GABAB Receptor: Structure, Biological Functions, and Therapy for Diseases

Weijie Xie , Yuan Li , Xinyue Wang , Elena Blokhina , Evgeny Krupitsky , Marina Vetrova , Ji Hu , Ti-Fei Yuan , Jue Chen , Hua Wang , Xiangfang Chen

MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70163

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (5) : e70163 DOI: 10.1002/mco2.70163
REVIEW

GABAB Receptor: Structure, Biological Functions, and Therapy for Diseases

Author information +
History +
PDF

Abstract

Gamma-aminobutyric acid (GABA) B receptors (GABABRs) that acts slowly and maintains the inhibitory tone are versatile regulators in the complex nervous behaviors and their involvement in various neuropsychiatric disorders, such as anxiety, epilepsy, pain, drug addiction, and Alzheimer's disease. Additional study advances have implied the crucial roles of GABABRs in regulating feeding-related behaviors, yet their therapeutic potential in addressing the neuropsychiatric disorders, binge eating, and feeding-related disorders remains underutilized. This general review summarized the physiological structure and functions of GABABR, explored the regulation in various psychiatric disorders, feeding behaviors, binge eating, and metabolism disorders, and fully discussed the potential of targeting GABABRs and its regulator-binding sites for the treatment of different psychiatric disorders, binge eating and even obesity. While agonists that directly bind to GABABR1 have some negative side effects, positive allosteric modulators (PAMs) that bind to GABABR2 demonstrate excellent therapeutic efficacy and tolerability and have better safety and therapeutic indexes. Moreover, phosphorylation sites of downstream GABABRs regulators may be novel therapeutic targets for psychiatric disorders, binge eating, and obesity. Further studies, clinical trials in particular, will be essential for confirming the therapeutic value of PAMs and other agents targeting the GABABR pathways in a clinical setting.

Keywords

allosteric modulator / binge eating / GABAB receptors / metabolism disorders / molecular signaling / psychiatric disorders

Cite this article

Download citation ▾
Weijie Xie, Yuan Li, Xinyue Wang, Elena Blokhina, Evgeny Krupitsky, Marina Vetrova, Ji Hu, Ti-Fei Yuan, Jue Chen, Hua Wang, Xiangfang Chen. GABAB Receptor: Structure, Biological Functions, and Therapy for Diseases. MedComm, 2025, 6(5): e70163 DOI:10.1002/mco2.70163

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. M. Flegal, “BMI and Obesity Trends in Chinese National Survey Data,” Lancet 398, no. 10294 (2021): 5-7.

[2]

B. A. Swinburn, V. I. Kraak, S. Allender, et al., “The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission Report,” Lancet 393, no. 10173 (2019): 791-846.

[3]

Y. Wang, H. Xue, M. Sun, X. Zhu, L. Zhao, and Y. Yang, “Prevention and Control of Obesity in China,” The Lancet Global Health 7, no. 9 (2019): e1166-e1167.

[4]

Y. Wang, L. Zhao, L. Gao, A. Pan, and H. Xue, “Health Policy and Public Health Implications of Obesity in China,” The Lancet Diabetes & Endocrinology 9, no. 7 (2021): 446-461.

[5]

M. Ng, T. Fleming, M. Robinson, et al., “Global, Regional, and National Prevalence of Overweight and Obesity in Children and Adults During 1980-2013: A Systematic Analysis for the Global Burden of Disease Study 2013,” The Lancet 384, no. 9945 (2014): 766-781.

[6]

The Prevalence and Correlates of Binge Eating Disorder in the World Health Organization World Mental Health Surveys. Biological Psychiatry 2013; 73(9): 904-914.

[7]

N. A. Schvey, A. T. Pearlman, D. A. Klein, M. A. Murphy, and J. C. Gray, “Obesity and Eating Disorder Disparities among Sexual and Gender Minority Youth,” JAMA Pediatrics 175, no. 4 (2021): 412-415.

[8]

Q. Wang, Y. Kong, S. Lin, et al., “The ATP Level in the mPFC Mediates the Antidepressant Effect of Calorie Restriction,” Neuroscience Bulletin 37, no. 9 (2021): 1303-1313.

[9]

E. G. Hreins, A. P. Goldstone, R. M. Brown, and P. Sumithran, “The Therapeutic Potential of GLP-1 Analogues for Stress-related Eating and Role of GLP-1 in Stress, Emotion and Mood: A Review,” Progress in Neuro-Psychopharmacology and Biological Psychiatry 110, no. 3 (2021): 110303.

[10]

P. Sweeney and Y. Yang, “Neural Circuit Mechanisms Underlying Emotional Regulation of Homeostatic Feeding,” Trends in Endocrinology & Metabolism (2017): S1043276017300231.

[11]

G. Fellmeth, K. Rose-Clarke, C. Zhao, et al., “Health Impacts of Parental Migration on Left-Behind Children and Adolescents: A Systematic Review and Meta-analysis,” Lancet 392, no. 10164 (2018): 2567-2582.

[12]

F. Teufel, J. A. Seiglie, P. Geldsetzer, et al., “Body-mass Index and Diabetes Risk in 57 Low-income and Middle-income Countries: A Cross-sectional Study of Nationally Representative, Individual-level Data in 685 616 Adults,” Lancet 398, no. 10296 (2021): 238-248.

[13]

A. Gupta, V. Osadchiy, and E. A. Mayer, “Brain-gut-microbiome Interactions in Obesity and Food Addiction,” Nature Reviews Gastroenterology & Hepatology 17, no. 11 (2020): 655-672.

[14]

Z. Hisham, F. Sadaf, and F. Paul, “Obesity and the Brain: How Convincing Is the Addiction Model?,” Nature Reviews Neuroscience 13, no. 4 (2012): 279-286.

[15]

N. D. Volkow and R. A. Wise, “How Can Drug Addiction Help Us Understand Obesity?,” Nature Neuroscience 8, no. 5 (2005): 555-560.

[16]

E. Mendenhall and M. Singer, “The Global Syndemic of Obesity, Undernutrition, and Climate Change,” Lancet 393, no. 10173 (2019): 741.

[17]

G. A. Boer, D. L. Hay, and A. Tups, “Obesity Pharmacotherapy: Incretin Action in the central Nervous System,” Trends in Pharmacological Sciences 44, no. 1 (2023): 50-63.

[18]

R. Hammoud and D. J. Drucker, “Beyond the Pancreas: Contrasting Cardiometabolic Actions of GIP and GLP1,” Nature Reviews Endocrinology 19, no. 4 (2023): 201-216.

[19]

Y. Zhang, X. Zhao, X. Dong, et al., “Activity-balanced GLP-1/GDF15 Dual Agonist Reduces Body Weight and Metabolic Disorder in Mice and Non-human Primates,” Cell Metabolism 35, no. 2 (2023): 287-298, e4.

[20]

Y. H. Lee, M. Kim, M. Lee, et al., “Food Craving, Seeking, and Consumption Behaviors: Conceptual Phases and Assessment Methods Used in Animal and Human Studies,” Journal of Obesity Metabolic Syndrome 28, no. 3 (2019).

[21]

X. Jiang and Y. Pan, “Neural Control of Action Selection among Innate Behaviors,” Neuroscience Bulletin 38, no. 12 (2022): 1541-1558.

[22]

H. Wu, X. Yan, D. Tang, et al., “Internal States Influence the Representation and Modulation of Food Intake by Subthalamic Neurons,” Neuroscience Bulletin 36, no. 11 (2020): 1355-1368.

[23]

A. A. Miguel, S. C. Woods, P. Marcia, et al., “Food Reward System: Current Perspectives and Future Research Needs,” Nutrition Reviews no. 5 (2015): 296-307.

[24]

R. Gutierrez, E. Fonseca, and S. A. Simon, “The Neuroscience of Sugars in Taste, Gut-reward, Feeding Circuits, and Obesity,” Cellular and Molecular Life Sciences 77, no. 2 (2020).

[25]

S. H. Ahmed, K. Guillem, and Y. Vandaele, “Sugar Addiction: Pushing the Drug-sugar Analogy to the Limit,” Current Opinion in Clinical Nutrition & Metabolic Care 16 (2013): 434-439.

[26]

M. S. Gold and N. M. Avena, “Animal Models Lead the Way to Further Understanding Food Addiction as Well as Providing Evidence That Drugs Used Successfully in Addictions Can be Successful in Treating Overeating,” Biological Psychiatry 74, no. 7 (2013): E11-E11.

[27]

B. A. Baldo, R. C. Spencer, K. Sadeghian, and J. D. Mena, “GABA-Mediated Inactivation of Medial Prefrontal and Agranular Insular Cortex in the Rat: Contrasting Effects on Hunger- and Palatability-Driven Feeding,” Neuropsychopharmacology 41, no. 4 (2016): 960-970.

[28]

S. Trask, M. L. Shipman, J. T. Green, and M. E. Bouton, “Inactivation of the Prelimbic Cortex Attenuates Context-Dependent Operant Responding,” Journal of Neuroscience 37, no. 9 (2017): 2317-2324.

[29]

N. D. Volkow, G. J. Wang, and R. D. Baler, “Reward, Dopamine and the Control of Food Intake: Implications for Obesity,” Trends in Cognitive Sciences 15, no. 1 (2011): 37-46.

[30]

M. K. Brahma, E. H. Gilglioni, L. Zhou, E. Trépo, P. Chen, and E. N. Gurzov, “Oxidative Stress in Obesity-associated Hepatocellular Carcinoma: Sources, Signaling and Therapeutic Challenges,” Oncogene 40, no. 33 (2021): 5155-5167.

[31]

D. E. James, J. Stöckli, and M. J. Birnbaum, “The Aetiology and Molecular Landscape of Insulin Resistance,” Nature Reviews Molecular Cell Biology (2021).

[32]

D. Jia, J. Zhang, X. Liu, et al., “Insulin Resistance in Skeletal Muscle Selectively Protects the Heart in Response to Metabolic Stress,” Diabetes (2021).

