Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy

Yao Shen , Nairui Fan , Shu-xia Ma , Xin Cheng , Xuesong Yang , Guang Wang

MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70168

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70168 DOI: 10.1002/mco2.70168
REVIEW

Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy

Author information +
History +
PDF

Abstract

Dysbiosis refers to the disruption of the gut microbiota balance and is the pathological basis of various diseases. The main pathogenic mechanisms include impaired intestinal mucosal barrier function, inflammation activation, immune dysregulation, and metabolic abnormalities. These mechanisms involve dysfunctions in the gut–brain axis, gut–liver axis, and others to cause broader effects. Although the association between diseases caused by dysbiosis has been extensively studied, many questions remain regarding the specific pathogenic mechanisms and treatment strategies. This review begins by examining the causes of gut microbiota dysbiosis and summarizes the potential mechanisms of representative diseases caused by microbiota imbalance. It integrates clinical evidence to explore preventive and therapeutic strategies targeting gut microbiota dysregulation, emphasizing the importance of understanding gut microbiota dysbiosis. Finally, we summarized the development of artificial intelligence (AI) in the gut microbiota research and suggested that it will play a critical role in future studies on gut dysbiosis. The research combining multiomics technologies and AI will further uncover the complex mechanisms of gut microbiota dysbiosis. It will drive the development of personalized treatment strategies.

Keywords

gut microbiota / dysbiosis / disease / precision medicine

Cite this article

Download citation ▾
Yao Shen, Nairui Fan, Shu-xia Ma, Xin Cheng, Xuesong Yang, Guang Wang. Gut Microbiota Dysbiosis: Pathogenesis, Diseases, Prevention, and Therapy. MedComm, 2025, 6(5): e70168 DOI:10.1002/mco2.70168

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Long-Smith, K. J. O'Riordan, G. Clarke, C. Stanton, T. G. Dinan, and J. F. Cryan, “Microbiota-Gut-Brain Axis: New Therapeutic Opportunities,” Annual Review of Pharmacology and Toxicology 60 (2020): 477-502.

[2]

A. Almeida, A. L. Mitchell, M. Boland, et al., “A New Genomic Blueprint of the human Gut Microbiota,” Nature 568, no. 7753 (2019): 499-504.

[3]

K. Donald and B. B. Finlay, “Early-life Interactions Between the Microbiota and Immune System: Impact on Immune System Development and Atopic Disease,” Nature Reviews Immunology 23, no. 11 (2023): 735-748.

[4]

K. M. Kennedy, M. J. Gerlach, T. Adam, et al., “Fetal Meconium Does Not Have a Detectable Microbiota Before Birth,” Nature Microbiology 6, no. 7 (2021): 865-873.

[5]

C. C. Bain and V. Cerovic, “Interactions of the Microbiota With the Mucosal Immune System,” Clinical and Experimental Immunology 199, no. 1 (2020): 9-11.

[6]

Q. Ma, C. Xing, W. Long, H. Y. Wang, Q. Liu, and R. F. Wang, “Impact of Microbiota on central Nervous System and Neurological Diseases: The Gut-brain Axis,” J Neuroinflammation 16, no. 1 (2019): 53.

[7]

J. S. Loh, W. Q. Mak, L. K. S. Tan, et al., “Microbiota-gut-brain Axis and Its Therapeutic Applications in Neurodegenerative Diseases,” Signal Transduct Target Ther 9, no. 1 (2024): 37.

[8]

M. L. Smith, J. B. Wade, J. Wolstenholme, and J. S. Bajaj, “Gut Microbiome-brain-cirrhosis Axis,” Hepatology 80, no. 2 (2024): 465-485.

[9]

J. Lloyd-Price, A. Mahurkar, G. Rahnavard, et al., “Strains, Functions and Dynamics in the Expanded Human Microbiome Project,” Nature 550, no. 7674 (2017): 61-66.

[10]

A. Mosca, M. Leclerc, and J. P. Hugot, “Gut Microbiota Diversity and Human Diseases: Should We Reintroduce Key Predators in Our Ecosystem?,” Frontiers in Microbiology 7 (2016): 455.

[11]

R. N. Carmody and G. K. Gerber, “Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota,” Cell Host & Microbe 17, no. 1 (2015): 72-84.

[12]

C. De Filippo, D. Cavalieri, M. Di Paola, et al., “Impact of Diet in Shaping Gut Microbiota Revealed by a Comparative Study in Children From Europe and Rural Africa,” Pnas 107, no. 33 (2010): 14691-14696.

[13]

G. A. Weiss and T. Hennet, “Mechanisms and Consequences of Intestinal Dysbiosis,” Cellular and Molecular Life Sciences 74, no. 16 (2017): 2959-2977.

[14]

N. R. Shin, T. W. Whon, and J. W. Bae, “Proteobacteria: Microbial Signature of Dysbiosis in Gut Microbiota,” Trends in Biotechnology 33, no. 9 (2015): 496-503.

[15]

J. R. Araujo, C. Marques, C. Rodrigues, C. Calhau, and A. Faria, “The Metabolic and Endocrine Impact of Diet-derived Gut Microbiota Metabolites on Ageing and Longevity,” Ageing Research Reviews 100 (2024): 102451.

[16]

E. N. DeJong, M. G. Surette, and D. M. E. Bowdish, “The Gut Microbiota and Unhealthy Aging: Disentangling Cause From Consequence,” Cell Host & Microbe 28, no. 2 (2020): 180-189.

[17]

P. J. Turnbaugh, R. E. Ley, M. A. Mahowald, V. Magrini, E. R. Mardis, and J. I. Gordon, “An Obesity-associated Gut Microbiome With Increased Capacity for Energy Harvest,” Nature 444, no. 7122 (2006): 1027-1031.

[18]

P. J. Turnbaugh, F. Backhed, L. Fulton, and J. I. Gordon, “Diet-induced Obesity Is Linked to Marked but Reversible Alterations in the Mouse Distal Gut Microbiome,” Cell Host & Microbe 3, no. 4 (2008): 213-223.

[19]

X. Zhu, L. Zhao, L. Lei, Y. Zhu, J. Xu, and L. Liu, “Fecal Microbiota Transplantation Ameliorates Abdominal Obesity Through Inhibiting Microbiota-mediated Intestinal Barrier Damage and Inflammation in Mice,” Microbiological Research 282 (2024): 127654.

[20]

J. Fritsch, L. Garces, M. A. Quintero, et al., “Low-Fat, High-Fiber Diet Reduces Markers of Inflammation and Dysbiosis and Improves Quality of Life in Patients with Ulcerative Colitis,” Clinical Gastroenterology and Hepatology 19, no. 6 (2021): 1189-1199.

[21]

H. Neuman, P. Forsythe, A. Uzan, O. Avni, and O. Koren, “Antibiotics in Early Life: Dysbiosis and the Damage Done,” Fems Microbiology Review 42, no. 4 (2018): 489-499.

[22]

K. Korpela, A. Salonen, L. J. Virta, et al., “Intestinal Microbiome Is Related to Lifetime Antibiotic Use in Finnish Pre-school Children,” Nature Communications 7 (2016): 10410.

[23]

M. Yang, X. Zheng, J. Fan, et al., “Antibiotic-Induced Gut Microbiota Dysbiosis Modulates Host Transcriptome and M(6)A Epitranscriptome via Bile Acid Metabolism,” Adv Sci (Weinh) 11, no. 28 (2024): e2307981.

[24]

L. Chi, P. Tu, H. Ru, and K. Lu, “Studies of Xenobiotic-induced Gut Microbiota Dysbiosis: From Correlation to Mechanisms,” Gut Microbes 13, no. 1 (2021): 1921912.

[25]

T. A. Turner, P. Lehman, S. Ghimire, S. K. Shahi, and A. Mangalam, “Game of Microbes: The Battle Within—gut Microbiota and Multiple Sclerosis,” Gut Microbes 16, no. 1 (2024): 2387794.

[26]

M. R. Kudelka, S. R. Stowell, R. D. Cummings, and A. S. Neish, “Intestinal Epithelial Glycosylation in Homeostasis and Gut Microbiota Interactions in IBD,” Nature reviews Gastroenterology & hepatology 17, no. 10 (2020): 597-617.

[27]

B. Chen, S. Patel, L. Bao, D. Nadeem, and C. Krittanawong, “Pro-Inflammatory Food, Gut Microbiota, and Cardiovascular and Pancreatic Diseases,” Biomolecules 14, no. 2 (2024).

[28]

S. Dentice Maidana, M. Elean, K. Fukuyama, et al., “Hypermucoviscous Carbapenem-Resistant Klebsiella pneumoniae ST25 Infect Human Intestinal Epithelial Cells and Induce Moderate Inflammation,” International Journal of Molecular Sciences 24, no. 10 (2023).

[29]

D. Knights, K. G. Lassen, and R. J. Xavier, “Advances in Inflammatory Bowel Disease Pathogenesis: Linking Host Genetics and the Microbiome,” Gut 62, no. 10 (2013): 1505-1510.

[30]

A. B. Hall, A. C. Tolonen, and R. J. Xavier, “Human Genetic Variation and the Gut Microbiome in Disease,” Nature Reviews Genetics 18, no. 11 (2017): 690-699.

[31]

S. Sanna, A. Kurilshikov, A. van der Graaf, J. Fu, and A. Zhernakova, “Challenges and Future Directions for Studying Effects of Host Genetics on the Gut Microbiome,” Nature Genetics 54, no. 2 (2022): 100-106.

[32]

T. Yatsunenko, F. E. Rey, M. J. Manary, et al., “Human Gut Microbiome Viewed Across Age and Geography,” Nature 486, no. 7402 (2012): 222-227.

[33]

P. W. O'Toole and I. B. Jeffery, “Gut Microbiota and Aging,” Science 350, no. 6265 (2015): 1214-1215.

[34]

E. Bradley and J. Haran, “The human Gut Microbiome and Aging,” Gut Microbes 16, no. 1 (2024): 2359677.

[35]

R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, “Microbial Ecology: Human Gut Microbes Associated With Obesity,” Nature 444, no. 7122 (2006): 1022-1023.

[36]

J. Qin, R. Li, J. Raes, et al., “A human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing,” Nature 464, no. 7285 (2010): 59-65.

[37]

Y. Zhang, H. Wang, Y. Sang, et al., “Gut Microbiota in Health and Disease: Advances and Future Prospects,” MedComm 5, no. 12 (2024): e70012.

[38]

H. Weng, L. Deng, T. Wang, et al., “Humid Heat Environment Causes Anxiety-Like Disorder via Impairing Gut Microbiota and Bile Acid Metabolism in Mice,” Nature Communications 15, no. 1 (2024): 5697.

[39]

A. P. Lakshmanan, S. Murugesan, S. Al Khodor, and A. Terranegra, “The Potential Impact of a Probiotic: Akkermansia Muciniphila in the Regulation of Blood Pressure-the Current Facts and Evidence,” Journal of translational medicine 20, no. 1 (2022): 430.

[40]

S. M. Matt, J. M. Allen, M. A. Lawson, L. J. Mailing, J. A. Woods, and R. W. Johnson, “Butyrate and Dietary Soluble Fiber Improve Neuroinflammation Associated with Aging in Mice,” Frontiers in immunology 9 (2018): 1832.

[41]

F. Ostendorf, J. Metzdorf, R. Gold, A. Haghikia, and L. Tönges, “Propionic Acid and Fasudil as Treatment against Rotenone Toxicity in an in Vitro Model of Parkinson's Disease,” Molecules (Basel, Switzerland) 25, no. 11 (2020).

[42]

J. R. Liu, H. Miao, D. Q. Deng, N. D. Vaziri, P. Li, and Y. Y. Zhao, “Gut Microbiota-derived Tryptophan Metabolism Mediates Renal Fibrosis by Aryl Hydrocarbon Receptor Signaling Activation,” Cellular and Molecular Life Sciences 78, no. 3 (2021): 909-922.

[43]

G. Baranwal, B. L. Goodlett, C. M. Arenaz, et al., “Indole Propionic Acid Increases T Regulatory Cells and Decreases T Helper 17 Cells and Blood Pressure in Mice With Salt-Sensitive Hypertension,” International Journal of Molecular Sciences 24, no. 11 (2023).

[44]

K. Zuo, J. Li, Q. Xu, et al., “Dysbiotic Gut Microbes May Contribute to Hypertension by Limiting Vitamin D Production,” Clinical Cardiology 42, no. 8 (2019): 710-719.

[45]

D. Parada Venegas, M. K. De la Fuente, G. Landskron, et al., “Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases,” Frontiers in immunology 10 (2019): 277.

[46]

W. Turpin, S. H. Lee, J. A. Raygoza Garay, et al., “Increased Intestinal Permeability Is Associated with Later Development of Crohn's Disease,” Gastroenterology 159, no. 6 (2020): 2092-2100.

[47]

C. Pellegrini, M. Fornai, V. D'Antongiovanni, L. Antonioli, N. Bernardini, and P. Derkinderen, “The Intestinal Barrier in Disorders of the central Nervous System,” Lancet Gastroenterol Hepatol 8, no. 1 (2023): 66-80.

[48]

C. Pellegrini, V. D'Antongiovanni, F. Miraglia, et al., “Enteric α-synuclein Impairs Intestinal Epithelial Barrier Through Caspase-1-inflammasome Signaling in Parkinson's Disease Before Brain Pathology,” NPJ Parkinsons Dis 8, no. 1 (2022): 9.

[49]

L. Seguella, M. Pesce, R. Capuano, et al., “High-fat Diet Impairs Duodenal Barrier Function and Elicits Glia-dependent Changes Along the Gut-brain Axis That Are Required for Anxiogenic and Depressive-Like Behaviors,” J Neuroinflammation 18, no. 1 (2021): 115.

[50]

C. R. Camara-Lemarroy, L. Metz, J. B. Meddings, K. A. Sharkey, and V. Wee Yong, “The Intestinal Barrier in Multiple Sclerosis: Implications for Pathophysiology and Therapeutics,” Brain 141, no. 7 (2018): 1900-1916.

[51]

S. Bashiardes, H. Shapiro, S. Rozin, O. Shibolet, and E Elinav, “Non-alcoholic Fatty Liver and the Gut Microbiota,” Mol Metab 2016; 5(9): 782-794.

[52]

C. Chelakkot, J. Ghim, and S. H. Ryu, “Mechanisms Regulating Intestinal Barrier Integrity and Its Pathological Implications,” Experimental & Molecular Medicine 50, no. 8 (2018): 1-9.

[53]

P. D. Cani, J. Amar, M. A. Iglesias, et al., “Metabolic Endotoxemia Initiates Obesity and Insulin Resistance,” Diabetes 56, no. 7 (2007): 1761-1772.

[54]

H. J. Wu, I. I. Ivanov, J. Darce, et al., “Gut-residing Segmented Filamentous Bacteria Drive Autoimmune Arthritis via T Helper 17 Cells,” Immunity 32, no. 6 (2010): 815-827.

[55]

I. I. Ivanov, L. Frutos Rde, N. Manel, et al., “Specific Microbiota Direct the Differentiation of IL-17-producing T-helper Cells in the Mucosa of the Small Intestine,” Cell Host & Microbe 4, no. 4 (2008): 337-349.

[56]

S. Bilgic, E. Aktas, F. Salman, et al., “Intracytoplasmic Cytokine Levels and Neutrophil Functions in Early Clinical Stage of Type 1 Diabetes,” Diabetes Research and Clinical Practice 79, no. 1 (2008): 31-36.

[57]

W. K. Mousa, F. Chehadeh, and S. Husband, “Microbial Dysbiosis in the Gut Drives Systemic Autoimmune Diseases,” Frontiers in immunology 13 (2022): 906258.

[58]

J. Phan, D. C. Calvo, D. Nair, et al., “Precision Synbiotics Increase Gut Microbiome Diversity and Improve Gastrointestinal Symptoms in a Pilot Open-label Study for Autism Spectrum Disorder,” Msystems 9, no. 5 (2024): e0050324.

[59]

L. Zhai, H. Xiao, C. Lin, et al., “Gut Microbiota-derived Tryptamine and Phenethylamine Impair Insulin Sensitivity in Metabolic Syndrome and Irritable Bowel Syndrome,” Nature Communications 14, no. 1 (2023): 4986.

[60]

Y. Ma, X. Zhang, B. Xuan, et al., “Disruption of CerS6-mediated Sphingolipid Metabolism by FTO Deficiency Aggravates Ulcerative Colitis,” Gut 73, no. 2 (2024): 268-281.

[61]

X. Bai, H. Wei, W. Liu, et al., “Cigarette Smoke Promotes Colorectal Cancer Through Modulation of Gut Microbiota and Related Metabolites,” Gut 71, no. 12 (2022): 2439-2450.

[62]

J. Yang, H. Wei, Y. Lin, et al., “High Soluble Fiber Promotes Colorectal Tumorigenesis through Modulating Gut Microbiota and Metabolites in Mice,” Gastroenterology 166, no. 2 (2024): 323-337.

[63]

C. Li, P. Zhang, Y. Xie, et al., “Enterococcus-derived Tyramine Hijacks Alpha(2A)-adrenergic Receptor in Intestinal Stem Cells to Exacerbate Colitis,” Cell Host & Microbe 32, no. 6 (2024): 950-963. e8.

[64]

D. Paudel, D. V. T. Nair, S. Tian, et al., “Dietary fiber Guar Gum-induced Shift in Gut Microbiota Metabolism and Intestinal Immune Activity Enhances Susceptibility to Colonic Inflammation,” Gut Microbes 16, no. 1 (2024): 2341457.

[65]

L. Wu, J. Zhou, A. Zhou, et al., “Lactobacillus Acidophilus Ameliorates Cholestatic Liver Injury Through Inhibiting Bile Acid Synthesis and Promoting Bile Acid Excretion,” Gut Microbes 16, no. 1 (2024): 2390176.

[66]

S. R. Sinha, Y. Haileselassie, L. P. Nguyen, et al., “Dysbiosis-Induced Secondary Bile Acid Deficiency Promotes Intestinal Inflammation,” Cell Host & Microbe 27, no. 4 (2020): 659-670. e5.

[67]

P. Chen, P. Starkel, J. R. Turner, S. B. Ho, and B. Schnabl, “Dysbiosis-induced Intestinal Inflammation Activates Tumor Necrosis Factor Receptor I and Mediates Alcoholic Liver Disease in Mice,” Hepatology 61, no. 3 (2015): 883-894.

[68]

S. MahmoudianDehkordi, M. Arnold, K. Nho, et al., “Altered Bile Acid Profile Associates With Cognitive Impairment in Alzheimer's disease-An Emerging Role for Gut Microbiome,” Alzheimers Dement 15, no. 1 (2019): 76-92.

[69]

Y. Xia, Y. Xiao, Z. H. Wang, et al., “Bacteroides Fragilis in the Gut Microbiomes of Alzheimer's Disease Activates Microglia and Triggers Pathogenesis in Neuronal C/EBPbeta Transgenic Mice,” Nature Communications 14, no. 1 (2023): 5471.

[70]

H. B. Dodiya, H. L. Lutz, I. Q. Weigle, et al., “Gut Microbiota-driven Brain Abeta Amyloidosis in Mice Requires Microglia,” Journal of Experimental Medicine 219, no. 1 (2022).

[71]

Y. Chen, Y. Li, Y. Fan, et al., “Gut Microbiota-driven Metabolic Alterations Reveal Gut-brain Communication in Alzheimer's disease Model Mice,” Gut Microbes 16, no. 1 (2024): 2302310.

[72]

M. F. Munoz-Pinto, E. Candeias, I. Melo-Marques, et al., “Gut-first Parkinson's Disease Is Encoded by Gut Dysbiome,” Mol Neurodegener 19, no. 1 (2024): 78.

[73]

T. R. Sampson, J. W. Debelius, T. Thron, et al., “Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease,” Cell 167, no. 6 (2016): 1469-1480. e12.

[74]

A. Burberry, M. F. Wells, F. Limone, et al., “C9orf72 suppresses Systemic and Neural Inflammation Induced by Gut Bacteria,” Nature 582, no. 7810 (2020): 89-94.

[75]

M. Zhou, Y. Fan, L. Xu, et al., “Microbiome and Tryptophan Metabolomics Analysis in Adolescent Depression: Roles of the Gut Microbiota in the Regulation of Tryptophan-derived Neurotransmitters and Behaviors in human and Mice,” Microbiome 11, no. 1 (2023): 145.

[76]

J. Mayneris-Perxachs, A. Castells-Nobau, M. Arnoriaga-Rodriguez, et al., “Microbiota Alterations in Proline Metabolism Impact Depression,” Cell metabolism 34, no. 5 (2022): 681-701.

[77]

S. Brushett, R. Gacesa, A. Vich Vila, et al., “Gut Feelings: The Relations Between Depression, Anxiety, Psychotropic Drugs and the Gut Microbiome,” Gut Microbes 15, no. 2 (2023): 2281360.

[78]

Q. Chen, W. Cheng, J. Zhang, et al., “Fibroblast Growth Factor 21 Improves Insulin Sensitivity by Modulating the Bile Acid-gut Microbiota Axis in Type II Diabetic Mice,” Free Radic Biol Med 224 (2024): 600-617.

[79]

B. Chen, Y. Bai, F. Tong, et al., “Glycoursodeoxycholic Acid Regulates Bile Acids Level and Alters Gut Microbiota and Glycolipid Metabolism to Attenuate Diabetes,” Gut Microbes 15, no. 1 (2023): 2192155.

[80]

R. Forlano, L. Martinez-Gili, P. Takis, et al., “Disruption of Gut Barrier Integrity and Host-microbiome Interactions Underlie MASLD Severity in Patients With Type-2 Diabetes Mellitus,” Gut Microbes 16, no. 1 (2024): 2304157.

[81]

A. S. Meijnikman, M. Davids, H. Herrema, et al., “Microbiome-derived Ethanol in Nonalcoholic Fatty Liver Disease,” Nature Medicine 28, no. 10 (2022): 2100-2106.

[82]

J. Behary, N. Amorim, X. T. Jiang, et al., “Gut Microbiota Impact on the Peripheral Immune Response in Non-alcoholic Fatty Liver Disease Related Hepatocellular Carcinoma,” Nature Communications 12, no. 1 (2021): 187.

[83]

J. Boursier, O. Mueller, M. Barret, et al., “The Severity of Nonalcoholic Fatty Liver Disease Is Associated With Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota,” Hepatology 63, no. 3 (2016): 764-775.

[84]

C. Wu, F. Yang, H. Zhong, et al., “Obesity-enriched Gut Microbe Degrades Myo-inositol and Promotes Lipid Absorption,” Cell Host & Microbe 32, no. 8 (2024): 1301-1314.

[85]

X. Rao, Y. Shao, and H. Wu, “Fishing for Obesity-related Gut Microbiome Enterotype,” Cell Host & Microbe 32, no. 8 (2024): 1209-1211.

[86]

P. Wang, X. Yang, L. Zhang, et al., “Tlr9 deficiency in B Cells Leads to Obesity by Promoting Inflammation and Gut Dysbiosis,” Nature Communications 15, no. 1 (2024): 4232.

[87]

L. Zhu, X. Jian, B. Zhou, et al., “Gut Microbiota Facilitate Chronic Spontaneous Urticaria,” Nature Communications 15, no. 1 (2024): 112.

[88]

A. Abdel-Gadir, E. Stephen-Victor, G. K. Gerber, et al., “Microbiota Therapy Acts via a Regulatory T Cell MyD88/RORgammat Pathway to Suppress Food Allergy,” Nature Medicine 25, no. 7 (2019): 1164-1174.

[89]

S. Jiang, M. Cai, D. Li, et al., “Association of Breast Milk-derived Arachidonic Acid-induced Infant Gut Dysbiosis With the Onset of Atopic Dermatitis,” Gut (2024).

[90]

X. Wang, S. Zhou, X. Hu, et al., “Candida albicans Accelerates Atherosclerosis by Activating Intestinal Hypoxia-inducible factor2alpha Signaling,” Cell Host & Microbe 32, no. 6 (2024): 964-979. e7.

[91]

X. Hu, J. Guo, C. Zhao, et al., “The Gut Microbiota Contributes to the Development of Staphylococcus aureus-induced Mastitis in Mice,” The ISME journal 14, no. 7 (2020): 1897-1910.

[92]

C. Zhao, X. Hu, L. Bao, et al., “Gut Dysbiosis Induces the Development of Mastitis Through a Reduction in Host Anti-inflammatory Enzyme Activity by Endotoxemia,” Microbiome 10, no. 1 (2022): 205.

[93]

J. Li, F. Zhao, Y. Wang, et al., “Gut Microbiota Dysbiosis Contributes to the Development of Hypertension,” Microbiome 5, no. 1 (2017): 14.

[94]

V. C. Goodoory and A. C. Ford, “Antibiotics and Probiotics for Irritable Bowel Syndrome,” Drugs 83, no. 8 (2023): 687-699.

[95]

M. El-Salhy, J. G. Hatlebakk, O. H. Gilja, A. Brathen Kristoffersen, and T. Hausken, “Efficacy of Faecal Microbiota Transplantation for Patients With Irritable Bowel Syndrome in a Randomised, Double-blind, Placebo-controlled Study,” Gut 69, no. 5 (2020): 859-867.

[96]

Q. Su, H. M. Tun, Q. Liu, et al., “Gut Microbiome Signatures Reflect Different Subtypes of Irritable Bowel Syndrome,” Gut Microbes 15, no. 1 (2023): 2157697.

[97]

G. Roda, S. Chien Ng, P. G. Kotze, et al., “Crohn's Disease,” Nature reviews Disease primers 6, no. 1 (2020): 22.

[98]

T. Kobayashi, B. Siegmund, C. Le Berre, et al., “Ulcerative Colitis,” Nature reviews Disease primers 6, no. 1 (2020): 74.

[99]

Y. Shan, M. Lee, and E. B. Chang, “The Gut Microbiome and Inflammatory Bowel Diseases,” Annual Review of Medicine 73 (2022): 455-468.

[100]

J. M. Berthelot and P. Claudepierre, “Trafficking of Antigens From Gut to Sacroiliac Joints and Spine in Reactive Arthritis and Spondyloarthropathies: Mainly Through Lymphatics?,” Joint, Bone, Spine 83, no. 5 (2016): 485-490.

[101]

Y. Tie, Y. Huang, R. Chen, L. Li, M. Chen, and S. Zhang, “Current Insights on the Roles of Gut Microbiota in Inflammatory Bowel Disease-associated Extra-intestinal Manifestations: Pathophysiology and Therapeutic Targets,” Gut Microbes 15, no. 2 (2023): 2265028.

[102]

C. C. Wong and J. Yu, “Gut Microbiota in Colorectal Cancer Development and Therapy,” Nature reviews Clinical oncology 20, no. 7 (2023): 429-452.

[103]

Y. Yang, L. Du, D. Shi, et al., “Dysbiosis of human Gut Microbiome in Young-onset Colorectal Cancer,” Nature Communications 12, no. 1 (2021): 6757.

[104]

J. Yang, H. Wei, Y. Zhou, et al., “High-Fat Diet Promotes Colorectal Tumorigenesis through Modulating Gut Microbiota and Metabolites,” Gastroenterology 162, no. 1 (2022): 135-149. e2.

[105]

D. Chen, D. Jin, S. Huang, et al., “Clostridium Butyricum, a Butyrate-producing Probiotic, Inhibits Intestinal Tumor Development Through Modulating Wnt Signaling and Gut Microbiota,” Cancer Letters 469 (2020): 456-467.

[106]

H. Hou, D. Chen, K. Zhang, et al., “Gut Microbiota-derived Short-chain Fatty Acids and Colorectal Cancer: Ready for Clinical Translation?,” Cancer Letters 526 (2022): 225-235.

[107]

C. Kong, L. Liang, G. Liu, et al., “Integrated Metagenomic and Metabolomic Analysis Reveals Distinct Gut-microbiome-derived Phenotypes in Early-onset Colorectal Cancer,” Gut 72, no. 6 (2023): 1129-1142.

[108]

F. Chen, S. Li, R. Guo, et al., “Meta-analysis of Fecal Viromes Demonstrates High Diagnostic Potential of the Gut Viral Signatures for Colorectal Cancer and Adenoma Risk Assessment,” Journal of Advanced Research 49 (2023): 103-114.

[109]

S. Shen, D. Huo, C. Ma, S. Jiang, and J. Zhang, “Expanding the Colorectal Cancer Biomarkers Based on the Human Gut Phageome,” Microbiology Spectrum 9, no. 3 (2021): e0009021.

[110]

J. Zou, Z. Xiao, Y. Wu, J. Yang, and N. Cui, “Noninvasive Fecal Testing for Colorectal Cancer,” Clinica Chimica Acta 524 (2022): 123-131.

[111]

F. Chen, X. Dai, C. C. Zhou, et al., “Integrated Analysis of the Faecal Metagenome and Serum Metabolome Reveals the Role of Gut Microbiome-associated Metabolites in the Detection of Colorectal Cancer and Adenoma,” Gut 71, no. 7 (2022): 1315-1325.

[112]

S. Guo, L. Li, B. Xu, et al., “A Simple and Novel Fecal Biomarker for Colorectal Cancer: Ratio of Fusobacterium Nucleatum to Probiotics Populations, Based on Their Antagonistic Effect,” Clinical Chemistry 64, no. 9 (2018): 1327-1337.

[113]

J. Wu, K. Wang, X. Wang, Y. Pang, and C. Jiang, “The Role of the Gut Microbiome and Its Metabolites in Metabolic Diseases,” Protein Cell 12, no. 5 (2021): 360-373.

[114]

K. Hou, S. Zhang, Z. Wu, et al., “Reconstruction of Intestinal Microecology of Type 2 Diabetes by Fecal Microbiota Transplantation: Why and How,” Bosnian Journal of Basic Medical Sciences 22, no. 3 (2022): 315-325.

[115]

N. Larsen, F. K. Vogensen, F. W. van den Berg, et al., “Gut Microbiota in human Adults With Type 2 Diabetes Differs From Non-diabetic Adults,” PLoS ONE 5, no. 2 (2010): e9085.

[116]

J. M. G. Gomes, J. A. Costa, and R. C. G. Alfenas, “Metabolic Endotoxemia and Diabetes Mellitus: A Systematic Review,” Metabolism 68 (2017): 133-144.

[117]

A. Psichas, M. L. Sleeth, K. G. Murphy, et al., “The Short Chain Fatty Acid Propionate Stimulates GLP-1 and PYY Secretion via Free Fatty Acid Receptor 2 in Rodents,” Int J Obes (Lond) 39, no. 3 (2015): 424-429.

[118]

D. Takahashi, N. Hoshina, Y. Kabumoto, et al., “Microbiota-derived Butyrate Limits the Autoimmune Response by Promoting the Differentiation of Follicular Regulatory T Cells,” EBioMedicine 58 (2020): 102913.

[119]

Z. M. Younossi, J. M. Paik, M. Stepanova, J. Ong, S. Alqahtani, and L. Henry, “Clinical Profiles and Mortality Rates Are Similar for Metabolic Dysfunction-associated Steatotic Liver Disease and Non-alcoholic Fatty Liver Disease,” Journal of Hepatology 80, no. 5 (2024): 694-701.

[120]

N. Sattar, E. Forrest, and D. Preiss, “Non-alcoholic Fatty Liver Disease,” Bmj 349 (2014): g4596.

[121]

J. Cai, B. Rimal, C. Jiang, J. Y. L. Chiang, and A. D. Patterson, “Bile Acid Metabolism and Signaling, the Microbiota, and Metabolic Disease,” Pharmacology & Therapeutics 237 (2022): 108238.

[122]

C. Jiang, C. Xie, F. Li, et al., “Intestinal Farnesoid X Receptor Signaling Promotes Nonalcoholic Fatty Liver Disease,” Journal of Clinical Investigation 125, no. 1 (2015): 386-402.

[123]

S. Quesada-Vazquez, A. Castells-Nobau, J. Latorre, et al., “Potential Therapeutic Implications of Histidine Catabolism by the Gut Microbiota in NAFLD Patients With Morbid Obesity,” Cell Rep Med 4, no. 12 (2023): 101341.

[124]

J. Aron-Wisnewsky, C. Vigliotti, J. Witjes, et al., “Gut Microbiota and human NAFLD: Disentangling Microbial Signatures From Metabolic Disorders,” Nature reviews Gastroenterology & hepatology 17, no. 5 (2020): 279-297.

[125]

H. Tilg, T. E. Adolph, and M. Trauner, “Gut-liver Axis: Pathophysiological Concepts and Clinical Implications,” Cell metabolism 34, no. 11 (2022): 1700-1718.

[126]

A. Wahlstrom, S. I. Sayin, H. U. Marschall, and F. Backhed, “Intestinal Crosstalk Between Bile Acids and Microbiota and Its Impact on Host Metabolism,” Cell metabolism 24, no. 1 (2016): 41-50.

[127]

D. M. Chopyk and A. Grakoui, “Contribution of the Intestinal Microbiome and Gut Barrier to Hepatic Disorders,” Gastroenterology 159, no. 3 (2020): 849-863.

[128]

M. Yan, S. Man, B. Sun, et al., “Gut Liver Brain Axis in Diseases: The Implications for Therapeutic Interventions,” Signal Transduct Target Ther 8, no. 1 (2023): 443.

[129]

O. V. Averina, A. S. Kovtun, S. I. Polyakova, A. M. Savilova, D. V. Rebrikov, and V. N. Danilenko, “The Bacterial Neurometabolic Signature of the Gut Microbiota of Young Children With Autism Spectrum Disorders,” Journal of Medical Microbiology 69, no. 4 (2020): 558-571.

