Novel Trispecific Neutralizing Antibodies With Enhanced Potency and Breadth Against Pan-Sarbecoviruses

Rui Qiao , Yuanchen Liu , Qiyu Mao , Jiayan Li , Yinying Lu , Jialu Shi , Chen Li , Jizhen Yu , Jiami Gong , Xun Wang , Yuchen Shao , Lei Sun , Wenhong Zhang , Hongjie Yu , Hin Chu , Pengfei Wang , Xiaoyu Zhao

MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70191

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70191 DOI: 10.1002/mco2.70191
ORIGINAL ARTICLE

Novel Trispecific Neutralizing Antibodies With Enhanced Potency and Breadth Against Pan-Sarbecoviruses

Author information +
History +
PDF

Abstract

The ongoing emergence of new variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the urgent need for developing antivirals targeting both SARS-CoV-2 variants and related sarbecoviruses. To this end, we designed novel trispecific antibodies, Tri-1 and Tri-2, engineered by fusing the single-chain variable fragments (scFvs) of a potent antibody (PW5-570) to the Fc region of “Knob-into-Hole” bispecific antibodies (bsAbs) composed of two distinct broad antibodies (PW5-5 and PW5-535). Compared with the parental antibodies, Tri-1 and Tri-2 displayed enhanced binding affinities to the receptor-binding domains of SARS-CoV, SARS-CoV-2 wild type, and Omicron XBB.1.16, with each arm contributed to the overall enhancement. Furthermore, pseudovirus neutralization assays revealed that Tri-1 and Tri-2 effectively neutralized all tested SARS-CoV, SARS-CoV-2 variants, and related sarbecoviruses (Pangolin-GD, RaTG13, WIV1, and SHC014), demonstrating potency and breadth superior to any single parental antibody. Consistently, Tri-1 and Tri-2 were found to effectively neutralize authentic SARS-CoV and SARS-CoV-2 variants with IC50 values comparable to or better than those of parental antibodies. Taken together, this study highlights the potential effectiveness of Tri-1 and Tri-2 as novel formats for harnessing cross-neutralizing antibodies in the development of multivalent agents to combat both current and future SARS-like coronaviruses.

Keywords

coronavirus / sarbecovirus / SARS-CoV-2 / bispecific antibody / trispecific antibody / broadly neutralizing antibody

Cite this article

Download citation ▾
Rui Qiao, Yuanchen Liu, Qiyu Mao, Jiayan Li, Yinying Lu, Jialu Shi, Chen Li, Jizhen Yu, Jiami Gong, Xun Wang, Yuchen Shao, Lei Sun, Wenhong Zhang, Hongjie Yu, Hin Chu, Pengfei Wang, Xiaoyu Zhao. Novel Trispecific Neutralizing Antibodies With Enhanced Potency and Breadth Against Pan-Sarbecoviruses. MedComm, 2025, 6(5): e70191 DOI:10.1002/mco2.70191

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

D. Focosi, S. McConnell, A. Casadevall, et al., “Monoclonal Antibody Therapies Against SARS-CoV-2,” The Lancet Infectious Diseases 22 (2022): e311-e326.

[2]

L. Zhou, C. Mo, Y. Yang, et al., “Characterization and Application of a Series of Monoclonal Antibodies Against SARS-CoV-2 Nucleocapsid Protein,” Journal of Medical Virology 95 (2023): e28225.

[3]

K. Westendorf, S. Zentelis, L. Wang, et al., “LY-CoV1404 (Bebtelovimab) Potently Neutralizes SARS-CoV-2 Variants,” Cell Reports 39 (2022): 110812.

[4]

C. G. Rappazzo, L. V. Tse, C. I. Kaku, et al., “Broad and Potent Activity Against SARS-Like Viruses by an Engineered Human Monoclonal Antibody,” Science 371 (2021): 823-829.