[33]

M. Pini, G. Czibik, D. Sawaki, et al., “Adipose Tissue Senescence Is Mediated by Increased ATP Content After a Short-term High-fat Diet Exposure,” Aging Cell (2021): e13421.

[34]

Y. Hu, J. He, P. Zheng, et al., “Prebiotic Inulin as a Treatment of Obesity Related Nonalcoholic Fatty Liver Disease Through Gut Microbiota: A Critical Review,” Critical Reviews in Food Science and Nutrition (2021): 1-11.

[35]

M. Aigner, J. Treasure, W. Kaye, and S. Kasper, “World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for the Pharmacological Treatment of Eating Disorders,” The World Journal of Biological Psychiatry: The Official Journal of the World Federation of Societies of Biological Psychiatry 12, no. 6 (2011): 400-443.

[36]

J. Treasure, T. A. Duarte, and U. Schmidt, “Eating Disorders,” Lancet 395, no. 10227 (2020): 899-911.

[37]

C. F. Moore, M. Z. Leonard, N. M. Micovic, K. A. Miczek, V. Sabino, and P. Cottone, “Reward Sensitivity Deficits in a Rat Model of Compulsive Eating Behavior,” Neuropsychopharmacology 45, no. 4 (2020): 589-596.

[38]

J. Treasure, A. M. Claudino, and N. Zucker, “Eating Disorders,” Lancet 375, no. 9714 (2010): 583-593.

[39]

A. Goracci, S. D. Volo, F. Casamassima, S. Bolognesi, and A. Fagiolini, “Pharmacotherapy of Binge-Eating Disorder: A Review,” Journal of Addiction Medicine 9, no. 1 (2015): 1-19.

[40]

L. A. Berner, M. E. Bocarsly, B. G. Hoebel, and N. M. Avena, “Pharmacological Interventions for Binge Eating: Lessons From Animal Models, Current Treatments, and Future Directions,” Current Pharmaceutical Design 17, no. 12 (2011): 1180-1187.

[41]

A. Goracci, S. di Volo, F. Casamassima, S. Bolognesi, J. Benbow, and A. Fagiolini, “Pharmacotherapy of Binge-eating Disorder: A Review,” Journal of Addiction Medicine 9, no. 1 (2015): 1-19.

[42]

D. Guardia, B. Rolland, L. Karila, and O. Cottencin, “GABAergic and Glutamatergic Modulation in Binge Eating: Therapeutic Approach,” Current Pharmaceutical Design 17, no. 14 (2011): 1396-1409.

[43]

L. F. Fontenelle, S. Oostermeijer, B. J. Harrison, C. Pantelis, and M. Yücel, “Obsessive-compulsive Disorder, Impulse Control Disorders and Drug Addiction: Common Features and Potential Treatments,” Drugs 71, no. 7 (2011): 827-840.

[44]

P. C. Fletcher and P. J. Kenny, “Food Addiction: A Valid Concept?,” Neuropsychopharmacology 43, no. 13 (2018): 2506-2513.

[45]

K. Moussawi, M. M. Ortiz, S. C. Gantz, et al., “Fentanyl Vapor Self-administration Model in Mice to Study Opioid Addiction,” Science Advances 6, no. 32 (2020): eabc0413.

[46]

S. Kleinert and R. Horton, “Obesity Needs to be Put Into a Much Wider Context,” Lancet 393, no. 10173 (2019): 724-726.

[47]

L. Clark, I. Boileau, and M. Zack, “Neuroimaging of Reward Mechanisms in Gambling Disorder: An Integrative Review,” Molecular Psychiatry 24, no. 5 (2019): 674-693.

[48]

Y. Nakai, M. Fukushima, A. Taniguchi, K. Nin, and S. Teramukai, “Comparison of DSM-IV versus Proposed DSM-5 Diagnostic Criteria for Eating Disorders in a Japanese Sample,” European Eating Disorders Review 21, no. 1 (2013): 8-14.

[49]

P. K. Keel, T. A. Brown, J. Holm-Denoma, and L. P. Bodell, “Comparison of DSM-IV versus Proposed DSM-5 Diagnostic Criteria for Eating Disorders: Reduction of Eating Disorder Not Otherwise Specified and Validity,” International Journal of Eating Disorders 44, no. 6 (2011): 553-560.

[50]

H. Sonne, H. Kildegaard, K. Strandberg-Larsen, L. Rasmussen, R. Wesselhoeft, and M. Bliddal, “Eating Disorders in Children, Adolescents, and Young Adults during and after the COVID-19 Pandemic: A Danish Nationwide Register-Based Study,” International Journal of Eating Disorders (2024).

[51]

M. Solmi, J. Radua, M. Olivola, et al., “Age at Onset of Mental Disorders Worldwide: Large-scale Meta-analysis of 192 Epidemiological Studies,” Molecular Psychiatry 27, no. 1 (2022): 281-295.

[52]

G. Watts, “Janet Treasure: Advancing a Broad Perspective on Eating Disorders,” Lancet 398, no. 10294 (2021): 17.

[53]

T. A. Janet, “Stress and Obesity,” Annual Review of Psychology 70, no. 1 (2018). annurev-psych-010418-102936-.

[54]

P. C. Thomas, K. Curtis, H. W. W. Potts, et al., “Behavior Change Techniques within Digital Interventions for the Treatment of Eating Disorders: Systematic Review and Meta-Analysis,” JMIR Mental Health 11 (2024): e57577.

[55]

J. Zhong, Y. Zhang, Y. Sun, Q. Wang, G. Dong, and X. Li, “The Efficacy of Internet-based Cognitive Behavioral Therapy for Adult Binge Spectrum Eating Disorders: A Meta-analysis,” Journal of Affective Disorders 361 (2024): 684-692.

[56]

B. E. Matheson, “Bulimia Nervosa and Binge-Eating Disorder across the Lifespan,” Focus (American Psychiatric Publishing) 22, no. 3 (2024): 278-287.

[57]

A. M. Monteleone and G. Abbate-Daga, “Effectiveness and Predictors of Psychotherapy in Eating Disorders: State-of-the-art and Future Directions,” Current Opinion in Psychiatry 37, no. 6 (2024): 417-423.

[58]

C. Zaiser, N. M. Laskowski, R. Müller, et al., “The Relationship Between Anabolic Androgenic Steroid Use and Body Image, Eating Behavior, and Physical Activity by Gender: A Systematic Review,” Neuroscience and Biobehavioral Reviews 163 (2024): 105772.

[59]

J. Liu and L. Lin, “Small Molecules for Fat Combustion: Targeting Thermosensory and Satiety Signals in the central Nervous System,” Drug Discovery Today 24 (2018).

[60]

L. Steinbusch, G. L. Labouèbe, and B. Thorens, “Brain Glucose Sensing in Homeostatic and Hedonic Regulation,” Trends in Endocrinology & Metabolism Tem (2015): 455-466.

[61]

S. Shigetomo and Y. Toshihiko, “New Insight Into GABAergic Neurons in the Hypothalamic Feeding Regulation,” Journal of Physiological Sciences (2018): 1-6.

[62]

A. Garcia, A. Coss, J. Luis-Islas, L. Puron-Sierra, and R. Gutierrez, “Lateral Hypothalamic GABAergic Neurons Encode and Potentiate Sucrose's Palatability,” Frontiers in Neuroscience 14 (2021): 608047.

[63]

R. Marino, R. A. Mcdevitt, S. C. Gantz, H. Shen, and A. Bonci, “Control of Food Approach and Eating by a GABAergic Projection From Lateral Hypothalamus to Dorsal Pons,” Proceedings of the National Academy of Sciences 117, no. 15 (2020): 201909340.

[64]

T. Tsunekawa, R. Banno, H. Yaginuma, et al., “GABAB Receptor Signaling in the Mesolimbic System Suppresses Binge-Like Consumption of a High-Fat Diet—ScienceDirect,” Iscience 20 (2019): 337-347.

[65]

M. A. Rossi, M. L. Basiri, J. A. McHenry, et al., “Obesity Remodels Activity and Transcriptional state of a Lateral Hypothalamic Brake on Feeding,” Science 364, no. 6447 (2019): 1271-1274.

[66]

D. Guardia, B. Rolland, L. Karila, and O. Cottencin, “GABAergic and Glutamatergic Modulation in Binge Eating: Therapeutic Approach,” Current Pharmaceutical Design 17, no. 14 (2011).

[67]

L. A. Berner, M. E. Bocarsly, B. G. Hoebel, and N. M. Avena, “Pharmacological Interventions for Binge Eating: Lessons From Animal Models, Current Treatments, and Future Directions,” Current Pharmaceutical Design 17, no. 12 (2011).

[68]

F. H. E. Wojnicki, S. D. Brown, and R. L. W. Corwin, “Factors Affecting the Ability of baclofen to Reduce Fat Intake in Rats,” Behavioural Pharmacology 25, no. 2 (2014): 166-172.

[69]

J. Park, Z. Fu, A. Frangaj, et al., “Structure of human GABA(B) Receptor in an Inactive state,” Nature 584, no. 7820 (2020): 304-309.

[70]

A. Nieto, T. Bailey, K. Kaczanowska, and P. Mcdonald, “GABAB Receptor Chemistry and Pharmacology: Agonists, Antagonists, and Allosteric Modulators,” Current Topics in Behavioral Neurosciences (2021).

[71]

H. Shaye, A. Ishchenko, J. H. Lam, et al., “Structural Basis of the Activation of a Metabotropic GABA Receptor,” Nature 584, no. 7820 (2020): 298-303.

[72]

C. XU, W. Zhang, P. Rondard, J.-p Pin, and J. Liu, “Complex GABAB Receptor Complexes: How to Generate Multiple Functionally Distinct Units From a Single Receptor. Review,” Frontiers in Pharmacology 5, no. 12 (2014).

[73]

K. Tunyasuvunakool, J. Adler, Z. Wu, et al., “Highly Accurate Protein Structure Prediction for the human Proteome,” Nature (2021).