[130]

J. K. Nicholson, E. Holmes, J. Kinross, et al., “Host-gut Microbiota Metabolic Interactions,” Science 336, no. 6086 (2012): 1262-1267.

[131]

M. Rao and M. D. Gershon, “The Bowel and Beyond: The Enteric Nervous System in Neurological Disorders,” Nature reviews Gastroenterology & hepatology 13, no. 9 (2016): 517-528.

[132]

S. B. Chidambaram, S. Tuladhar, A. Bhat, et al., “Autism and Gut-Brain Axis: Role of Probiotics,” Adv Neurobiol 24 (2020): 587-600.

[133]

C. S. Reigstad and C. E. Salmonson, “Gut Microbes Promote Colonic Serotonin Production Through an Effect of Short-chain Fatty Acids on Enterochromaffin Cells,” Faseb Journal 29, no. 4 (2015): 1395-1403.

[134]

B. S. Samuel, A. Shaito, T. Motoike, et al., “Effects of the Gut Microbiota on Host Adiposity Are Modulated by the Short-chain Fatty-acid Binding G Protein-coupled Receptor, Gpr41,” Pnas 105, no. 43 (2008): 16767-16772.

[135]

T. C. Fung, C. A. Olson, and E. Y. Hsiao, “Interactions Between the Microbiota, Immune and Nervous Systems in Health and Disease,” Nature Neuroscience 20, no. 2 (2017): 145-155.

[136]

S. G. Sorboni, H. S. Moghaddam, R. Jafarzadeh-Esfehani, and S. Soleimanpour, “A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders,” Clinical Microbiology Reviews 35, no. 1 (2022): e0033820.

[137]

S. Liu, J. Gao, M. Zhu, K. Liu, and H. L. Zhang, “Gut Microbiota and Dysbiosis in Alzheimer's Disease: Implications for Pathogenesis and Treatment,” Molecular Neurobiology 57, no. 12 (2020): 5026-5043.

[138]

J. A. Hardy and G. A. Higgins, “Alzheimer's disease: The Amyloid Cascade Hypothesis,” Science 256, no. 5054 (1992): 184-185.

[139]

C. Chen, J. Liao, Y. Xia, et al., “Gut Microbiota Regulate Alzheimer's Disease Pathologies and Cognitive Disorders via PUFA-associated Neuroinflammation,” Gut 71, no. 11 (2022): 2233-2252.

[140]

S. Semar, M. Klotz, M. Letiembre, et al., “Changes of the Enteric Nervous System in Amyloid-beta Protein Precursor Transgenic Mice Correlate With Disease Progression,” Journal of Alzheimer's Disease 36, no. 1 (2013): 7-20.

[141]

P. Honarpisheh, C. R. Reynolds, M. P. Blasco Conesa, et al., “Dysregulated Gut Homeostasis Observed Prior to the Accumulation of the Brain Amyloid-beta in Tg2576 Mice,” International Journal of Molecular Sciences 21, no. 5 (2020).

[142]

Q. Gao, Y. Wang, X. Wang, et al., “Decreased Levels of Circulating Trimethylamine N-oxide Alleviate Cognitive and Pathological Deterioration in Transgenic Mice: A Potential Therapeutic Approach for Alzheimer's Disease,” Aging (Albany NY) 11, no. 19 (2019): 8642-8663.

[143]

Y. Kiriyama and H. Nochi, “The Biosynthesis, Signaling, and Neurological Functions of Bile Acids,” Biomolecules 9, no. 6 (2019).

[144]

K. J. Broadley, “The Vascular Effects of Trace Amines and Amphetamines,” Pharmacology & Therapeutics 125, no. 3 (2010): 363-375.

[145]

Y. Wang, Q. Tong, S. R. Ma, et al., “Oral Berberine Improves Brain Dopa/Dopamine Levels to Ameliorate Parkinson's Disease by Regulating Gut Microbiota,” Signal Transduct Target Ther 6, no. 1 (2021): 77.

[146]

B. Huang, S. W. H. Chau, Y. Liu, et al., “Gut Microbiome Dysbiosis Across Early Parkinson's Disease, REM Sleep Behavior Disorder and Their First-degree Relatives,” Nature Communications 14, no. 1 (2023): 2501.

[147]

Z. D. Wallen, A. Demirkan, G. Twa, et al., “Metagenomics of Parkinson's Disease Implicates the Gut Microbiome in Multiple Disease Mechanisms,” Nature Communications 13, no. 1 (2022): 6958.

[148]

Z. Zhao, J. Ning, X. Q. Bao, et al., “Fecal Microbiota Transplantation Protects Rotenone-induced Parkinson's disease Mice via Suppressing Inflammation Mediated by the Lipopolysaccharide-TLR4 Signaling Pathway Through the Microbiota-gut-brain Axis,” Microbiome 9, no. 1 (2021): 226.

[149]

Y. Cheng, G. Tan, Q. Zhu, et al., “Efficacy of Fecal Microbiota Transplantation in Patients With Parkinson's Disease: Clinical Trial Results From a Randomized, Placebo-controlled Design,” Gut Microbes 15, no. 2 (2023): 2284247.

[150]

V. T. E. Aho, M. C. Houser, P. A. B. Pereira, et al., “Relationships of Gut Microbiota, Short-chain Fatty Acids, Inflammation, and the Gut Barrier in Parkinson's Disease,” Mol Neurodegener 16, no. 1 (2021): 6.

[151]

S. J. Chen, C. C. Chen, H. Y. Liao, et al., “Association of Fecal and Plasma Levels of Short-Chain Fatty Acids with Gut Microbiota and Clinical Severity in Patients with Parkinson Disease,” Neurology 98, no. 8 (2022): e848-e858.

[152]

B. Kalyanaraman, G. Cheng, and M. Hardy, “Gut Microbiome, Short-chain Fatty Acids, Alpha-synuclein, Neuroinflammation, and ROS/RNS: Relevance to Parkinson's Disease and Therapeutic Implications,” Redox Biology 71 (2024): 103092.

[153]

Y. F. Hou, C. Shan, S. Y. Zhuang, et al., “Gut Microbiota-derived Propionate Mediates the Neuroprotective Effect of osteocalcin in a Mouse Model of Parkinson's disease,” Microbiome 9, no. 1 (2021): 34.

[154]

J. Y. Wang, R. Xie, Y. Feng, et al., “Gut Microbiota Helps Identify Clinical Subtypes of Parkinson's Disease,” Mil Med Res 11, no. 1 (2024): 42.

[155]

L. Rylaarsdam and A. Guemez-Gamboa, “Genetic Causes and Modifiers of Autism Spectrum Disorder,” Front Cell Neurosci 13 (2019): 385.

[156]

C. R. Settanni, S. Bibbo, G. Ianiro, et al., “Gastrointestinal Involvement of Autism Spectrum Disorder: Focus on Gut Microbiota,” Expert Rev Gastroenterol Hepatol 15, no. 6 (2021): 599-622.

[157]

J. Wasilewska and M. Klukowski, “Gastrointestinal Symptoms and Autism Spectrum Disorder: Links and Risks—a Possible New Overlap Syndrome,” Pediatric Health Med Ther 6 (2015): 153-166.

[158]

G. Sharon, N. J. Cruz, D. W. Kang, et al., “Human Gut Microbiota From Autism Spectrum Disorder Promote Behavioral Symptoms in Mice,” Cell 177, no. 6 (2019): 1600-1618. e17.

[159]

R. H. Sandler, S. M. Finegold, E. R. Bolte, et al., “Short-term Benefit From Oral Vancomycin Treatment of Regressive-onset Autism,” Journal of Child Neurology 15, no. 7 (2000): 429-435.

[160]

W. Kilb and A. Fukuda, “Taurine as an Essential Neuromodulator During Perinatal Cortical Development,” Front Cell Neurosci 11 (2017): 328.

[161]

Y. Umesawa, T. Atsumi, M. Chakrabarty, R. Fukatsu, and M. Ide, “GABA Concentration in the Left Ventral Premotor Cortex Associates with Sensory Hyper-Responsiveness in Autism Spectrum Disorders without Intellectual Disability,” Frontiers in neuroscience 14 (2020): 482.

[162]

M. V. Ristori, A. Quagliariello, S. Reddel, et al., “Autism, Gastrointestinal Symptoms and Modulation of Gut Microbiota by Nutritional Interventions,” Nutrients 11, no. 11 (2019).

[163]

J. W. Kim, J. Y. Hong, and S. M. Bae, “Microglia and Autism Spectrum Disorder: Overview of Current Evidence and Novel Immunomodulatory Treatment Options,” Clin Psychopharmacol Neurosci 16, no. 3 (2018): 246-252.

[164]

D. Zheng, T. Liwinski, and E. Elinav, “Interaction Between Microbiota and Immunity in Health and Disease,” Cell Research 30, no. 6 (2020): 492-506.

[165]

L. V. Hooper, D. R. Littman, and A. J. Macpherson, “Interactions Between the Microbiota and the Immune System,” Science 336, no. 6086 (2012): 1268-1273.

[166]

T. Olszak, D. An, S. Zeissig, et al., “Microbial Exposure During Early Life Has Persistent Effects on Natural Killer T Cell Function,” Science 336, no. 6080 (2012): 489-493.

[167]

O. I. Iweala and C. R. Nagler, “The Microbiome and Food Allergy,” Annual Review of Immunology 37 (2019): 377-403.

[168]

K. E. Fujimura, A. R. Sitarik, S. Havstad, et al., “Neonatal Gut Microbiota Associates With Childhood Multisensitized Atopy and T Cell Differentiation,” Nature Medicine 22, no. 10 (2016): 1187-1191.

[169]

F. De Filippis, L. Paparo, R. Nocerino, et al., “Specific Gut Microbiome Signatures and the Associated Pro-inflamatory Functions Are Linked to Pediatric Allergy and Acquisition of Immune Tolerance,” Nature Communications 12, no. 1 (2021): 5958.

[170]

R. E. Ventura, T. Iizumi, T. Battaglia, et al., “Gut Microbiome of Treatment-naive MS Patients of Different Ethnicities Early in Disease Course,” Scientific Reports 9, no. 1 (2019): 16396.

[171]

X. Zhang, D. Zhang, H. Jia, et al., “The Oral and Gut Microbiomes Are Perturbed in Rheumatoid Arthritis and Partly Normalized After Treatment,” Nature Medicine 21, no. 8 (2015): 895-905.

[172]

T. A. van der Meulen, H. J. M. Harmsen, A. V. Vila, et al., “Shared Gut, but Distinct Oral Microbiota Composition in Primary Sjogren's Syndrome and Systemic Lupus Erythematosus,” Journal of Autoimmunity 97 (2019): 77-87.

[173]

Z. He, T. Shao, H. Li, Z. Xie, and C. Wen, “Alterations of the Gut Microbiome in Chinese Patients With Systemic Lupus Erythematosus,” Gut Pathog 8 (2016): 64.

[174]

E. Miyauchi, C. Shimokawa, A. Steimle, M. S. Desai, and H. Ohno, “The Impact of the Gut Microbiome on Extra-intestinal Autoimmune Diseases,” Nature Reviews Immunology 23, no. 1 (2023): 9-23.

