Depletion of Fat Mass and Obesity-Associated Protein (FTO) Drives Heterochromatin Loss via Lysine Acetyltransferase 8 (KAT8)-Mediated Remodeling and Spacing Factor 1 (RSF1) Acetylation in Skin Aging

Fan Wang , Lei Zhou , Yun Zhong , Yisheng Cai , Xin Meng , Mengting Chen , Rui Mao , Xin Xiao , Caitan Yi , Yi Guo , Hongfu Xie , Yiya Zhang , Ji Li

MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70205

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (7) : e70205 DOI: 10.1002/mco2.70205
ORIGINAL ARTICLE

Depletion of Fat Mass and Obesity-Associated Protein (FTO) Drives Heterochromatin Loss via Lysine Acetyltransferase 8 (KAT8)-Mediated Remodeling and Spacing Factor 1 (RSF1) Acetylation in Skin Aging

Author information +
History +
PDF

Abstract

N6-methyladenosine (m6A), as the most common RNA modification at the post-transcriptional level, plays a role in various pathophysiological processes. However, its underlying mechanism in skin aging remains enigmatic. Here, we identified that fat mass and obesity-associated protein (FTO) serves as a protective factor against skin aging. FTO expression is downregulated in aging skin tissues and senescent fibroblasts. Furthermore, the depletion or inhibition of FTO exacerbates dermal fibroblasts senescence and accelerates skin aging. Additionally, RNA-seq combined with MeRIP-seq revealed that lysine acetyltransferase 8 (KAT8) is the downstream target of FTO. FTO deficiency leads to an increase in m6A levels and a decrease in mRNA stability of KAT8 in a m6A-YTHDF2-dependent manner. Notably, our integrated analysis of m6A sequencing and acetylation proteomics links changes in heterochromatin structure with aging. Mechanistically, KAT8 depletion leads to heterochromatin loss and the subsequent aging by acetylating remodeling and spacing factor 1 (RSF1) at K1050. Overall, our finding reveals a pivotal role of FTO-mediated m6A modification in the skin aging by regulating KAT8/RSF1-involved heterochromatin formation. It provides new insights into the mechanisms and strategies for delaying aging and improving healthspan.

Keywords

fat mass and obesity-associated protein / lysine acetyltransferase 8 / N6-methyladenosine / remodeling and spacing factor 1 / senescence

Cite this article

Download citation ▾
Fan Wang, Lei Zhou, Yun Zhong, Yisheng Cai, Xin Meng, Mengting Chen, Rui Mao, Xin Xiao, Caitan Yi, Yi Guo, Hongfu Xie, Yiya Zhang, Ji Li. Depletion of Fat Mass and Obesity-Associated Protein (FTO) Drives Heterochromatin Loss via Lysine Acetyltransferase 8 (KAT8)-Mediated Remodeling and Spacing Factor 1 (RSF1) Acetylation in Skin Aging. MedComm, 2025, 6(7): e70205 DOI:10.1002/mco2.70205

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. T. Slominski, M. A. Zmijewski, C. Skobowiat, B. Zbytek, R. M. Slominski, and J. D. Steketee, “Sensing the Environment: Regulation of Local and Global Homeostasis by the Skin's Neuroendocrine System,” Advances in Anatomy, Embryology and Cell Biology 212 (2012): v-115.

[2]

D. A. Gunn, A. J. de Craen, J. L. Dick, et al., “Facial Appearance Reflects human Familial Longevity and Cardiovascular Disease Risk in Healthy Individuals,” Journals of Gerontology. Series A, Biological Sciences and Medical Sciences 68, no. 2 (2013): 145-152.

[3]

B. G. Childs, M. Gluscevic, D. J. Baker, et al., “Senescent Cells: An Emerging Target for Diseases of Ageing,” Nature Reviews Drug Discovery 16, no. 10 (Oct( 2017): 718-735.

[4]

B. G. Childs, M. Durik, D. J. Baker, and J. M. van Deursen, “Cellular Senescence in Aging and Age-Related Disease: From Mechanisms to Therapy,” Nature Medicine 21, no. 12 (Dec 2015): 1424-1435.

[5]

M. Demaria, P. Y. Desprez, J. Campisi, and M. C. Velarde, “Cell Autonomous and Non-Autonomous Effects of Senescent Cells in the Skin,” Journal of Investigative Dermatology 135, no. 7 (Jul( 2015): 1722-1726.

[6]

J. Campisi, P. Kapahi, G. J. Lithgow, S. Melov, J. C. Newman, and E. Verdin, “From Discoveries in Ageing Research to Therapeutics for Healthy Ageing,” Nature 571, no. 7764 (Jul( 2019): 183-192.