[5]

R. Copin, A. Baum, E. Wloga, et al., “The Monoclonal Antibody Combination REGEN-COV Protects Against SARS-CoV-2 Mutational Escape in Preclinical and Human Studies,” Cell 184 (2021): 3949-3961.e11.

[6]

B. Perez-Masson, Y. Quintana-Perez, Y. Tundidor, et al., “Studying SARS-CoV-2 Interactions Using Phage-Displayed Receptor Binding Domain as a Model Protein,” Scientific Reports 14 (2024): 712.

[7]

A. J. Greaney, T. N. Starr, C. O. Barnes, et al., “Mapping Mutations to the SARS-CoV-2 RBD That Escape Binding by Different Classes of Antibodies,” Nature Communications 12 (2021): 4196.

[8]

C. O. Barnes, C. A. Jette, M. E. Abernathy, et al., “SARS-CoV-2 Neutralizing Antibody Structures Inform Therapeutic Strategies,” Nature 588 (2020): 682-687.

[9]

J. Lan, J. Ge, J. Yu, et al., “Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor,” Nature 581 (2020): 215-220.

[10]

C. B. Jackson, M. Farzan, B. Chen, et al., “Mechanisms of SARS-CoV-2 Entry Into Cells,” Nature Reviews Molecular Cell Biology 23 (2022): 3-20.

[11]

X. Chi, R. Yan, J. Zhang, et al., “A Neutralizing human Antibody Binds to the N-Terminal Domain of the Spike Protein of SARS-CoV-2,” Science 369 (2020): 650-655.

[12]

L. Liu, P. Wang, M. S. Nair, et al., “Potent Neutralizing Antibodies Against Multiple Epitopes on SARS-CoV-2 Spike,” Nature 584 (2020): 450-456.

[13]

Y. Liu, X. Zhao, J. Shi, et al., “Lineage-Specific Pathogenicity, Immune Evasion, and Virological Features of SARS-CoV-2 BA.2.86/JN.1 and EG.5.1/HK.3,” Nature Communications 15 (2024): 8728.

[14]

D. Planas, I. Staropoli, V. Michel, et al., “Distinct Evolution of SARS-CoV-2 Omicron XBB and BA.2.86/JN.1 Lineages Combining Increased Fitness and Antibody Evasion,” Nature Communications 15 (2024): 2254.

[15]

K. Khan, G. Lustig, C. Romer, et al., “Evolution and Neutralization Escape of the SARS-CoV-2 BA.2.86 Subvariant,” Nature Communications 14 (2023): 8078.

[16]

Q. Wang, S. Iketani, Z. Li, et al., “Alarming Antibody Evasion Properties of Rising SARS-CoV-2 BQ and XBB Subvariants,” Cell 186 (2023): 279-286. e8.

[17]

M. R. Chang, L. Tomasovic, N. A. Kuzmina, et al., “IgG-Like Bispecific Antibodies With Potent and Synergistic Neutralization Against Circulating SARS-CoV-2 Variants of Concern,” Nature Communications 13 (2022): 5814.

[18]

Y. Huang, J. Yu, A. Lanzi, et al., “Engineered Bispecific Antibodies With Exquisite HIV-1-Neutralizing Activity,” Cell 165 (2016): 1621-1631.

[19]

R. De Gasparo, M. Pedotti, L. Simonelli, et al., “Bispecific IgG Neutralizes SARS-CoV-2 Variants and Prevents Escape in Mice,” Nature 593 (2021): 424-428.

[20]

S. Bournazos, A. Gazumyan, M. S. Seaman, et al., “Bispecific Anti-HIV-1 Antibodies With Enhanced Breadth and Potency,” Cell 165 (2016): 1609-1620.

[21]

J. Wang, M. Bardelli, D. A. Espinosa, et al., “A Human Bi-Specific Antibody Against Zika Virus With High Therapeutic Potential,” Cell 171 (2017): 229-241. e15.

