Alopecia Areata: Pathogenesis, Diagnosis, and Therapies

Tianyou Ma , Tingrui Zhang , Fengze Miao , Jun Liu , Quangang Zhu , Zhongjian Chen , Zongguang Tai , Zhigao He

MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70182

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70182 DOI: 10.1002/mco2.70182
REVIEW

Alopecia Areata: Pathogenesis, Diagnosis, and Therapies

Author information +
History +
PDF

Abstract

Alopecia areata (AA) is a complex, chronic inflammatory skin disorder characterized by unpredictable, nonscarring hair loss, affecting millions worldwide. Its pathogenesis remains poorly understood, driven by intricate interactions among immune dysregulation, genetic predisposition, and environmental triggers. Despite significant advances in identifying these contributing factors, substantial gaps persist in our understanding of the full spectrum of AA's molecular mechanisms and in the development of effective therapeutic approaches. This review aims to comprehensively explore the immunological, genetic, epigenetic, and environmental factors underlying AA, with a focus on immune-mediated mechanisms. We also evaluate diagnostic approaches and recent advancements in assessing disease severity. Furthermore, the review discusses evolving therapeutic options, including traditional therapies, biologics, small-molecule agents, and emerging treatments. The academic value of this work lies in its synthesis of current knowledge on the multifaceted nature of AA, providing insights for future research and clinical practice. By elucidating the interconnected factors underlying AA, this review seeks to advance both understanding and management of this prevalent, clinically challenging disorder.

Keywords

alopecia areata / autoimmunity / diagnosis / pathogenesis / targeted therapy

Cite this article

Download citation ▾
Tianyou Ma, Tingrui Zhang, Fengze Miao, Jun Liu, Quangang Zhu, Zhongjian Chen, Zongguang Tai, Zhigao He. Alopecia Areata: Pathogenesis, Diagnosis, and Therapies. MedComm, 2025, 6(5): e70182 DOI:10.1002/mco2.70182

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T. Simakou, J. P. Butcher, S. Reid, and F. L. Henriquez, “Alopecia Areata: A Multifactorial Autoimmune Condition,” Journal of Autoimmunity 98 (2019): 74-85.

[2]

H. H. Lee, E. Gwillim, K. R. Patel, et al., “Epidemiology of Alopecia Areata, Ophiasis, Totalis, and Universalis: A Systematic Review and Meta-Analysis,” Journal of the American Academy of Dermatology 82, no. 3 (2020): 675-682.

[3]

A. Nanda, A. S. Al-Fouzan, and F. Al-Hasawi, “Alopecia Areata in Children: A Clinical Profile,” Pediatric Dermatology 19, no. 6 (2002): 482-485.

[4]

L. C. Strazzulla, E. H. C. Wang, L. Avila, et al., “Alopecia Areata: Disease Characteristics, Clinical Evaluation, and New Perspectives on Pathogenesis,” Journal of the American Academy of Dermatology 78, no. 1 (2018): 1-12.

[5]

A. Toussi, V. R. Barton, S. T. Le, O. N. Agbai, and M. Kiuru, “Psychosocial and Psychiatric Comorbidities and Health-Related Quality of Life in Alopecia Areata: A Systematic Review,” Journal of the American Academy of Dermatology 85, no. 1 (2021): 162-175.

[6]

P. M. Russo, E. Fino, C. Mancini, M. Mazzetti, M. Starace, and B. M. Piraccini, “HrQoL in Hair Loss-Affected Patients With Alopecia Areata, Androgenetic Alopecia and Telogen Effluvium: The Rrole of Personality Traits and Psychosocial Anxiety,” Journal of the European Academy of Dermatology and Venereology 33, no. 3 (2019): 608-611.

[7]

S. Aghaei, N. Saki, E. Daneshmand, and B. Kardeh, “Prevalence of pPsychological Disorders in Patients With Alopecia Areata in Comparison With Normal Subjects,” ISRN Dermatology 2014 (2014): 304370.

[8]

T. P. Joshi, D. Garcia, F. Gedeon, et al., “Epidemiology of Alopecia Areata in the Hispanic/Latinx Community: A Cross-Sectional Analysis of the All of Us Database,” Journal of the American Academy of Dermatology 89, no. 1 (2023): e61-e62.

[9]

S. Ly, P. Manjaly, K. Kamal, et al., “Comorbid Conditions Associated With Alopecia Areata: A Systematic Review and Meta-Analysis,” American Journal of Clinical Dermatology 24, no. 6 (2023): 875-893.

[10]

S. Lee, H. Lee, C. H. Lee, and W. S. Lee, “Comorbidities in Alopecia Areata: A Systematic Review and Meta-Analysis,” Journal of the American Academy of Dermatology 80, no. 2 (2019): 466-477. e16.

[11]

L. Y. Liu, B. A. King, and B. G. Craiglow, “Health-Related Quality of Life (HRQoL) among Patients With Alopecia Areata (AA): A Systematic Review,” Journal of the American Academy of Dermatology 75, no. 4 (2016): 806-812. e3.

[12]

T. Cartwright, N. Endean, and A. Porter, “Illness Perceptions, Coping and Quality of Life in Patients With Alopecia,” British Journal of Dermatology 160, no. 5 (2009): 1034-1039.

[13]

A. F. Alexis, R. Dudda-Subramanya, and A. A. Sinha, “Alopecia Areata: Autoimmune Basis of Hair Loss,” European Journal of Dermatology 14, no. 6 (2004): 364-370.

[14]

A. Gilhar, R. Laufer-Britva, A. Keren, and R. Paus, “Frontiers in Alopecia Areata Pathobiology Research,” Journal of Allergy and Clinical Immunology 144, no. 6 (2019): 1478-1489.

[15]

J. Y. Niederkorn, “See no Evil, Hear no Evil, Do no Evil: The Lessons of Immune Privilege,” Nature Immunology 7, no. 4 (2006): 354-359.

[16]

F. Rajabi, L. A. Drake, M. M. Senna, and N. Rezaei, “Alopecia Areata: A Review of Disease Pathogenesis,” British Journal of Dermatology 179, no. 5 (2018): 1033-1048.

[17]

M. Bertolini, K. McElwee, A. Gilhar, S. Bulfone-Paus, and R. Paus, “Hair Follicle Immune Privilege and Its Collapse in Alopecia Areata,” Experimental Dermatology 29, no. 8 (2020): 703-725.

[18]

A. G. Messenger, J. McKillop, P. Farrant, A. J. McDonagh, and M. Sladden, “British Association of Dermatologists' Guidelines for the Management of Alopecia Areata 2012,” British Journal of Dermatology 166, no. 5 (2012): 916-926.

[19]

L. C. Strazzulla, E. H. C. Wang, L. Avila, et al., “Alopecia Areata: An Appraisal of New Treatment Approaches and Overview of Current Therapies,” Journal of the American Academy of Dermatology 78, no. 1 (2018): 15-24.

[20]

B. E. Yee, Y. Tong, A. Goldenberg, and T. Hata, “Efficacy of Different Concentrations of Intralesional Triamcinolone Acetonide for Alopecia Areata: A Systematic Review and Meta-Analysis,” Journal of the American Academy of Dermatology 82, no. 4 (2020): 1018-1021.

[21]

S. Lee, B. J. Kim, Y. B. Lee, and W. S. Lee, “Hair Regrowth Outcomes of Contact Immunotherapy for Patients With Alopecia Areata: A Systematic Review and Meta-Analysis,” ISRN Dermatology 154, no. 10 (2018): 1145-1151.

[22]

B.J Kim, S. Lee, C.H. Lee, W.S. Lee, “Home-Based Contact Immunotherapy With Diphenylcyclopropenone Improves Compliance With the Recommended Follow-Up for Patients With Alopecia Areata: A Retrospective Cohort Study,” Journal of the American Academy of Dermatology 82, no. 5 (2020): 1223-1225.

[23]

K. Phan, V. Ramachandran, and D. F. Sebaratnam, “Methotrexate for Alopecia Areata: A Systematic Review and Meta-Analysis,” Journal of the American Academy of Dermatology 80, no. 1 (2019): 120-127.

[24]

S. Vañó-Galván, Á. Hermosa-Gelbard, N. Sánchez-Neila, et al., “Treatment of Recalcitrant Ddult Alopecia Areata Universalis With Oral Azathioprine,” Journal of the American Academy of Dermatology 74, no. 5 (2016): 1007-1008.

[25]

M. Ohyama, A. Shimizu, K. Tanaka, and M. Amagai, “Experimental Evaluation of Ebastine, a Second-Generation Anti-Histamine, as a Supportive Medication for Alopecia Areata,” Journal of Dermatological Science 58, no. 2 (2010): 154-157.