[7]

T. Kuilman, C. Michaloglou, W. J. Mooi, and D. S. Peeper, “The Essence of Senescence,” Genes & Development 24, no. 22 (2010): 2463-2479.

[8]

K. Larson, S. J. Yan, A. Tsurumi, et al., “Heterochromatin Formation Promotes Longevity and Represses Ribosomal RNA Synthesis,” PLoS Genetics 8, no. 1 (Jan( 2012): e1002473.

[9]

T. Smeal, J. Claus, B. Kennedy, F. Cole, and L. Guarente, “Loss of Transcriptional Silencing Causes Sterility in Old Mother Cells of S. cerevisiae,” Cell 84, no. 4 (Feb 1996): 633-642.

[10]

P. Wasserzug-Pash, R. Rothman, E. Reich, et al., “Loss of Heterochromatin and Retrotransposon Silencing as Determinants in Oocyte Aging,” Aging Cell 21, no. 3 (Mar( 2022): e13568.

[11]

J. H. Lee, E. W. Kim, D. L. Croteau, and V. A. Bohr, “Heterochromatin: An Epigenetic Point of View in Aging,” Experimental & Molecular Medicine 52, no. 9 (Sep( 2020): 1466-1474.

[12]

B. S. Zhao, I. A. Roundtree, and C. He, “Post-Transcriptional Gene Regulation by mRNA Modifications,” Nature Reviews Molecular Cell Biology 18, no. 1 (Jan( 2017): 31-42.

[13]

J. Liu, Y. Yue, D. Han, et al., “A METTL3-METTL14 Complex Mediates Mammalian Nuclear RNA N6-Adenosine Methylation,” Nature Chemical Biology 10, no. 2 (Feb 2014): 93-95.

[14]

X. L. Ping, B. F. Sun, L. Wang, et al., “Mammalian WTAP Is a Regulatory Subunit of the RNA N6-Methyladenosine Methyltransferase,” Cell Research 24, no. 2 (Feb 2014): 177-189.

[15]

G. Jia, Y. Fu, X. Zhao, et al., “N6-Methyladenosine in Nuclear RNA Is a Major Substrate of the Obesity-Associated FTO,” Nature Chemical Biology 7, no. 12 (Oct( 2011): 885-887.

[16]

G. Zheng, J. A. Dahl, Y. Niu, et al., “ALKBH5 is a Mammalian RNA Demethylase That Impacts RNA Metabolism and Mouse Fertility,” Molecular Cell 49, no. 1 (Jan( 2013): 18-29.

[17]

L. Zhou, Y. Zhong, F. Wang, et al., “WTAP Mediated N6-Methyladenosine RNA Modification of ELF3 Drives Cellular Senescence by Upregulating IRF8,” International Journal of Biological Sciences 20, no. 5 (2024): 1763-1777.

[18]

M. Hirayama, F. Y. Wei, T. Chujo, et al., “FTO Demethylates Cyclin D1 mRNA and Controls Cell-Cycle Progression,” Cell Reports 31, no. 1 (Apr 2020): 107464.

[19]

Z. X. Jiang, Y. N. Wang, Z. Y. Li, et al., “The m6A mRNA Demethylase FTO in Granulosa Cells Retards FOS-Dependent Ovarian Aging,” Cell Death & Disease 12, no. 8 (Jul( 2021): 744.

[20]

N. Li, R. Luo, W. Zhang, et al., “IL-17A Promotes Endothelial Cell Senescence by Up-Regulating the Expression of FTO Through Activating JNK Signal Pathway,” Biogerontology 24, no. 1 (Feb 2023): 99-110.

[21]

M. Wlaschek, P. Maity, E. Makrantonaki, and K. Scharffetter-Kochanek, “Connective Tissue and Fibroblast Senescence in Skin Aging,” Journal of Investigative Dermatology 141, no. 4s (Apr 2021): 985-992.

[22]

Y. Li, H. Zhong, M. Wu, et al., “Decline of p300 Contributes to Cell Senescence and Growth Inhibition of hUC-MSCs Through p53/p21 Signaling Pathway,” Biochemical and Biophysical Research Communications 515, no. 1 (Jul( 2019): 24-30.

[23]

B. Liu, S. Ghosh, X. Yang, et al., “Resveratrol Rescues SIRT1-Dependent Adult Stem Cell Decline and Alleviates Progeroid Features in Laminopathy-Based Progeria,” Cell Metabolism 16, no. 6 (Dec 2012): 738-750.

[24]

X. Li, L. Li, R. Pandey, et al., “The Histone Acetyltransferase MOF Is a Key Regulator of the Embryonic Stem Cell Core Transcriptional Network,” Cell Stem Cell 11, no. 2 (Aug 2012): 163-178.