[22]

A. Baum, B. O. Fulton, E. Wloga, et al., “Antibody Cocktail to SARS-CoV-2 Spike Protein Prevents Rapid Mutational Escape Seen With Individual Antibodies,” Science 369 (2020): 1014-1018.

[23]

C. Klein, U. Brinkmann, J. M. Reichert, et al., “The Present and Future of Bispecific Antibodies for Cancer Therapy,” Nature Reviews Drug Discovery 23 (2024): 301-319.

[24]

N. van de Donk and S. Zweegman, “T-Cell-Engaging Bispecific Antibodies in Cancer,” Lancet 402 (2023): 142-158.

[25]

S. X. Wang, S. B. Abramson, M. Attur, et al., “Safety, Tolerability, and Pharmacodynamics of an Anti-Interleukin-1alpha/Beta Dual Variable Domain Immunoglobulin in Patients With Osteoarthritis of the Knee: A Randomized Phase 1 Study,” Osteoarthritis and Cartilage 25 (2017): 1952-1961.

[26]

Q. Zhao, “Bispecific Antibodies for Autoimmune and Inflammatory Diseases: Clinical Progress to Date,” Biodrugs 34 (2020): 111-119.

[27]

M. Asokan, R. S. Rudicell, M. Louder, et al., “Bispecific Antibodies Targeting Different Epitopes on the HIV-1 Envelope Exhibit Broad and Potent Neutralization,” Journal of Virology 89 (2015): 12501-12512.

[28]

K. Wagner, M. J. Kwakkenbos, Y. B. Claassen, et al., “Bispecific Antibody Generated With Sortase and Click Chemistry Has Broad Antiinfluenza Virus Activity,” PNAS 111 (2014): 16820-16825.

[29]

M. Zanin, Z. Y. Keck, G. J. Rainey, et al., “An Anti-H5N1 Influenza Virus FcDART Antibody Is a Highly Efficacious Therapeutic Agent and Prophylactic Against H5N1 Influenza Virus Infection,” Journal of Virology 89 (2015): 4549-4561.

[30]

W. Tan, Y. Meng, H. Li, et al., “A Bispecific Antibody Against Two Different Epitopes on Hepatitis B Surface Antigen Has Potent Hepatitis B Virus Neutralizing Activity,” MAbs 5 (2013): 946-955.

[31]

X. Shi, Y. Deng, H. Wang, et al., “A Bispecific Antibody Effectively Neutralizes all Four Serotypes of Dengue Virus by Simultaneous Blocking Virus Attachment and Fusion,” MAbs 8 (2016): 574-584.

[32]

J. C. Frei, E. K. Nyakatura, S. E. Zak, et al., “Bispecific Antibody Affords Complete Post-Exposure Protection of Mice From Both Ebola (Zaire) and Sudan Viruses,” Scientific Reports 6 (2016): 19193.

[33]

J. Hansen, A. Baum, K. E. Pascal, et al., “Studies in Humanized Mice and Convalescent Humans Yield a SARS-CoV-2 Antibody Cocktail,” Science 369 (2020): 1010-1014.

[34]

Z. Ku, X. Xie, J. Lin, et al., “Engineering SARS-CoV-2 Specific Cocktail Antibodies Into a Bispecific Format Improves Neutralizing Potency and Breadth,” Nature Communications 13 (2022): 5552.

[35]

D. Pinto, Y. J. Park, M. Beltramello, et al., “Cross-neutralization of SARS-CoV-2 by a Human Monoclonal SARS-CoV Antibody,” Nature 583 (2020): 290-295.

[36]

Y. Cao, F. Jian, Z. Zhang, et al., “Rational Identification of Potent and Broad Sarbecovirus-Neutralizing Antibody Cocktails From SARS Convalescents,” Cell Reports 41 (2022): 111845.

[37]

X. Zhao, T. Qiu, X. Huang, et al., “Potent and Broadly Neutralizing Antibodies Against Sarbecoviruses Induced by Sequential COVID-19 Vaccination,” Cell Discovery 10 (2024): 14.