[26]

S. Mlacker, A. S. Aldahan, B. J. Simmons, et al., “A Review on Laser and Light-Based Therapies for Alopecia Areata,” Journal of Cosmetic and Laser Therapy 19, no. 2 (2017): 93-99.

[27]

A. Alkhalifah, A. Alsantali, E. Wang, K. J. McElwee, and J. Shapiro, “Alopecia Areata Update: Part I. Clinical Picture, Histopathology, and Pathogenesis,” Journal of the American Academy of Dermatology 62, no. 2 (2010): 177-188. quiz 189-90.

[28]

L. Xing, Z. Dai, A. Jabbari, et al., “Alopecia Areata is Driven by Cytotoxic T Lymphocytes and is Reversed by JAK Inhibition,” Nature Medicine 20, no. 9 (2014): 1043-1049.

[29]

A. K. Gupta, T. Wang, S. Polla Ravi, M. A. Bamimore, V. Piguet, and A. Tosti, “Systematic Review of Newer Agents for the Management of Alopecia Areata in Adults: Janus Kinase Inhibitors, Biologics and Phosphodiesterase-4 Inhibitors,” Journal of the European Academy of Dermatology and Venereology 37, no. 4 (2023): 666-679.

[30]

N. Zhang and M. J. Bevan, “CD8(+) T Cells: Foot Soldiers of the Immune System,” Immunity 35, no. 2 (2011): 161-168.

[31]

M. Reina-Campos, N. E. Scharping, and A. W. Goldrath, “CD8(+) T Cell Metabolism in Infection and Cancer,” Nature Reviews Immunology 21, no. 11 (2021): 718-738.

[32]

T. Ito, N. Ito, M. Saatoff, et al., “Maintenance of Hair Follicle Immune Privilege is Linked to Prevention of NK Cell Attack,” Journal of Investigative Dermatology 128, no. 5 (2008): 1196-1206.

[33]

A. Gilhar, A. G. Schrum, A. Etzioni, H. Waldmann, and R. Paus, “Alopecia Areata: Animal Models Illuminate Autoimmune Pathogenesis and Novel Immunotherapeutic Strategies,” Autoimmunity Reviews 15, no. 7 (2016): 726-735.

[34]

J. Zhu, H. Yamane, and W. E. Paul, “Differentiation of Effector CD4 T Cell Populations (*),” Annual Review of Immunology 28 (2010): 445-489.

[35]

J. Borst, T. Ahrends, N. Bąbała, C. J. M. Melief, and W. Kastenmüller, “CD4(+) T Cell Help in Cancer Immunology and Immunotherapy,” Nature Reviews Immunology 18, no. 10 (2018): 635-647.

[36]

R. V. Luckheeram, R. Zhou, A. D. Verma, and B. Xia, “CD4⁺T Cells: Differentiation and Functions,” Clinical & Developmental Immunology 2012 (2012): 925135.

[37]

J. Zhu and W. E. Paul, “CD4 T Cells: Fates, Functions, and Faults,” Blood 112, no. 5 (2008): 1557-1569.

[38]

N. Todes-Taylor, R. Turner, G. S. Wood, P. T. Stratte, and V. B. Morhenn, “T Cell Subpopulations in Alopecia Areata,” Journal of the American Academy of Dermatology 11, no. 2 Pt 1 (1984): 216-223.

[39]

K. J. McElwee, P. Freyschmidt-Paul, R. Hoffmann, et al., “Transfer of CD8(+) Cells Induces Localized Hair Loss Whereas CD4(+)/CD25(-) Cells Promote Systemic Alopecia Areata and CD4(+)/CD25(+) Cells Blockade Disease Onset in the C3H/HeJ Mouse Model,” Journal of Investigative Dermatology 124, no. 5 (2005): 947-957.

[40]

H. J. Michie, C. A. Jahoda, R. F. Oliver, and B. E. Johnson, “The DEBR Rat: An Animal Model of Human Alopecia Areata,” British Journal of Dermatology 125, no. 2 (1991): 94-100.

[41]

E. S. Jerud, G. Bricard, and S. A. Porcelli, “CD1d-Restricted Natural Killer T Cells: Roles in Tumor Immunosurveillance and Tolerance,” Transfusion Medicine and Hemotherapy 33, no. 1 (2006): 18-36.

[42]

A. Ghraieb, A. Keren, A. Ginzburg, et al., “INKT Cells Ameliorate Human Autoimmunity: Lessons From Alopecia Areata,” Journal of Autoimmunity 91 (2018): 61-72.

[43]

M. Ono, “Control of Regulatory T-Cell Differentiation and Function by T-Cell Receptor Signalling and Foxp3 Transcription Factor Complexes,” Immunology 160, no. 1 (2020): 24-37.

[44]

X. Zhang, N. Olsen, and S. G. Zheng, “The Progress and Prospect of Regulatory T Cells in Autoimmune Diseases,” Journal of Autoimmunity 111 (2020): 102461.

[45]

S. H. Loh, H. N. Moon, B. L. Lew, and W. Y. Sim, “Role of T Helper 17 Cells and T Regulatory Cells in Alopecia Areata: Comparison of Lesion and Serum Cytokine between Controls and Patients,” Journal of the European Academy of Dermatology and Venereology 32, no. 6 (2018): 1028-1033.

[46]

S. N. Mueller and L. K. Mackay, “Tissue-Resident Memory T cells: Local Specialists in Immune Defence,” Nature Reviews Immunology 16, no. 2 (2016): 79-89.

[47]

H. Xu, R. Zhou, and Z. Chen, “Tissue-Resident Memory T Cell: Ontogenetic Cellular Mechanism and Clinical Translation,” Clinical and Experimental Immunology 214, no. 3 (2023): 249-259.

[48]

S. C. Sasson, C. L. Gordon, S. N. Christo, P. Klenerman, and L. K. Mackay, “Local Heroes or Villains: Tissue-Resident Memory T cells in Human Health and Disease,” Cellular & Molecular Immunology 17, no. 2 (2020): 113-122.

[49]

G. E. Ryan, J. E. Harris, and J. M. Richmond, “Resident Memory T Cells in Autoimmune Skin Diseases,” Frontiers in Immunology 12 (2021): 652191.

[50]

M. Lawand, J. Déchanet-Merville, and M. C. Dieu-Nosjean, “Key Features of Gamma-Delta T-Cell Subsets in Human Diseases and Their Immunotherapeutic Implications,” Frontiers in Immunology 8 (2017): 761.

[51]

Y. Uchida, J. Gherardini, A. Schulte-Mecklenbeck, et al., “Pro-Inflammatory Vδ1(+)T-Cells Infiltrates Are Present in and around the Hair Bulbs of Non-Lesional and Lesional Alopecia Areata Hair Follicles,” Journal of Dermatological Science 100, no. 2 (2020): 129-138.

[52]

R. Paus, S. Bulfone-Paus, and M. Bertolini, “Hair Follicle Immune Privilege Revisited: The Key to Alopecia Areata Management,” Journal of Investigative Dermatology Symposium Proceedings 19, no. 1 (2018): S12-S17.

[53]

E. D. Cetin, E. Savk, M. Uslu, M. Eskin, and A. Karul, “Investigation of the Inflammatory Mechanisms in Alopecia Areata,” American Journal of Dermatopathology 31, no. 1 (2009): 53-60.

[54]

X. Zhang, Y. Zhao, Y. Ye, et al., “Lesional Infiltration of Mast Cells, Langerhans Cells, T Cells and Local Cytokine Profiles in Alopecia Areata,” Archives of Dermatological Research 307, no. 4 (2015)L 319-331.

[55]

M. El Darouti, S. A. Marzouk, and E. Sharawi, “Eosinophils in Fibrous Tracts and Near Hair Bulbs: A Helpful Diagnostic Feature of Alopecia Areata,” Journal of the American Academy of Dermatology 42, no. 2 Pt 1 (2000): 305-307.

[56]

Y. Zhao, B. Zhang, S. Caulloo, X. Chen, Y. Li, and X. Zhang, “Diffuse Alopecia Areata is Associated With Intense Inflammatory Infiltration and CD8+ T Cells in Hair Loss Regions and an Increase in Serum IgE Level,” Indian Journal of Dermatology, Venereology and Leprology 78, no. 6 (2012): 709-714.

[57]

A. G. Messenger, D. N. Slater, and S. S. Bleehen, “Alopecia Areata: Alterations in the Hair Growth Cycle and Correlation With the Follicular Pathology,” British Journal of Dermatology 114, no. 3 (1986): 337-347.

[58]

T. Kasahara, J. J. Hooks, S. F. Dougherty, and J. J. Oppenheim, “Interleukin 2-Mediated Immune Interferon (IFN-Gamma) Production by Human T Cells and T Cell Subsets,” Journal of Immunology 130, no. 4 (1983): 1784-1789.