[175]

F. E. Lumb, J. Doonan, K. S. Bell, et al., “Dendritic Cells Provide a Therapeutic Target for Synthetic Small Molecule Analogues of the Parasitic Worm Product, ES-62,” Scientific Reports 7, no. 1 (2017): 1704.

[176]

Y. Gu, R. Bartolome-Casado, C. Xu, et al., “Immune Microniches Shape Intestinal T(reg) Function,” Nature 628, no. 8009 (2024): 854-862.

[177]

Y. He, Q. Wen, F. Yao, D. Xu, Y. Huang, and J. Wang, “Gut-lung Axis: The Microbial Contributions and Clinical Implications,” Critical Reviews in Microbiology 43, no. 1 (2017): 81-95.

[178]

K. Burrows, L. Ngai, P. Chiaranunt, et al., “A Gut Commensal Protozoan Determines respiratory Disease Outcomes by Shaping Pulmonary Immunity,” Cell 188, no. 2 (2025): 316-330. e12.

[179]

J. Zhao, Q. Zhang, W. Cheng, et al., “Heart-gut Microbiota Communication Determines the Severity of Cardiac Injury After Myocardial Ischaemia/Reperfusion,” Cardiovascular Research 119, no. 6 (2023): 1390-1402.

[180]

D. M. Moutsoglou, J. Tatah, S. Z. Prisco, et al., “Pulmonary Arterial Hypertension Patients Have a Proinflammatory Gut Microbiome and Altered Circulating Microbial Metabolites,” American Journal of Respiratory and Critical Care Medicine 207, no. 6 (2023): 740-756.

[181]

C. Roncal, E. Martinez-Aguilar, J. Orbe, et al., “Trimethylamine-N-Oxide (TMAO) Predicts Cardiovascular Mortality in Peripheral Artery Disease,” Scientific Reports 9, no. 1 (2019): 15580.

[182]

S. H. Zeisel and M. Warrier, “Trimethylamine N-Oxide, the Microbiome, and Heart and Kidney Disease,” Annual Review of Nutrition 37 (2017): 157-181.

[183]

N. D. Mathewson, R. Jenq, A. V. Mathew, et al., “Gut Microbiome-derived Metabolites Modulate Intestinal Epithelial Cell Damage and Mitigate Graft-versus-host Disease,” Nature Immunology 17, no. 5 (2016): 505-513.

[184]

H. Bartolomaeus, A. Balogh, M. Yakoub, et al., “Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage,” Circulation 139, no. 11 (2019): 1407-1421.

[185]

Q. Li, B. Gao, B. Siqin, et al., “Gut Microbiota: A Novel Regulator of Cardiovascular Disease and Key Factor in the Therapeutic Effects of Flavonoids,” Frontiers in pharmacology 12 (2021): 651926.

[186]

M. A. De Francesco and A. Caruso, “The Gut Microbiome in Psoriasis and Crohn's Disease: Is Its Perturbation a Common Denominator for Their Pathogenesis?,” Vaccines (Basel) 10, no. 2 (2022).

[187]

H. Eppinga, C. J. Sperna Weiland, H. B. Thio, et al., “Similar Depletion of Protective Faecalibacterium Prausnitzii in Psoriasis and Inflammatory Bowel Disease, but Not in Hidradenitis Suppurativa,” J Crohns Colitis 10, no. 9 (2016): 1067-1075.

[188]

J. U. Scher, C. Ubeda, A. Artacho, et al., “Decreased Bacterial Diversity Characterizes the Altered Gut Microbiota in Patients With Psoriatic Arthritis, Resembling Dysbiosis in Inflammatory Bowel Disease,” Arthritis Rheumatol 67, no. 1 (2015): 128-139.

[189]

M. R. Mahmud, S. Akter, S. K. Tamanna, et al., “Impact of Gut Microbiome on Skin Health: Gut-skin Axis Observed Through the Lenses of Therapeutics and Skin Diseases,” Gut Microbes 14, no. 1 (2022): 2096995.

[190]

M. J. E. Visser, D. B. Kell, and E. Pretorius, “Bacterial Dysbiosis and Translocation in Psoriasis Vulgaris,” Frontiers in Cellular and Infection Microbiology 9 (2019): 7.

[191]

V. Ankudavicius, D. Nikitina, R. Lukosevicius, et al., “Detailed Characterization of the Lung-Gut Microbiome Axis Reveals the Link Between PD-L1 and the Microbiome in Non-Small-Cell Lung Cancer Patients,” International Journal of Molecular Sciences 25, no. 4 (2024).

[192]

W. Yip, M. R. Hughes, Y. Li, et al., “Butyrate Shapes Immune Cell Fate and Function in Allergic Asthma,” Frontiers in immunology 12 (2021): 628453.

[193]

A. M. Kabel, M. S. Omar, and M. A. A. Elmaaboud, “Amelioration of Bleomycin-induced Lung Fibrosis in Rats by Valproic Acid and Butyrate: Role of Nuclear Factor Kappa-B, Proinflammatory Cytokines and Oxidative Stress,” International Immunopharmacology 39 (2016): 335-342.

[194]

R. O. Correa, P. R. Castro, R. Moser, et al., “Butyrate: Connecting the Gut-lung Axis to the Management of Pulmonary Disorders,” Frontiers in Nutrition 9 (2022): 1011732.

[195]

M. Sun, F. Lu, D. Yu, Y. Wang, P. Chen, and S. Liu, “Respiratory Diseases and Gut Microbiota: Relevance, Pathogenesis, and Treatment,” Frontiers in Microbiology 15 (2024): 1358597.

[196]

U. M. Morbe, P. B. Jorgensen, T. M. Fenton, et al., “Human Gut-associated Lymphoid Tissues (GALT); Diversity, Structure, and Function,” Mucosal Immunol 14, no. 4 (2021): 793-802.

[197]

M. Zhao, F. Shao, D. Yu, et al., “Maturation and Specialization of Group 2 Innate Lymphoid Cells Through the Lung-gut Axis,” Nature Communications 13, no. 1 (2022): 7600.

[198]

M. E. Kuenzig, C. Barnabe, C. H. Seow, et al., “Asthma Is Associated with Subsequent Development of Inflammatory Bowel Disease: A Population-based Case-Control Study,” Clinical Gastroenterology and Hepatology 15, no. 9 (2017): 1405-1412.

[199]

G. Wang, Y. X. Hu, M. Y. He, et al., “Gut-Lung Dysbiosis Accompanied by Diabetes Mellitus Leads to Pulmonary Fibrotic Change Through the NF-kappaB Signaling Pathway,” American Journal of Pathology 191, no. 5 (2021): 838-856.

[200]

Y. Hashimoto, A. Eguchi, Y. Wei, et al., “Antibiotic-induced Microbiome Depletion Improves LPS-induced Acute Lung Injury via Gut-lung Axis,” Life Sciences 307 (2022): 120885.

[201]

Z. Su, C. Ma, X. Ru, et al., “Effects of Probiotic Treatment on Patients and Animals With Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-analysis of Randomized Control Trials,” Frontiers in Cellular and Infection Microbiology 14 (2024): 1411222.

[202]

W. Liu, Z. Pi, X. Wang, et al., “Microbiome and Lung Cancer: Carcinogenic Mechanisms, Early Cancer Diagnosis, and Promising Microbial Therapies,” Critical Reviews in Oncology/Hematology 196 (2024): 104322.

[203]

H. E. Vuong, G. N. Pronovost, D. W. Williams, et al., “The Maternal Microbiome Modulates Fetal Neurodevelopment in Mice,” Nature 586, no. 7828 (2020): 281-286.

[204]

M. S. Thion, D. Low, A. Silvin, et al., “Microbiome Influences Prenatal and Adult Microglia in a Sex-Specific Manner,” Cell 172, no. 3 (2018): 500-516. e16.

[205]

E. D. Watson and J. C. Cross, “Development of Structures and Transport Functions in the Mouse Placenta,” Physiology (Bethesda, Md.) 20 (2005): 180-193.

[206]

G. N. Pronovost, K. B. Yu, E. J. L. Coley-O'Rourke, et al., “The Maternal Microbiome Promotes Placental Development in Mice,” Science Advances 9, no. 40 (2023): eadk1887.

[207]

C. Hu, Y. Yan, F. Ji, and H. Zhou, “Maternal Obesity Increases Oxidative Stress in Placenta and It Is Associated with Intestinal Microbiota,” Frontiers in Cellular and Infection Microbiology 11 (2021): 671347.

[208]

I. Kimura, J. Miyamoto, R. Ohue-Kitano, et al., “Maternal Gut Microbiota in Pregnancy Influences Offspring Metabolic Phenotype in Mice,” Science 367, no. 6481 (2020).

[209]

H. Zhang, X. Zha, B. Zhang, et al., “Gut Microbiota Contributes to Bisphenol A-induced Maternal Intestinal and Placental Apoptosis, Oxidative Stress, and Fetal Growth Restriction in Pregnant Ewe Model by Regulating Gut-placental Axis,” Microbiome 12, no. 1 (2024): 28.

[210]

D. Ke, J. Zheng, X. Liu, et al., “Occurrence of Microplastics and Disturbance of Gut Microbiota: A Pilot Study of Preschool Children in Xiamen, China,” EBioMedicine 97 (2023): 104828.

[211]

T. Van Pee, J. Hogervorst, Y. Dockx, et al., “Accumulation of Black Carbon Particles in Placenta, Cord Blood, and Childhood Urine in Association With the Intestinal Microbiome Diversity and Composition in Four- to Six-Year-Old Children in the ENVIRONAGE Birth Cohort,” Environmental Health Perspectives 131, no. 1 (2023): 17010.

[212]

J. Lopez-Tello, Z. Schofield, R. Kiu, et al., “Maternal Gut Microbiota Bifidobacterium Promotes Placental Morphogenesis, Nutrient Transport and Fetal Growth in Mice,” Cellular and Molecular Life Sciences 79, no. 7 (2022): 386.

[213]

Y. Xie, F. Zhao, Y. Wang, et al., “Fetal Growth Restriction Induced by Maternal Gal-3 Deficiency Is Associated With Altered Gut-placenta Axis,” Cell death & disease 15, no. 8 (2024): 575.

[214]

W. Gohir, K. M. Kennedy, J. G. Wallace, et al., “High-fat Diet Intake Modulates Maternal Intestinal Adaptations to Pregnancy and Results in Placental Hypoxia, as Well as Altered Fetal Gut Barrier Proteins and Immune Markers,” The Journal of Physiology 597, no. 12 (2019): 3029-3051.

[215]

A. Stupak and W. Kwasniewski, “Evaluating Current Molecular Techniques and Evidence in Assessing Microbiome in Placenta-Related Health and Disorders in Pregnancy,” Biomolecules 13, no. 6 (2023).

[216]

S. Basak, R. Mallick, B. Navya Sree, and A. K. Duttaroy, “Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota,” Nutrients 16, no. 12 (2024).

[217]

R. A. Koeth, Z. Wang, B. S. Levison, et al., “Intestinal Microbiota Metabolism of L-carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis,” Nature Medicine 19, no. 5 (2013): 576-585.

[218]

M. S. Desai, A. M. Seekatz, N. M. Koropatkin, et al., “A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility,” Cell 167, no. 5 (2016): 1339-1353. e21.