[25]

G. G. Sharma, S. So, A. Gupta, et al., “MOF and Histone H4 Acetylation at Lysine 16 Are Critical for DNA Damage Response and Double-Strand Break Repair,” Molecular and Cellular Biology 30, no. 14 (Jul( 2010): 3582-3595.

[26]

A. Chatterjee, J. Seyfferth, J. Lucci, et al., “MOF Acetyl Transferase Regulates Transcription and Respiration in Mitochondria,” Cell 167, no. 3 (Oct( 2016): 722-738.e23.

[27]

H. Du, Y. Zhao, J. He, et al., “YTHDF2 Destabilizes M(6)A-Containing RNA Through Direct Recruitment of the CCR4-NOT Deadenylase Complex,” Nature Communications 7 (Aug 2016): 12626.

[28]

Y. Dou, T. A. Milne, A. J. Tackett, et al., “Physical Association and Coordinate Function of the H3 K4 Methyltransferase MLL1 and the H4 K16 Acetyltransferase MOF,” Cell 121, no. 6 (Jun( 2005): 873-885.

[29]

A. Loyola, J. Y. Huang, G. LeRoy, et al., “Functional Analysis of the Subunits of the Chromatin Assembly Factor RSF,” Molecular and Cellular Biology 23, no. 19 (Oct( 2003): 6759-6768.

[30]

A. Loyola and D. Reinberg, “Histone Deposition and Chromatin Assembly by RSF,” Methods (San Diego, California) 31, no. 1 (Sep( 2003): 96-103.

[31]

C. López-Otín, M. A. Blasco, L. Partridge, M. Serrano, and G. Kroemer, “The Hallmarks of Aging,” Cell 153, no. 6 (Jun( 2013): 1194-1217.

[32]

L. Lu, L. Li, X. Lv, X. S. Wu, D. P. Liu, and C. C. Liang, “Modulations of hMOF Autoacetylation by SIRT1 Regulate hMOF Recruitment and Activities on the Chromatin,” Cell Research 21, no. 8 (Aug 2011): 1182-1195.

[33]

D. Munoz-Espin and M. Serrano, “Cellular Senescence: From Physiology to Pathology,” Nature Reviews Molecular Cell Biology 15, no. 7 (Jul( 2014): 482-496.

[34]

K. Bäsler, S. Bergmann, M. Heisig, A. Naegel, M. Zorn-Kruppa, and J. M. Brandner, “The Role of Tight Junctions in Skin Barrier Function and Dermal Absorption,” Journal of Controlled Release 242 (Nov 2016): 105-118.

[35]

D. Cerimele, L. Celleno, and F. Serri, “Physiological Changes in Ageing Skin,” British Journal of Dermatology 122, no. Suppl 35 (Apr 1990): 13-20.

[36]

A. C. Franco, C. Aveleira, and C. Cavadas, “Skin Senescence: Mechanisms and Impact on Whole-Body Aging,” Trends in Molecular Medicine 28, no. 2 (Feb 2022): 97-109.

[37]

D. Orioli and E. Dellambra, “Epigenetic Regulation of Skin Cells in Natural Aging and Premature Aging Diseases,” Cells 7, no. 12 (Dec 2018): 268.

[38]

F. Bormann, M. Rodríguez-Paredes, S. Hagemann, et al., “Reduced DNA Methylation Patterning and Transcriptional Connectivity Define Human Skin Aging,” Aging Cell 15, no. 3 (Jun( 2016): 563-571.

[39]

H. F. Xie, Y. Z. Liu, R. Du, et al., “miR-377 Induces Senescence in Human Skin Fibroblasts by Targeting DNA Methyltransferase 1,” Cell Death & Disease 8, no. 3 (Mar( 2017): e2663.

[40]

M. Ouyang, J. Fang, M. Wang, et al., “Advanced Glycation End Products Alter the M(6)A-Modified RNA Profiles in Human Dermal Fibroblasts,” Epigenomics 14, no. 8 (Apr 2022): 431-449.

[41]

S. Zaccara, R. J. Ries, and S. R. Jaffrey, “Reading, Writing and Erasing mRNA Methylation,” Nature Reviews Molecular Cell Biology 20, no. 10 (Oct( 2019): 608-624.

[42]

G. Li, R. Luo, W. Zhang, et al., “m6A Hypomethylation of DNMT3B Regulated by ALKBH5 Promotes Intervertebral Disc Degeneration via E4F1 Deficiency,” Clinical and Translational Medicine 12, no. 3 (Mar( 2022): e765.

[43]

X. Chen, W. Gong, X. Shao, et al., “METTL3-Mediated M(6)A Modification of ATG7 Regulates Autophagy-GATA4 Axis to Promote Cellular Senescence and Osteoarthritis Progression,” Annals of the Rheumatic Diseases 81, no. 1 (Jan( 2022): 87-99.