[74]

A. Frangaj and Q. R. Fan, “Structural Biology of GABA(B) Receptor,” Neuropharmacology 136, no. Pt A (2018): 68-79.

[75]

H. Shaye, B. Stauch, C. Gati, and V. Cherezov, “Molecular Mechanisms of Metabotropic GABA(B) Receptor Function,” Science Advances 7, no. 22 (2021).

[76]

T. Tabata, K. Araishi, K. Hashimoto, et al., “Ca2+ activity at GABAB Receptors Constitutively Promotes Metabotropic Glutamate Signaling in the Absence of GABA,” Proceedings National Academy of Science USA 101, no. 48 (2004): 16952-16957.

[77]

J. Jiang, Y. Peng, X. Liang, et al., “Centrally Administered Cortistation-14 Induces Antidepressant-Like Effects in Mice via Mediating Ghrelin and GABA(A) Receptor Signaling Pathway,” Frontiers in Pharmacology 9 (2018): 767.

[78]

K. Kaupmann, V. Schuler, J. Mosbacher, et al., “Human Gamma-aminobutyric Acid Type B Receptors Are Differentially Expressed and Regulate Inwardly Rectifying K+ Channels,” PNAS 95, no. 25 (1998): 14991-14996.

[79]

R. A. M. Marino, R. A. McDevitt, S. C. Gantz, et al., “Control of Food Approach and Eating by a GABAergic Projection From Lateral Hypothalamus to Dorsal Pons,” PNAS 117, no. 15 (2020): 8611-8615.

[80]

P. Miner, Y. Borkuhova, L. Shimonova, A. Khaimov, and R. J. Bodnar, “GABA-A and GABA-B Receptors Mediate Feeding Elicited by the GABA-B Agonist Baclofen in the Ventral Tegmental Area and Nucleus Accumbens Shell in Rats: Reciprocal and Regional Interactions,” Brain Research 1355 (2010): 86-96.

[81]

D. J. Hayes, J. Hoang, and A. J. Greenshaw, “The Role of Nucleus Accumbens Shell GABA Receptors on Ventral Tegmental Area Intracranial Self-stimulation and a Potential Role for the 5-HT(2C) Receptor,” Journal of Psychopharmacology 25, no. 12 (2011): 1661-1675.

[82]

N. J. Marchant, R. Rabei, K. Kaganovsky, et al., “A Critical Role of Lateral Hypothalamus in Context-induced Relapse to Alcohol Seeking After Punishment-imposed Abstinence,” Journal of Neuroscience 34, no. 22 (2014): 7447-7457.

[83]

T. R. Stratford and A. E. Kelley, “Evidence of a Functional Relationship Between the Nucleus Accumbens Shell and Lateral Hypothalamus Subserving the Control of Feeding Behavior,” Journal of Neuroscience the Official Journal of the Society for Neuroscience 19, no. 24 (1999): 11040.

[84]

R. Carletti, S. Tacconi, M. Mugnaini, and P. Gerrard, “Receptor Distribution Studies,” Current Opinion in Pharmacology 35 (2017): 94-100.

[85]

D. Benke, “GABAB Receptor Trafficking and Interacting Proteins: Targets for the Development of Highly Specific Therapeutic Strategies to Treat Neurological Disorders?,” Biochemical Pharmacology 86, no. 11 (2013): 1525-1530.

[86]

N. G. Bowery, “GABAB Receptor: A Site of Therapeutic Benefit,” Current Opinion in Pharmacology 6, no. 1 (2006): 37-43.

[87]

U. Misgeld, M. Bijak, and W. Jarolimek, “A Physiological Role for GABAB Receptors and the Effects of Baclofen in the Mammalian central Nervous System—ScienceDirect,” Progress in Neurobiology 46, no. 4 (1995): 423-462.

[88]

A. Eric, “Recent Advances in the Potential of Positive Allosteric Modulators of the GABAB Receptor to Treat Alcohol Use Disorder,” Alcohol and Alcoholism (2021).

[89]

T. J. Phillips and C. Reed, “Targeting GABAreceptors for Anti-abuse Drug Discovery,” Expert Opinion on Drug Discovery (2014).

[90]

A. Imerci, K. J. Rogers, F. Miller, and J. P. Sees, “Evaluation of Risk Factors for Cerebrospinal Leakage in Pediatric Patients with Cerebral Palsy Treated with Intrathecal Baclofen,” Journal of Pediatric Orthopedics 40, no. 6 (2020): e522-e526.

[91]

J. M. McIntosh, N. Absalom, M. Chebib, A. B. Elgoyhen, and M. Vincler, “Alpha9 nicotinic Acetylcholine Receptors and the Treatment of Pain,” Biochemical Pharmacology 78, no. 7 (2009): 693-702.

[92]

L. A. Scherkenbach, L. D. Coles, E. E. Patterson, J. C. Cloyd, L. E. Krach, and R. L. Kriel, “Pharmacokinetics and Pharmacodynamics of Intravenous Baclofen in Dogs: A Preliminary Study,” Journal of Pharmacy and Pharmacology 66, no. 7 (2014): 935-942.

[93]

I. V. Belozertseva and B. V. Andreev, “A Pharmaco-ethological Study of the GABA-ergic Mechanisms Regulating the Depression-Like Behavior of Mice,” Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I. P. Pavlova 47, no. 6 (1997): 1024-1031. Farmako-étologicheskoe izuchenie GAMKergicheskikh mekhanizmov reguliatsii depressivnopodobnogo povedeniia mysheĭ.

[94]

S. Lecca, A. Pelosi, A. Tchenio, et al., “Rescue of GABAB and GIRK Function in the Lateral Habenula by Protein Phosphatase 2A Inhibition Ameliorates Depression-Like Phenotypes in Mice,” Nature Medicine 22, no. 3 (2016): 254-261.

[95]

S. Guerzoni, L. Pellesi, L. A. Pini, and F. Caputo, “Drug-drug Interactions in the Treatment for Alcohol Use Disorders: A Comprehensive Review,” Pharmacological Research 133 (2018): 65-76.

[96]

M. Farokhnia, M. B. Sheskier, M. R. Lee, et al., “Neuroendocrine Response to GABA-B Receptor Agonism in Alcohol-dependent Individuals: Results From a Combined Outpatient and human Laboratory Experiment,” Neuropharmacology 137 (2018): 230-239.

[97]

E. D. Miguel, O. Vekovischeva, K. Kuokkanen, M. Vesajoki, and E. R. Korpi, “GABA B Receptor Positive Allosteric Modulators With Different Efficacies Affect Neuroadaptation to and Self-administration of Alcohol and Cocaine,” Addiction Biology 24, no. 11 (2018).

[98]

Y. Jagatsinh, “Intrathecal baclofen: Its Effect on Symptoms and Activities of Daily Living in Severe Spasticity due to Spinal Cord Injuries: A Pilot Study,” Indian Journal of Orthopaedics 43, no. 1 (2009): 46-49.

[99]

E. Augier, R. S. Dulman, R. Damadzic, A. Pilling, J. P. Hamilton, and M. Heilig, “The GABAB Positive Allosteric Modulator ADX71441 Attenuates Alcohol Self-Administration and Relapse to Alcohol Seeking in Rats,” Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology 42, no. 9 (2017): 1789-1799.

[100]

R. Madangopal, L. A. Ramsey, S. J. Weber, et al., “Inactivation of the Infralimbic Cortex Decreases Discriminative Stimulus-controlled Relapse to Cocaine Seeking in Rats,” Neuropsychopharmacology (2021).

[101]

A. M. Cruz, H. F. Spencer, T. H. Kim, T. C. Jhou, and R. J. Smith, “Prelimbic Cortical Projections to Rostromedial Tegmental Nucleus Play a Suppressive Role in Cue-induced Reinstatement of Cocaine Seeking,” Neuropsychopharmacology 46, no. 8 (2021): 1399-1406.

[102]

K. Sun, Q. Mu, H. Chang, et al., “Postretrieval Microinjection of Baclofen into the Agranular Insular Cortex Inhibits Morphine-Induced CPP by Disrupting Reconsolidation,” Frontiers in pharmacology 11 (2020): 743.

[103]

Y. Ando, M. Hojo, M. Kanaide, et al., “S(+)-ketamine Suppresses Desensitization of γ-aminobutyric Acid Type B Receptor-mediated Signaling by Inhibition of the Interaction of γ-aminobutyric Acid Type B Receptors With G Protein-coupled Receptor Kinase 4 or 5,” Anesthesiology 114, no. 2 (2011): 401-411.

[104]

X. Li, T. Zeric, S. Kambhampati, J. M. Bossert, and Y. Shaham, “The central Amygdala Nucleus Is Critical for Incubation of Methamphetamine Craving,” Neuropsychopharmacology 40, no. 5 (2015): 1297-1306.

[105]

P. Di Ciano and B. J. Everitt, “The GABA(B) Receptor Agonist Baclofen Attenuates Cocaine- and Heroin-seeking Behavior by Rats,” Neuropsychopharmacology 28, no. 3 (2003): 510-518.

[106]

S. J. Czuczwar and P. N. Patsalos, “The New Generation of GABA Enhancers. Potential in the Treatment of Epilepsy,” CNS Drugs 15, no. 5 (2001): 339-350.

[107]

F. M. Werner and R. Coveñas, “Neural Networks in Generalized Epilepsy and Novel Antiepileptic Drugs,” Current Pharmaceutical Design 25, no. 4 (2019): 396-400.

[108]

H. A. Han, M. A. Cortez, and O. C. Snead III. GABA(B) Receptor and Absence Epilepsy. In: Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado-Escueta AV, eds. “Jasper's Basic Mechanisms of the Epilepsies” (2012). National Center for Biotechnology Information (US) Copyright © 2012, Michael A Rogawski, Antonio V Delgado-Escueta, Jeffrey L Noebels, Massimo Avoli and Richard W Olsen.

[109]

S. J. Caddick and D. A. Hosford, “The Role of GABAB Mechanisms in Animal Models of Absence Seizures,” Molecular Neurobiology 13, no. 1 (1996): 23-32.

