Novel Trispecific Neutralizing Antibodies With Enhanced Potency and Breadth Against Pan-Sarbecoviruses
Rui Qiao , Yuanchen Liu , Qiyu Mao , Jiayan Li , Yinying Lu , Jialu Shi , Chen Li , Jizhen Yu , Jiami Gong , Xun Wang , Yuchen Shao , Lei Sun , Wenhong Zhang , Hongjie Yu , Hin Chu , Pengfei Wang , Xiaoyu Zhao
MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70191
Novel Trispecific Neutralizing Antibodies With Enhanced Potency and Breadth Against Pan-Sarbecoviruses
The ongoing emergence of new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the urgent need for developing antivirals targeting both SARS-CoV-2 variants and related sarbecoviruses. To this end, we designed novel trispecific antibodies, Tri-1 and Tri-2, engineered by fusing the single-chain variable fragments (scFvs) of a potent antibody (PW5-570) to the Fc region of “Knob-into-Hole” bispecific antibodies (bsAbs) composed of two distinct broad antibodies (PW5-5 and PW5-535). Compared with the parental antibodies, Tri-1 and Tri-2 displayed enhanced binding affinities to the receptor-binding domains of SARS-CoV, SARS-CoV-2 wild type, and Omicron XBB.1.16, with each arm contributed to the overall enhancement. Furthermore, pseudovirus neutralization assays revealed that Tri-1 and Tri-2 effectively neutralized all tested SARS-CoV, SARS-CoV-2 variants, and related sarbecoviruses (Pangolin-GD, RaTG13, WIV1, and SHC014), demonstrating potency and breadth superior to any single parental antibody. Consistently, Tri-1 and Tri-2 were found to effectively neutralize authentic SARS-CoV and SARS-CoV-2 variants with IC50 values comparable to or better than those of parental antibodies. Taken together, this study highlights the potential effectiveness of Tri-1 and Tri-2 as novel formats for harnessing cross-neutralizing antibodies in the development of multivalent agents to combat both current and future SARS-like coronaviruses.
coronavirus / sarbecovirus / SARS-CoV-2 / bispecific antibody / trispecific antibody / broadly neutralizing antibody
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |