Dysregulation of Astrocytic ATP/Adenosine Release in the Hippocampus Cause Cognitive and Affective Disorders: Molecular Mechanisms, Diagnosis, and Therapy

Peter Illes , Patrizia Rubini , Henning Ulrich , Hai-Yan Yin , Yong Tang

MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70177

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70177 DOI: 10.1002/mco2.70177
REVIEW

Dysregulation of Astrocytic ATP/Adenosine Release in the Hippocampus Cause Cognitive and Affective Disorders: Molecular Mechanisms, Diagnosis, and Therapy

Author information +
History +
PDF

Abstract

The gliotransmitter adenosine 5'-triphosphate (ATP) and its enzymatic degradation product adenosine play a major role in orchestrating in the hippocampus cognitive and affective functions via P2 purinoceptors (P2X, P2Y) and P1 adenosine receptors (A1, A2A). Although numerous reviews exist on purinoceptors that modulate these functions, there is an apparent gap relating to the involvement of astrocyte-derived extracellular ATP. Our review focuses on the following issues: An impeded release of ATP from hippocampal astrocytes through vesicular mechanisms or connexin hemichannels and pannexin channels interferes with spatial working memory in rodents. The pharmacological blockade of P2Y1 receptors (P2Y1Rs) reverses the deficits in learning/memory performance in mouse models of familial Alzheimer's disease (AD). Similarly, in mouse models of major depressive disorder (MDD), based on acute or chronic stress-induced development of depressive-like behavior, a reduced exocytotic/channel-mediated ATP release from hippocampal astrocytes results in the deterioration of these behavioral responses. However, on the opposite, the increased stimulation of the microglial/astrocytic P2X7R-channel by ATP causes neuroinflammation and in consequence depressive-like behavior. In conclusion, there is strong evidence for the assumption that gliotransmitter ATP is intimately involved in the pathophysiology of cognitive and affective neuron/astrocyte-based human illnesses opening new diagnostic and therapeutic vistas for AD and MDD.

Keywords

A2A receptors / adenosine / astrocytic ATP / cognitive disorders / depressive-like behavior / P2X receptors / P2Y receptors

Cite this article

Download citation ▾
Peter Illes, Patrizia Rubini, Henning Ulrich, Hai-Yan Yin, Yong Tang. Dysregulation of Astrocytic ATP/Adenosine Release in the Hippocampus Cause Cognitive and Affective Disorders: Molecular Mechanisms, Diagnosis, and Therapy. MedComm, 2025, 6(5): e70177 DOI:10.1002/mco2.70177

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

G. Perea, M. Sur, and A. Araque, “Neuron-Glia Networks: Integral Gear of Brain Function,” Frontiers in Cellular Neuroscience 8 (2014): 378.

[2]

B. S. Khakh, “Astrocyte-Neuron Interactions in the Striatum: Insights on Identity, Form, and Function,” Trends in Neuroscience (Tins) 42, no. 9 (2019): 617-630.

[3]

L. K. Bak, A. Schousboe, and H. S. Waagepetersen, “The Glutamate/GABA-Glutamine Cycle: Aspects of Transport, Neurotransmitter Homeostasis and Ammonia Transfer,” Journal of Neurochemistry 98, no. 3 (2006): 641-653.

[4]

E. A. Nagelhus and O. P. Ottersen, “Physiological Roles of Aquaporin-4 in Brain,” Physiological Reviews 93, no. 4 (2013): 1543-1562.

[5]

N. B. Hamilton and D. Attwell, “Do Astrocytes Really Exocytose Neurotransmitters?,” Nature Reviews Neuroscience 11, no. 4 (2010): 227-238.

[6]

A. Araque, G. Carmignoto, P. G. Haydon, S. H. R. Oliet, R. Robitaille, and A. Volterra, “Gliotransmitters Travel in Time and Space,” Neuron 81, no. 4 (2014): 728-739.

[7]

M. M. Halassa, T. Fellin, and P. G. Haydon, “Tripartite Synapses: Roles for Astrocytic Purines in the Control of Synaptic Physiology and Behavior,” Neuropharmacology 57, no. 4 (2009): 343-346.

[8]

A. Mishra, J. P. Reynolds, Y. Chen, A. V. Gourine, D. A. Rusakov, and D. Attwell, “Astrocytes Mediate Neurovascular Signaling to Capillary Pericytes but Not to Arterioles,” Nature Neuroscience 19, no. 12 (2016): 1619-1627.

[9]

E. Scharbarg, A. Walter, L. Lecoin, et al., “Prostaglandin D(2) Controls Local Blood Flow and Sleep-Promoting Neurons in the VLPO via Astrocyte-Derived Adenosine,” Acs Chemical Neuroscience 14, no. 6 (2023): 1063-1070.

[10]

J. A. Wells, I. N. Christie, P. S. Hosford, et al., “A Critical Role for Purinergic Signalling in the Mechanisms Underlying Generation of BOLD fMRI Responses,” Journal of Neuroscience 35, no. 13 (2015): 5284-5292.

[11]

M. M. Halassa, C. Florian, T. Fellin, et al., “Astrocytic Modulation of Sleep Homeostasis and Cognitive Consequences of Sleep Loss,” Neuron 61, no. 2 (2009): 213-219.

[12]

T. Fujita, M. J. Chen, B. Li, et al., “Neuronal Transgene Expression in Dominant-Negative SNARE Mice,” Journal of Neuroscience 34, no. 50 (2014): 16594-16604.

[13]

X. Cao, L.-P. Li, Q. Wang, et al., “Astrocyte-Derived ATP Modulates Depressive-Like Behaviors,” Nature Medicine 19, no. 6 (2013): 773-777.

[14]

Y. Pankratov and U. Lalo, “Role for Astroglial α1-Adrenoreceptors in Gliotransmission and Control of Synaptic Plasticity in the Neocortex,” Frontiers in Cellular Neuroscience 9 (2015): 230.

[15]

V. Ralevic and W. R. Dunn, “Purinergic Transmission in Blood Vessels,” Autonomic Neuroscience 191 (2015): 48-66.

[16]

W. Nörenberg and P. Illes, “Neuronal P2X Receptors: Localisation and Functional Properties,” Naunyn-Schmiedebergs Archives of Pharmacology 362, no. 4-5 (2000): 324-339.

[17]

Z. Zhang, G. Chen, W. Zhou, et al., “Regulated ATP Release From Astrocytes Through Lysosome Exocytosis,” Nature Cell Biology 9, no. 8 (2007): 945-953.

[18]

A. Verkhratsky, M. Matteoli, V. Parpura, J.-P. Mothet, and R. Zorec, “Astrocytes as Secretory Cells of the Central Nervous System: Idiosyncrasies of Vesicular Secretion,” Embo Journal 35, no. 3 (2016): 239-257.

[19]

M. W. Sherwood, M. Arizono, A. Panatier, K. Mikoshiba, and S. H. R. Oliet, “Astrocytic IP(3)Rs: Beyond IP(3)R2,” Frontiers in Cellular Neuroscience 15 (2021): 695817.

[20]

E. Pryazhnikov and L. Khiroug, “Sub-Micromolar Increase in Ca(2+)(i) Triggers Delayed Exocytosis of ATP in Cultured Astrocytes,” Glia 56, no. 1 (2008): 38-49.

[21]

T. Liu, L. Sun, Y. Xiong, et al., “Calcium Triggers Exocytosis From Two Types of Organelles in a Single Astrocyte,” Journal of Neuroscience 31, no. 29 (2011): 10593-10601.

[22]

M. Kreft, M. Stenovec, M. Rupnik, et al., “Properties of Ca(2+)-Dependent Exocytosis in Cultured Astrocytes,” Glia 46, no. 4 (2004): 437-445.

[23]

M. Oya, T. Kitaguchi, Y. Yanagihara, et al., “Vesicular Nucleotide Transporter Is Involved in ATP Storage of Secretory Lysosomes in Astrocytes,” Biochemical and Biophysical Research Communications 438, no. 1 (2013): 145-151.

[24]

L. Xing, T. Yang, S. Cui, and G. Chen, “Connexin Hemichannels in Astrocytes: Role in CNS Disorders,” Frontiers in Molecular Neuroscience 12 (2019): 23.

[25]

S. O. Suadicani, R. Iglesias, J. Wang, G. Dahl, D. C. Spray, and E. Scemes, “ATP Signaling Is Deficient in Cultured Pannexin1-Null Mouse Astrocytes,” Glia 60, no. 7 (2012): 1106-1116.

[26]

R. Z. Sabirov, M. R. Islam, T. Okada, et al., “The ATP-Releasing Maxi-Cl Channel: Its Identity, Molecular Partners and Physiological/Pathophysiological Implications,” Life (Basel) 11, no. 6 (2021): 509.

[27]

H.-T. Liu, R. Z. Sabirov, and Y. Okada, “Oxygen-Glucose Deprivation Induces ATP Release via Maxi-Anion Channels in Astrocytes,” Purinergic Signalling 4, no. 2 (2008): 147-154.

[28]

S. Lee, B.-E. Yoon, K. Berglund, et al., “Channel-Mediated Tonic GABA Release From Glia,” Science 330, no. 6005 (2010): 790-796.

[29]

G. Lazutkaite, A. Soldà, K. Lossow, W. Meyerhof, and N. Dale, “Amino Acid Sensing in Hypothalamic Tanycytes via Umami Taste Receptors,” Molecular Metabolism 6, no. 11 (2017): 1480-1492.

[30]

S. Duan, C. M. Anderson, E. C. Keung, Y. Chen, Y. Chen, and R. A. Swanson, “P2×7 Receptor-Mediated Release of Excitatory Amino Acids From Astrocytes,” Journal of Neuroscience 23, no. 4 (2003): 1320-1328.

[31]

P. Illes, T. M. Khan, and P. Rubini, “Neuronal P2×7 Receptors Revisited: Do They Really Exist?,” Journal of Neuroscience 37, no. 30 (2017): 7049-7062.

[32]

J. Lezmy, “How Astrocytic ATP Shapes Neuronal Activity and Brain Circuits,” Current Opinion in Neurobiology 79 (2023): 102685.

[33]

U. Lalo and Y. Pankratov, “ATP-Mediated Signalling in the Central Synapses,” Neuropharmacology 229 (2023): 109477.

[34]

H. Zimmermann, M. Zebisch, and N. Sträter, “Cellular Function and Molecular Structure of Ecto-Nucleotidases,” Purinergic Signalling 8, no. 3 (2012): 437-502.

[35]

G. G. Yegutkin, “Enzymes Involved in Metabolism of Extracellular Nucleotides and Nucleosides: Functional Implications and Measurement of Activities,” Critical Reviews in Biochemistry and Molecular Biology 49, no. 6 (2014): 473-497.

[36]

M. Wall and N. Dale, “Activity-Dependent Release of Adenosine: A Critical Re-Evaluation of Mechanism,” Current Neuropharmacology 6, no. 4 (2008): 329-337.

[37]

A. Bicket, P. Mehrabi, Z. Naydenova, et al., “Novel Regulation of Equlibrative Nucleoside Transporter 1 (ENT1) by Receptor-Stimulated Ca2+-Dependent Calmodulin Binding,” American Journal of Physiology. Cell Physiology 310, no. 10 (2016): C808-820.

[38]

M. P. Abbracchio and G. Burnstock, “Purinoceptors: Are There Families of P2X and P2Y Purinoceptors?,” Pharmacology & Therapeutics 64, no. 3 (1994): 445-475.

[39]

M. P. Abbracchio, G. Burnstock, A. Verkhratsky, and H. Zimmermann, “Purinergic Signalling in the Nervous System: An Overview,” Trends in Neuroscience (Tins) 32, no. 1 (2009): 19-29.

[40]

A. Rivera, I. Vanzulli, and A. M. Butt, “A Central Role for ATP Signalling in Glial Interactions in the CNS,” Current Drug Targets 17, no. 16 (2016): 1829-1833.

[41]

A. M. Butt, “ATP: A Ubiquitous Gliotransmitter Integrating Neuron-Glial Networks,” Seminars in Cell & Developmental Biology 22, no. 2 (2011): 205-213.

[42]

P. Illes, C. E. Müller, K. A. Jacobson, et al., “Update of P2X Receptor Properties and Their Pharmacology: IUPHAR Review 30,” British Journal of Pharmacology 178, no. 3 (2021): 489-514.

[43]

Z. Huang, N. Xie, P. Illes, et al., “From Purines to Purinergic Signalling: Molecular Functions and Human Diseases,” Signal Transduction and Targeted Therapy 6, no. 1 (2021): 162.

[44]

M. P. Abbracchio, G. Burnstock, J.-M. Boeynaems, et al., “International Union of Pharmacology LVIII: Update on the P2Y G Protein-Coupled Nucleotide Receptors: From Molecular Mechanisms and Pathophysiology to Therapy,” Pharmacological Reviews 58, no. 3 (2006): 281-341.

[45]

K. A. Jacobson, E. G. Delicado, C. Gachet, et al., “Update of P2Y Receptor Pharmacology: IUPHAR Review 27,” British Journal of Pharmacology 177, no. 11 (2020): 2413-2433.

[46]

B. B. Fredholm, A. P. IJzerman, K. A. Jacobson, J. Linden, and C. E. Müller, “International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and Classification of Adenosine Receptors-An Update,” Pharmacological Reviews 63, no. 1 (2011): 1-34.

[47]

A. P. IJzerman, K. A. Jacobson, C. E. Müller, B. N. Cronstein, and R. A. Cunha, “International Union of Basic and Clinical Pharmacology. CXII: Adenosine Receptors: A Further Update,” Pharmacological Reviews 74, no. 2 (2022): 340-372.

[48]

J.-F. Chen, “Adenosine Receptor Control of Cognition in Normal and Disease,” International Review of Neurobiology 119 (2014): 257-307.

[49]

C. P. Garcia, A. Licht-Murava, and A. G. Orr, “Effects of Adenosine A(2A) Receptors on Cognitive Function in Health and Disease,” International Review of Neurobiology 170 (2023): 121-154.

[50]

S. M. Naes, S. Ab-Rahim, M. Mazlan, and A. Abdul Rahman, “Equilibrative Nucleoside Transporter 2: Properties and Physiological Roles,” BioMed Research International 2020 (2020): 5197626.

[51]

D. Boison and M. F. Jarvis, “Adenosine Kinase: A Key Regulator of Purinergic Physiology,” Biochemical Pharmacology 187 (2021): 114321.

[52]

D. Boison and E. Aronica, “Comorbidities in Neurology: Is Adenosine the Common Link?,” Neuropharmacology 97 (2015): 18-34.

[53]

B. Sperlágh, E. S. Vizi, K. Wirkner, and P. Illes, “P2×7 Receptors in the Nervous System,” Progress in Neurobiology 78, no. 6 (2006): 327-346.

[54]

Y. Zhang, H.-Y. Yin, P. Rubini, Y. Tang, and P. Illes, “A Possible Causal Involvement of Neuroinflammatory, Purinergic P2×7 Receptors in Psychiatric Disorders,” Current Neuropharmacology 20, no. 11 (2022): 2142-2155.

[55]

A. Surprenant, F. Rassendren, E. Kawashima, R. A. North, and G. Buell, “The Cytolytic P2Z Receptor for Extracellular ATP Identified as a P2X Receptor (P2×7),” Science 272, no. 5262 (1996): 735-738.

[56]

F. Di Virgilio, D. Dal Ben, A. C. Sarti, A. L. Giuliani, and S. Falzoni, “The P2×7 Receptor in Infection and Inflammation,” Immunity 47, no. 1 (2017): 15-31.

[57]

R. Sluyter, “The P2×7 Receptor,” Advances in Experimental Medicine and Biology 1051 (2017): 17-53.

[58]

P. Illes, “P2×7 Receptors Amplify CNS Damage in Neurodegenerative Diseases,” International Journal of Molecular Sciences 21, no. 17 (2020): 5996.

[59]

J. L. Voss, D. J. Bridge, N. J. Cohen, and J. A. Walker, “A Closer Look at the Hippocampus and Memory,” Trends in Cognitive Sciences 21, no. 8 (2017): 577-588.

[60]

J. Lisman, G. Buzsáki, H. Eichenbaum, L. Nadel, C. Ranganath, and A. D. Redish, “Viewpoints: How the Hippocampus Contributes to Memory, Navigation and Cognition,” Nature Neuroscience 20, no. 11 (2017): 1434-1447.

[61]

C. A. Stockmeier, G. J. Mahajan, L. C. Konick, et al., “Cellular Changes in the Postmortem Hippocampus in Major Depression,” Biological Psychiatry 56, no. 9 (2004): 640-650.

[62]

G. MacQueen and T. Frodl, “The Hippocampus in Major Depression: Evidence for the Convergence of the Bench and Bedside in Psychiatric Research?,” Molecular Psychiatry 16, no. 3 (2011): 252-264.

[63]

H. Hagena and D. Manahan-Vaughan, “Interplay of Hippocampal Long-Term Potentiation and Long-Term Depression in Enabling Memory Representations,” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 379, no. 1906 (2024): 20230229.