[110]

D. A. Hosford, F. H. Lin, Y. Wang, et al., “Studies of the Lethargic (lh/lh) Mouse Model of Absence Seizures: Regulatory Mechanisms and Identification of the Lh Gene,” Advances in Neurology 79 (1999): 239-252.

[111]

W. Zeng, L. Cao, J. Zheng, and L. Yu, “Clinical Characteristics and Long-term Follow-up of Seven Cases of Anti-GABABR Encephalitis in Patients of Han Chinese Descent,” Neurological Sciences 41, no. 2 (2020): 373-378.

[112]

L. Yao, W. Yue, W. Xunyi, W. Jianhong, Z. Guoxing, and H. Zhen, “Clinical Features and Long-term Outcomes of Seizures Associated With Autoimmune Encephalitis: A Follow-up Study in East China,” Journal of Clinical Neuroscience 68 (2019): 73-79.

[113]

J. Ong and D. I. Kerr, “Clinical Potential of GABAB Receptor Modulators,” CNS Drug Reviews 11, no. 3 (2005): 317-334.

[114]

J. Cui, H. Bu, J. He, et al., “The Gamma-aminobutyric Acid-B Receptor (GABAB) Encephalitis: Clinical Manifestations and Response to Immunotherapy,” International Journal of Neuroscience 128, no. 7 (2018): 627-633.

[115]

P. Wang, S. Nan, Y. Zhang, and J. Fan, “Effects of GABA(B) Receptor Positive Allosteric Modulator BHF177 and IRS-1 on Apoptosis of Hippocampal Neurons in Rats With Refractory Epilepsy via the PI3K/Akt Pathway,” Cell Biology International 46, no. 11 (2022): 1775-1786.

[116]

C. Geis, J. Planagumà, M. Carreño, F. Graus, and J. Dalmau, “Autoimmune Seizures and Epilepsy,” Journal of Clinical Investigation 129, no. 3 (2019): 926-940.

[117]

S. Oagawa, Y. Uchida, S. Kobayashi, K. Takada, K. Terada, and N. Matsukawa, “GABA(B) Receptor Autoimmune Encephalitis Presenting as Transient Epileptic Amnesia,” Rinsho Shinkeigaku. Clinical Neurology 61, no. 1 (2021): 6-11.

[118]

D. P. Getova and N. G. Bowery, “Effects of High-affinity GABAB Receptor Antagonists on Active and Passive Avoidance Responding in Rodents With Gamma-hydroxybutyrolactone-induced Absence Syndrome,” Psychopharmacology 157, no. 1 (2001): 89-95.

[119]

S. R. Williams, J. P. Turner, and V. Crunelli, “Gamma-hydroxybutyrate Promotes Oscillatory Activity of Rat and Cat Thalamocortical Neurons by a Tonic GABAB, Receptor-mediated Hyperpolarization,” Neuroscience 66, no. 1 (1995): 133-141.

[120]

Z. S. Ostojić, T. V. Ilić, S. M. Vesković, and P. R. Andjus, “GABAB Receptors as a Common Target for Hypothermia and Spike and Wave Seizures: Intersecting Mechanisms of Thermoregulation and Absence Epilepsy,” Neuroscience 238 (2013): 39-58.

[121]

P. S. Mangan and E. W. Lothman, “Profound Disturbances of Pre- and Postsynaptic GABAB-receptor-mediated Processes in Region CA1 in a Chronic Model of Temporal Lobe Epilepsy,” Journal of Neurophysiology 76, no. 2 (1996): 1282-1296.

[122]

M. Bortolato, R. Frau, M. Orrù, et al., “GABAB Receptor Activation Exacerbates Spontaneous Spike-and-wave Discharges in DBA/2J Mice,” Seizure: The Journal of the British Epilepsy Association 19, no. 4 (2010): 226-231.

[123]

A. Zeman, S. Hoefeijzers, F. Milton, M. Dewar, M. Carr, and C. Streatfield, “The GABAB Receptor Agonist, Baclofen, Contributes to Three Distinct Varieties of Amnesia in the human Brain—A Detailed Case Report,” Cortex; A Journal Devoted to the Study of the Nervous System and Behavior 74 (2016): 9-19.

[124]

A. Straessle, F. Loup, D. Arabadzisz, G. V. Ohning, and J. M. Fritschy, “Rapid and Long-term Alterations of Hippocampal GABAB Receptors in a Mouse Model of Temporal Lobe Epilepsy,” European Journal of Neuroscience 18, no. 8 (2003): 2213-2226.

[125]

M. Lang, H. Moradi-Chameh, T. Zahid, et al., “Regulating Hippocampal Hyperexcitability Through GABAB Receptors,” Physiological Reports 2, no. 4 (2014): e00278, doi:.

[126]

I. Premoli, D. Rivolta, S. Espenhahn, et al., “Characterization of GABAB-receptor Mediated Neurotransmission in the human Cortex by Paired-pulse TMS-EEG,” Neuroimage 103 (2014): 152-162.

[127]

J. Buritova, V. Chapman, P. Honoré, and J. M. Besson, “The Contribution of GABAB Receptor-mediated Events to Inflammatory Pain Processing: Carrageenan Oedema and Associated Spinal c-Fos Expression in the Rat,” Neuroscience 73, no. 2 (1996): 487-496.

[128]

M. Takeda, M. Nasu, T. Kanazawa, and Y. Shimazu, “Activation of GABA(B) Receptors Potentiates Inward Rectifying Potassium Currents in Satellite Glial Cells From Rat Trigeminal Ganglia: In Vivo Patch-clamp Analysis,” Neuroscience 288 (2015): 51-58.

[129]

Y. S. Gwak, H. Y. Tan, T. S. Nam, K. S. Paik, C. E. Hulsebosch, and J. W. Leem, “Activation of Spinal GABA Receptors Attenuates Chronic central Neuropathic Pain After Spinal Cord Injury,” Journal of Neurotrauma 23, no. 7 (2006): 1111-1124.

[130]

C. Hu, Y. T. Zhao, G. Zhang, and M. F. Xu, “Antinociceptive Effects of fucoidan in Rat Models of Vincristine-induced Neuropathic Pain,” Molecular Medicine Reports 15, no. 2 (2017): 975-980.

[131]

Q. M. Dias and W. A. Prado, “The Lesion of Dorsolateral Funiculus Changes the Antiallodynic Effect of the Intrathecal Muscimol and Baclofen in Distinct Phases of Neuropathic Pain Induced by Spinal Nerve Ligation in Rats,” Brain Research Bulletin 124 (2016): 103-115.

[132]

I. Martins, P. Carvalho, M. G. de Vries, et al., “GABA Acting on GABAB Receptors Located in a Medullary Pain Facilitatory Area Enhances Nociceptive Behaviors Evoked by Intraplantar Formalin Injection,” Pain 156, no. 8 (2015): 1555-1565.

[133]

X. Li, V. B. Risbrough, C. Cates-Gatto, et al., “Comparison of the Effects of the GABAB Receptor Positive Modulator BHF177 and the GABAB Receptor Agonist Baclofen on Anxiety-Like Behavior, Learning, and Memory in Mice,” Neuropharmacology 70 (2013): 156-167.

[134]

K. Zemoura, W. T. Ralvenius, P. Malherbe, and D. Benke, “The Positive Allosteric GABAB Receptor Modulator Rac-BHFF Enhances Baclofen-mediated Analgesia in Neuropathic Mice,” Neuropharmacology 108 (2016): 172-178.

[135]

L. E. Cornelison, S. E. Woodman, and P. L. Durham, “5-HT3/7 and GABA(B) Receptors Mediate Inhibition of Trigeminal Nociception by Dietary Supplementation of Grape Seed Extract,” Nutritional Neuroscience 25, no. 8 (2022): 1565-1576.

[136]

A. Partyka, A. Kłodzińska, B. Szewczyk, et al., “Effects of GABAB Receptor Ligands in Rodent Tests of Anxiety-Like Behavior,” Pharmacological Reports 59, no. 6 (2007): 757-762.

[137]

M. Frankowska, M. Filip, and E. Przegaliński, “Effects of GABAB Receptor Ligands in Animal Tests of Depression and Anxiety,” Pharmacological Reports 59, no. 6 (2007): 645-655.

[138]

A. M. Falco, C. G. McDonald, and R. F. Smith, “Anxiety Status Affects Nicotine- and Baclofen-induced Locomotor Activity, Anxiety, and Single-trial Conditioned Place Preference in Male Adolescent Rats,” Developmental Psychobiology 56, no. 6 (2014): 1352-1364.

[139]

A. P. Varani, E. Aso, L. M. Moutinho, R. Maldonado, and G. N. Balerio, “Attenuation by baclofen of Nicotine Rewarding Properties and Nicotine Withdrawal Manifestations,” Psychopharmacology 231, no. 15 (2014): 3031-3040.

[140]

A. P. Varani, V. T. Pedrón, L. M. Machado, M. C. Antonelli, B. Bettler, and G. N. Balerio, “Lack of GABAB Receptors Modifies Behavioural and Biochemical Alterations Induced by Precipitated Nicotine Withdrawal,” Neuropharmacology 90 (2015): 90-101.

[141]

X. Li, K. Kaczanowska, M. G. Finn, A. Markou, and V. B. Risbrough, “The GABA(B) Receptor Positive Modulator BHF177 Attenuated Anxiety, but Not Conditioned Fear, in Rats,” Neuropharmacology 97 (2015): 357-364.

[142]

J. F. Cryan, P. H. Kelly, F. Chaperon, et al., “Behavioral Characterization of the Novel GABAB Receptor-positive Modulator GS39783 (N,N'-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine): Anxiolytic-Like Activity Without Side Effects Associated With Baclofen or Benzodiazepines,” Journal of Pharmacology and Experimental Therapeutics 310, no. 3 (2004): 952-963.

[143]

L. H. Jacobson and J. F. Cryan, “Evaluation of the Anxiolytic-Like Profile of the GABAB Receptor Positive Modulator CGP7930 in Rodents,” Neuropharmacology 54, no. 5 (2008): 854-862.