[59]

F. Castro, A. P. Cardoso, R. M. Gonçalves, K. Serre, and M. J. Oliveira, “Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion,” Frontiers in Immunology 9 (2018): 847.

[60]

X. Hu and L. B. Ivashkiv, “Cross-Regulation of Signaling Pathways by Interferon-Gamma: Implications for Immune Responses and Autoimmune Diseases,” Immunity 31, no. 4 (2009): 539-550.

[61]

A. Gilhar, Y. Kam, B. Assy, and R. S. Kalish, “Alopecia Areata Induced in C3H/HeJ Mice by Interferon-Gamma: Evidence for Loss of Immune Privilege,” Journal of Investigative Dermatology 124, no. 1 (2005): 288-289.

[62]

P. Freyschmidt-Paul, K. J. McElwee, R. Hoffmann, et al., “Interferon-Gamma-Deficient Mice are Resistant to the Development of Alopecia Areata,” British Journal of Dermatology 155, no. 3 (2006): 515-521.

[63]

M. K. Tembhre and V. K. Sharma, “T-Helper and Regulatory T-Cell Cytokines in the Peripheral Blood of Patients With Active Alopecia Areata,” British Journal of Dermatology 169, no. 3 (2013): 543-548.

[64]

E. Arca, U. Muşabak, A. Akar, A. H. Erbil, and H. B. Taştan, “Interferon-Gamma in Alopecia Areata,” European Journal of Dermatology 14, no. 1 (2004): 33-36.

[65]

E. Kasumagic-Halilovic, A. Prohic, and J. Karamehic, “Serum Concentrations of Interferon-Gamma (IFN-g) in Patients With Alopecia Areata: Correlation With Clinical Type and Duration of the Disease,” Medicinski Arhiv 64, no. 4 (2010): 212-214.

[66]

A. A. Alzolibani, Z. Rasheed, G. Bin Saif, M. S. Al-Dhubaibi, and A. A. Al Robaee, “Altered Expression of Intracellular Toll-Like Receptors in Peripheral Blood Mononuclear Cells from Patients With Alopecia Areata,” BBA Clinical 5 (2016): 134-142.

[67]

M. Zöller, K. J. McElwee, M. Vitacolonna, and R. Hoffmann, “The Progressive State, in Contrast to the Stable or Regressive State of Alopecia Areata, is Reflected in Peripheral Blood Mononuclear Cells,” Experimental Dermatology 13, no. 7 (2004): 435-444.

[68]

N. Barahmani, A. Lopez, D. Babu, M. Hernandez, S. E. Donley, and M. Duvic, “Serum T Helper 1 Cytokine Levels are Greater in Patients With Alopecia Areata Regardless of Severity or Atopy,” Clinical and Experimental Dermatology 35, no. 4 (2010): 409-416.

[69]

S. I. Omar, A. M. Hamza, N. Eldabah, and D. A. Habiba, “IFN-α and TNF-α Serum Levels and Their Association With Disease Severity in Egyptian Children and Adults With Alopecia Areata,” International Journal of Dermatology 60, no. 11 (2021): 1397-1404.

[70]

M. A. Atwa, N. Youssef, and N. M. Bayoumy, “T-Helper 17 Cytokines (Interleukins 17, 21, 22, and 6, and Tumor Necrosis Factor-α) in Patients With Alopecia Areata: Association With Clinical Type and Severity,” International Journal of Dermatology 55, no. 6 (2016): 666-672.

[71]

A. Rossi, C. Cantisani, M. Carlesimo, et al., “Serum Concentrations of IL-2, IL-6, IL-12 and TNF-α in Patients With Alopecia Areata,” International Journal of Immunopathology and Pharmacology 25, no. 3 (2012): 781-788.

[72]

D. J. Cua and C. M. Tato, “Innate IL-17-Producing Cells: The Sentinels of the Immune System,” Nature Reviews Immunology 10, no. 7 (2010): 479-489.

[73]

D. B. O'Quinn, M. T. Palmer, Y. K. Lee, and C. T. Weaver, “Emergence of the Th17 Pathway and Its Role in Host Defense,” Advances in Immunology 99 (2008): 115-163.

[74]

A. Tanemura, N. Oiso, M. Nakano, S. Itoi, A. Kawada, and I. Katayama, “Alopecia Areata: Infiltration of Th17 Cells in the Dermis, Particularly around Hair Follicles,” Dermatology 226, no. 4 (2013): 333-336.

[75]

R. K. Gautam, Y. Singh, A. Gupta, P. Arora, A. Khurana, and A. Chitkara, “The Profile of Cytokines (IL-2, IFN-γ, IL-4, IL-10, IL-17A, and IL-23) in Active Alopecia Areata,” Journal of Cosmetic Dermatology 19, no. 1 (2020): 234-240.

[76]

K. A. Bain, E. McDonald, F. Moffat, et al., “Alopecia Areata is Characterized by Dysregulation in Systemic Type 17 and Type 2 Cytokines, Which May Contribute to Disease-Associated Psychological Morbidity,” British Journal of Dermatology 182, no. 1 (2020): 130-137.

[77]

W. Liao, J. X. Lin, and W. J. Leonard, “IL-2 Family Cytokines: New Insights Into the Complex Roles of IL-2 as a Broad Regulator of T Helper Cell Differentiation,” Current Opinion in Immunology 23, no. 5 (2011): 598-604.

[78]

P. Freyschmidt-Paul, K. J. McElwee, R. Hoffmann, et al., “Reduced Expression of Interleukin-2 Decreases the Frequency of Alopecia Areata Onset in C3H/HeJ Mice,” Journal of Investigative Dermatology 125, no. 5 (2005): 945-951.

[79]

Y. Teraki, K. Imanishi, and T. Shiohara, “Cytokines in Alopecia Areata: Contrasting Cytokine Profiles in Localized Form and Extensive Form (Alopecia Universalis),” Acta Dermato-Venereologica 76, no. 6 (1996): 421-423.

[80]

T. A. Waldmann, “Targeting the Interleukin-15/Interleukin-15 Receptor System in Inflammatory Autoimmune Diseases,” Arthritis Research & Therapy 6, no. 4 (2004): 174-177.

[81]

P. Y. Perera, J. H. Lichy, T. A. Waldmann, and L. P. Perera, “The Role of Interleukin-15 in Inflammation and Immune Responses to Infection: Implications for Its Therapeutic Use,” Microbes and Infection 14, no. 3 (2012): 247-261.

[82]

W. Ye, J. D. Young, and C. C. Liu, “Interleukin-15 Induces the Expression of mRNAs of Cytolytic Mediators and Augments Cytotoxic Activities in Primary Murine Lymphocytes,” Cellular Immunology 174, no. 1 (1996): 54-62.

[83]

J. Fuentes-Duculan, N. Gulati, K. M. Bonifacio, et al., “Biomarkers of Alopecia Areata Disease Activity and Response to Corticosteroid Treatment,” Experimental Dermatology 25, no. 4 (2016): 282-286.

[84]

M. A. El Aziz Ragab, E. M. Hassan, D. El Niely, and M. M. Mohamed, “Serum Level of Interleukin-15 in Active Alopecia Areata Patients and Its Relation to Age, Sex, and Disease Severity,” Postepy Dermatol Alergol 37, no. 6 (2020): 904-908.

[85]

Y. Guo, W. Cao, and Y. Zhu, “Immunoregulatory Functions of the IL-12 Family of Cytokines in Antiviral Systems,” Viruses. 11, no. 9 (2019): 772.

[86]

D. A. Vignali and V. K. Kuchroo, “IL-12 Family Cytokines: Immunological Playmakers,” Nature Immunology 13, no. 8 (2012): 722-728.

[87]

Y. Gong, Y. Zhao, X. Zhang, et al., “Serum Level of IL-4 Predicts Response to Topical Immunotherapy With Diphenylcyclopropenone in Alopecia Areata,” Experimental Dermatology 29, no. 3 (2020): 231-238.

[88]

A. Waśkiel-Burnat, M. Osińska, A. Salińska, et al., “The Role of Serum Th1, Th2, and Th17 Cytokines in Patients With Alopecia Areata: Clinical Implications,” Cells 10, no. 12 (2021).

[89]

K. J. McElwee and R. Hoffmann, “Alopecia Areata—animal Models,” Clinical and Experimental Dermatology 27, no. 5 (2002): 410-417.

[90]

K. Katagiri, S. Arakawa, and Y. Hatano, “In Vivo Levels of IL-4, IL-10, TGF-Beta1 and IFN-Gamma mRNA of the Peripheral Blood Mononuclear Cells in Patients With Alopecia Areata in Comparison to Those in Patients With Atopic Dermatitis,” Archives of Dermatological Research 298, no. 8 (2007): 397-401.

