian, J.-F. Zhou, Q.-S. Wang, and Y.-L. Cui, “Thermosensitive Hydrogel Designed for Improving the Antidepressant Activities of genipin via Intranasal Delivery,” Materials & Design 206 (2021): 109816.

[405]

J.-F. Zhou, L. Duan, Y.-X. Wang, et al., “Design, Characterization of Resveratrol-Thermosensitive Hydrogel System (Res-THS) and Evaluation of Its Anti-depressant Effect via Intranasal Administration,” Materials & Design 216 (2022): 110597.

[406]

Q.-S. Wang, K. Li, L.-N. Gao, Y. Zhang, K.-M. Lin, and Y.-L. Cui, “Intranasal Delivery of Berberine via in Situ Thermoresponsive Hydrogels With Non-invasive Therapy Exhibits Better Antidepressant-Like Effects,” Biomaterials Science 8, no. 10 (2020): 2853-2865.

[407]

D. Xu, C. Qiu, Y. Wang, T. Qiao, and Y.-L. Cui, “Intranasal co-delivery of Berberine and Evodiamine by Self-assembled Thermosensitive in-situ Hydrogels for Improving Depressive Disorder,” International Journal of Pharmaceutics 603 (2021): 120667.

[408]

M. H. Elkomy, F. I. Abo El-Ela, R. M. Zaki, et al., “Intranasal Nanotransferosomal Gel for Quercetin Brain Targeting: II. Antidepressant Effect in an Experimental Animal Model,” Pharmaceutics 15, no. 8 (2023): 2095.

[409]

W. Hu, G. Xie, T. Zhou, et al., “Intranasal Administration of White Tea Alleviates the Olfactory Function Deficit Induced by Chronic Unpredictable Mild Stress,” Pharmaceutical Biology 58, no. 1 (2020): 1230-1237.

[410]

A. Alhowyan, M. Imran, A. Haque, and M. A. Kalam, “Surface-engineered Niosomes of Esculin Hydrate for the Management of Depression via Intranasal Route: Optimization, In Vitro, Ex Vivo and Pharmacokinetic Assessment,” Journal of Drug Delivery Science and Technology 102 (2024): 106417.

[411]

L. I. Serova, M. Laukova, L. G. Alaluf, L. Pucillo, and E. L. Sabban, “Intranasal Neuropeptide Y Reverses Anxiety and Depressive-Like Behavior Impaired by Single Prolonged Stress PTSD Model,” European Neuropsychopharmacology 24, no. 1 (2014): 142-147.

[412]

T. T. Rohn, D. Radin, T. Brandmeyer, et al., “Intranasal Delivery of shRNA to Knockdown the 5HT-2A Receptor Enhances Memory and Alleviates Anxiety,” Translational Psychiatry 14, no. 1 (2024): 154.

[413]

O. Y. Chao, S. S. Pathak, H. Zhang, et al., “Altered Dopaminergic Pathways and Therapeutic Effects of Intranasal Dopamine in Two Distinct Mouse Models of Autism,” Molecular Brain 13, no. 1 (2020): 111.

[414]

Y. Liang, L. Duan, X. Xu, et al., “Mesenchymal Stem Cell-Derived Exosomes for Treatment of Autism Spectrum Disorder,” ACS Applied Bio Materials 3, no. 9 (2020): 6384-6393.

[415]

X.-L. Zhong, Y. Huang, Y. Du, et al., “Unlocking the Therapeutic Potential of Exosomes Derived from Nasal Olfactory Mucosal Mesenchymal Stem Cells: Restoring Synaptic Plasticity, Neurogenesis, and Neuroinflammation in Schizophrenia,” Schizophrenia Bulletin 50, no. 3 (2023): 600-614.

[416]

S. Silva, J. Bicker, C. Fonseca, et al., “Encapsulated Escitalopram and Paroxetine Intranasal Co-Administration: In Vitro/in Vivo Evaluation,” Frontiers in Pharmacology 12 (2021): 751321.