[144]

Y. Chen, N. Menendez-Roche, and E. Sher, “Differential Modulation by the GABAB Receptor Allosteric Potentiator 2,6-di-tert-butyl-4-(3-hydroxy-2,2-dimethylpropyl)-phenol (CGP7930) of Synaptic Transmission in the Rat Hippocampal CA1 Area,” Journal of Pharmacology and Experimental Therapeutics 317, no. 3 (2006): 1170-1177.

[145]

J. S. Jeng, C. T. Li, H. C. Lin, et al., “Antidepressant-resistant Depression Is Characterized by Reduced Short- and Long-interval Cortical Inhibition,” Psychological Medicine 50, no. 8 (2020): 1285-1291.

[146]

A. Pilc and G. Nowak, “GABAergic Hypotheses of Anxiety and Depression: Focus on GABA-B Receptors,” Drugs of Today (Barcelona, Spain: 1998) 41, no. 11 (2005): 755-766.

[147]

N. C. Rogasch, Z. J. Daskalakis, and P. B. Fitzgerald, “Cortical Inhibition, Excitation, and Connectivity in Schizophrenia: A Review of Insights From Transcranial Magnetic Stimulation,” Schizophrenia Bulletin 40, no. 3 (2014): 685-696.

[148]

P. Maccioni, K. Kaczanowska, H. Lawrence, et al., “The Novel Positive Allosteric Modulator of the GABA(B) Receptor, KK-92A, Suppresses Alcohol Self-Administration and Cue-Induced Reinstatement of Alcohol Seeking in Rats,” Frontiers in Cell and Developmental Biology 9 (2021): 727576.

[149]

D. C. Ranson, S. S. Ayoub, O. Corcoran, and S. O. Casalotti, “Pharmacological Targeting of the GABA(B) Receptor Alters Drosophila's Behavioural Responses to Alcohol,” Addiction Biology 25, no. 2 (2020): e12725.

[150]

C. Froger-Colléaux and V. Castagné, “Effects of Baclofen and Raclopride on Reinstatement of Cocaine Self-administration in the Rat,” European Journal of Pharmacology 777 (2016): 147-155.

[151]

P. C. Bianchi, P. E. Carneiro de Oliveira, P. Palombo, et al., “Functional Inactivation of the Orbitofrontal Cortex Disrupts Context-induced Reinstatement of Alcohol Seeking in Rats,” Drug and Alcohol Dependence 186 (2018): 102-112.

[152]

E. de Miguel, O. Vekovischeva, K. Kuokkanen, et al., “GABA(B) Receptor Positive Allosteric Modulators With Different Efficacies Affect Neuroadaptation to and Self-administration of Alcohol and Cocaine,” Addiction Biology 24, no. 6 (2019): 1191-1203.

[153]

E. Ramshini, H. Alaei, P. Reisi, S. Alaei, and S. Shahidani, “The Role of GABAB Receptors in Morphine Self-Administration,” International Journal of Preventive Medicine 4, no. 2 (2013): 158-164.

[154]

Z. Fu, H. Yang, Y. Xiao, G. Zhao, and H. Huang, “The Gamma-aminobutyric Acid Type B (GABAB) Receptor Agonist baclofen Inhibits Morphine Sensitization by Decreasing the Dopamine Level in Rat Nucleus Accumbens,” Behavioral and Brain Functions 8, no. 1 (2012): 20.

[155]

C. Mombereau, L. Lhuillier, K. Kaupmann, and J. F. Cryan, “GABAB Receptor-positive Modulation-induced Blockade of the Rewarding Properties of Nicotine Is Associated With a Reduction in Nucleus Accumbens DeltaFosB Accumulation,” Journal of Pharmacology and Experimental Therapeutics 321, no. 1 (2007): 172-717.

[156]

E. Augier, “Recent Advances in the Potential of Positive Allosteric Modulators of the GABAB Receptor to Treat Alcohol Use Disorder,” Alcohol and Alcoholism 56, no. 2 (2021): 139-148.

[157]

E. Sturchler, X. Li, M. de Lourdes Ladino, et al., “GABA(B) Receptor Allosteric Modulators Exhibit Pathway-dependent and Species-selective Activity,” Pharmacology Research & Perspectives 5, no. 2 (2017): e00288.

[158]

D. A. Slattery, A. Markou, W. Froestl, and J. F. Cryan, “The GABAB Receptor-positive Modulator GS39783 and the GABAB Receptor Agonist Baclofen Attenuate the Reward-facilitating Effects of Cocaine: Intracranial Self-stimulation Studies in the Rat,” Neuropsychopharmacology 30, no. 11 (2005): 2065-2072.

[159]

J. M. Wierońska, N. Kłeczek, M. Woźniak, et al., “mGlu₅-GABAB Interplay in Animal Models of Positive, Negative and Cognitive Symptoms of Schizophrenia,” Neurochemistry International 88 (2015): 97-109.

[160]

S. Arai, K. Takuma, H. Mizoguchi, et al., “Involvement of Pallidotegmental Neurons in Methamphetamine- and MK-801-induced Impairment of Prepulse Inhibition of the Acoustic Startle Reflex in Mice: Reversal by GABAB Receptor Agonist baclofen,” Neuropsychopharmacology 33, no. 13 (2008): 3164-3175.

[161]

S. Arai, K. Takuma, H. Mizoguchi, et al., “GABAB Receptor Agonist baclofen Improves Methamphetamine-induced Cognitive Deficit in Mice,” European Journal of Pharmacology 602, no. 1 (2009): 101-104.

[162]

R. E. Featherstone, M. F. McMullen, K. R. Ward, J. Bang, J. Xiao, and S. J. Siegel, “EEG Biomarkers of Target Engagement, Therapeutic Effect, and Disease Process,” Annals of the New York Academy of Sciences 1344 (2015): 12-26.

[163]

B. Draycott, M. Loureiro, T. Ahmad, H. Tan, J. Zunder, and S. R. Laviolette, “Cannabinoid Transmission in the Prefrontal Cortex bi-phasically Controls Emotional Memory Formation via Functional Interactions With the Ventral Tegmental Area,” Journal of Neuroscience 34, no. 39 (2014): 13096-13109.

[164]

H. Sershen, A. Balla, J. M. Aspromonte, S. Xie, T. B. Cooper, and D. C. Javitt, “Characterization of Interactions Between Phencyclidine and Amphetamine in Rodent Prefrontal Cortex and Striatum: Implications in NMDA/Glycine-site-mediated Dopaminergic Dysregulation and Dopamine Transporter Function,” Neurochemistry International 52, no. 1-2 (2008): 119-129.

[165]

K. Toriumi, M. Oki, E. Muto, et al., “Prenatal Phencyclidine Treatment Induces Behavioral Deficits Through Impairment of GABAergic Interneurons in the Prefrontal Cortex,” Psychopharmacology 233, no. 12 (2016): 2373-2381.

[166]

Y. H. Zhang, P. Zhao, H. L. Gao, M. L. Zhong, and J. Y. Li, “Screening Targets and Therapeutic Drugs for Alzheimer's Disease Based on Deep Learning Model and Molecular Docking,” Journal of Alzheimer's Disease 100, no. 3 (2024): 863-878.

[167]

Z. Sun, L. Sun, and L. Tu, “GABAB Receptor-Mediated PI3K/Akt Signaling Pathway Alleviates Oxidative Stress and Neuronal Cell Injury in a Rat Model of Alzheimer's Disease,” Journal of Alzheimer's Disease 76, no. 4 (2020): 1513-1526.

[168]

M. O. Nava-Mesa, L. Jiménez-Díaz, J. Yajeya, and J. D. Navarro-Lopez, “Amyloid-β Induces Synaptic Dysfunction Through G Protein-gated Inwardly Rectifying Potassium Channels in the Fimbria-CA3 Hippocampal Synapse,” Frontiers in Cellular Neuroscience 7 (2013): 117.

[169]

C. J. Li, Y. Lu, M. Zhou, et al., “Activation of GABAB Receptors Ameliorates Cognitive Impairment via Restoring the Balance of HCN1/HCN2 Surface Expression in the Hippocampal CA1 Area in Rats With Chronic Cerebral Hypoperfusion,” Molecular Neurobiology 50, no. 2 (2014): 704-720.

[170]

Z. Yu, G. Cheng, and B. Hu, “Mechanism of Colchicine Impairment on Learning and Memory, and Protective Effect of CGP36742 in Mice,” Brain Research 750, no. 1-2 (1997): 53-58.

[171]

K. A. Helm, R. P. Haberman, S. L. Dean, et al., “GABAB Receptor Antagonist SGS742 Improves Spatial Memory and Reduces Protein Binding to the cAMP Response Element (CRE) in the Hippocampus,” Neuropharmacology 48, no. 7 (2005): 956-964.

[172]

A. M. Kleschevnikov, P. V. Belichenko, M. Faizi, et al., “Deficits in Cognition and Synaptic Plasticity in a Mouse Model of Down syndrome Ameliorated by GABAB Receptor Antagonists,” Journal of Neuroscience 32, no. 27 (2012): 9217-9227.

[173]

A. M. Kleschevnikov, P. V. Belichenko, J. Gall, et al., “Increased Efficiency of the GABAA and GABAB Receptor-mediated Neurotransmission in the Ts65Dn Mouse Model of Down syndrome,” Neurobiology of Disease 45, no. 2 (2012): 683-691.

[174]

S. Jiang, L. Xiao, Y. Sun, et al., “The GABAB Receptor Agonist STX209 Reverses the Autism‑Like Behaviour in an Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid,” Molecular Medicine Reports 25, no. 5 (2022).

[175]

S. Jiang, M. He, L. Xiao, et al., “Prenatal GABAB Receptor Agonist Administration Corrects the Inheritance of Autism-Like Core Behaviors in Offspring of Mice Prenatally Exposed to Valproic Acid,” Front Psychiatry 13 (2022): 835993.