[64]

M. A. Rogers, K. Kasai, M. Koji, et al., “Executive and Prefrontal Dysfunction in Unipolar Depression: A Review of Neuropsychological and Imaging Evidence,” Neuroscience Research 50, no. 1 (2004): 1-11.

[65]

H. J. Kang, B. Voleti, T. Hajszan, et al., “Decreased Expression of Synapse-Related Genes and Loss of Synapses in Major Depressive Disorder,” Nature Medicine 18, no. 9 (2012): 1413-1417.

[66]

B. P. Godsil, J. P. Kiss, M. Spedding, and T. M. Jay, “The Hippocampal-Prefrontal Pathway: The Weak Link in Psychiatric Disorders?,” European Neuropsychopharmacology 23, no. 10 (2013): 1165-1181.

[67]

Y. H. Ahn, Y. Tang, and P. Illes, “The Neuroinflammatory Astrocytic P2×7 Receptor: Alzheimer's Disease, Ischemic Brain Injury, and Epileptic State,” Expert Opinion on Therapeutic Targets 27, no. 9 (2023): 763-778.

[68]

Y. Shen, S. M. Specht, I. de Saint Ghislain, and R. Li, “The Hippocampus: A Biological Model for Studying Learning and Memory,” Progress in Neurobiology 44, no. 5 (1994): 485-496.

[69]

L. R. Squire and S. Zola-Morgan, “The Medial Temporal Lobe Memory System,” Science 253, no. 5026 (1991): 1380-1386.

[70]

N. Cowan, “What Are the Differences Between Long-Term, Short-Term, and Working Memory?,” Progress in Brain Research 169 (2008): 323-338.

[71]

A. Kol, A. Adamsky, M. Groysman, T. Kreisel, M. London, and I. Goshen, “Astrocytes Contribute to Remote Memory Formation by Modulating Hippocampal-Cortical Communication During Learning,” Nature Neuroscience 23, no. 10 (2020): 1229-1239.

[72]

R. Martín, R. Bajo-Grañeras, R. Moratalla, G. Perea, and A. Araque, “Circuit-Specific Signaling in Astrocyte-Neuron Networks in Basal Ganglia Pathways,” Science 349, no. 6249 (2015): 730-734.

[73]

M. Martin-Fernandez, S. Jamison, L. M. Robin, et al., “Synapse-Specific Astrocyte Gating of Amygdala-Related Behavior,” Nature Neuroscience 20, no. 11 (2017): 1540-1548.

[74]

A. Adamsky, A. Kol, T. Kreisel, et al., “Astrocytic Activation Generates De Novo Neuronal Potentiation and Memory Enhancement,” Cell 174, no. 1 (2018): 59-71.e14.

[75]

R. M. Church, “Quantitative Models of Animal Learning and Cognition,” Journal of Experimental Psychology: Animal Behavior Processes 23, no. 4 (1997): 379-389.

[76]

Neha, R. K. Sodhi, A. S. Jaggi, and N. Singh, “Animal Models of Dementia and Cognitive Dysfunction,” Life Sciences 109, no. 2 (2014): 73-86.

[77]

P. Illes, H. Ulrich, J.-F. Chen, and Y. Tang, “Purinergic Receptors in Cognitive Disturbances,” Neurobiology of Disease 185 (2023): 106229.

[78]

E. Decrock, M. de Bock, N. Wang, et al., “Connexin and Pannexin Signaling Pathways, an Architectural Blueprint for CNS Physiology and Pathology?,” Cellular and Molecular Life Sciences 72, no. 15 (2015): 2823-2851.

[79]

P. Illes, P. Rubini, L. Huang, and Y. Tang, “The P2×7 Receptor: A New Therapeutic Target in Alzheimer's Disease,” Expert Opinion on Therapeutic Targets 23, no. 3 (2019): 165-176.

[80]

C. J. Gallagher and M. W. Salter, “Differential Properties of Astrocyte Calcium Waves Mediated by P2Y1 and P2Y2 Receptors,” Journal of Neuroscience 23, no. 17 (2003): 6728-6739.

[81]

J.-T. He, X.-Y. Li, L. Yang, and X. Zhao, “Astroglial Connexins and Cognition: Memory Formation or Deterioration?,” Bioscience Reports 40, no. 1 (2020): BSR20193510.

[82]

O. D. Jones, S. R. Hulme, and W. C. Abraham, “Purinergic Receptor- and Gap Junction-Mediated Intercellular Signalling as a Mechanism of Heterosynaptic Metaplasticity,” Neurobiology of Learning and Memory 105 (2013): 31-39.

[83]

L. Walrave, M. Vinken, G. Albertini, D. de Bundel, L. Leybaert, and I. J. Smolders, “Inhibition of Connexin43 Hemichannels Impairs Spatial Short-Term Memory Without Affecting Spatial Working Memory,” Frontiers in Cellular Neuroscience 10 (2016): 288.

[84]

W. Zhang, J. Yin, B.-Y. Gao, et al., “Inhibition of Astroglial Hemichannels Ameliorates Infrasonic Noise Induced Short-Term Learning and Memory Impairment,” Behavioral and Brain Functions 19, no. 1 (2023): 23.

[85]

N. Prochnow, A. Abdulazim, S. Kurtenbach, et al., “Pannexin1 Stabilizes Synaptic Plasticity and Is Needed for Learning,” PLoS ONE 7, no. 12 (2012): e51767.

[86]

P. Obot, G. Subah, A. Schonwald, et al., “Astrocyte and Neuronal Panx1 Support Long-Term Reference Memory in Mice,” ASN Neuro 15 (2023): 17590914231184712.

[87]

P. Pelegrin and A. Surprenant, “Pannexin-1 Mediates Large Pore Formation and Interleukin-1beta Release by the ATP-Gated P2×7 Receptor,” Embo Journal 25, no. 21 (2006): 5071-5082.

[88]

P. Pelegrin, “Targeting Interleukin-1 Signaling in Chronic Inflammation: Focus on P2X(7) Receptor and Pannexin-1,” Drug News & Perspectives 21, no. 8 (2008): 424-433.

[89]

M. T. Khan, J. Deussing, Y. Tang, and P. Illes, “Astrocytic Rather Than Neuronal P2×7 Receptors Modulate the Function of the Tri-Synaptic Network in the Rodent Hippocampus,” Brain Research Bulletin 151 (2019): 164-173.

[90]

K. Kaczmarek-Hajek, J. Zhang, R. Kopp, et al., “Re-Evaluation of Neuronal P2×7 Expression Using Novel Mouse Models and a P2×7-Specific Nanobody,” Elife 7 (2018): e36217.

[91]

A. Ramírez-Fernández, L. Urbina-Treviño, G. Conte, et al., “Deviant Reporter Expression and P2×4 Passenger Gene Overexpression in the Soluble EGFP BAC Transgenic P2×7 Reporter Mouse Model,” Scientific Reports 10, no. 1 (2020): 19876.

[92]

S. G. Anagnostaras, G. D. Gale, and M. S. Fanselow, “Hippocampus and Contextual Fear Conditioning: Recent Controversies and Advances,” Hippocampus 11, no. 1 (2001): 8-17.

[93]

N. G. Fiorenza, J. Rosa, I. Izquierdo, and J. C. Myskiw, “Modulation of the Extinction of Two Different Fear-Motivated Tasks in Three Distinct Brain Areas,” Behavioural Brain Research 232, no. 1 (2012): 210-216.

[94]

L. B. Domingos, S. C. Hott, A. L. B. Terzian, and L. B. M. Resstel, “P2×7 Purinergic Receptors Participate in the Expression and Extinction Processes of Contextual Fear Conditioning Memory in Mice,” Neuropharmacology 128 (2018): 474-481.

[95]

R. C. Campos, G. M. Parfitt, C. E. Polese, R. Coutinho-Silva, F. B. Morrone, and D. M. Barros, “Pharmacological Blockage and P2×7 Deletion Hinder Aversive Memories: Reversion in an Enriched Environment,” Neuroscience 280 (2014): 220-230.

[96]

P. Illes, G. Burnstock, and Y. Tang, “Astroglia-Derived ATP Modulates CNS Neuronal Circuits,” Trends in Neuroscience (Tins) 42, no. 12 (2019): 885-898.

[97]

K. Farrell, M. Musaus, S. Navabpour, et al., “Proteomic Analysis Reveals Sex-Specific Protein Degradation Targets in the Amygdala During Fear Memory Formation,” Frontiers in Molecular Neuroscience 14 (2021): 716284.

[98]

S. Bissiere, M. Zelikowsky, R. Ponnusamy, N. S. Jacobs, H. T. Blair, and Fanselow, “Electrical Synapses Control Hippocampal Contributions to Fear Learning and Memory,” Science 331, no. 6013 (2011): 87-91.

[99]

J. Stehberg, R. Moraga-Amaro, C. Salazar, et al., “Release of Gliotransmitters Through Astroglial Connexin 43 Hemichannels Is Necessary for Fear Memory Consolidation in the Basolateral Amygdala,” Faseb Journal 26, no. 9 (2012): 3649-3657.

[100]

J. Götz, L.-G. Bodea, and M. Goedert, “Rodent Models for Alzheimer Disease,” Nature Reviews Neuroscience 19, no. 10 (2018): 583-598.

[101]

L. C. Dos Santos Picanco, P. F. Ozela, M. de Fatima de Brito Brito, et al., “Alzheimer's Disease: A Review From the Pathophysiology to Diagnosis, New Perspectives for Pharmacological Treatment,” Current Medicinal Chemistry 25, no. 26 (2018): 3141-3159.

[102]

D. E. Ribeiro, A. L. Roncalho, T. Glaser, H. Ulrich, G. Wegener, and S. Joca, “P2×7 Receptor Signaling in Stress and Depression,” International Journal of Molecular Sciences 20, no. 11 (2019): 2778.

[103]

Q. Huang, J. Ying, W. Yu, et al., “P2×7 Receptor: An Emerging Target in Alzheimer's Disease,” Molecular Neurobiology 61, no. 5 (2024): 2866-2880.

[104]

E. Martin, M. Amar, C. Dalle, et al., “New Role of P2×7 Receptor in an Alzheimer's Disease Mouse Model,” Molecular Psychiatry 24, no. 1 (2019): 108-125.

[105]

A. Delekate, M. Füchtemeier, T. Schumacher, C. Ulbrich, M. Foddis, and G. C. Petzold, “Metabotropic P2Y1 Receptor Signalling Mediates Astrocytic Hyperactivity in Vivo in an Alzheimer's Disease Mouse Model,” Nature Communications 5 (2014): 5422.

[106]

N. Reichenbach, A. Delekate, B. Breithausen, et al., “P2Y1 Receptor Blockade Normalizes Network Dysfunction and Cognition in an Alzheimer's Disease Model,” Journal of Experimental Medicine 215, no. 6 (2018): 1649-1663.

[107]

X. Mei, P. Ezan, C. Giaume, and A. Koulakoff, “Astroglial Connexin Immunoreactivity Is Specifically Altered at β-Amyloid Plaques in β-Amyloid Precursor Protein/presenilin1 Mice,” Neuroscience 171, no. 1 (2010): 92-105.

[108]

R. Ren, L. Zhang, and M. Wang, “Specific Deletion Connexin43 in Astrocyte Ameliorates Cognitive Dysfunction in APP/PS1 Mice,” Life Sciences 208 (2018): 175-191.

[109]

J. I. Nagy, W. Li, E. L. Hertzberg, and C. A. Marotta, “Elevated Connexin43 Immunoreactivity at Sites of Amyloid Plaques in Alzheimer's Disease,” Brain Research 717, no. 1-2 (1996): 173-178.

[110]

Y. Pankratov, U. Lalo, O. A. Krishtal, and A. Verkhratsky, “P2X Receptors and Synaptic Plasticity,” Neuroscience 158, no. 1 (2009): 137-148.

[111]

S. J. Guzman and Z. Gerevich, “P2Y Receptors in Synaptic Transmission and Plasticity: Therapeutic Potential in Cognitive Dysfunction,” Neural Plasticity 2016 (2016): 1207393.

[112]

E. Boué-Grabot and Y. Pankratov, “Modulation of Central Synapses by Astrocyte-Released ATP and Postsynaptic P2X Receptors,” Neural Plasticity 2017 (2017): 9454275.

[113]

Y. V. Pankratov, U. V. Lalo, and O. A. Krishtal, “Role for P2X Receptors in Long-Term Potentiation,” Journal of Neuroscience 22, no. 19 (2002): 8363-8369.

[114]

U. Lalo, O. Palygin, A. Verkhratsky, S. G. N. Grant, and Y. Pankratov, “ATP From Synaptic Terminals and Astrocytes Regulates NMDA Receptors and Synaptic Plasticity Through PSD-95 Multi-Protein Complex,” Scientific Reports 6 (2016): 33609.

[115]

T. Sumi and K. Harada, “Mechanism Underlying Hippocampal Long-Term Potentiation and Depression Based on Competition Between Endocytosis and Exocytosis of AMPA Receptors,” Scientific Reports 10, no. 1 (2020): 14711.

[116]

A. Volianskis, G. France, M. S. Jensen, Z. A. Bortolotto, D. E. Jane, and G. L. Collingridge, “Long-Term Potentiation and the Role of N-Methyl-D-Aspartate Receptors,” Brain Research 1621 (2015): 5-16.

[117]

M. Temido-Ferreira, D. G. Ferreira, V. L. Batalha, et al., “Age-Related Shift in LTD Is Dependent on Neuronal Adenosine A(2A) Receptors Interplay With mGluR5 and NMDA Receptors,” Molecular Psychiatry 25, no. 8 (2020): 1876-1900.

[118]

F. M. Mouro, D. M. Rombo, R. B. Dias, J. A. Ribeiro, and A. M. Sebastião, “Adenosine A(2A) Receptors Facilitate Synaptic NMDA Currents in CA1 Pyramidal Neurons,” British Journal of Pharmacology 175, no. 23 (2018): 4386-4397.

[119]

M. F. Pereira, I. M. Amaral, C. Lopes, et al., “l-α-Aminoadipate Causes Astrocyte Pathology With Negative Impact on Mouse Hippocampal Synaptic Plasticity and Memory,” Faseb Journal 35, no. 8 (2021): e21726.

[120]

U. Lalo and Y. Pankratov, “Astrocyte Ryanodine Receptors Facilitate Gliotransmission and Astroglial Modulation of Synaptic Plasticity,” Frontiers in Cellular Neuroscience 18 (2024): 1382010.

[121]

J. Chen, Z. Tan, L. Zeng, et al., “Heterosynaptic Long-Term Depression Mediated by ATP Released From Astrocytes,” Glia 61, no. 2 (2013): 178-191.

[122]

L. Rodriguez, C. Yi, C. Chu, et al., “Cross-Talk Between P2X and NMDA Receptors,” International Journal of Molecular Sciences 21, no. 19 (2020): 7187.

[123]

S. Kang, S.-I. Hong, J. Lee, et al., “Activation of Astrocytes in the Dorsomedial Striatum Facilitates Transition From Habitual to Goal-Directed Reward-Seeking Behavior,” Biological Psychiatry 88, no. 10 (2020): 797-808.

[124]

A. Pinto-Duarte, J. E. Coelho, R. A. Cunha, J. A. Ribeiro, and A. M. Sebastião, “Adenosine A2A Receptors Control the Extracellular Levels of Adenosine Through Modulation of Nucleoside Transporters Activity in the Rat Hippocampus,” Journal of Neurochemistry 93, no. 3 (2005): 595-604.

[125]

Z. Wu, Y. Cui, H. Wang, et al., “Neuronal Activity-Induced, Equilibrative Nucleoside Transporter-Dependent, Somatodendritic Adenosine Release Revealed by a GRAB Sensor,” Proceeding of the National Academy of Sciences of the United States of America 120, no. 14 (2023): e2212387120.

[126]

X. Sun, L. Dias, C. Peng, et al., “40 Hz Light Flickering Facilitates the Glymphatic Flow via Adenosine Signaling in Mice,” Cell Discovery 10, no. 1 (2024): 81.

[127]

X. Zhou, Y. He, T. Xu, et al., “40 Hz Light Flickering Promotes Sleep Through Cortical Adenosine Signaling,” Cell Research 34, no. 3 (2024): 214-231.

[128]

C.-C. Lee, C.-P. Chang, C.-J. Lin, et al., “Adenosine Augmentation Evoked by an ENT1 Inhibitor Improves Memory Impairment and Neuronal Plasticity in the APP/PS1 Mouse Model of Alzheimer's Disease,” Molecular Neurobiology 55, no. 12 (2018): 8936-8952.

[129]

C.-P. Chang, Y.-G. Chang, P.-Y. Chuang, et al., “Equilibrative Nucleoside Transporter 1 Inhibition Rescues Energy Dysfunction and Pathology in a Model of Tauopathy,” Acta Neuropathologica Communications 9, no. 1 (2021): 112.

[130]

K.-C. Wu, C.-Y. Lee, Y. Chern, and C.-J. Lin, “Amelioration of Lipopolysaccharide-Induced Memory Impairment in Equilibrative Nucleoside Transporter-2 Knockout Mice Is Accompanied by the Changes in Glutamatergic Pathways,” Brain, Behavior, and Immunity 96 (2021): 187-199.

[131]

L. Alanko, T. Porkka-Heiskanen, and S. Soinila, “Localization of Equilibrative Nucleoside Transporters in the Rat Brain,” Journal of Chemical Neuroanatomy 31, no. 3 (2006): 162-168.

[132]

F. Q. Gonçalves, J. P. Lopes, H. B. Silva, et al., “Synaptic and Memory Dysfunction in a β-Amyloid Model of Early Alzheimer's Disease Depends on Increased Formation of ATP-Derived Extracellular Adenosine,” Neurobiology of Disease 132 (2019): 104570.

[133]

A. P. Simões, F. Q. Gonçalves, D. Rial, et al., “CD73-Mediated Formation of Extracellular Adenosine Is Responsible for Adenosine A(2A) Receptor-Mediated Control of Fear Memory and Amygdala Plasticity,” International Journal of Molecular Sciences 23, no. 21 (2022): 12826.

[134]

F. Q. Gonçalves, F. C. Matheus, H. B. Silva, et al., “Increased ATP Release and Higher Impact of Adenosine A(2A) Receptors on Corticostriatal Plasticity in a Rat Model of Presymptomatic Parkinson's Disease,” Molecular Neurobiology 60, no. 3 (2023): 1659-1674.

[135]

R. Dang, A. Liu, Y. Zhou, et al., “Astrocytic Neuroligin 3 Regulates Social Memory and Synaptic Plasticity Through Adenosine Signaling in Male Mice,” Nature Communications 15, no. 1 (2024): 8639.

[136]

N. Rebola, R. Lujan, R. A. Cunha, and C. Mulle, “Adenosine A2A Receptors Are Essential for Long-Term Potentiation of NMDA-EPSCs at Hippocampal Mossy Fiber Synapses,” Neuron 57, no. 1 (2008): 121-134.

[137]

C. Florian, C. G. Vecsey, M. M. Halassa, P. G. Haydon, and T. Abel, “Astrocyte-Derived Adenosine and A1 Receptor Activity Contribute to Sleep Loss-Induced Deficits in Hippocampal Synaptic Plasticity and Memory in Mice,” Journal of Neuroscience 31, no. 19 (2011): 6956-6962.

[138]

Y. Li, L. Li, J. Wu, et al., “Activation of Astrocytes in Hippocampus Decreases Fear Memory Through Adenosine A(1) Receptors,” Elife 9 (2020): e57155.

[139]

A. Cavaccini, C. Durkee, P. Kofuji, R. Tonini, and A. Araque, “Astrocyte Signaling Gates Long-Term Depression at Corticostriatal Synapses of the Direct Pathway,” Journal of Neuroscience 40, no. 30 (2020): 5757-5768.

[140]

M. Rivera-Oliver and M. Díaz-Ríos, “Using Caffeine and Other Adenosine Receptor Antagonists and Agonists as Therapeutic Tools Against Neurodegenerative Diseases: A Review,” Life Sciences 101, no. 1-2 (2014): 1-9.

[141]

J. P. Lopes, A. Pliássova, and R. A. Cunha, “The Physiological Effects of Caffeine on Synaptic Transmission and Plasticity in the Mouse Hippocampus Selectively Depend on Adenosine A(1) and A(2A) Receptors,” Biochemical Pharmacology 166 (2019): 313-321.

[142]

A. Launay, O. Nebie, J. Vijaya Shankara, et al., “The Role of Adenosine A(2A) Receptors in Alzheimer's Disease and Tauopathies,” Neuropharmacology 226 (2023): 109379.

[143]

D. Madeira, C. R. Lopes, A. P. Simões, P. M. Canas, R. A. Cunha, and P. Agostinho, “Astrocytic A(2A) Receptors Silencing Negatively Impacts Hippocampal Synaptic Plasticity and Memory of Adult Mice,” Glia 71, no. 9 (2023): 2137-2153.

[144]

D. Madeira, J. Domingues, C. R. Lopes, P. M. Canas, R. A. Cunha, and P. Agostinho, “Modification of Astrocytic Cx43 Hemichannel Activity in Animal Models of AD: Modulation by Adenosine A(2A) Receptors,” Cellular and Molecular Life Sciences 80, no. 11 (2023): 340.

[145]

M. Matos, H.-Y. Shen, E. Augusto, et al., “Deletion of Adenosine A2A Receptors From Astrocytes Disrupts Glutamate Homeostasis Leading to Psychomotor and Cognitive Impairment: Relevance to Schizophrenia,” Biological Psychiatry 78, no. 11 (2015): 763-774.

[146]

I. Paiva, K. Carvalho, P. Santos, et al., “A(2A) R-Induced Transcriptional Deregulation in Astrocytes: An in Vitro Study,” Glia 67, no. 12 (2019): 2329-2342.

[147]

H. S. Lee, A. Ghetti, A. Pinto-Duarte, et al., “Astrocytes Contribute to Gamma Oscillations and Recognition Memory,” Proceeding of the National Academy of Sciences of the United States of America 111, no. 32 (2014): E3343-3352.

[148]

H. Nishiyama, T. Knopfel, S. Endo, and S. Itohara, “Glial Protein S100B Modulates Long-Term Neuronal Synaptic Plasticity,” Proceeding of the National Academy of Sciences of the United States of America 99, no. 6 (2002): 4037-4042.

[149]

V. M. Sardinha, S. Guerra-Gomes, I. Caetano, et al., “Astrocytic Signaling Supports Hippocampal-Prefrontal Theta Synchronization and Cognitive Function,” Glia 65, no. 12 (2017): 1944-1960.

[150]

A. G. Orr, E. C. Hsiao, M. M. Wang, et al., “Astrocytic Adenosine Receptor A2A and Gs-Coupled Signaling Regulate Memory,” Nature Neuroscience 18, no. 3 (2015): 423-434.

[151]

K. S. Lee, M. Reddington, P. Schubert, and G. Kreutzberg, “Regulation of the Strength of Adenosine Modulation in the Hippocampus by a Differential Distribution of the Density of A1 Receptors,” Brain Research 260, no. 1 (1983): 156-159.

[152]

S. L. Reis, H. B. Silva, M. Almeida, R. A. Cunha, A. P. Simões, and P. M. Canas, “Adenosine A(1) and A(2A) Receptors Differently Control Synaptic Plasticity in the Mouse Dorsal and Ventral Hippocampus,” Journal of Neurochemistry 151, no. 2 (2019): 227-237.

[153]

Y. Xu, Y. Ning, Y. Zhao, et al., “Caffeine Functions by Inhibiting Dorsal and Ventral Hippocampal Adenosine 2A Receptors to Modulate Memory and Anxiety, Respectively,” Frontiers in Pharmacology 13 (2022): 807330.

[154]

S. M. Theparambil, O. Kopach, A. Braga, et al., “Adenosine Signalling to Astrocytes Coordinates Brain Metabolism and Function,” Nature 632, no. 8023 (2024): 139-146.

[155]

C. R. Lopes, R. A. Cunha, and P. Agostinho, “Astrocytes and Adenosine A(2A) Receptors: Active Players in Alzheimer's Disease,” Frontiers in Neuroscience 15 (2021): 666710.

[156]

A. R. Costenla, M. J. Diógenes, P. M. Canas, et al., “Enhanced Role of Adenosine A(2A) Receptors in the Modulation of LTP in the Rat Hippocampus Upon Ageing,” European Journal of Neuroscience 34, no. 1 (2011): 12-21.

[157]

G. M. A. Cunha, P. M. Canas, C. S. Melo, et al., “Adenosine A2A Receptor Blockade Prevents Memory Dysfunction Caused by Beta-Amyloid Peptides but Not by Scopolamine or MK-801,” Experimental Neurology 210, no. 2 (2008): 776-781.

[158]

P. M. Canas, L. O. Porciúncula, G. M. A. Cunha, et al., “Adenosine A2A Receptor Blockade Prevents Synaptotoxicity and Memory Dysfunction Caused by Beta-Amyloid Peptides via p38 Mitogen-Activated Protein Kinase Pathway,” Journal of Neuroscience 29, no. 47 (2009): 14741-14751.

[159]

D. Madeira, L. Dias, P. Santos, R. A. Cunha, P. M. Canas, and P. Agostinho, “Association Between Adenosine A(2A) Receptors and Connexin 43 Regulates Hemichannels Activity and ATP Release in Astrocytes Exposed to Amyloid-β Peptides,” Molecular Neurobiology 58, no. 12 (2021): 6232-6248.