[91]

F. Siebenhaar, A. A. Sharov, E. M. Peters, et al., “Substance P as an Immunomodulatory Neuropeptide in a Mouse Model for Autoimmune Hair Loss (Alopecia Areata),” Journal of Investigative Dermatology 127, no. 6 (2007): 1489-1497.

[92]

T. Ito, N. Ito, A. Bettermann, Y. Tokura, M. Takigawa, and R. Paus, “Collapse and Restoration of MHC Class-I-Dependent Immune Privilege: Exploiting the Human Hair Follicle as a Model,” American Journal of Pathology 164, no. 2 (2004): 623-634.

[93]

T. Breitkopf, B. K. Lo, G. Leung, et al., “Somatostatin Expression in Human Hair Follicles and Its Potential Role in Immune Privilege,” Journal of Investigative Dermatology 133, no. 7 (2013): 1722-1730.

[94]

R. Hoffmann, E. Wenzel, A. Huth, et al., “Cytokine mRNA Levels in Alopecia Areata Before and After Treatment With the Contact Allergen Diphenylcyclopropenone,” Journal of Investigative Dermatology 103, no. 4 (1994): 530-533.

[95]

D. Lee, S. K. Hong, S. W. Park, et al., “Serum Levels of IL-18 and sIL-2R in Patients With Alopecia Areata Receiving Combined Therapy With Oral Cyclosporine and Steroids,” Experimental Dermatology 19, no. 2 (2010): 145-147.

[96]

M. Shohat, D. Mimouni, D. Ben-Amitai, et al., “In Vitro Cytokine Profile in Childhood Alopecia Areata and the Immunomodulatory Effects of AS-101,” Clinical and Experimental Dermatology 30, no. 4 (2005): 432-434.

[97]

C. Bodemer, M. Peuchmaur, S. Fraitaig, L. Chatenoud, N. Brousse, and Y. De Prost, “Role of Cytotoxic T Cells in Chronic Alopecia Areata,” Journal of Investigative Dermatology 114, no. 1 (2000): 112-116.

[98]

T. Song, A. B. Pavel, H. C. Wen, et al., “An Integrated Model of Alopecia Areata Biomarkers Highlights both T(H)1 and T(H)2 Upregulation,” Journal of Allergy and Clinical Immunology 142, no. 5 (2018): 1631-1634. e13.

[99]

R. P. Manimaran, S. Ramassamy, M. Rajappa, and L. Chandrashekar, “Therapeutic Outcome of Diphencyprone and Its Correlation With Serum Cytokine Profile in Alopecia Areata,” The Journal of Dermatological Treatment 33, no. 1 (2022): 324-328.

[100]

O. Bilgic, A. Sivrikaya, A. Unlu, and H. C. Altinyazar, “Serum Cytokine and Chemokine Profiles in Patients With Alopecia Areata,” The Journal of Dermatological Treatment 27, no. 3 (2016): 260-263.

[101]

C. Kim, J. M. Shin, D. Kim, et al., “Role of Substance P in Regulating Micro-Milieu of Inflammation in Alopecia Areata,” Annals of Dermatology 34, no. 4 (2022): 270-277.

[102]

Ö. Aşkın, S. N. Yücesoy, E. Coşkun, B. Engin, and S. Serdaroğlu, “Evaluation of the Level of Serum Interleukins (IL-2, IL-4, IL-15 andIL-17) and Its Relationship With Disease Severity in Patients With Alopecia Areata,” Anais Brasileiros De Dermatologia 96, no. 5 (2021): 551-557.

[103]

M. Kinori, M. Bertolini, W. Funk, et al., “Calcitonin Gene-Related Peptide (CGRP) May Award Relative Protection from Interferon-γ-Induced Collapse of Human Hair Follicle Immune Privilege,” Experimental Dermatology 21, no. 3 (2012): 223-226.

[104]

R. Rossi, E. Del Bianco, D. Isolani, M. C. Baccari, and P. Cappugi, “Possible Involvement of Neuropeptidergic Sensory Nerves in Alopecia Areata,” Neuroreport 8, no. 5 (1997): 1135-1138.

[105]

M. Bertolini, M. Pretzlaff, M. Sulk, et al., “Vasoactive Intestinal Peptide, Whose Receptor-Mediated Signalling May be Defective in Alopecia Areata, ProvidesPprotection from Hair Follicle Immune Privilege Collapse,” British Journal of Dermatology 175, no. 3 (2016): 531-541.

[106]

H. L. Yamaguchi, Y. Yamaguchi, and E. Peeva, “Pathogenesis of Alopecia Areata and Vitiligo: Commonalities and Differences,” International Journal of Molecular Sciences 25, no. 8 (2024): 4409.

[107]

T. Shimizu, Y. Mizue, R. Abe, H. Watanabe, and H. Shimizu, “Increased macrophage migration inhibitory factor (MIF) in the Sera of Patients With Extensive Alopecia Areata,” Journal of Investigative Dermatology 118, no. 3 (2002): 555-557.

[108]

M. M. Van Acker, R. R. Schwartz, K. Andrews, K. Seiffert-Sinha, and A. A. Sinha, “Inheritance-Specific Dysregulation of Th1- and Th17-Associated Cytokines in Alopecia Areata,” Biomolecules 13, no. 9 (2023).

[109]

C. N. Giordano and A. A. Sinha, “Cytokine Pathways and Interactions in Alopecia Areata,” European Journal of Dermatology 23, no. 3 (2013): 308-318.

[110]

M. Suárez-Fariñas, B. Ungar, S. Noda, et al., “Alopecia Areata Profiling Shows TH1, TH2, and IL-23 Cytokine Activation Without Parallel TH17/TH22 Skewing,” Journal of Allergy and Clinical Immunology 136, no. 5 (2015): 1277-1287.

[111]

M. Fukuyama, T. Ito, and M. Ohyama, “Alopecia Areata: Current Understanding of the Pathophysiology and Update on Therapeutic Approaches, Featuring the Japanese Dermatological Association Guidelines,” Journal of Dermatology 49, no. 1 (2022): 19-36.

[112]

Q. Gao, X. Liang, A. S. Shaikh, J. Zang, W. Xu, and Y. Zhang, “JAK/STAT Signal Transduction: Promising Attractive Targets for Immune, Inflammatory and Hematopoietic Diseases,” Current Drug Targets 19, no. 5 (2018): 487-500.

[113]

J. J. O'Shea and R. Plenge, “JAK and STAT Signaling Molecules in Immunoregulation and Immune-Mediated Disease,” Immunity 36, no. 4 (2012): 542-550.

[114]

J. P. Sundberg, K. McElwee, M. A. Brehm, and L. Su, “Animal Models for Alopecia Areata: What and Where?,” Journal of Investigative Dermatology Symposium Proceedings 17, no. 2 (2015): 23-26.

[115]

C. H. Pratt, L. E. King, A. G. Messenger, A. M. Christiano, and J. P. Sundberg, “Alopecia Areata,” Nature reviews Disease primers 3 (2017): 17011.

[116]

N. Ito, T. Ito, A. Kromminga, et al., “Human Hair Follicles Display a Functional Equivalent of the Hypothalamic-Pituitary-Adrenal Axis and Synthesize Cortisol,” Faseb Journal 19, no. 10 (2005): 1332-1334.

[117]

R. Paus, P. Arck, and S. Tiede, “(Neuro-)Endocrinology of Epithelial Hair Follicle Stem Cells,” Molecular and Cellular Endocrinology 288, no. 1-2 (2008): 38-51.

[118]

Y. Minokawa, Y. Sawada, and M. Nakamura, “Lifestyle Factors Involved in the Pathogenesis of Alopecia Areata,” International Journal of Molecular Sciences 23, no. 3 (2022): 1038.

[119]

Y. Sawada, N. Saito-Sasaki, E. Mashima, and M. Nakamura, “Daily Lifestyle and Inflammatory Skin Diseases,” International Journal of Molecular Sciences 22, no. 10 (2021).

[120]

I. Khanimov, “Association between Smoking and Alopecia Areata: A Systematic Review and Meta-Analysis,” International Journal of Dermatology 61, no. 1 (2022): e22-e24.

[121]

C. W. Wang, M. Y. Wu, C. B. Chen, et al., “Clinical Characteristics and Immune Profiles of Patients With Immune-Mediated Alopecia Associated With COVID-19 Vaccinations,” Clinical Immunology 255 (2023): 109737.