[219]

E. D. Sonnenburg, S. A. Smits, M. Tikhonov, S. K. Higginbottom, N. S. Wingreen, and J. L. Sonnenburg, “Diet-induced Extinctions in the Gut Microbiota Compound Over Generations,” Nature 529, no. 7585 (2016): 212-215.

[220]

R. B. Canani, M. D. Costanzo, L. Leone, M. Pedata, R. Meli, and A. Calignano, “Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Diseases,” World Journal of Gastroenterology 17, no. 12 (2011): 1519-1528.

[221]

M. Y. Lim and Y. D. Nam, “Gut Microbiome in Healthy Aging versus Those Associated With Frailty,” Gut Microbes 15, no. 2 (2023): 2278225.

[222]

K. Parkin, C. T. Christophersen, V. Verhasselt, M. N. Cooper, and D. Martino, “Risk Factors for Gut Dysbiosis in Early Life,” Microorganisms 9, no. 10 (2021).

[223]

H. Duan, L. Yu, F. Tian, Q. Zhai, L. Fan, and W. Chen, “Antibiotic-induced Gut Dysbiosis and Barrier Disruption and the Potential Protective Strategies,” Critical Reviews in Food Science and Nutrition 62, no. 6 (2022): 1427-1452.

[224]

C. Jernberg, S. Löfmark, C. Edlund, and J. K. Jansson, “Long-term Impacts of Antibiotic Exposure on the human Intestinal Microbiota,” Microbiology (N YReading) 156, no. 11 (2010): 3216-3223. Pt.

[225]

P. T. Santana, S. L. B. Rosas, B. E. Ribeiro, Y. Marinho, and H. S. P. de Souza, “Dysbiosis in Inflammatory Bowel Disease: Pathogenic Role and Potential Therapeutic Targets,” International Journal of Molecular Sciences 23, no. 7 (2022).

[226]

O. Perdijk, A. Butler, M. Macowan, et al., “Antibiotic-driven Dysbiosis in Early Life Disrupts Indole-3-propionic Acid Production and Exacerbates Allergic Airway Inflammation in Adulthood,” Immunity 57, no. 8 (2024): 1939-1954. e7.

[227]

A. W. Miller, T. Orr, D. Dearing, and M. Monga, “Loss of Function Dysbiosis Associated With Antibiotics and High Fat, High Sugar Diet,” The ISME journal 13, no. 6 (2019): 1379-1390.

[228]

D. Dahiya and P. S. Nigam, “Antibiotic-Therapy-Induced Gut Dysbiosis Affecting Gut Microbiota-Brain Axis and Cognition: Restoration by Intake of Probiotics and Synbiotics,” International Journal of Molecular Sciences 24, no. 4 (2023).

[229]

E. E. Fröhlich, A. Farzi, R. Mayerhofer, et al., “Cognitive Impairment by Antibiotic-induced Gut Dysbiosis: Analysis of Gut Microbiota-brain Communication,” Brain, Behavior, and Immunity 56 (2016): 140-155.

[230]

P. Liu, Y. Zhang, Z. Zhang, et al., “Antibiotic-Induced Dysbiosis of the Gut Microbiota Impairs Gene Expression in Gut-Liver Axis of Mice,” Genes (Basel) 14, no. 7 (2023).

[231]

Y. Hong, H. Li, L. Chen, et al., “Short-term Exposure to Antibiotics Begets Long-term Disturbance in Gut Microbial Metabolism and Molecular Ecological Networks,” Microbiome 12, no. 1 (2024): 80.

[232]

M. E. Perez-Munoz, M. C. Arrieta, A. E. Ramer-Tait, and J. Walter, “A Critical Assessment of the “Sterile Womb” and “in Utero Colonization” Hypotheses: Implications for Research on the Pioneer Infant Microbiome,” Microbiome 5, no. 1 (2017): 48.

[233]

M. G. Dominguez-Bello, E. K. Costello, M. Contreras, et al., “Delivery Mode Shapes the Acquisition and Structure of the Initial Microbiota Across Multiple Body Habitats in Newborns,” Pnas 107, no. 26 (2010): 11971-11975.

[234]

P. S. Pannaraj, F. Li, C. Cerini, et al., “Association between Breast Milk Bacterial Communities and Establishment and Development of the Infant Gut Microbiome,” JAMA Pediatr 171, no. 7 (2017): 647-654.

[235]

S. R. Gill, M. Pop, R. T. Deboy, et al., “Metagenomic Analysis of the human Distal Gut Microbiome,” Science 312, no. 5778 (2006): 1355-1359.

[236]

P. B. Eckburg, E. M. Bik, C. N. Bernstein, et al., “Diversity of the human Intestinal Microbial Flora,” Science 308, no. 5728 (2005): 1635-1638.

[237]

N. T. Ho, F. Li, K. A. Lee-Sarwar, et al., “Meta-analysis of Effects of Exclusive Breastfeeding on Infant Gut Microbiota Across Populations,” Nature Communications 9, no. 1 (2018): 4169.

[238]

M. C. Chua, K. Ben-Amor, C. Lay, et al., “Effect of Synbiotic on the Gut Microbiota of Cesarean Delivered Infants: A Randomized, Double-blind, Multicenter Study,” Journal of Pediatric Gastroenterology and Nutrition 65, no. 1 (2017): 102-106.

[239]

M. Black, S. Bhattacharya, S. Philip, J. E. Norman, and D. J. McLernon, “Planned Cesarean Delivery at Term and Adverse Outcomes in Childhood Health,” Jama 314, no. 21 (2015): 2271-2279.

[240]

K. L. Glassner, B. P. Abraham, and E. M. M. Quigley, “The Microbiome and Inflammatory Bowel Disease,” Journal of Allergy and Clinical Immunology 145, no. 1 (2020): 16-27.

[241]

Z. Fang, L. Li, H. Zhang, J. Zhao, W. Lu, and W. Chen, “Gut Microbiota, Probiotics, and Their Interactions in Prevention and Treatment of Atopic Dermatitis: A Review,” Frontiers in immunology 12 (2021): 720393.

[242]

K. Schmidt, P. J. Cowen, C. J. Harmer, G. Tzortzis, S. Errington, and P. W. Burnet, “Prebiotic Intake Reduces the Waking Cortisol Response and Alters Emotional Bias in Healthy Volunteers,” Psychopharmacology 232, no. 10 (2015): 1793-1801.

[243]

J. Ji, W. Jin, S. J. Liu, Z. Jiao, and X. Li, “Probiotics, Prebiotics, and Postbiotics in Health and Disease,” MedComm 4, no. 6 (2023): e420.

[244]

F. Cao, L. Jin, Y. Gao, et al., “Artificial-enzymes-armed Bifidobacterium Longum Probiotics for Alleviating Intestinal Inflammation and Microbiota Dysbiosis,” Nature Nanotechnology 18, no. 6 (2023): 617-627.

[245]

S. Khan, F. Ahmad, and N. Khalid, “Applications of Strain-Specific Probiotics in the Management of Cardiovascular Diseases: A Systemic Review,” Molecular Nutrition & Food Research 68, no. 8 (2024): e2300675.

[246]

C. Zhang, L. Yu, C. Ma, et al., “A Key Genetic Factor Governing Arabinan Utilization in the Gut Microbiome Alleviates Constipation,” Cell Host & Microbe 31, no. 12 (2023): 1989-2006 e8.

[247]

K. Chen, H. Wang, X. Yang, C. Tang, G. Hu, and Z. Gao, “Targeting Gut Microbiota as a Therapeutic Target in T2DM: A Review of Multi-target Interactions of Probiotics, Prebiotics, Postbiotics, and Synbiotics With the Intestinal Barrier,” Pharmacological Research 210 (2024): 107483.

[248]

C. Zussy, R. John, T. Urgin, et al., “Intranasal Administration of Nanovectorized Docosahexaenoic Acid (DHA) Improves Cognitive Function in Two Complementary Mouse Models of Alzheimer's Disease,” Antioxidants (Basel) 11, no. 5 (2022).

[249]

D. W. Zheng, R. Q. Li, J. X. An, et al., “Prebiotics-Encapsulated Probiotic Spores Regulate Gut Microbiota and Suppress Colon Cancer,” Advanced Materials 32, no. 45 (2020): e2004529.

[250]

T. Lang, R. Zhu, X. Zhu, et al., “Combining Gut Microbiota Modulation and Chemotherapy by Capecitabine-loaded Prebiotic Nanoparticle Improves Colorectal Cancer Therapy,” Nature Communications 14, no. 1 (2023): 4746.

[251]

S. Badesso, P. Cartas-Cejudo, M. Espelosin, E. Santamaria, M. Cuadrado-Tejedor, and A. Garcia-Osta, “Docosahexaenoic Acid Ameliorates Contextual Fear Memory Deficits in the Tg2576 Alzheimer's Disease Mouse Model: Cellular and Molecular Correlates,” Pharmaceutics 15, no. 1 (2022).

[252]

D. R. Michael, T. S. Davies, J. W. E. Moss, et al., “The Anti-cholesterolaemic Effect of a Consortium of Probiotics: An Acute Study in C57BL/6J Mice,” Scientific Reports 7, no. 1 (2017): 2883.

[253]

Y. Zhao, C. Li, Z. Luan, et al., “Lactobacillus Oris Improves Non-alcoholic Fatty Liver in Mice and Inhibits Endogenous Cholesterol Biosynthesis,” Scientific Reports 13, no. 1 (2023): 12946.

[254]

Y. H. Chen, C. S. Wu, Y. H. Chao, et al., “Lactobacillus Pentosus GMNL-77 Inhibits Skin Lesions in Imiquimod-induced Psoriasis-Like Mice,” J Food Drug Anal 25, no. 3 (2017): 559-566.

[255]

F. Hoentjen, G. W. Welling, H. J. Harmsen, et al., “Reduction of Colitis by Prebiotics in HLA-B27 Transgenic Rats Is Associated With Microflora Changes and Immunomodulation,” Inflammatory Bowel Diseases 11, no. 11 (2005): 977-985.

[256]

M. A. Farhangi, A. Z. Javid, B. Sarmadi, P. Karimi, and P. Dehghan, “A Randomized Controlled Trial on the Efficacy of Resistant Dextrin, as Functional Food, in Women With Type 2 Diabetes: Targeting the Hypothalamic-pituitary-adrenal Axis and Immune System,” Clinical Nutrition 37, no. 4 (2018): 1216-1223.

[257]

F. Azpiroz, C. Dubray, A. Bernalier-Donadille, et al., “Effects of scFOS on the Composition of Fecal Microbiota and Anxiety in Patients With Irritable Bowel Syndrome: A Randomized, Double Blind, Placebo Controlled Study,” Neurogastroenterology and Motility 29, no. 2 (2017).

[258]

R. Grimaldi, G. R. Gibson, J. Vulevic, et al., “A Prebiotic Intervention Study in Children With Autism Spectrum Disorders (ASDs),” Microbiome 2018; 6(1): 133.

[259]

R. Grimaldi, D. Cela, J. R. Swann, et al., “In Vitro Fermentation of B-GOS: Impact on Faecal Bacterial Populations and Metabolic Activity in Autistic and Non-autistic Children,” Fems Microbiology Ecology 93, no. 2 (2017).

[260]

R. Huang, K. Wang, and J. Hu, “Effect of Probiotics on Depression: A Systematic Review and Meta-Analysis of Randomized Controlled Trials,” Nutrients 8, no. 8 (2016).