[38]

P. V. Markov, M. Ghafari, M. Beer, et al., “The Evolution of SARS-CoV-2,” Nature Reviews Microbiology 21 (2023): 361-379.

[39]

C. Roemer, D. J. Sheward, R. Hisner, et al., “SARS-CoV-2 Evolution in the Omicron Era,” Nature Microbiology 8 (2023): 1952-1959.

[40]

Y. Cao, J. Wang, F. Jian, et al., “Omicron Escapes the Majority of Existing SARS-CoV-2 Neutralizing Antibodies,” Nature 602 (2022): 657-663.

[41]

D. R. Burton and E. J. Topol, “Variant-Proof Vaccines—Invest Now for the Next Pandemic,” Nature 590 (2021): 386-388.

[42]

P. Zhou, X. L. Yang, X. G. Wang, et al., “A Pneumonia Outbreak Associated With a New Coronavirus of Probable Bat Origin,” Nature 579 (2020): 270-273.

[43]

E. K. Nyakatura, A. Y. Soare, and J. R. Lai, “Bispecific Antibodies for Viral Immunotherapy,” Human Vaccines & Immunotherapeutics 13 (2017): 836-842.

[44]

A. F. Labrijn, M. L. Janmaat, J. M. Reichert, et al., “Bispecific Antibodies: A Mechanistic Review of the Pipeline,” Nature Reviews Drug Discovery 18 (2019): 585-608.

[45]

X. Wu, J. Guo, M. Niu, et al., “Tandem Bispecific Neutralizing Antibody Eliminates HIV-1 Infection in Humanized Mice,” Journal of Clinical Investigation 128 (2018): 2239-2251.

[46]

Z. Z. Gao, J. Y. Jiao, Y. Q. Zhou, et al., “A Novel Monospecific Tetravalent IgG1-(scFv)(2) Version Shown Enhanced Neutralizing and Fc-Mediated Effector Functions Against SARS-CoV-2,” BioTechniques 13 (2023): 283.

[47]

Y. Liu, Z. Wang, X. Zhuang, et al., “Inactivated Vaccine-Elicited Potent Antibodies Can Broadly Neutralize SARS-CoV-2 Circulating Variants,” Nature Communications 14 (2023): 2179.

[48]

H. Sun, T. Deng, Y. Zhang, et al., “Two Antibodies Show Broad, Synergistic Neutralization Against SARS-CoV-2 Variants by Inducing Conformational Change Within the RBD,” Protein Cell 15 (2024): 121-134.

[49]

N. Y. Pang, A. S. Pang, V. T. Chow, et al., “Understanding Neutralising Antibodies Against SARS-CoV-2 and Their Implications in Clinical Practice,” Military Medical Research 8 (2021): 47.

[50]

L. Niu, K. N. Wittrock, G. C. Clabaugh, et al., “A Structural Landscape of Neutralizing Antibodies Against SARS-CoV-2 Receptor Binding Domain,” Frontiers in Immunology 12 (2021): 647934.

[51]

X. Wang, X. Zhao, Y. Cui, et al., “Neutralization of Distinct Omicron Sublineages by Longitudinal Vaccination Sera,” Journal of Medical Virology 94 (2022): 5090-5092.

[52]

H. Chu, Y. Hou, D. Yang, et al., “Coronaviruses Exploit a Host Cysteine-Aspartic Protease for Replication,” Nature 609 (2022): 785-792.

[53]

J. F. Chan, X. Huang, B. Hu, et al., “Altered Host Protease Determinants for SARS-CoV-2 Omicron,” Science Advances 9 (2023): eadd3867.

[54]

H. Shuai, J. F. Chan, B. Hu, et al., “Attenuated Replication and Pathogenicity of SARS-CoV-2 B.1.1.529 Omicron,” Nature 603 (2022): 693-699.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/