[122]

C. T. Richardson, M. S. Hayden, E. S. Gilmore, and B. Poligone, “Evaluation of the Relationship between Alopecia Areata and Viral Antigen Exposure,” American Journal of Clinical Dermatology 19, no. 1 (2018): 119-126.

[123]

S. Chavez-Alvarez, A. L. Villarreal-Alfaro-Lopez, O. Vazquez-Martinez, and A. Villarreal-Martinez, “Diffuse Alopecia Areata Associated With Weight-Loss Pills,” International Journal of Trichology 11, no. 6 (2019): 236-237.

[124]

J. M. Thompson, M. A. Mirza, M. K. Park, A. A. Qureshi, and E. Cho, “The Role of Micronutrients in Alopecia Areata: A Review,” American Journal of Clinical Dermatology 18, no. 5 (2017): 663-679.

[125]

H. Park, C. W. Kim, S. S. Kim, and C. W. Park, “The Therapeutic Effect and the Changed Serum Zinc Level after Zinc Supplementation in Alopecia Areata Patients Who Had a Low Serum Zinc Level,” Annals of Dermatology 21, no. 2 (2009): 142-146.

[126]

N. S. Abdel Fattah, M. M. Atef, and S. M. Al-Qaradaghi, “Evaluation of Serum Zinc Level in Patients With Newly Diagnosed andRresistant Alopecia Areata,” International Journal of Dermatology 55, no. 1 (2016): 24-29.

[127]

J. Kantor, L. J. Kessler, D. G. Brooks, and G. Cotsarelis, “Decreased Serum Ferritin is Associated With Alopecia in Women,” Journal of Investigative Dermatology 121, no. 5 (2003): 985-988.

[128]

W. Jin, H. Zheng, B. Shan, and Y. Wu, “Changes of Serum Trace Elements Level in Patients With Alopecia Areata: A Meta-Analysis,” Journal of Dermatology 44, no. 5 (2017): 588-591.

[129]

X. Lin, X. Meng, and Z. Song, “Vitamin D and Alopecia Areata: Possible Roles in Pathogenesis and Potential Implications for Therapy,” American journal of translational research 11, no. 9 (2019): 5285-5300.

[130]

C. Zhou, X. Li, C. Wang, and J. Zhang, “Alopecia Areata: An Update on Etiopathogenesis, Diagnosis, and Management,” Clinical Reviews in Allergy & Immunology 61, no. 3 (2021): 403-423.

[131]

C. M. Hedrich and G. C. Tsokos, “Epigenetic Mechanisms in Systemic Lupus Erythematosus and Other Autoimmune Diseases,” Trends in Molecular Medicine 17, no. 12 (2011): 714-724.

[132]

Q. Deng, Y. Luo, C. Chang, H. Wu, Y. Ding, and R. Xiao, “The Emerging Epigenetic Role of CD8+T Cells in Autoimmune Diseases: A Systematic Review,” Frontiers in immunology 10 (2019): 856.

[133]

M. Zhao, G. Liang, X. Wu, et al., “Abnormal Epigenetic Modifications in Peripheral Blood Mononuclear Cells from Patients With Alopecia Areata,” British Journal of Dermatology 166, no. 2 (2012): 226-273.

[134]

E. H. C. Wang, G. M. DeStefano, A. V. Patel, et al., “Identification of Differentially Expressed miRNAs in Alopecia Areata that Target Immune-Regulatory Pathways,” Genes and Immunity 18, no. 2 (2017): 100-104.

[135]

R. M. Trüeb and M. Dias, “Alopecia Areata: A Comprehensive Review of Pathogenesis and Management,” Clinical Reviews in Allergy & Immunology 54, no. 1 (2018): 68-87.

[136]

T. A. Rodriguez and M. Duvic, “Onset of Alopecia Areata after Epstein-Barr Virus Infectious Mononucleosis,” Journal of the American Academy of Dermatology 59, no. 1 (2008): 137-139.

[137]

T. Y. Tu, R. Chang, J. N. Lai, et al., “Human Papillomavirus Symptomatic Infection Associated Fith Increased Risk of New-Onset Alopecia Areata: A Nationwide Population-Based Cohort Study,” Journal of Autoimmunity 119 (2021): 102618.

[138]

R. Paus and G. Cotsarelis, “The Biology of Hair Follicles,” New England Journal of Medicine 341, no. 7 (1999): 491-497.

[139]

S. Ji, Z. Zhu, X. Sun, and X. Fu, “Functional Hair Follicle Regeneration: An Updated Review,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 66.

[140]

J. Z. Yenin, G. Serarslan, Z. Yönden, and K. T. Ulutaş, “Investigation of Oxidative Stress in Patients With Alopecia Areata and Its Relationship With Disease Severity, Duration, Recurrence and Pattern,” Clinical and Experimental Dermatology 40, no. 6 (2015): 617-621.

[141]

P. Öztürk, Ö. Arıcan, E. B. Kurutaş, and K. Mülayim, “Oxidative Stress Biomarkers and Adenosine Deaminase Over the Alopecic Area of the Patients With Alopecia Areata,” Balkan Medical Journal 33, no. 2 (2016): 188-192.

[142]

E. C. E. Wang, Z. Dai, A. W. Ferrante, C. G. Drake, and A. M. Christiano, “A Subset of TREM2(+) Dermal Macrophages Secretes Oncostatin M to Maintain Hair Follicle Stem Cell Quiescence and Inhibit Hair Growth,” Cell Stem Cell 24, no. 4 (2019): 654-669. e6.

[143]

D. Castellana, R. Paus, and M. Perez-Moreno, “Macrophages Contribute to the Cyclic Activation of Adult Hair Follicle Stem Cells,” Plos Biology 12, no. 12 (2014): e1002002.

[144]

M. Maurer, E. Fischer, B. Handjiski, et al., “Activated Skin Mast Cells are Involved in Murine Hair Follicle Regression (Catagen),” Laboratory Investigation 77, no. 4 (1997): 319-332.

[145]

T. Christoph, S. Müller-Röver, H. Audring, et al., “The Human Hair Follicle Immune System: Cellular Composition and Immune Privilege,” British Journal of Dermatology 142, no. 5 (2000): 862-873.

[146]

R. Biran, A. Zlotogorski, and Y. Ramot, “The Genetics of Alopecia Areata: New Approaches, New Findings, New Treatments,” Journal of Dermatological Science 78, no. 1 (2015): 11-20.

[147]

C. Jackow, N. Puffer, M. Hordinsky, J. Nelson, J. Tarrand, and M. Duvic, “Alopecia Areata and Cytomegalovirus Infection in Twins: Genes versus Environment?,” Journal of the American Academy of Dermatology 38, no. 3 (1998): 418-425.

[148]

T. A. Rodriguez, K. E. Fernandes, K. L. Dresser, and M. Duvic, “Concordance Rate of Alopecia Areata in Identical Twins Supports both Genetic and Environmental Factors,” Journal of the American Academy of Dermatology 62, no. 3 (2010): 525-527.

[149]

R. C. Betz, L. Petukhova, S. Ripke, et al., “Genome-Wide Meta-Analysis in Alopecia Areata Resolves HLA Associations and Reveals Two New Susceptibility Loci,” Nature Communications 6 (2015): 5966.

[150]

L. Petukhova, M. Duvic, M. Hordinsky, et al., “Genome-Wide Association Study in Alopecia Areata Implicates both Innate and Adaptive Immunity,” Nature 466, no. 7302 (2010): 113-117.

[151]

L. Petukhova and A. M. Christiano, “Functional Interpretation of Genome-Wide Association Study Evidence in Alopecia Areata,” Journal of Investigative Dermatology 136, no. 1 (2016): 314-317.

[152]

D. Jagielska, S. Redler, F. F. Brockschmidt, C. Herold, S. M. Pasternack, N. Garcia Bartels, et al., “Follow-Up Study of the FirstGenome-Wide Association Scan in Alopecia Areata: IL13 and KIAA0350 as Susceptibility Loci Supported With Genome-Wide Significance,” Journal of Investigative Dermatology 132, no. 9 (2012): 2192-2197.

[153]

A. Oka, A. Takagi, E. Komiyama, et al., “Alopecia Areata Susceptibility Variant in MHC Region Impacts Expressions of Genes Contributing to Hair Keratinization and is Involved in Hair Loss,” EBioMedicine 57 (2020): 102810.

[154]

J. Fischer, F. Degenhardt, A. Hofmann, et al., “Genomewide Analysis of Copy Number Variants in Alopecia Areata in a Central European Cohort Reveals Association With MCHR2,” Experimental Dermatology 26, no. 6 (2017): 536-541.

[155]

L. Petukhova, R. M. Cabral, J. Mackay-Wiggan, R. Clynes, and A. M. Christiano, “The Genetics of Alopecia Areata: What's New and How Will It Help Our Patients?,” Dermatologic Therapy 24, no. 3 (2011): 326-336.