[261]

J. Kaluzna-Czaplinska and S. Blaszczyk, “The Level of Arabinitol in Autistic Children After Probiotic Therapy,” Nutrition (Burbank, Los Angeles County, Calif.) 28, no. 2 (2012): 124-126.

[262]

S. Y. Shaaban, Y. G. El Gendy, N. S. Mehanna, et al., “The Role of Probiotics in Children With Autism Spectrum Disorder: A Prospective, Open-label Study,” Nutritional Neuroscience 21, no. 9 (2018): 676-681.

[263]

A. Tomova, V. Husarova, S. Lakatosova, et al., “Gastrointestinal Microbiota in Children With Autism in Slovakia,” Physiology & Behavior 138 (2015): 179-187.

[264]

C. T. Choy, U. K. Chan, P. L. K. Siu, et al., “A Novel E3 Probiotics Formula Restored Gut Dysbiosis and Remodelled Gut Microbial Network and Microbiome Dysbiosis Index (MDI) in Southern Chinese Adult Psoriasis Patients,” International Journal of Molecular Sciences 24, no. 7 (2023).

[265]

P. Tian, Y. Chen, H. Zhu, et al., “Bifidobacterium Breve CCFM1025 Attenuates Major Depression Disorder via Regulating Gut Microbiome and Tryptophan Metabolism: A Randomized Clinical Trial,” Brain, Behavior, and Immunity 100 (2022): 233-241.

[266]

C. Depommier, A. Everard, C. Druart, et al., “Supplementation With Akkermansia muciniphila in Overweight and Obese human Volunteers: A Proof-of-concept Exploratory Study,” Nature Medicine 25, no. 7 (2019): 1096-1103.

[267]

F. Huang, S. Li, W. Chen, et al., “Postoperative Probiotics Administration Attenuates Gastrointestinal Complications and Gut Microbiota Dysbiosis Caused by Chemotherapy in Colorectal Cancer Patients,” Nutrients 15, no. 2 (2023).

[268]

Y. Wang, N. Li, J. J. Yang, et al., “Probiotics and Fructo-oligosaccharide Intervention Modulate the Microbiota-gut Brain Axis to Improve Autism Spectrum Reducing Also the Hyper-serotonergic state and the Dopamine Metabolism Disorder,” Pharmacological Research 157 (2020): 104784.

[269]

C. J. Porksen, M. K. Keller, A. Damholt, et al., “The Effect of a Lozenge Combining Prebiotic Arginine and Probiotics on Caries Increment in Children During 10-12 Months, a Randomized Clinical Trial,” Journal of Dentistry 135 (2023): 104599.

[270]

S. R. Alli, I. Gorbovskaya, J. C. W. Liu, N. J. Kolla, L. Brown, and D. J. Muller, “The Gut Microbiome in Depression and Potential Benefit of Prebiotics, Probiotics and Synbiotics: A Systematic Review of Clinical Trials and Observational Studies,” International Journal of Molecular Sciences 23, no. 9 (2022).

[271]

M. C. Buhas, R. Candrea, L. I. Gavrilas, et al., “Transforming Psoriasis Care: Probiotics and Prebiotics as Novel Therapeutic Approaches,” International Journal of Molecular Sciences 24, no. 13 (2023).

[272]

J. A. Krumbeck, H. E. Rasmussen, R. W. Hutkins, et al., “Probiotic Bifidobacterium Strains and Galactooligosaccharides Improve Intestinal Barrier Function in Obese Adults but Show no Synergism When Used Together as Synbiotics,” Microbiome 6, no. 1 (2018): 121.

[273]

I. N. Sergeev, T. Aljutaily, G. Walton, and E. Huarte, “Effects of Synbiotic Supplement on Human Gut Microbiota, Body Composition and Weight Loss in Obesity,” Nutrients 12, no. 1 (2020).

[274]

E. Scorletti, P. R. Afolabi, E. A. Miles, et al., “Synbiotics Alter Fecal Microbiomes, but Not Liver Fat or Fibrosis, in a Randomized Trial of Patients with Nonalcoholic Fatty Liver Disease,” Gastroenterology 158, no. 6 (2020): 1597-1610.

[275]

A. Kanazawa, M. Aida, Y. Yoshida, et al., “Effects of Synbiotic Supplementation on Chronic Inflammation and the Gut Microbiota in Obese Patients With Type 2 Diabetes Mellitus: A Randomized Controlled Study,” Nutrients 13, no. 2 (2021).

[276]

B. Skrzydlo-Radomanska, B. Prozorow-Krol, H. Cichoz-Lach, et al., “The Effectiveness of Synbiotic Preparation Containing Lactobacillus and Bifidobacterium Probiotic Strains and Short Chain Fructooligosaccharides in Patients With Diarrhea Predominant Irritable Bowel Syndrome-A Randomized Double-Blind, Placebo-Controlled Study,” Nutrients 12, no. 7 (2020).

[277]

A. Yadegar, S. Pakpoor, F. F. Ibrahim, et al., “Beneficial Effects of Fecal Microbiota Transplantation in Recurrent Clostridioides difficile Infection,” Cell Host & Microbe 31, no. 5 (2023): 695-711.

[278]

Z. Kassam, C. H. Lee, Y. Yuan, and R. H. Hunt, “Fecal Microbiota Transplantation for Clostridium difficile Infection: Systematic Review and Meta-analysis,” American Journal of Gastroenterology 108, no. 4 (2013): 500-508.

[279]

E. S. Aby, B. P. Vaughn, E. A. Enns, and R. Rajasingham, “Cost-effectiveness of Fecal Microbiota Transplantation for First Recurrent Clostridioides difficile Infection,” Clinical Infectious Diseases 75, no. 9 (2022): 1602-1609.

[280]

G. Cammarota, L. Masucci, G. Ianiro, et al., “Randomised Clinical Trial: Faecal Microbiota Transplantation by Colonoscopy vs. vancomycin for the Treatment of Recurrent Clostridium difficile Infection,” Alimentary pharmacology & therapeutics 41, no. 9 (2015): 835-843.

[281]

C. L. Hvas, S. M. Dahl Jorgensen, S. P. Jorgensen, et al., “Fecal Microbiota Transplantation Is Superior to Fidaxomicin for Treatment of Recurrent Clostridium difficile Infection,” Gastroenterology 156, no. 5 (2019): 1324-1332. e3.

[282]

B. Routy, E. Le Chatelier, L. Derosa, et al., “Gut Microbiome Influences Efficacy of PD-1-based Immunotherapy Against Epithelial Tumors,” Science 359, no. 6371 (2018): 91-97.

[283]

S. J. Blake, Y. Wolf, B. Boursi, and D. J. Lynn, “Role of the Microbiota in Response to and Recovery From Cancer Therapy,” Nature Reviews Immunology 24, no. 5 (2024): 308-325.

[284]

D. Kujawa, L. Laczmanski, S. Budrewicz, A. Pokryszko-Dragan, and M. Podbielska, “Targeting Gut Microbiota: New Therapeutic Opportunities in Multiple Sclerosis,” Gut Microbes 15, no. 2 (2023): 2274126.

[285]

F. Scheperjans, R. Levo, B. Bosch, et al., “Fecal Microbiota Transplantation for Treatment of Parkinson Disease: A Randomized Clinical Trial,” JAMA neurology 81, no. 9 (2024): 925-938.

[286]

D. Stols-Goncalves, A. L. Mak, M. S. Madsen, et al., “Faecal Microbiota Transplantation Affects Liver DNA Methylation in Non-alcoholic Fatty Liver Disease: A Multi-omics Approach,” Gut Microbes 15, no. 1 (2023): 2223330.

[287]

Z. Wu, B. Zhang, F. Chen, et al., “Fecal Microbiota Transplantation Reverses Insulin Resistance in Type 2 Diabetes: A Randomized, Controlled, Prospective Study,” Frontiers in Cellular and Infection Microbiology 12 (2022): 1089991.

[288]

Y. F. van Lier, M. Davids, N. J. E. Haverkate, et al., “Donor Fecal Microbiota Transplantation Ameliorates Intestinal Graft-versus-host Disease in Allogeneic Hematopoietic Cell Transplant Recipients,” Science Translational Medicine 12, no. 556 (2020).

[289]

C. Barcena, R. Valdes-Mas, P. Mayoral, et al., “Healthspan and Lifespan Extension by Fecal Microbiota Transplantation Into Progeroid Mice,” Nature Medicine 25, no. 8 (2019): 1234-1242.

[290]

M. H. Woodworth, R. E. Conrad, M. Haldopoulos, et al., “Fecal Microbiota Transplantation Promotes Reduction of Antimicrobial Resistance by Strain Replacement,” Science Translational Medicine 15, no. 720 (2023): eabo2750.

[291]

Y. Lu, X. Yuan, M. Wang, et al., “Gut Microbiota Influence Immunotherapy Responses: Mechanisms and Therapeutic Strategies,” Journal of hematology & oncology 15, no. 1 (2022): 47.

[292]

J. Walter and F. Shanahan, “Fecal Microbiota-based Treatment for Recurrent Clostridioides difficile Infection,” Cell 186, no. 6 (2023): 1087.

[293]

S. Bibbo, C. R. Settanni, S. Porcari, et al., “Fecal Microbiota Transplantation: Screening and Selection to Choose the Optimal Donor,” Journal of Clinical Medicine 9, no. 6 (2020). Jun 5.

[294]

S. Porcari, N. Benech, M. Valles-Colomer, et al., “Key Determinants of Success in Fecal Microbiota Transplantation: From Microbiome to Clinic,” Cell Host & Microbe 31, no. 5 (2023): 712-733.

[295]

A. M. M. Ton, B. P. Campagnaro, G. A. Alves, et al., “Oxidative Stress and Dementia in Alzheimer's Patients: Effects of Synbiotic Supplementation,” Oxid Med Cell Longev 2020 (2020): 2638703.

[296]

P. Gazerani, “Probiotics for Parkinson's Disease,” International Journal of Molecular Sciences 20, no. 17 (2019).

[297]

E. Vassilopoulou, A. Comotti, N. Douladiris, et al., “A Systematic Review and Meta-analysis of Nutritional and Dietary Interventions in Randomized Controlled Trials for Skin Symptoms in Children With Atopic Dermatitis and Without Food Allergy: An EAACI Task Force Report,” Allergy 79, no. 7 (2024): 1708-1724.

[298]

L. Ma, H. Tu, and T. Chen, “Postbiotics in Human Health: A Narrative Review,” Nutrients 15, no. 2 (2023).

[299]

M. Luu, S. Pautz, V. Kohl, et al., “The Short-chain Fatty Acid Pentanoate Suppresses Autoimmunity by Modulating the Metabolic-epigenetic Crosstalk in Lymphocytes,” Nature Communications 10, no. 1 (2019): 760.

[300]

M. G. Fragas, D. M. Oliveira, M. I. Hiyane, T. T. Braga, and N. O. S. Camara, “The Dual Effect of Acetate on Microglial TNF-alpha Production,” Clinics (Sao Paulo) 77 (2022): 100062.

[301]

L. Calvo-Barreiro, H. Eixarch, T. Cornejo, et al., “Selected Clostridia Strains From the Human Microbiota and Their Metabolite, Butyrate, Improve Experimental Autoimmune Encephalomyelitis,” Neurotherapeutics 18, no. 2 (2021): 920-937.