[160]

L. Dias, D. Pochmann, C. Lemos, et al., “Increased Synaptic ATP Release and CD73-Mediated Formation of Extracellular Adenosine in the Control of Behavioral and Electrophysiological Modifications Caused by Chronic Stress,” Acs Chemical Neuroscience 14, no. 7 (2023): 1299-1309.

[161]

Y.-F. Zhao, W.-J. Ren, Y. Zhang, et al., “High, in Contrast to Low Levels of Acute Stress Induce Depressive-Like Behavior by Involving Astrocytic, in Addition to Microglial P2×7 Receptors in the Rodent Hippocampus,” International Journal of Molecular Sciences 23, no. 3 (2022): 1904.

[162]

R. C. Kessler, P. Berglund, O. Demler, et al., “The Epidemiology of Major Depressive Disorder: Results From the National Comorbidity Survey Replication (NCS-R),” Jama 289, no. 23 (2003): 3095-3105.

[163]

G. S. Malhi and J. J. Mann Lancet 392, no. 10161 (2018): 2299-2312.

[164]

X.-J. Kuang, C.-Y. Zhang, B.-Y. Yan, et al., “P2×2 Receptors in Pyramidal Neurons Are Critical for Regulating Vulnerability to Chronic Stress,” Theranostics 12, no. 8 (2022): 3703-3718.

[165]

E. Anderzhanova, T. Kirmeier, and C. T. Wotjak, “Animal Models in Psychiatric Research: The RDoC System as a New Framework for Endophenotype-Oriented Translational Neuroscience,” Neurobiology of Stress 7 (2017): 47-56.

[166]

C. R. Pryce and E. Fuchs, “Chronic Psychosocial Stressors in Adulthood: Studies in Mice, Rats and Tree Shrews,” Neurobiology of Stress 6 (2017): 94-103.

[167]

J. W. Young, B. L. Henry, and M. A. Geyer, “Predictive Animal Models of Mania: Hits, Misses and Future Directions,” British Journal of Pharmacology 164, no. 4 (2011): 1263-1284.

[168]

D. Rial, C. Lemos, H. Pinheiro, et al., “Depression as a Glial-Based Synaptic Dysfunction,” Frontiers in Cellular Neuroscience 9 (2015): 521.

[169]

K. Harada, T. Kamiya, and T. Tsuboi, “Gliotransmitter Release From Astrocytes: Functional, Developmental, and Pathological Implications in the Brain,” Frontiers in Neuroscience 9 (2015): 499.

[170]

S. Koizumi, “Glial Purinergic Signals and Psychiatric Disorders,” Frontiers in Cellular Neuroscience 15 (2021): 822614.

[171]

Q.-Q. Cui, Z.-L. Hu, Y.-L. Hu, et al., “Hippocampal CD39/ENTPD1 Promotes Mouse Depression-Like Behavior Through Hydrolyzing Extracellular ATP,” Embo Reports 21, no. 4 (2020): e47857.

[172]

S. Lin, L. Huang, Z.-C. Luo, et al., “The ATP Level in the Medial Prefrontal Cortex Regulates Depressive-Like Behavior via the Medial Prefrontal Cortex-Lateral Habenula Pathway,” Biological Psychiatry 92, no. 3 (2022): 179-192.

[173]

M. Kinoshita, Y. Hirayama, K. Fujishita, et al., “Anti-Depressant Fluoxetine Reveals Its Therapeutic Effect via Astrocytes,” EBioMedicine 32 (2018): 72-83.

[174]

A. R. Machado-Santos, E. Loureiro-Campos, P. Patrício, et al., “Beyond New Neurons in the Adult Hippocampus: Imipramine Acts as a Pro-Astrogliogenic Factor and Rescues Cognitive Impairments Induced by Stress Exposure,” Cells 11, no. 3 (2022): 390.

[175]

H. N. Rubaiy, “ORAI Calcium Channels: Regulation, Function, Pharmacology, and Therapeutic Targets,” Pharmaceuticals (Basel) 16, no. 2 (2023): 162.

[176]

M. M. Novakovic, K. S. Korshunov, R. A. Grant, et al., “Astrocyte Reactivity and Inflammation-Induced Depression-Like Behaviors Are Regulated by Orai1 Calcium Channels,” Nature Communications 14, no. 1 (2023): 5500.

[177]

J. Liu, T.-T. Liu, L. Mou, et al., “P2×7 Receptor: A Potential Target for Treating Comorbid Anxiety and Depression,” Purinergic Signalling (2024).

[178]

W.-H. Cho, K. Noh, B. H. Lee, et al., “Hippocampal Astrocytes Modulate Anxiety-Like Behavior,” Nature Communications 13, no. 1 (2022): 6536.

[179]

Q. Ren, Z.-Z. Wang, S.-F. Chu, C.-Y. Xia, and N.-H. Chen, “Gap Junction Channels as Potential Targets for the Treatment of Major Depressive Disorder,” Psychopharmacology 235, no. 1 (2018): 1-12.

[180]

C.-Y. Xia, Z.-Z. Wang, T. Yamakuni, and N.-H. Chen, “A Novel Mechanism of Depression: Role for Connexins,” European Neuropsychopharmacology 28, no. 4 (2018): 483-498.

[181]

D. Huang, C. Li, W. Zhang, J. Qin, W. Jiang, and C. Hu, “Dysfunction of Astrocytic Connexins 30 and 43 in the Medial Prefrontal Cortex and Hippocampus Mediates Depressive-Like Behaviours,” Behavioural Brain Research 372 (2019): 111950.

[182]

M. Ni, J.-G. He, H.-Y. Zhou, et al., “Pannexin-1 Channel Dysfunction in the Medial Prefrontal Cortex Mediates Depressive-Like Behaviors Induced by Chronic Social Defeat Stress and Administration of Mefloquine in Mice,” Neuropharmacology 137 (2018): 256-267.

[183]

J. A. Orellana, R. Moraga-Amaro, R. Díaz-Galarce, et al., “Restraint Stress Increases Hemichannel Activity in Hippocampal Glial Cells and Neurons,” Frontiers in Cellular Neuroscience 9 (2015): 102.

[184]

M. Jun, Q. Xiaolong, Y. Chaojuan, et al., “Calhm2 Governs Astrocytic ATP Releasing in the Development of Depression-Like Behaviors,” Molecular Psychiatry 23, no. 4 (2018): 1091.

[185]

T. Hajszan, A. Dow, J. L. Warner-Schmidt, et al., “Remodeling of Hippocampal Spine Synapses in the Rat Learned Helplessness Model of Depression,” Biological Psychiatry 65, no. 5 (2009): 392-400.

[186]

Y. Liao, Y. Wang, Q.-Q. Tao, et al., “CALHM2 V136G Polymorphism Reduces Astrocytic ATP Release and Is Associated With Depressive Symptoms and Alzheimer's Disease Risk,” Alzheimer's & Dementia 19, no. 10 (2023): 4407-4420.

[187]

M. Iwata, K. T. Ota, X.-Y. Li, et al., “Psychological Stress Activates the Inflammasome via Release of Adenosine Triphosphate and Stimulation of the Purinergic Type 2×7 Receptor,” Biological Psychiatry 80, no. 1 (2016): 12-22.

[188]

N. Yue, H. Huang, X. Zhu, et al., “Activation of P2×7 Receptor and NLRP3 Inflammasome Assembly in Hippocampal Glial Cells Mediates Chronic Stress-Induced Depressive-Like Behaviors,” Journal of Neuroinflammation 14, no. 1 (2017): 102.

[189]

M. Ma, Q. Ren, J.-C. Zhang, and K. Hashimoto, “Effects of Brilliant Blue G on Serum Tumor Necrosis Factor-α Levels and Depression-Like Behavior in Mice After Lipopolysaccharide Administration,” Clinical Psychopharmacology and Neuroscience 12, no. 1 (2014): 31-36.

[190]

E. Akcay and H. Karatas, “P2×7 Receptors From the Perspective of NLRP3 Inflammasome Pathway in Depression: Potential Role of Cannabidiol,” Brain, Behavior, & Immunity - Health 41 (2024): 100853.

[191]

G. Ghaffaripour Jahromi, S. Razi, and N. Rezaei, “NLRP3 Inflammatory Pathway. Can We Unlock Depression?,” Brain Research 1822 (2024): 148644.

[192]

M. Xia, Z. Li, S. Li, et al., “Sleep Deprivation Selectively Down-Regulates Astrocytic 5-HT(2B) Receptors and Triggers Depressive-Like Behaviors via Stimulating P2X(7) Receptors in Mice,” Neuroscience Bulletin 36, no. 11 (2020): 1259-1270.

[193]

Y. Nishioka, K. Hayashi, K. Morito, K. Takayama, and K. Nagasawa, “Altered Expression of Astrocytic ATP Channels and Ectonucleotidases in the Cerebral Cortex and Hippocampus of Chronic Social Defeat Stress-Susceptible BALB/c Mice,” Biological & Pharmaceutical Bulletin 47, no. 6 (2024): 1172-1178.

[194]

W. Xiong, X. Cao, Y. Zeng, et al., “Astrocytic Epoxyeicosatrienoic Acid Signaling in the Medial Prefrontal Cortex Modulates Depressive-Like Behaviors,” Journal of Neuroscience 39, no. 23 (2019): 4606-4623.

[195]

Q. Ren, M. Ma, T. Ishima, et al., “Gene Deficiency and Pharmacological Inhibition of Soluble Epoxide Hydrolase Confers Resilience to Repeated Social Defeat Stress,” Proceeding of the National Academy of Sciences of the United States of America 113, no. 13 (2016): E1944-1952.

[196]

K. W. Lee, S. M. Ching, V. Ramachandran, et al., “Association Analysis of 14 Candidate Gene Polymorphism With Depression and Stress Among Gestational Diabetes Mellitus,” Genes (Basel) 10, no. 12 (2019): 988.

[197]

Y. Moriyama, M. Hiasa, S. Sakamoto, H. Omote, and M. Nomura, “Vesicular Nucleotide Transporter (VNUT): Appearance of an Actress on the Stage of Purinergic Signaling,” Purinergic Signalling 13, no. 3 (2017): 387-404.

[198]

Y. Kato, K. Ohsugi, Y. Fukuno, K. Iwatsuki, Y. Harada, and T. Miyaji, “Vesicular Nucleotide Transporter Is a Molecular Target of Eicosapentaenoic Acid for Neuropathic and Inflammatory Pain Treatment,” Proceeding of the National Academy of Sciences of the United States of America 119, no. 30 (2022): e2122158119.

[199]

Y. Liao, B. Xie, H. Zhang, et al., “Efficacy of Omega-3 PUFAs in Depression: A Meta-Analysis,” Translational Psychiatry 9, no. 1 (2019): 190.

[200]

C. Gubert, G. R. Fries, B. Pfaffenseller, et al., “Role of P2×7 Receptor in an Animal Model of Mania Induced by D-Amphetamine,” Molecular Neurobiology 53, no. 1 (2016): 611-620.

[201]

C. Gubert, R. Andrejew, C. E. Leite, et al., “P2×7 Purinergic Receptor Is Involved in the Pathophysiology of Mania: A Preclinical Study,” Molecular Neurobiology 57, no. 3 (2020): 1347-1360.

[202]

C. Csölle, R. D. Andó, Á. Kittel, et al., “The Absence of P2×7 Receptors (P2rx7) on Non-Haematopoietic Cells Leads to Selective Alteration in Mood-Related Behaviour With Dysregulated Gene Expression and Stress Reactivity in Mice,” The International Journal of Neuropsychopharmacology 16, no. 1 (2013): 213-233.

[203]

F. Gölöncsér, M. Baranyi, P. Tod, F. Maácz, and B. Sperlágh, “P2×7 Receptor Inhibition Alleviates Mania-Like Behavior Independently of Interleukin-1β,” Iscience 27, no. 3 (2024): 109284.

[204]

P. Agostinho, D. Madeira, L. Dias, A. P. Simões, R. A. Cunha, and P. M. Canas, “Purinergic Signaling Orchestrating Neuron-Glia Communication,” Pharmacological Research 162 (2020): 105253.

[205]

D. van Calker, K. Biber, K. Domschke, and T. Serchov, “The Role of Adenosine Receptors in Mood and Anxiety Disorders,” Journal of Neurochemistry 151, no. 1 (2019): 11-27.

[206]

J. I. Gomes, M. Farinha-Ferreira, N. Rei, et al., “Of Adenosine and the Blues: The Adenosinergic System in the Pathophysiology and Treatment of Major Depressive Disorder,” Pharmacological Research 163 (2021): 105363.

[207]

S. Pasquini, C. Contri, S. Merighi, et al., “Adenosine Receptors in Neuropsychiatric Disorders: Fine Regulators of Neurotransmission and Potential Therapeutic Targets,” International Journal of Molecular Sciences 23, no. 3 (2022): 1219.

[208]

M. P. Kaster, N. J. Machado, H. B. Silva, et al., “Caffeine Acts Through Neuronal Adenosine A2A Receptors to Prevent Mood and Memory Dysfunction Triggered by Chronic Stress,” Proceeding of the National Academy of Sciences of the United States of America 112, no. 25 (2015): 7833-7838.

[209]

T. Serchov, I. Schwarz, A. Theiss, et al., “Enhanced Adenosine A(1) Receptor and Homer1a Expression in Hippocampus Modulates the Resilience to Stress-Induced Depression-Like Behavior,” Neuropharmacology 162 (2020): 107834.

[210]

A. Camargo, L. E. B. Bettio, P. B. Rosa, J. M. Rosa, G. A. Altê, and A. L. S. Rodrigues, “The Antidepressant-Like Effect of Guanosine Involves the Modulation of Adenosine A(1) and A(2A) Receptors,” Purinergic Signalling 19, no. 2 (2023): 387-399.

[211]

T. Kroll, M. Grözinger, A. Matusch, et al., “Effects of Electroconvulsive Therapy on Cerebral A(1) Adenosine Receptor Availability: A PET Study in Patients Suffering From Treatment-Resistant Major Depressive Disorder,” Frontiers in Psychiatry 14 (2023): 1228438.

[212]

V. Lazarevic, Y. Yang, I. Flais, and P. Svenningsson, “Ketamine Decreases Neuronally Released Glutamate via Retrograde Stimulation of Presynaptic Adenosine A1 Receptors,” Molecular Psychiatry 26, no. 12 (2021): 7425-7435.

[213]

Q. Guo, D. Gobbo, N. Zhao, et al., “Adenosine Triggers Early Astrocyte Reactivity That Provokes Microglial Responses and Drives the Pathogenesis of Sepsis-Associated Encephalopathy in Mice,” Nature Communications 15, no. 1 (2024): 6340.

[214]

S. Sharma, S. Chawla, P. Kumar, R. Ahmad, and P. Kumar Verma, “The Chronic Unpredictable Mild Stress (CUMS) Paradigm: Bridging the Gap in Depression Research From Bench to Bedside,” Brain Research 1843 (2024): 149123.

[215]

M. Wang, P. Li, Z. Li, et al., “Lateral Septum Adenosine A(2A) Receptors Control Stress-Induced Depressive-Like Behaviors via Signaling to the Hypothalamus and Habenula,” Nature Communications 14, no. 1 (2023): 1880.

[216]

X.-J. Lv, S.-S. Lv, G.-H. Wang, et al., “Glia-Derived Adenosine in the Ventral Hippocampus Drives Pain-Related Anxiodepression in a Mouse Model Resembling Trigeminal Neuralgia,” Brain, Behavior, and Immunity 117 (2024): 224-241.

[217]

G. Burnstock, U. Krügel, M. P. Abbracchio, and P. Illes, “Purinergic Signalling: From Normal Behaviour to Pathological Brain Function,” Progress in Neurobiology 95, no. 2 (2011): 229-274.

[218]

R. Bartlett, L. Stokes, and R. Sluyter, “The P2×7 Receptor Channel: Recent Developments and the Use of P2×7 Antagonists in Models of Disease,” Pharmacological Reviews 66, no. 3 (2014): 638-675.

[219]

B. Sperlágh and P. Illes, “P2×7 Receptor: An Emerging Target in Central Nervous System Diseases,” Trends in Pharmacological Sciences 35, no. 10 (2014): 537-547.

[220]

D. E. Ribeiro, L. L. Petiz, T. Glaser, et al., “Purinergic Signaling in Cognitive Impairment and Neuropsychiatric Symptoms of Alzheimer's Disease,” Neuropharmacology 226 (2023): 109371.

[221]

C. Pizzirani, D. Ferrari, P. Chiozzi, et al., “Stimulation of P2 Receptors Causes Release of IL-1beta-Loaded Microvesicles From Human Dendritic Cells,” Blood 109, no. 9 (2007): 3856-3864.

[222]

G. Conte, A. Menéndez-Méndez, S. Bauer, et al., “Circulating P2×7 Receptor Signaling Components as Diagnostic Biomarkers for Temporal Lobe Epilepsy,” Cells 10, no. 9 (2021): 2444.