[156]

A. M. Finner, “Alopecia Areata: Clinical Presentation, Diagnosis, and Unusual Cases,” Dermatologic Therapy 24, no. 3 (2011): 348-354.

[157]

H. Kimura, K. Nagase, and Y. Narisawa, “Perinevoid Alopecia: A Case Report and Literature Review,” British Journal of Dermatology 179, no. 4 (2018): 969-970.

[158]

A. A. Navarini, S. Nobbe, and R. M. Trüeb, “Marie Antoinette Syndrome,” Archives of Dermatology 145, no. 6 (2009): 656.

[159]

A. Rebora, “Alopecia Areata Incognita,” Journal of the American Academy of Dermatology 65, no. 6 (2011): 1228.

[160]

A. Rebora, “Alopecia Areata Incognita: A Hypothesis,” Dermatologica 174, no. 5 (1987): 214-218.

[161]

A. Alessandrini, M. Starace, F. Bruni, et al., “Alopecia Areata Incognita and Diffuse Alopecia Areata: Clinical, Trichoscopic, Histopathological, and Therapeutic Features of a 5-Year Study,” Dermatology Practical & Conceptual 9, no. 4 (2019): 272-277.

[162]

K. Chelidze and S. R. Lipner, “Nail Changes in Alopecia Areata: An Update and Review,” International Journal of Dermatology 57, no. 7 (2018): 776-783.

[163]

Y. B. M. Roest, H. T. van Middendorp, A. W. M. Evers, P. C. M. van de Kerkhof, and M. C. Pasch, “Nail Involvement in Alopecia Areata: A Questionnaire-Based Survey on Clinical Signs, Impact on Quality of Life and Review of the Literature,” Acta Dermato-Venereologica 98, no. 2 (2018): 212-217.

[164]

C. Pelzer and M. Iorizzo, “Alopecia Areata of the Nails: Diagnosis and Management,” Journal of Clinical Medicine 13, no. 11 (2024): 3292.

[165]

K. P. Huang, S. Mullangi, Y. Guo, and A. A. Qureshi, “Autoimmune, Atopic, and Mental Health Comorbid Conditions Associated With Alopecia Areata in the United States,” JAMA Dermatology 149, no. 7 (2013): 789-794.

[166]

S. A. Muller and R. K. Winkelmann, “Alopecia Areata. An Evaluation of 736 Patients,” Archives of Dermatology 88 (1963): 290-297.

[167]

A. Tosti, “Practice gaps. Alopecia Areata and Comorbid Conditions,” JAMA Dermatol 149, no. 7 (2013): 794.

[168]

H. Seyrafi, M. Akhiani, H. Abbasi, S. Mirpour, and A. Gholamrezanezhad, “Evaluation of the Profile of Alopecia Areata and the Prevalence of Thyroid Function Test Abnormalities and Serum Autoantibodies in Iranian Patients,” BMC Dermatology [Electronic Resource] 5 (2005): 11.

[169]

T. Mubki, L. Rudnicka, M. Olszewska, and J. Shapiro, “Evaluation and Diagnosis of the Hair Loss Patient: Part II. Trichoscopic and Laboratory Evaluations,” Journal of the American Academy of Dermatology 71, no. 3 (2014): 431. e1-e11.

[170]

N. Barahmani, M. de Andrade, J. P. Slusser, et al., “Human Leukocyte Antigen Class II Alleles are Associated With Risk of Alopecia Areata,” Journal of Investigative Dermatology 128, no. 1 (2008): 240-243.

[171]

B. Zhou, M. Chen, S. Shang, and J. Zhao, “Association of CTLA-4 Gene Polymorphisms and Alopecia Areata: A Systematic Review and Meta-Analysis,” Biomarkers 27, no. 4 (2022): 338-348.

[172]

E. Olsen, M. Hordinsky, S. McDonald-Hull, et al., “Alopecia Areata Investigational Assessment Guidelines. National Alopecia Areata Foundation,” Journal of the American Academy of Dermatology 40, no. 2 Pt 1 (1999): 242-246.

[173]

E. A. Olsen, M. K. Hordinsky, V. H. Price, et al., “Alopecia Areata Investigational Assessment Guidelines-part II. National Alopecia Areata Foundation,” Journal of the American Academy of Dermatology 51, no. 3 (2004): 440-447.

[174]

C. G. Wambier and B. A. King, “Rethinking the Classification of Alopecia Areata,” Journal of the American Academy of Dermatology 80, no. 2 (2019): e45.

[175]

B. A. King, N. A. Mesinkovska, B. Craiglow, et al., “Development of the Alopecia Areata Scale for Clinical Use: Results of an Academic-Industry Collaborative Effort,” Journal of the American Academy of Dermatology 86, no. 2 (2022): 359-364.

[176]

E. A. Olsen, J. Roberts, L. Sperling, et al., “Objective Outcome Measures: Collecting Meaningful Data on Alopecia Areata,” Journal of the American Academy of Dermatology 79, no. 3 (2018): 470-478. e3.

[177]

W. C. Cranwell, V. W. Lai, L. Photiou, et al., “Treatment of Alopecia Areata: An Australian Expert Consensus Statement,” Australasian Journal of Dermatology 60, no. 2 (2019): 163-170.

[178]

D. Porter and J. L. Burton, “A Comparison of Intra-Lesional Triamcinolone Hexacetonide and Triamcinolone Acetonide in Alopecia Areata,” British Journal of Dermatology 85, no. 3 (1971): 272-273.

[179]

A. Tosti, M. Iorizzo, G. L. Botta, and M. Milani, “Efficacy and Safety of a New lobetasol Propionate 0.05% Foam in Alopecia Areata: A Randomized, Double-Blind Placebo-Controlled Trial,” Journal of the European Academy of Dermatology and Venereology 20, no. 10 (2006): 1243-1247.

[180]

H. Zaher, H. I. Gawdat, R. A. Hegazy, and M. Hassan, “Bimatoprost versus Mometasone Furoate in the Treatment of Scalp Alopecia Areata: A Pilot Study,” Dermatology 230, no. 4 (2015): 308-313.

[181]

V. K. Sharma and S. Gupta, “Twice Weekly 5 Mg Dexamethasone Oral Pulse in the Treatment of Extensive Alopecia Areata,” Journal of Dermatology 26, no. 9 (1999): 562-565.

[182]

G. Açıkgöz, I. Ozmen, M. Cayırlı, Y. Yeniay, and O. Köse, “Pulse Methylprednisolone Therapy for the Treatment of Extensive Alopecia Areata,” The Journal of Dermatological Treatment 25, no. 2 (2014): 164-166.

[183]

M. Ait Ourhroui, B. Hassam, and I. Khoudri, “[Treatment of Alopecia Areata With Prednisone in a Once-Monthly Oral Pulse],” Annales De Dermatologie Et De Venereologie 137, no. 8-9 (2010): 514-518.

[184]

E. Altun, S. Yaylı, D. A. Arıca, L. B. Selcuk, and S. Bahadır, “Retrospective Analysis of Methylprednisolone Treatment Alone and in Combination With Methotrexate in Patients With Extensive Alopecia Areata,” Dermatologic Therapy 35, no. 10 (2022): e15776.

[185]

G. Mauduit, P. Lenvers, H. Barthélémy, and J. Thivolet, “[Treatment of Severe Alopecia Areata With Topical Applications of Cyclosporin A],” Annales De Dermatologie Et De Venereologie 114, no. 4 (1987): 507-510.

[186]

P. Joly, “The Use of Methotrexate Alone or in Combination With Low Doses of Oral Corticosteroids in the Treatment of Alopecia Totalis or Universalis,” Journal of the American Academy of Dermatology 55, no. 4 (2006): 632-636.

[187]

T. Much, “[Treatment of Alopecia Areata With Vitamin A Acid],” Zeitschrift Fur Hautkrankheiten 51, no. 23 (1976): 993-998.

[188]

V. H. Price, “Double-Blind, Placebo-Controlled Evaluation of Topical Minoxidil in Extensive Alopecia Areata,” Journal of the American Academy of Dermatology 16, no. 3 Pt 2 (1987): 730-736.

[189]

V. C. Fiedler-Weiss, “Topical Minoxidil Solution (1% and 5%) in the Treatment of Alopecia Areata,” Journal of the American Academy of Dermatology 16, no. 3 Pt 2 (1987): 745-748.

[190]

C. K. Rokhsar, J. L. Shupack, J. J. Vafai, and K. Washenik, “Efficacy of Topical Sensitizers in the Treatment of Alopecia Areata,” Journal of the American Academy of Dermatology 39, no. 5 Pt 1 (1998): 751-761.