[302]

A. Duscha, B. Gisevius, S. Hirschberg, et al., “Propionic Acid Shapes the Multiple Sclerosis Disease Course by an Immunomodulatory Mechanism,” Cell 180, no. 6 (2020): 1067-1080. e16.

[303]

E. Miyauchi, H. Morita, and S. Tanabe, “Lactobacillus Rhamnosus Alleviates Intestinal Barrier Dysfunction in Part by Increasing Expression of Zonula Occludens-1 and Myosin Light-chain Kinase in Vivo,” Journal of Dairy Science 92, no. 6 (2009): 2400-2408.

[304]

I. C. Chung, C. N. OuYang, S. N. Yuan, et al., “Pretreatment With a Heat-Killed Probiotic Modulates the NLRP3 Inflammasome and Attenuates Colitis-Associated Colorectal Cancer in Mice,” Nutrients 11, no. 3 (2019).

[305]

L. Zhou, W. Song, T. Liu, et al., “Multi-omics Insights Into Anti-colitis Benefits of the Synbiotic and Postbiotic Derived From Wheat Bran Arabinoxylan and Limosilactobacillus Reuteri,” International Journal of Biological Macromolecules 278, no. Pt 3 (2024): 134860.

[306]

R. Zhang, X. Gao, H. Bai, and K. Ning, “Traditional Chinese Medicine and Gut Microbiome: Their Respective and Concert Effects on Healthcare,” Frontiers in pharmacology 11 (2020): 538.

[307]

Q. Ma, Y. Ouyang, F. Meng, et al., “A Review of Pharmacological and Clinical Studies on the Application of Shenling Baizhu San in Treatment of Ulcerative Colitis,” Journal of Ethnopharmacology 244 (2019): 112105.

[308]

W. Feng, L. Zhu, and H. Shen, “Traditional Chinese Medicine Alleviates Ulcerative Colitis via Modulating Gut Microbiota,” Evid Based Complement Alternat Med 2022 (2022): 8075344.

[309]

J. Zhao, J. Miao, X. Wei, et al., “Traditional Chinese Medicine Ganshuang Granules Attenuate CCl(4) -Induced Hepatic Fibrosis by Modulating Gut Microbiota,” Chemistry and Biodiversity 18, no. 11 (2021): e2100520.

[310]

J. Ma, J. Wang, Y. Wan, S. Wang, and C. Jiang, “Probiotic-fermented Traditional Chinese Herbal Medicine, a Promising Approach to Maintaining the Intestinal Microecology,” Journal of Ethnopharmacology 337, no. Pt 1 (2025): 118815.

[311]

H. Sun, X. Ni, X. Song, et al., “Fermented Yupingfeng Polysaccharides Enhance Immunity by Improving the Foregut Microflora and Intestinal Barrier in Weaning Rex Rabbits,” Applied Microbiology and Biotechnology 100, no. 18 (2016): 8105-8120.

[312]

D. Jia, Q. Wang, Y. Qi, et al., “Microbial Metabolite Enhances Immunotherapy Efficacy by Modulating T Cell Stemness in Pan-cancer,” Cell 187, no. 7 (2024): 1651-1665. e21.

[313]

S. R. Sharpton, G. J. M. Yong, N. A. Terrault, and S. V. Lynch, “Gut Microbial Metabolism and Nonalcoholic Fatty Liver Disease,” Hepatol Commun 3, no. 1 (2019): 29-43.

[314]

C. Yang, J. Wu, L. Yang, et al., “Altered Gut Microbial Profile Accompanied by Abnormal Short Chain Fatty Acid Metabolism Exacerbates Nonalcoholic Fatty Liver Disease Progression,” Scientific Reports 14, no. 1 (2024): 22385.

[315]

Q. Nie, X. Luo, K. Wang, et al., “Gut Symbionts Alleviate MASH Through a Secondary Bile Acid Biosynthetic Pathway,” Cell 187, no. 11 (2024): 2717-2734. e33.

[316]

D. Erny, A. L. Hrabe de Angelis, D. Jaitin, et al., “Host Microbiota Constantly Control Maturation and Function of Microglia in the CNS,” Nature Neuroscience 18, no. 7 (2015): 965-977.

[317]

Y. Sun, H. Zhang, X. Zhang, et al., “Promotion of Astrocyte-neuron Glutamate-glutamine Shuttle by SCFA Contributes to the Alleviation of Alzheimer's Disease,” Redox Biology 62 (2023): 102690.

[318]

P. S. Salvi and R. A. Cowles, “Butyrate and the Intestinal Epithelium: Modulation of Proliferation and Inflammation in Homeostasis and Disease,” Cells 10, no. 7 (2021).

[319]

Y. Che, G. Chen, Q. Guo, Y. Duan, H. Feng, and Q. Xia, “Gut Microbial Metabolite Butyrate Improves Anticancer Therapy by Regulating Intracellular Calcium Homeostasis,” Hepatology 78, no. 1 (2023): 88-102.

[320]

B. Shashni and Y. Nagasaki, “Short-chain Fatty Acid-releasing Nano-prodrugs for Attenuating Growth and Metastasis of Melanoma,” Acta Biomaterialia 159 (2023): 226-236. Mar 15.

[321]

M. L. Hanson, J. A. Hixon, W. Li, et al., “Oral Delivery of IL-27 Recombinant Bacteria Attenuates Immune Colitis in Mice,” Gastroenterology 146, no. 1 (2014): 210-221. e13.

[322]

Z. Z. Hamady, N. Scott, M. D. Farrar, et al., “Treatment of Colitis With a Commensal Gut Bacterium Engineered to Secrete human TGF-beta1 Under the Control of Dietary xylan 1,” Inflammatory Bowel Diseases 17, no. 9 (2011): 1925-1935.

[323]

H. Shen, C. Zhang, S. Li, et al., “Prodrug-conjugated Tumor-seeking Commensals for Targeted Cancer Therapy,” Nature Communications 15, no. 1 (2024): 4343.

[324]

C. B. Kurtz, Y. A. Millet, M. K. Puurunen, et al., “An Engineered E. coli Nissle Improves Hyperammonemia and Survival in Mice and Shows Dose-dependent Exposure in Healthy Humans,” Science Translational Medicine 11, no. 475 (2019).

[325]

D. T. Riglar, T. W. Giessen, M. Baym, et al., “Engineered Bacteria Can Function in the Mammalian Gut Long-term as Live Diagnostics of Inflammation,” Nature Biotechnology 35, no. 7 (2017): 653-658.

[326]

T. C. Shen, L. Albenberg, K. Bittinger, et al., “Engineering the Gut Microbiota to Treat Hyperammonemia,” Journal of Clinical Investigation 125, no. 7 (2015): 2841-2850.

[327]

Y. S. Cho, K. Han, J. Xu, and J. J. Moon, “Novel Strategies for Modulating the Gut Microbiome for Cancer Therapy,” Advanced Drug Delivery Reviews 210 (2024): 115332.

[328]

E. A. Franzosa, K. Huang, J. F. Meadow, et al., “Identifying Personal Microbiomes Using Metagenomic Codes,” Pnas 112, no. 22 (2015): E2930-2938.

[329]

Human Microbiome Project C. Structure, Function and Diversity of the Healthy human Microbiome. Nature 2012; 486(7402): 207-214.

[330]

A. Bashan, T. E. Gibson, J. Friedman, et al., “Universality of human Microbial Dynamics,” Nature 534, no. 7606 (2016): 259-262.

[331]

P. Ghaffari, S. Shoaie, and L. K. Nielsen, “Irritable Bowel Syndrome and Microbiome; Switching From Conventional Diagnosis and Therapies to Personalized Interventions,” Journal of translational medicine 20, no. 1 (2022): 173.

[332]

A. Patil, N. Singh, M. Patwekar, et al., “AI-driven Insights Into the Microbiota: Figuring out the Mysterious World of the Gut,” Intelligent Pharmacy (2024).

[333]

S. A. Alowais, S. S. Alghamdi, N. Alsuhebany, et al., “Revolutionizing Healthcare: The Role of Artificial Intelligence in Clinical Practice,” BMC Medical Education [Electronic Resource] 23, no. 1 (2023): 689.

[334]

Y. J. Li, Y. Wang, and Z. X. Qiu, “Artificial Intelligence Research Advances in Discrimination and Diagnosis of Pulmonary Ground-glass Nodules,” Zhonghua Jie He He Hu Xi Za Zhi = Zhonghua Jiehe He Huxi Zazhi = Chinese Journal of Tuberculosis and Respiratory Diseases 47, no. 6 (2024): 566-570.

[335]

F. M. De La Vega, S. Chowdhury, B. Moore, et al., “Artificial Intelligence Enables Comprehensive Genome Interpretation and Nomination of Candidate Diagnoses for Rare Genetic Diseases,” Genome Med 13, no. 1 (2021): 153.

[336]

C. Arnold, “Inside the Nascent Industry of AI-designed Drugs,” Nature Medicine 29, no. 6 (2023): 1292-1295.

[337]

R. Rynazal, K. Fujisawa, H. Shiroma, et al., “Leveraging Explainable AI for Gut Microbiome-based Colorectal Cancer Classification,” Genome biology 24, no. 1 (2023): 21.

[338]

N. Sizemore, K. Oliphant, R. Zheng, C. R. Martin, E. C. Claud, and I. Chattopadhyay, “A Digital Twin of the Infant Microbiome to Predict Neurodevelopmental Deficits,” Science Advances 10, no. 15 (2024): eadj0400.

[339]

R. Hernández Medina, S. Kutuzova, K. N. Nielsen, et al., “Machine Learning and Deep Learning Applications in Microbiome Research,” ISME Commun 2, no. 1 (2022): 98.

[340]

F. Puig-Castellví, R. Pacheco-Tapia, M. Deslande, et al., “Advances in the Integration of Metabolomics and Metagenomics for human Gut Microbiome and Their Clinical Applications,” Trac Trends in Analytical Chemistry 167 (2023): 117248.

[341]

N. Probul, Z. Huang, C. C. Saak, J. Baumbach, and M. List, “AI in Microbiome-related Healthcare,” Microbial Biotechnology 17, no. 11 (2024): e70027.

[342]

M. A. Hemmati, M. Monemi, S. Asli, et al., “Using New Technologies to Analyze Gut Microbiota and Predict Cancer Risk,” Cells 13, no. 23 (2024).

[343]

F. D'Urso and F. Broccolo, “Applications of Artificial Intelligence in Microbiome Analysis and Probiotic Interventions—An Overview and Perspective Based on the Current State of the Art,” Applied Sciences 14, no. 19 (2024): 8627.

[344]

R. Ranjan, A. Rani, A. Metwally, H. S. McGee, and D. L. Perkins, “Analysis of the Microbiome: Advantages of Whole Genome Shotgun versus 16S Amplicon Sequencing,” Biochemical and Biophysical Research Communications 469, no. 4 (2016): 967-977.

[345]

Y. Li, Y. Jin, J. Zhang, et al., “Recovery of human Gut Microbiota Genomes With Third-generation Sequencing,” Cell death & disease 12, no. 6 (2021): 569.

[346]

J. W. Arnold, J. Roach, and M. A. Azcarate-Peril, “Emerging Technologies for Gut Microbiome Research,” Trends in Microbiology 24, no. 11 (2016): 887-901.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

23

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/