[176]

J. L. Silverman, M. C. Pride, J. E. Hayes, et al., “GABAB Receptor Agonist R-Baclofen Reverses Social Deficits and Reduces Repetitive Behavior in Two Mouse Models of Autism,” Neuropsychopharmacology 40, no. 9 (2015): 2228-2239.

[177]

G. Born, D. Breuer, S. Wang, et al., “Modulation of Synaptic Function Through the α-neurexin-specific Ligand Neurexophilin-1,” PNAS 111, no. 13 (2014): E1274-1283.

[178]

D. Merlo, C. Mollinari, Y. Inaba, et al., “Reduced GABAB Receptor Subunit Expression and Paired-pulse Depression in a Genetic Model of Absence Seizures,” Neurobiology of Disease 25, no. 3 (2007): 631-641.

[179]

Y. D. Zhou, T. J. Turner, and K. Dunlap, “Enhanced G Protein-dependent Modulation of Excitatory Synaptic Transmission in the Cerebellum of the Ca2+ Channel-mutant Mouse, Tottering,” The Journal of Physiology 547, no. Pt 2 (2003): 497-507.

[180]

M. Minere, M. Mortensen, V. Dorovykh, et al., “Presynaptic Hyperexcitability Reversed by Positive Allosteric Modulation of a GABABR Epilepsy Variant,” Brain (2024).

[181]

K. A. Salvati, M. L. Ritger, P. A. Davoudian, et al., “AMPK-mediated Potentiation of GABAergic Signalling Drives Hypoglycaemia-provoked Spike-wave Seizures,” Brain 145, no. 7 (2022): 2332-2346.

[182]

A. Huang, J. Wang, D. P. Feng, W. Wang, and X. Li, “Case Analysis and Literature Review of Thirteen Patients With Autoimmune Encephalitis,” Disease Markers 2022 (2022): 4802480.

[183]

A. Maureille, T. Fenouil, B. Joubert, et al., “Isolated Seizures Are a Common Early Feature of Paraneoplastic Anti-GABA(B) Receptor Encephalitis,” Journal of Neurology 266, no. 1 (2019): 195-206.

[184]

D. Benke, “GABAB Receptor Trafficking and Interacting Proteins: Targets for the Development of Highly Specific Therapeutic Strategies to Treat Neurological Disorders?,” Biochemical Pharmacology 86, no. 11 (2013): 1525-1530.

[185]

S. J. Enna and K. E. McCarson, “The Role of GABA in the Mediation and Perception of Pain,” Advances in Pharmacology 54 (2006): 1-27.

[186]

H. P. Bai, P. Liu, Y. M. Wu, W. Y. Guo, Y. X. Guo, and X. L. Wang, “Activation of Spinal GABAB Receptors Normalizes N-methyl-D-aspartate Receptor in Diabetic Neuropathy,” Journal of the Neurological Sciences 341, no. 1-2 (2014): 68-72.

[187]

X. L. Wang, H. M. Zhang, S. R. Chen, and H. L. Pan, “Altered Synaptic Input and GABAB Receptor Function in Spinal Superficial Dorsal Horn Neurons in Rats With Diabetic Neuropathy,” The Journal of Physiology 579, no. Pt 3 (2007): 849-861.

[188]

S. A. Sands, K. E. McCarson, and S. J. Enna, “Relationship Between the Antinociceptive Response to Desipramine and Changes in GABAB Receptor Function and Subunit Expression in the Dorsal Horn of the Rat Spinal Cord,” Biochemical Pharmacology 67, no. 4 (2004): 743-749.

[189]

M. Takeda, T. Tanimoto, M. Ikeda, J. Kadoi, and S. Matsumoto, “Activaton of GABAB Receptor Inhibits the Excitability of Rat Small Diameter Trigeminal Root Ganglion Neurons,” Neuroscience 123, no. 2 (2004): 491-505.

[190]

A. Mueller, H. Starobova, M. Morgan, et al., “Antiallodynic Effects of the Selective NaV1.7 Inhibitor Pn3a in a Mouse Model of Acute Postsurgical Pain: Evidence for Analgesic Synergy With Opioids and Baclofen,” Pain 160, no. 8 (2019): 1766-1780.

[191]

W. Masocha, S. B. Kombian, and I. O. Edafiogho, “Evaluation of the Antinociceptive Activities of Enaminone Compounds on the Formalin and Hot Plate Tests in Mice,” Scientific Reports 6 (2016): 21582.

[192]

Y. Yudin and T. Rohacs, “Inhibitory G(i/O)-coupled Receptors in Somatosensory Neurons: Potential Therapeutic Targets for Novel Analgesics,” Molecular Pain 14 (2018): 1744806918763646.

[193]

A. Hartemann, N. Attal, D. Bouhassira, et al., “Painful Diabetic Neuropathy: Diagnosis and Management,” Diabetes & Metabolism 37, no. 5 (2011): 377-388.

[194]

C. A. Lee-Kubli, X. Zhou, C. G. Jolivalt, and N. A. Calcutt, “Pharmacological Modulation of Rate-Dependent Depression of the Spinal H-Reflex Predicts Therapeutic Efficacy Against Painful Diabetic Neuropathy,” Diagnostics (Basel) 11, no. 2 (2021): 283.

[195]

P. Liu, W. Y. Guo, X. N. Zhao, et al., “Intrathecal Baclofen, a GABAB Receptor Agonist, Inhibits the Expression of p-CREB and NR2B in the Spinal Dorsal Horn in Rats With Diabetic Neuropathic Pain,” Canadian Journal of Physiology and Pharmacology 92, no. 8 (2014): 655-660.

[196]

K. B. McPherson, E. R. Leff, M. H. Li, et al., “Regulators of G-Protein Signaling (RGS) Proteins Promote Receptor Coupling to G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels,” Journal of Neuroscience 38, no. 41 (2018): 8737-8744.

[197]

A. Yousuf, X. Wu, A. R. Bony, et al., “ɑO-Conotoxin GeXIVA Isomers Modulate N-type Calcium (Ca(V) 2.2) Channels and Inwardly-rectifying Potassium (GIRK) Channels via GABA(B) Receptor Activation,” Journal of Neurochemistry 160, no. 2 (2022): 154-171.

[198]

D. Huang, S. Huang, C. Peers, X. Du, H. Zhang, and N. Gamper, “GABAB Receptors Inhibit Low-voltage Activated and High-voltage Activated Ca(2+) Channels in Sensory Neurons via Distinct Mechanisms,” Biochemical and Biophysical Research Communications 465, no. 2 (2015): 188-193.

[199]

T. G. Huynh, H. Cuny, P. A. Slesinger, and D. J. Adams, “Novel Mechanism of Voltage-gated N-type (Cav2.2) Calcium Channel Inhibition Revealed Through α-conotoxin Vc1.1 Activation of the GABA(B) Receptor,” Molecular Pharmacology 87, no. 2 (2015): 240-250.

[200]

N. J. Kapolka and B. L. Roth, “Built-in Functional Selectivity in Neurons Is Mediated by the Neuronal Protein, GINIP,” Molecular Cell 83, no. 14 (2023): 2392-2394.

[201]

J. C. Park, A. Luebbers, M. Dao, et al., “Fine-tuning GPCR-mediated Neuromodulation by Biasing Signaling Through Different G Protein Subunits,” Molecular Cell 83, no. 14 (2023): 2540-2558. e12.

[202]

C. E. Philibert and M. Garcia-Marcos, “Smooth Operator(s): Dialing up and Down Neurotransmitter Responses by G-protein Regulators,” Trends in Cell Biology (2024).

[203]

S. Gaillard, L. Lo Re, A. Mantilleri, et al., “GINIP, a Gαi-interacting Protein, Functions as a Key Modulator of Peripheral GABAB Receptor-mediated Analgesia,” Neuron 84, no. 1 (2014): 123-136.

[204]

C. Jorgensen, L. Darré, V. Oakes, R. Torella, D. Pryde, and C. Domene, “Lateral Fenestrations in K(+)-Channels Explored Using Molecular Dynamics Simulations,” Molecular Pharmaceutics 13, no. 7 (2016): 2263-2273.

[205]

Y. T. Chang, J. Ling, and J. G. Gu, “Effects of GABA(B) Receptor Activation on Excitability of IB4-positive Maxillary Trigeminal Ganglion Neurons: Possible Involvement of TREK2 Activation,” Molecular Pain 17 (2021): 17448069211042963.

[206]

M. A. Papon, Y. Le Feuvre, G. Barreda-Gómez, et al., “Spinal Inhibition of GABAB Receptors by the Extracellular Matrix Protein Fibulin-2 in Neuropathic Rats,” Frontiers in Cellular Neuroscience 14 (2020): 214.

[207]

S. Laffray, R. Bouali-Benazzouz, M. A. Papon, et al., “Impairment of GABAB Receptor Dimer by Endogenous 14-3-3ζ in Chronic Pain Conditions,” Embo Journal 31, no. 15 (2012): 3239-3251.

[208]

T. P. Malan, H. P. Mata, and F. Porreca, “Spinal GABA(A) and GABA(B) Receptor Pharmacology in a Rat Model of Neuropathic Pain,” Anesthesiology 96, no. 5 (2002): 1161-1167.

[209]

Y. Akada, R. Mori, Y. Kato, F. Yamasaki, and H. Mochizuki, “Analgesic Properties of the Novel Compound M43068 in Rat Models of Acute and Neuropathic Pain,” European Journal of Pharmacology 523, no. 1-3 (2005): 46-53.

[210]

F. Petty, “GABA and Mood Disorders: A Brief Review and Hypothesis,” Journal of Affective Disorders 34, no. 4 (1995): 275-281.

[211]

P. Monteleone, M. Maj, M. Iovino, and L. Steardo, “GABA, Depression and the Mechanism of Action of Antidepressant Drugs: A Neuroendocrine Approach,” Journal of Affective Disorders 20, no. 1 (1990): 1-5.