[223]

J. García-Villalba, L. Hurtado-Navarro, A. Peñín-Franch, et al., “Soluble P2×7 Receptor Is Elevated in the Plasma of COVID-19 Patients and Correlates With Disease Severity,” Frontiers in Immunology 13 (2022): 894470.

[224]

F. Di Virgilio, V. Vultaggio-Poma, S. Falzoni, and A. L. Giuliani, “The Coming of Age of the P2×7 Receptor in Diagnostic Medicine,” International Journal of Molecular Sciences 24, no. 11 (2023): 9465.

[225]

P. Aivar, C. Bianchi, C. Di Lauro, et al., “TNAP and P2×7R: New Plasma Biomarkers for Alzheimer's Disease,” International Journal of Molecular Sciences 24, no. 13 (2023): 10897.

[226]

A. L. Giuliani, M. Berchan, J. M. Sanz, et al., “The P2×7 Receptor Is Shed Into Circulation: Correlation With C-Reactive Protein Levels,” Frontiers in Immunology 10 (2019): 793.

[227]

C. N. J. Young and D. C. Górecki, “P2RX7 Purinoceptor as a Therapeutic Target-The Second Coming?,” Frontiers in Chemistry 6 (2018): 248.

[228]

Q. H. Zheng, “Radioligands Targeting Purinergic P2×7 Receptor,” Bioorganic & Medicinal Chemistry Letters 30, no. 12 (2020): 127169.

[229]

S. Schmidt, A. Isaak, and A. Junker, “Spotlight on P2×7 Receptor PET Imaging: A Bright Target or a Failing Star?,” International Journal of Molecular Sciences 24, no. 2 (2023): 1374.

[230]

R. H. Mach, “PET Imaging of Microglial Activation-Beyond Targeting TSPO,” Molecules (Basel, Switzerland) 23, no. 3 (2018): 607.

[231]

J. H. Meyer, S. Cervenka, M.-J. Kim, W. C. Kreisl, I. D. Henter, and R. B. Innis, “Neuroinflammation in Psychiatric Disorders: PET Imaging and Promising New Targets,” Lancet Psychiatry 7, no. 12 (2020): 1064-1074.

[232]

M. H. J. Hagens, S. S. V. Golla, B. Janssen, et al., “The P2X(7) Receptor Tracer (11)CSMW139 as an in Vivo Marker of Neuroinflammation in Multiple Sclerosis: A First-In Man Study,” European Journal of Nuclear Medicine and Molecular Imaging 47, no. 2 (2020): 379-389.

[233]

M. Wang, “Characterization of (11)C-GSK1482160 for Targeting the P2×7 Receptor as a Biomarker for Neuroinflammation,” Journal of Nuclear Medicine 58, no. 3 (2017): 458-465.

[234]

J. D. Mikkelsen, S. S. Aripaka, S. Kaad, et al., “Characterization of the Novel P2×7 Receptor Radioligand (3)HJNJ-64413739 in Human Brain Tissue,” Acs Chemical Neuroscience 14, no. 1 (2023): 111-118.

[235]

E. de Marchi, E. Orioli, D. Dal Ben, and E. Adinolfi, “P2×7 Receptor as a Therapeutic Target,” Advances in Protein Chemistry and Structural Biology 104 (2016): 39-79.

[236]

X. Liu, Y. Li, L. Huang, et al., “Unlocking the Therapeutic Potential of P2×7 Receptor: A Comprehensive Review of Its Role in Neurodegenerative Disorders,” Frontiers in Pharmacology 15 (2024): 1450704.

[237]

E. C. Keystone, M. M. Wang, M. Layton, S. Hollis, and I. B. McInnes, “Clinical Evaluation of the Efficacy of the P2×7 Purinergic Receptor Antagonist AZD9056 on the Signs and Symptoms of Rheumatoid Arthritis in Patients With Active Disease Despite Treatment With Methotrexate or Sulphasalazine,” Annals of the Rheumatic Diseases 71, no. 10 (2012): 1630-1635.

[238]

T. C. Stock, B. J. Bloom, N. Wei, et al., “Efficacy and Safety of CE-224,535, an Antagonist of P2×7 Receptor, in Treatment of Patients With Rheumatoid Arthritis Inadequately Controlled by Methotrexate,” Journal of Rheumatology 39, no. 4 (2012): 720-727.

[239]

A. Eser, J.-F. Colombel, P. Rutgeerts, et al., “Safety and Efficacy of an Oral Inhibitor of the Purinergic Receptor P2×7 in Adult Patients With Moderately to Severely Active Crohn's Disease: A Randomized Placebo-Controlled, Double-Blind, Phase IIa Study,” Inflammatory Bowel Diseases 21, no. 10 (2015): 2247-2253.

[240]

J. C. Rech, A. Bhattacharya, M. A. Letavic, and B. M. Savall, “The Evolution of P2×7 Antagonists With a Focus on CNS Indications,” Bioorganic & Medicinal Chemistry Letters 26, no. 16 (2016): 3838-3845.

[241]

K. Recourt, P. de Boer, P. van der Ark, et al., “Characterization of the Central Nervous System Penetrant and Selective Purine P2×7 Receptor Antagonist JNJ-54175446 in Patients With Major Depressive Disorder,” Translational Psychiatry 13, no. 1 (2023): 266.

[242]

A. Bhattacharya and D. N. C. Jones, “Emerging Role of the P2×7-NLRP3-IL1β Pathway in Mood Disorders,” Psychoneuroendocrinology 98 (2018): 95-100.

[243]

A. Bhattacharya, Q. Wang, H. Ao, et al., “Pharmacological Characterization of a Novel Centrally Permeable P2×7 Receptor Antagonist: JNJ-47965567,” British Journal of Pharmacology 170, no. 3 (2013): 624-640.

[244]

T. Stähler, W. Danquah, M. Demeules, et al., “Development of Antibody and Nanobody Tools for P2×7,” Methods in Molecular Biology 2510 (2022): 99-127.

[245]

F. Koch-Nolte, “Nanobody-Based Heavy Chain Antibodies and Chimeric Antibodies,” Immunological Reviews 328, no. 1 (2024): 466-472.

[246]

H. Lee, A. Elkamhawy, P. Rakhalskaya, et al., “Small Molecules in Parkinson's Disease Therapy: From Dopamine Pathways to New Emerging Targets,” Pharmaceuticals (Basel) 17, no. 12 (2024): 1688.

[247]

L. Sequeira, S. Benfeito, C. Fernandes, et al., “Drug Development for Alzheimer's and Parkinson's Disease: Where Do We Go Now?,” Pharmaceutics 16, no. 6 (2024): 708.

[248]

X. Qi, D. Nizamutdinov, S. S. Yi, E. Wu, and J. H. Huang, “Disease Modifying Monoclonal Antibodies and Symptomatic Pharmacological Treatment for Alzheimer's Disease,” Biomedicines 12, no. 11 (2024): 2636.

[249]

F. Mirzaei, L. Agbaria, K. Bhatnagar, et al., “Coffee and Alzheimer's Disease,” Progress in Brain Research 289 (2024): 21-55.

[250]

S. Merighi, P. A. Borea, K. Varani, F. Vincenzi, K. A. Jacobson, and S. Gessi, “A(2A) Adenosine Receptor Antagonists in Neurodegenerative Diseases,” Current Medicinal Chemistry 29, no. 24 (2022): 4138-4151.

[251]

S. H. Isaacson, S. Betté, and R. Pahwa, “Istradefylline for OFF Episodes in Parkinson's Disease: A US Perspective of Common Clinical Scenarios,” Degenerative Neurological and Neuromuscular Disease 12 (2022): 97-109.

[252]

J.-F. Chen and R. A. Cunha, “The Belated US FDA Approval of the Adenosine A(2A) Receptor Antagonist Istradefylline for Treatment of Parkinson's Disease,” Purinergic Signalling 16, no. 2 (2020): 167-174.

[253]

S. Ferré, J. Bonaventura, D. Tomasi, et al., “Allosteric Mechanisms Within the Adenosine A2A-Dopamine D2 Receptor Heterotetramer,” Neuropharmacology 104 (2016): 154-160.

[254]

K. R. Chaudhuri, D. G. Healy, and A. H. V. Schapira, “Non-Motor Symptoms of Parkinson's Disease: Diagnosis and Management,” Lancet Neurology 5, no. 3 (2006): 235-245.

[255]

S. Uchida, T. Kadowaki-Horita, and T. Kanda, “Effects of the Adenosine A2A Receptor Antagonist on Cognitive Dysfunction in Parkinson's Disease,” International Review of Neurobiology 119 (2014): 169-189.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/