[417]

G. Scantamburlo, M. Hansenne, V. Geenen, J. J. Legros, and M. Ansseau, “Additional Intranasal Oxytocin to escitalopram Improves Depressive Symptoms in Resistant Depression: An Open Trial,” European Psychiatry 30, no. 1 (2015): 65-68.

[418]

D. Xu, L.-N. Gao, X.-J. Song, et al., “Enhanced Antidepressant Effects of BDNF-quercetin Alginate Nanogels for Depression Therapy,” Journal of Nanobiotechnology 21, no. 1 (2023): 379.

[419]

K. Y. Mahmoud, N. A. Elhesaisy, A. R. Rashed, et al., “Exploring the Potential of Intranasally Administered Naturally Occurring Quercetin Loaded Into Polymeric Nanocapsules as a Novel Platform for the Treatment of Anxiety,” Scientific Reports 13, no. 1 (2023): 510.

[420]

M. J. R. Ruigrok and E. C. M. de Lange, “Emerging Insights for Translational Pharmacokinetic and Pharmacokinetic-Pharmacodynamic Studies: Towards Prediction of Nose-to-Brain Transport in Humans,” The AAPS Journal 17, no. 3 (2015): 493-505.

[421]

A. R. Al Jayoush, H. Hassan, H. Asiri, et al., “Niosomes for Nose-to-brain Delivery: A Non-invasive Versatile Carrier System for Drug Delivery in Neurodegenerative Diseases,” Journal of Drug Delivery Science and Technology 89 (2023): 105007.

[422]

S. Iwasaki, S. Yamamoto, N. Sano, et al., “Direct Drug Delivery of Low-Permeable Compounds to the Central Nervous System via Intranasal Administration in Rats and Monkeys,” Pharmaceutical Research 36, no. 5 (2019): 76.

[423]

R. N. Prentice and S. B. Rizwan, “Translational Considerations in the Development of Intranasal Treatments for Epilepsy,” Pharmaceutics 15, no. 1 (2023): 233.

[424]

M. A. Durante, S. Kurtenbach, Z. B. Sargi, et al., “Single-cell Analysis of Olfactory Neurogenesis and Differentiation in Adult Humans,” Nature Neuroscience 23, no. 3 (2020): 323-326.

[425]

Y. Jiang, J. Zhu, G. Xu, and X. Liu, “Intranasal Delivery of Stem Cells to the Brain,” Expert Opinion on Drug Delivery 8, no. 5 (2011): 623-632.

[426]

A. Maaz, I. S. Blagbrough, and P. A. De Bank, “In Vitro Evaluation of Nasal Aerosol Depositions: An Insight for Direct Nose to Brain Drug Delivery,” Pharmaceutics 13, no. 7 (2021): 1079.

[427]

M. Ambikanandan and K. Gitanjali, “Drug Delivery Systems From Nose to Brain,” Current Pharmaceutical Biotechnology 13, no. 12 (2012): 2355-2379.

[428]

D. Dhuyvetter, F. Tekle, M. Nazarov, et al., “Direct Nose to Brain Delivery of Small Molecules: Critical Analysis of Data From a Standardized in Vivo Screening Model in Rats,” Drug Delivery 27, no. 1 (2020): 1597-1607.

[429]

S. Md, G. Mustafa, S. Baboota, and J. Ali, “Nanoneurotherapeutics Approach Intended for Direct Nose to Brain Delivery,” Drug Development and Industrial Pharmacy 41, no. 12 (2015): 1922-1934.

[430]

M. Carlotta, R. Federica, N. H. Patrizia, P. Donatella, M. Luisa Di, and C. Maria, “Nose to Brain Delivery: New Trends in Amphiphile-Based “Soft” Nanocarriers,” Current Pharmaceutical Design 21, no. 36 (2015): 5225-5232.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

92

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/