[212]

K. Kumar, S. Sharma, P. Kumar, and R. Deshmukh, “Therapeutic Potential of GABA(B) Receptor Ligands in Drug Addiction, Anxiety, Depression and Other CNS Disorders,” Pharmacology Biochemistry and Behavior 110 (2013): 174-184.

[213]

D. Felice, J. F. Cryan, and O. F. O'Leary, “GABA(B) Receptors: Anxiety and Mood Disorders,” Current Topics in Behavioral Neurosciences 52 (2022): 241-265.

[214]

E. H. Mitten, A. Souders, E. Marron Fernandez de Velasco, and K. Wickman, “Stress-induced Anxiety-related Behavior in Mice Is Driven by Enhanced Excitability of Ventral Tegmental Area GABA Neurons,” Frontiers in Behavioral Neuroscience 18 (2024): 1425607.

[215]

F. G. Graeff, M. L. Brandão, E. A. Audi, and M. T. Schütz, “Modulation of the Brain Aversive System by GABAergic and Serotonergic Mechanisms,” Behavioural Brain Research 22, no. 2 (1986): 173-180.

[216]

A. E. Calogero, W. T. Gallucci, G. P. Chrousos, and P. W. Gold, “Interaction Between GABAergic Neurotransmission and Rat Hypothalamic Corticotropin-releasing Hormone Secretion in Vitro,” Brain Research 463, no. 1 (1988): 28-36.

[217]

A. P. Varani, V. T. Pedrón, B. Bettler, and G. N. Balerio, “Involvement of GABAB Receptors in Biochemical Alterations Induced by Anxiety-related Responses to Nicotine in Mice: Genetic and Pharmacological Approaches,” Neuropharmacology 81 (2014): 31-41.

[218]

W. Koek, K. Cheng, and K. C. Rice, “Discriminative Stimulus Effects of the GABAB Receptor-positive Modulator Rac-BHFF: Comparison With GABAB Receptor Agonists and Drugs of Abuse,” Journal of Pharmacology and Experimental Therapeutics 344, no. 3 (2013): 553-560.

[219]

S. Sharghi, S. Flunkert, M. Daurer, et al., “Evaluating the Effect of R-Baclofen and LP-211 on Autistic Behavior of the BTBR and Fmr1-KO Mouse Models,” Frontiers in neuroscience 17 (2023): 1087788.

[220]

Y. Lu, C. J. Li, C. Chen, et al., “Activation of GABAB2 Subunits Alleviates Chronic Cerebral Hypoperfusion-induced Anxiety-Like Behaviours: A Role for BDNF Signalling and Kir3 Channels,” Neuropharmacology 110, no. Pt A (2016): 308-321.

[221]

E. H. Mitten, A. Souders, E. Marron Fernandez de Velasco, C. Aguado, R. Luján, and K. Wickman, “Chronic Ethanol Exposure in Mice Evokes Pre- and Postsynaptic Deficits in GABAergic Transmission in Ventral Tegmental Area GABA Neurons,” British Journal of Pharmacology (2024).

[222]

P. B. Rosa, V. B. Neis, C. M. Ribeiro, M. Moretti, and A. L. Rodrigues, “Antidepressant-Like Effects of Ascorbic Acid and Ketamine Involve Modulation of GABAA and GABAB Receptors,” Pharmacological Reports 68, no. 5 (2016): 996-1001.

[223]

N. Radhu, Z. J. Daskalakis, C. L. Guglietti, et al., “Cognitive Behavioral Therapy-related Increases in Cortical Inhibition in Problematic Perfectionists,” Brain Stimulation 5, no. 1 (2012): 44-54.

[224]

B. P. Veronezi, A. H. Moffa, A. F. Carvalho, et al., “Evidence for Increased Motor Cortical Facilitation and Decreased Inhibition in atypical Depression,” Acta Psychiatrica Scandinavica 134, no. 2 (2016): 172-182.

[225]

L. Steinholtz, E. Thörnblom, R. Bodén, et al., “GABAA Receptor Availability in Relation to Cortical Excitability in Depressed and Healthy: A Positron Emission Tomography and Transcranial Magnetic Stimulation Study,” Neuropsychobiology 83, no. 1 (2024): 17-27.

[226]

M. Kinjo, M. Wada, S. Nakajima, et al., “Transcranial Magnetic Stimulation Neurophysiology of Patients With Major Depressive Disorder: A Systematic Review and Meta-analysis,” Psychological Medicine 51, no. 1 (2021): 1-10.

[227]

R. Z. Goldstein and N. D. Volkow, “Drug Addiction and Its Underlying Neurobiological Basis: Neuroimaging Evidence for the Involvement of the Frontal Cortex,” American Journal of Psychiatry 159, no. 10 (2002): 1642-1652.

[228]

J. F. Liu and J. X. Li, “Drug Addiction: A Curable Mental Disorder?,” Acta Pharmacologica Sinica 39, no. 12 (2018): 1823-1829.

[229]

M. Filip, M. Frankowska, A. Sadakierska-Chudy, et al., “GABAB Receptors as a Therapeutic Strategy in Substance Use Disorders: Focus on Positive Allosteric Modulators,” Neuropharmacology 88 (2015): 36-47.

[230]

H. Li, L. R. Watkins, and X. Wang, “Microglia in Neuroimmunopharmacology and Drug Addiction,” Molecular Psychiatry 29, no. 6 (2024): 1912-1924.

[231]

F. Meyer-Bockenkamp, P. J. Proskynitopoulos, A. Glahn, et al., “Cytosine Methylation in GABA B1 Receptor Identifies Alcohol-related Changes for Men in Blood and Brain Tissues,” Alcohol and Alcoholism 58, no. 3 (2023): 308-314.

[232]

C. M. Knapp, D. A. Ciraulo, and S. Datta, “Mechanisms Underlying Sleep-wake Disturbances in Alcoholism: Focus on the Cholinergic Pedunculopontine Tegmentum,” Behavioural Brain Research 274 (2014): 291-301.

[233]

V. Dobrovitsky, P. Pimentel, A. Duarte, W. Froestl, J. R. Stellar, and M. Trzcińska, “CGP 44532, a GABAB Receptor Agonist, Is Hedonically Neutral and Reduces Cocaine-induced Enhancement of Reward,” Neuropharmacology 42, no. 5 (2002): 626-632.

[234]

J. J. Cunningham, E. Orr, B. C. Lothian, J. Morgen, and K. Brebner, “Effects of fendiline on Cocaine-seeking Behavior in the Rat,” Psychopharmacology 232, no. 24 (2015): 4401-4410.

[235]

M. S. Spano, L. Fattore, W. Fratta, and P. Fadda, “The GABAB Receptor Agonist baclofen Prevents Heroin-induced Reinstatement of Heroin-seeking Behavior in Rats,” Neuropharmacology 52, no. 7 (2007): 1555-1562.

[236]

N. E. Paterson, W. Froestl, and A. Markou, “The GABAB Receptor Agonists Baclofen and CGP44532 Decreased Nicotine Self-administration in the Rat,” Psychopharmacology 172, no. 2 (2004): 179-186.

[237]

R. Agabio and G. Colombo, “GABAB Receptor as Therapeutic Target for Drug Addiction: From baclofen to Positive Allosteric Modulators,” Psychiatria Polska 49, no. 2 (2015): 215-223. Receptor GABAB jako cel terapeutyczny w uzależnieniu od substancji psychoaktywnych—od baklofenu do pozytywnych modulatorów allosterycznych.

[238]

J. Ong and D. I. Kerr, “Recent Advances in GABAB Receptors: From Pharmacology to Molecular Biology,” Acta Pharmacologica Sinica 21, no. 2 (2000): 111-123.

[239]

M. B. Munoz, C. L. Padgett, R. Rifkin, et al., “A Role for the GIRK3 Subunit in Methamphetamine-Induced Attenuation of GABAB Receptor-Activated GIRK Currents in VTA Dopamine Neurons,” Journal of Neuroscience 36, no. 11 (2016): 3106-3114.

[240]

A. Ort, M. Kometer, J. Rohde, E. Seifritz, and F. X. Vollenweider, “The Role of GABAB Receptors in human Reinforcement Learning,” European Neuropsychopharmacology 24, no. 10 (2014): 1606-1614.

[241]

K. A. Young, T. R. Franklin, D. C. Roberts, et al., “Nipping Cue Reactivity in the Bud: Baclofen Prevents Limbic Activation Elicited by Subliminal Drug Cues,” Journal of Neuroscience 34, no. 14 (2014): 5038-5043.

[242]

M. C. DeBaker, E. Marron Fernandez de Velasco, N. M. McCall, A. M. Lee, and K. Wickman, “Differential Impact of Inhibitory G-Protein Signaling Pathways in Ventral Tegmental Area Dopamine Neurons on Behavioral Sensitivity to Cocaine and Morphine,” Eneuro 8, no. 2 (2021).

[243]

H. Mizoguchi and K. Yamada, “Pharmacologic Treatment With GABA(B) Receptor Agonist of Methamphetamine-Induced Cognitive Impairment in Mice,” Current Neuropharmacology 9, no. 1 (2011): 109-112.

[244]

K. Li, L. Qian, C. Zhang, et al., “The Entorhinal Cortex and Cognitive Impairment in Schizophrenia: A Comprehensive Review,” Progress in Neuro-Psychopharmacology & Biological Psychiatry 136 (2024): 111218.

[245]

C. Berdeville, D. Silva-Amaral, P. Dalgalarrondo, C. E. M. Banzato, and D. Martins-de-Souza, “A Scoping Review of Protein Biomarkers for Schizophrenia: State of Progress, Underlying Biology, and Methodological Considerations,” Neuroscience and Biobehavioral Reviews 168 (2025): 105949.

[246]

P. Cieślik and J. M. Wierońska, “Regulation of Glutamatergic Activity via Bidirectional Activation of Two Select Receptors as a Novel Approach in Antipsychotic Drug Discovery,” International Journal of Molecular Sciences 21, no. 22 (2020).