[191]

A. Daunton and M. Harries, “Efficacy of Topical Dithranol (Dithrocream(®)) in the Treatment of Alopecia Areata: A Retrospective Case Series,” British Journal of Dermatology 180, no. 5 (2019): 1246-1247.

[192]

S. C. Behrens-Williams, U. Leiter, R. Schiener, M. Weidmann, R. U. Peter, and M. Kerscher, “The PUVA-Turban as a New Option of Applying a Dilute Psoralen Solution Selectively to the Scalp of Patients With Alopecia Areata,” Journal of the American Academy of Dermatology 44, no. 2 (2001): 248-252.

[193]

G. Pagnanelli, A. Cavani, F. Canzona, and C. Mazzanti, “Mild Therapeutic Response of Alopecia Areata during Treatment of Psoriasis With Secukinumab,” European Journal of Dermatology 30, no. 5 (2020): 602-603.

[194]

E. Guttman-Yassky, J. K. Nia, P. W. Hashim, et al., “Efficacy and Safety of Secukinumab Treatment in Adults With Extensive Alopecia Areata,” Archives of Dermatological Research 310, no. 8 (2018): 607-614.

[195]

B. Yalici Armagan and N. Atakan, “New Onset Alopecia Areata During Secukinumab Therapy,” Dermatologic Therapy 32, no. 5 (2019): e13071.

[196]

L. R. Penzi, M. Yasuda, A. Manatis-Lornell, D. Hagigeorges, and M. M. Senna, “Hair Regrowth in a Patient With Long-Standing Alopecia Totalis and Atopic Dermatitis Treated With Dupilumab,” JAMA Dermatology 154, no. 11 (2018): 1358-1360.

[197]

K. Harada, R. Irisawa, T. Ito, M. Uchiyama, and R. Tsuboi, “The Effectiveness of Dupilumab in Patients With alopecia Areata Who Have Atopic Dermatitis: A Case Series of Seven Patients,” British Journal of Dermatology 183, no. 2 (2020): 396-397.

[198]

J. Chung, C. L. Slaught, and E. L. Simpson, “Alopecia Areata in 2 Patients Treated With Dupilumab: New Onset and Oorsening,” JAAD Case Reports 5, no. 8 (2019): 643-645.

[199]

I. Salguero, M. Domingo, D. Suarez, and G. Roustan, “Dermatitis and Alopecia in a Patient Treated With Dupilumab: A New Adverse Effect?,” Clinical and Experimental Dermatology 44 (2018), e41-e43.

[200]

K. Flanagan, L. Sperling, and J. Lin, “Drug-Induced Alopecia After Dupilumab Therapy,” JAAD Case Reports 5, no. 1 (2019): 54-56.

[201]

E. Guttman-Yassky, B. Ungar, S. Noda, et al., “Extensive Alopecia Areata is Reversed by IL-12/IL-23p40 Cytokine Antagonism,” Journal of Allergy and Clinical Immunology 137, no. 1 (2016): 301-304.

[202]

A. Aleisa, Y. Lim, S. Gordon, et al., “Response to Ustekinumab in Three Pediatric Patients With Alopecia Areata,” Pediatric Dermatology 36, no. 1 (2019): e44-e45.

[203]

K. L. S. Kerkemeyer and R. Sinclair, “Treatment of Chronic Alopecia Areata With Tildrakizumab: An Open-Label Pilot Study,” International Journal of Dermatology 59, no. 5 (2020): e136-e137.

[204]

F. L. Duff, J. D. Bouaziz, E. Fontas, et al., “Low-Dose IL-2 for Treating Moderate to Severe Alopecia Areata: A 52-Week Multicenter Prospective Placebo-Controlled Study Assessing Its Impact on T Regulatory Cell and NK Cell Populations,” Journal of Investigative Dermatology 141, no. 4 (2021): 933-936. e6.

[205]

E. Castela, F. L.e Duff, C. Butori, et al., “Effects of Low-Dose Recombinant Interleukin 2 to Promote T-Regulatory Cells in Alopecia Areata,” JAMA Dermatology 150, no. 7 (2014): 748-751.

[206]

B. E. Strober, K. Siu, A. F. Alexis, et al., “Etanercept Does Not Effectively Treat Moderate to Severe Alopecia Areata: An Open-Label Study,” Journal of the American Academy of Dermatology 52, no. 6 (2005): 1082-1084.

[207]

L. Gorcey, E. A. Gordon Spratt, and M. C. Leger, “Alopecia Universalis Successfully Treated With Adalimumab,” JAMA Dermatology 150, no. 12 (2014): 1341-1344.

[208]

H. M. Almohanna, A. A. Ahmed, J. W. Griggs, and A. Tosti, “Platelet-Rich Plasma in the Treatment of Alopecia Areata: A Review,” Journal of Investigative Dermatology Symposium Proceedings 20, no. 1 (2020): S45-S49.

[209]

W. Albalat and H. M. Ebrahim, “Evaluation of Platelet-Rich Plasma vs Intralesional Steroid in Treatment of Alopecia Areata,” Journal of Cosmetic Dermatology 18, no. 5 (2019): 1456-1462.

[210]

M. A. El Taieb, H. Ibrahim, E. A. Nada, and M. S. Al-Din, “Platelets Rich Plasma versus Minoxidil 5% in Treatment of Alopecia areata: A Trichoscopic Evaluation,” Dermatologic Therapy 30, no. 1 (2017).

[211]

M. Croft, “Control of Immunity by the TNFR-Related Molecule OX40 (CD134),” Annual Review of Immunology 28 (2010): 57-78.

[212]

H. Iriki, H. Takahashi, and M. Amagai, “Diverse Role of OX40 on T Cells as a Therapeutic Target for Skin Diseases,” Journal of Investigative Dermatology 143, no. 4 (2023): 545-553.

[213]

Y. Fu, Q. Lin, Z. Zhang, and L. Zhang, “Therapeutic Strategies for the Costimulatory Molecule OX40 in T-Cell-Mediatedimmunity,” Acta Pharmaceutica Sinica B 10, no. 3 (2020): 414-433.

[214]

G. J. Webb, G. M. Hirschfield, and P. J. Lane, “OX40, OX40L and Autoimmunity: A Comprehensive Review,” Clinical Reviews in Allergy & Immunology 50, no. 3 (2016): 312-332.

[215]

L. Y. Liu, B. G. Craiglow, F. Dai, and B. A. King, “Tofacitinib for the Treatment of Severe Alopecia Areata and Variants: A Study of 90 Patients,” Journal of the American Academy of Dermatology 76, no. 1 (2017): 22-28.

[216]

A. K. Gupta, J. L. Carviel, and W. Abramovits, “Efficacy of Tofacitinib in Treatment of Alopecia Universalis in Two Patients,” Journal of the European Academy of Dermatology and Venereology 30, no. 8 (2016): 1373-1378.

[217]

J. Mackay-Wiggan, A. Jabbari, N. Nguyen, et al., “Oral Ruxolitinib Induces Hair Regrowth in Patients With Moderate-To-Severe Alopecia Areata,” JCI Insight 1, no. 15 (2016): e89790.

[218]

L. Pieri, P. Guglielmelli, and A. M. Vannucchi, “Ruxolitinib-Induced Reversal of Alopecia Universalis in a Patient With Essential Thrombocythemia,” American Journal of Hematology 90, no. 1 (2015): 82-83.

[219]

A. Jabbari, Z. Dai, L. Xing, et al., “Reversal of Alopecia Areata Following Treatment With the JAK1/2 Inhibitor Baricitinib,” EBioMedicine 2, no. 4 (2015): 351-355.

[220]

L. Guo, S. Feng, B. Sun, X. Jiang, and Y. Liu, “Benefit and Risk Profile of Tofacitinib for the Treatment of Alopecia Areata: A Systemic Review and Meta-Analysis,” Journal of the European Academy of Dermatology and Venereology 34, no. 1 (2020): 192-201.

[221]

W. Damsky and B. A. King, “JAK Inhibitors in Dermatology: The Promise of a New Drug Class,” Journal of the American Academy of Dermatology 76, no. 4 (2017): 736-744.

[222]

B. King, J. Ko, S. Forman, et al., “Efficacy and Safety of the Oral Janus Kinase Inhibitor Baricitinib in the Treatment of Adults With Alopecia Areata: Phase 2 Results from a Randomized Controlled Study,” Journal of the American Academy of Dermatology 85, no. 4 (2021): 847-853.

[223]

L. Y. Liu and B. A. King, “Ruxolitinib for the Treatment of Severe Alopecia Areata,” Journal of the American Academy of Dermatology 80, no. 2 (2019): 566-568.