[44]

L. Yang, J. Li, L. Xu, et al., “Rhein Shows Potent Efficacy Against Non-Small-Cell Lung Cancer Through Inhibiting the STAT3 Pathway,” Cancer Management and Research 11 (2019): 1167-1176.

[45]

T. Narita, B. T. Weinert, and C. Choudhary, “Functions and Mechanisms of Non-Histone Protein Acetylation,” Nature Reviews Molecular Cell Biology 20, no. 3 (Mar( 2019): 156-174.

[46]

E. Michishita, R. A. McCord, E. Berber, et al., “SIRT6 is a Histone H3 Lysine 9 Deacetylase That Modulates Telomeric Chromatin,” Nature 452, no. 7186 (Mar( 2008): 492-496.

[47]

V. Morales, T. Straub, M. F. Neumann, G. Mengus, A. Akhtar, and P. B. Becker, “Functional Integration of the Histone Acetyltransferase MOF Into the Dosage Compensation Complex,” EMBO Journal 23, no. 11 (Jun( 2004): 2258-2268.

[48]

X. Li, L. Wu, C. A. Corsa, S. Kunkel, and Y. Dou, “Two Mammalian MOF Complexes Regulate Transcription Activation by Distinct Mechanisms,” Molecular Cell 36, no. 2 (Oct( 2009): 290-301.

[49]

M. Taipale, S. Rea, K. Richter, et al., “hMOF Histone Acetyltransferase Is Required for Histone H4 Lysine 16 Acetylation in Mammalian Cells,” Molecular and Cellular Biology 25, no. 15 (Aug 2005): 6798-6810.

[50]

A. Gupta, T. G. Guerin-Peyrou, G. G. Sharma, et al., “The Mammalian Ortholog of Drosophila MOF That Acetylates Histone H4 Lysine 16 Is Essential for Embryogenesis and Oncogenesis,” Molecular and Cellular Biology 28, no. 1 (Jan( 2008): 397-409.

[51]

E. R. Smith, C. Cayrou, R. Huang, W. S. Lane, J. Côté, and J. C. Lucchesi, “A Human Protein Complex Homologous to the Drosophila MSL Complex Is Responsible for the Majority of Histone H4 Acetylation at Lysine 16,” Molecular and Cellular Biology 25, no. 21 (Nov( 2005): 9175-9188.

[52]

V. Krishnan, M. Z. Chow, Z. Wang, et al., “Histone H4 Lysine 16 Hypoacetylation Is Associated With Defective DNA Repair and Premature Senescence in Zmpste24-Deficient Mice,” PNAS 108, no. 30 (Jul( 2011): 12325-12330.

[53]

J. B. Baell, D. J. Leaver, S. J. Hermans, et al., “Inhibitors of Histone Acetyltransferases KAT6A/B Induce Senescence and Arrest Tumour Growth,” Nature 560, no. 7717 (Aug 2018): 253-257.

[54]

Y. I. Yang, J. H. Ahn, K. T. Lee, M. Shih Ie, and J. H. Choi, “RSF1 Is a Positive Regulator of NF-κB-Induced Gene Expression Required for Ovarian Cancer Chemoresistance,” Cancer Research 74, no. 8 (Apr 2014): 2258-2269.

[55]

A. Mendez-Bermudez, L. Lototska, M. Pousse, et al., “Selective Pericentromeric Heterochromatin Dismantling Caused by TP53 Activation During Senescence,” Nucleic Acids Research 50, no. 13 (Jul( 2022): 7493-7510.

[56]

W. Zhang, J. Li, K. Suzuki, et al., “Aging Stem Cells. A Werner Syndrome Stem Cell Model Unveils Heterochromatin Alterations as a Driver of Human Aging,” Science 348, no. 6239 (Jun( 2015): 1160-1163.

[57]

M. Van Meter, M. Kashyap, S. Rezazadeh, et al., “SIRT6 Represses LINE1 Retrotransposons by Ribosylating KAP1 but this Repression Fails With Stress and Age,” Nature Communications 5 (Sep 2014): 5011.

[58]

R. Di Micco, G. Sulli, M. Dobreva, et al., “Interplay Between Oncogene-Induced DNA Damage Response and Heterochromatin in Senescence and Cancer,” Nature Cell Biology 13, no. 3 (Mar( 2011): 292-302.

[59]

M. Narita, S. Nũnez, E. Heard, et al., “Rb-Mediated Heterochromatin Formation and Silencing of E2F Target Genes During Cellular Senescence,” Cell 113, no. 6 (Jun( 2003): 703-716.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

9

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/