[224]

H. S. Park, M. W. Kim, J. S. Lee, et al., “Oral Tofacitinib Monotherapy in Korean Patients With Refractory Moderate-To-Severe Alopecia Areata: A Case Aeries,” Journal of the American Academy of Dermatology 77, no. 5 (2017): 978-980.

[225]

K. Phan and D. F. Sebaratnam, “JAK Inhibitors for Alopecia Areata: A Systematic Review and Meta-Analysis,” Journal of the European Academy of Dermatology and Venereology 33, no. 5 (2019): 850-856.

[226]

Y. Renert-Yuval and E. Guttman-Yassky, “A Novel Therapeutic Paradigm for Patients With Extensive Alopecia Areata,” Expert Opinion on Biological Therapy 16, no. 8 (2016): 1005-1014.

[227]

K. Bui, S. Polisetty, H. Gilchrist, S. M. Jackson, and J. Frederic, “Successful Treatment of Alopecia Universalis With Alefacept: A Case Report and Review of the Literature,” Cutis; Cutaneous Medicine for the Practitioner 81, no. 5 (2008): 431-434.

[228]

B. E. Strober, K. Menon, A. McMichael, et al., “Alefacept for Severe Alopecia Areata: A Randomized, Double-Blind, Placebo-Controlled Study,” Archives of Dermatology 145, no. 11 (2009): 1262-1266.

[229]

U. Kaelin, A. S. Hassan, L. R. Braathen, and N. Yawalkar, “Treatment of Alopecia Areata Partim Universalis With Efalizumab,” Journal of the American Academy of Dermatology 55, no. 3 (2006): 529-532.

[230]

N. Taneja and S. Gupta, “Apremilast is Efficacious in Refractory Alopecia Areata,” The Journal of Dermatological Treatment 31, no. 7 (2020): 727-729.

[231]

A. Keren, A. Shemer, Y. Ullmann, R. Paus, and A. Gilhar, “The PDE4 Inhibitor, Apremilast, Suppresses Experimentally Induced Alopecia Areata in Human Skin in Vivo,” Journal of Dermatological Science 77, no. 1 (2015): 74-76.

[232]

P. Joly, A. Lafon, E. Houivet, et al., “Efficacy of Methotrexate Alone vs Methotrexate Plus Low-Dose Prednisone in Patients With Alopecia Areata Totalis or Universalis: A 2-Step Double-Blind Randomized Clinical Trial,” JAMA Dermatology 159, no. 4 (2023): 403-410.

[233]

M. Ghassemi, N. Yazdanian, E. Behrangi, M. Jafari, and A. Goodarzi, “Comparison of Efficacy, Safety and Satisfaction of Latanoprost versus Minoxidil, Betamethasone and in Combination in Patients With Alopecia Areata: A Blinded Multiple Group Randomized Controlled Trial,” Dermatologic Therapy 35, no. 12 (2022): e15943.

[234]

R. K. Sivamani, D. Liepmann, and H. I. Maibach, “Microneedles and Transdermal Applications,” Expert Opinion on Drug Delivery 4, no. 1 (2007): 19-25.

[235]

J. C. Lee, M. A. Daniels, and M. Z. Roth, “Mesotherapy, Microneedling, and Chemical Peels,” Clinics in Plastic Surgery 43, no. 3 (2016): 583-595.

[236]

Y. A. Gomaa, M. J. Garland, F. J. McInnes, R. F. Donnelly, L. K. El-Khordagui, and C. G. Wilson, “Microneedle/nanoencapsulation-Mediated Transdermal Delivery: Mechanistic Insights,” European Journal of Pharmaceutics and Biopharmaceutics 86, no. 2 (2014): 145-155.

[237]

C. H. Lee, Hair-Growth Promoting Effect of Microneedle Roller Therapy, 2014.

[238]

N.-R. Kang, H.-J. Yoon, and W.-S. Ko, “Effects of Microneedle Therapy System (MTS) and Hwangryeonhaedoktang Pharmacopuncture Solution on Hair Growth in an Alopecia Model of C57BL/6N Mouse,” The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology 29, no. 1 (2016): 47-64.

[239]

B. Chandrashekar, V. Yepuri, and V. Mysore, “Alopecia Areata-Successful Outcome With Microneedling and Triamcinolone Acetonide,” Journal of Cutaneous and Aesthetic Surgery 7, no. 1 (2014): 63-64.

[240]

D. Pei, L. Chen, Y. Yao, L. Zeng, and G. Zhang, “Microneedling Combined With Compound Betamethasone in Treatment of Severe Alopecia Areata: A Case Report,” Frontiers in immunology 13 (2022): 939077.

[241]

R. M. Fertig, A. C. Gamret, J. Cervantes, and A. Tosti, “Microneedling for the Treatment of Hair Loss?,” Journal of the European Academy of Dermatology and Venereology 32, no. 4 (2018): 564-569.

[242]

A. A. Farooqi, N. N. Desai, M. Z. Qureshi, et al., “Exosome Biogenesis, Bioactivities and Functions as New Delivery Systems of Natural Compounds,” Biotechnology Advances 36, no. 1 (2018): 328-334.

[243]

R. Kalluri, “The Biology and Function of Exosomes in Cancer,” Journal of Clinical Investigation 126, no. 4 (2016): 1208-1215.

[244]

B. Yang, Y. Chen, and J. Shi, “Exosome Biochemistry and Advanced Nanotechnology for Next-Generation Theranostic Platforms,” Advanced Materials 31, no. 2 (2019): e1802896.

[245]

D. M. Pegtel and S. J. Gould, “Exosomes,” Annual Review of Biochemistry 88 (2019): 487-514.

[246]

A. Joorabloo and T. Liu, “Engineering Exosome-Based Biomimetic Nanovehicles for Wound Healing,” Journal of Controlled Release 356 (2023): 463-480.

[247]

R. Gowda, B. M. Robertson, S. Iyer, J. Barry, S. S. Dinavahi, and G. P. Robertson, “The Role of Exosomes in Metastasis and Progression of Melanoma,” Cancer Treatment Reviews 85 (2020): 101975.

[248]

H. Yu, H. Feng, H. Zeng, et al., “Exosomes: The Emerging Mechanisms and Potential Clinical Applications in Dermatology,” International Journal of Biological Sciences 20, no. 5 (2024): 1778-1795.

[249]

R. L. Rajendran, P. Gangadaran, S. S. Bak, et al., “Extracellular Vesicles Derived from MSCs Activates Dermal Papilla Cell in Vitro and Promotes Hair Follicle Conversion from Telogen to Anagen in Mice,” Scientific Reports 7, no. 1 (2017): 15560.

[250]

S. Hu, Z. Li, H. Lutz, et al., “Dermal Exosomes Containing miR-218-5p Promote Hair Regeneration by Regulating β-Catenin Signaling,” Science Advances 6, no. 30 (2020): eaba1685.

[251]

Y. Shi, J. Zhao, H. Li, et al., “A Drug-Free, Hair Follicle Cycling Regulatable, Separable, Antibacterial Microneedle Patch for Hair Regeneration Therapy,” Advanced Healthcare Materials 11, no. 19 (2022): e2200908.

[252]

L. Y. Chou, K. Ming, and W. C. Chan, “Strategies for the Intracellular Delivery of Nanoparticles,” Chem. Soc. Rev. 40, no. 1 (2011): 233-245.

[253]

X. Li, X. Peng, M. Zoulikha, et al., “Multifunctional Nanoparticle-Mediated Combining Therapy for Human Diseases,” Signal Transduction and Targeted Therapy 9, no. 1 (2024): 1.

[254]

R. Christmann, C. Thomas, N. Jager, et al., “Nanoparticle Targeting to Scalp Hair Follicles: New Perspectives for a Topical Therapy for Alopecia Areata,” Journal of Investigative Dermatology 140, no. 1 (2020): 243-246. e5.

[255]

B. Baroli, M. G. Ennas, F. Loffredo, M. Isola, R. Pinna, and M. A. López-Quintela, “Penetration of Metallic Nanoparticles in Human Full-Thickness Skin,” Journal of Investigative Dermatology 127, no. 7 (2007): 1701-1712.

[256]

W. Y. Jeong, S. Kim, S. Y. Lee, et al., “Transdermal Delivery of Minoxidil Using HA-PLGA Nanoparticles for the Treatment in Alopecia,” Biomaterials Research 23 (2019): 16.

[257]

M. Kuchukuntla, V. Palanivel, and A. Madhubabu, “Tofacitinib Citrate-Loaded Nanoparticle Gel for the Treatment of Alopecia Areata: Response Surface Design, Formulation and In Vitro-In Vivo Characterization,” Recent Advances in Drug Delivery and Formulation 17, no. 4 (2023): 314-331.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/