[247]

M. Woźniak, F. Acher, M. Marciniak, et al., “Involvement of GABAB Receptor Signaling in Antipsychotic-Like Action of the Novel Orthosteric Agonist of the mGlu4 Receptor, LSP4-2022,” Current Neuropharmacology 14, no. 5 (2016): 413-426.

[248]

J. Ma and L. Stan Leung, “Effects of GABA-B Receptor Positive Modulator on Ketamine-induced Psychosis-relevant Behaviors and Hippocampal Electrical Activity in Freely Moving Rats,” Psychopharmacology 234, no. 20 (2017): 3129-3142.

[249]

K. Mizukami, M. Ishikawa, S. Hidaka, M. Iwakiri, M. Sasaki, and S. Iritani, “Immunohistochemical Localization of GABAB Receptor in the Entorhinal Cortex and Inferior Temporal Cortex of Schizophrenic Brain,” Progress in Neuro-Psychopharmacology & Biological Psychiatry 26, no. 2 (2002): 393-396.

[250]

A. Miyazawa, N. Kanahara, M. Kogure, et al., “A Preliminary Genetic Association Study of GAD1 and GABAB Receptor Genes in Patients With Treatment-resistant Schizophrenia,” Molecular Biology Reports 49, no. 3 (2022): 2015-2024.

[251]

A. Elhage, S. Cohen, J. Cummings, et al., “Defining Benefit: Clinically and Biologically Meaningful Outcomes in the next-generation Alzheimer's Disease Clinical Care Pathway,” Alzheimer's & Dementia (2024).

[252]

M. Khalafi, W. J. Dartora, L. B. J. McIntire, et al., “Diagnostic Accuracy of Phosphorylated tau217 in Detecting Alzheimer's Disease Pathology Among Cognitively Impaired and Unimpaired: A Systematic Review and Meta-analysis,” Alzheimer's & Dementia (2024).

[253]

A. Kleschevnikov, “GIRK2 Channels in Down Syndrome and Alzheimer's Disease,” Current Alzheimer Research 19, no. 12 (2022): 819-829.

[254]

D. Bassetti, A. Lombardi, S. Kirischuk, and H. J. Luhmann, “Haploinsufficiency of Tsc2 Leads to Hyperexcitability of Medial Prefrontal Cortex via Weakening of Tonic GABAB Receptor-mediated Inhibition,” Cerebral Cortex 30, no. 12 (2020): 6313-6324.

[255]

N. S. Abdullah, T. H. Jan, R. Remli, S. A. M. Mukari, and N. M. Ibrahim, “Anti-GABAB Receptor Encephalitis Presenting With Atypical Corticobasal Syndrome in a Patient With Parkinson's Disease,” Journal of Movement Disorders 13, no. 3 (2020): 235-237, doi:.

[256]

W. Zhu, L. Huang, H. Cheng, et al., “GABA and Its Receptors' mechanisms in the Treatment of Insomnia,” Heliyon 10, no. 23 (2024): e40665.

[257]

B. Karpuz Ağören, E. Küpeli Akkol, I. Çelik, and E. Sobarzo-Sánchez, “Sedative and Anxiolytic Effects of Capparis sicula Duhamel: In Vivo and in Silico Approaches With Phytochemical Profiling,” Frontiers in pharmacology 15 (2024): 1443173.

[258]

P. W. Wang, N. Sailasuta, R. A. Chandler, and T. A. Ketter, “Magnetic Resonance Spectroscopic Measurement of Cerebral Gamma-aminobutyric Acid Concentrations in Patients With Bipolar Disorders,” Acta Neuropsychiatrica 18, no. 2 (2006): 120-126.

[259]

S. H. Fatemi, T. D. Folsom, R. J. Rooney, and P. D. Thuras, “mRNA and Protein Expression for Novel GABAA Receptors θ and ρ2 Are Altered in Schizophrenia and Mood Disorders; Relevance to FMRP-mGluR5 Signaling Pathway,” Translational Psychiatry 3, no. 6 (2013): e271.

[260]

M. Li, H. E. Tan, Z. Lu, K. S. Tsang, A. J. Chung, and C. S. Zuker, “Gut-brain Circuits for Fat Preference,” Nature 610, no. 7933 (2022): 722-730.

[261]

W. Cheng, D. Gordian, M. Q. Ludwig, T. H. Pers, and R. J. Seeley, “Hindbrain Circuits in the Control of Eating Behaviour and Energy Balance,” Nature Metabolism 4, no. 7 (2022): 826-835.

[262]

O. Al-Massadi, C. Dieguez, M. Schneeberger, et al., “Multifaceted Actions of Melanin-concentrating Hormone on Mammalian Energy Homeostasis,” Nature reviews Endocrinology 17, no. 12 (2021): 745-755.

[263]

R. E. Rao, F. H. Wojnicki, J. Coupland, S. Ghosh, and R. L. Corwin, “Baclofen, Raclopride, and Naltrexone Differentially Reduce Solid Fat Emulsion Intake Under Limited Access Conditions,” Pharmacology Biochemistry and Behavior 89, no. 4 (2008): 581-590.

[264]

A. Ledonne, L. Sebastianelli, M. Federici, G. Bernardi, and N. B. Mercuri, “The Anorexic Agents, Sibutramine and Fenfluramine, Depress GABA(B)-induced Inhibitory Postsynaptic Potentials in Rat Mesencephalic Dopaminergic Cells,” British Journal of Pharmacology 156, no. 6 (2009): 962-969.

[265]

F. M. Rotella, V. Vig, K. Olsson, et al., “Baclofen Differentially Mediates Fructose-conditioned Flavor Preference and Quinine-conditioned Flavor Avoidance in Rats,” European Journal of Pharmacology 775 (2016): 15-21.

[266]

S. M. Patel and I. S. Ebenezer, “Effects of Chronic Systemic Administration of the GABA(B) Receptor Agonist Baclofen on Food Intake and Body Weight in Rats,” European Journal of Pharmacology 635, no. 1-3 (2010): 129-134.

[267]

I. S. Ebenezer and A. K. Pringle, “The Effect of Systemic Administration of baclofen on Food Intake in Rats,” Neuropharmacology 31, no. 1 (1992): 39.

[268]

B. A. Baldwin, I. S. Ebenezer, and C. Riva, “Effects of Intracerebroventricular Injection of Muscimol or GABA on Operant Feeding in Pigs,” Physiology & Behavior 48, no. 3 (1990): 417-421.

[269]

I. S. Ebenezer and S. M. Patel, “Effects of Intraperitoneal Administration of the GABA B Receptor Agonist Baclofen on Food Intake in Rats Measured Under Different Feeding Conditions,” European Journal of Pharmacology 653, no. 1-3 (2011): 58-62.

[270]

T. R. Stratford and A. E. Kelley, “GABA in the Nucleus Accumbens Shell Participates in the central Regulation of Feeding Behavior,” Journal of Neuroscience 17, no. 11 (1997): 4434-4440.

[271]

G. T. Ban, L. J. Magrum, and D. W. Gietzen, “GABA(A) and GABA(B) Receptors in the Anterior Piriform Cortex Modulate Feeding in Rats,” Brain Research 924, no. 1 (2002): 1-9.

[272]

S. Higgs and D. J. Barber, “Effects of baclofen on Feeding Behaviour Examined in the Runway,” Progress in Neuro-Psychopharmacology & Biological Psychiatry 28, no. 2 (2004): 405-408.

[273]

F. J. Miñano, M. S. Meneres Sancho, M. Sancibrián, P. Salinas, and R. D. Myers, “GABAA Receptors in the Amygdala: Role in Feeding in Fasted and Satiated Rats,” Brain Research 586, no. 1 (1992): 104-110.

[274]

J. Qiu, C. Xue, M. A. Bosch, et al., “Serotonin 5-hydroxytryptamine2C Receptor Signaling in Hypothalamic Proopiomelanocortin Neurons: Role in Energy Homeostasis in Females,” Molecular Pharmacology 72, no. 4 (2007): 885-896.

[275]

I. S. Ebenezer, “Baclofen Pretreatment Attenuates the Suppressant Effect of Intraperitoneal Administration of Cholecystokinin (CCK) on Food Intake in Rats,” Brain Research Bulletin 41, no. 5 (1996): 269-271.

[276]

P. Miner, L. Shimonova, A. Khaimov, et al., “General, Kappa, Delta and Mu Opioid Receptor Antagonists Mediate Feeding Elicited by the GABA-B Agonist Baclofen in the Ventral Tegmental Area and Nucleus Accumbens Shell in Rats: Reciprocal and Regional Interactions,” Brain Research 1443 (2012): 34-51.

[277]

C. I. Turenius, J. R. Charles, D. H. Tsai, et al., “The Tuberal Lateral Hypothalamus Is a Major Target for GABAA-but Not GABAB-mediated Control of Food Intake,” Brain Research 1283, no. none (2009): 65-72.

[278]

A. Mitra, C. Lenglos, and E. Timofeeva, “Inhibition in the Lateral Septum Increases Sucrose Intake and Decreases Anorectic Effects of Stress,” European Journal of Neuroscience 41, no. 4 (2015): 420-433.

[279]

J. A. Echo, N. Lamonte, T. F. Ackerman, and R. J. Bodnar, “Alterations in Food Intake Elicited by GABA and Opioid Agonists and Antagonists Administered Into the Ventral Tegmental Area Region of Rats,” Physiology & Behavior 76, no. 1 (2002): 107-116.

[280]

G. Królczyk, J. Laskiewicz, J. Sobocki, A. Matyja, W. Kolasińska-Kloch, and P. J. Thor, “The Effects of baclofen on the Feeding Behaviour and Body Weight of Vagally Stimulated Rats,” Journal of Physiology and Pharmacology 56, no. 1 (2005): 121-131.

[281]

I. S. Ebenezer and A. K. Pringle, “The Effect of Systemic Administration of baclofen on Food Intake in Rats,” Neuropharmacology 31, no. 1 (1992): 39-42.

[282]

Z. D. Zhao, L. Zhang, X. Xiang, et al., “Neurocircuitry of Predatory Hunting,” Neuroscience Bulletin 39, no. 5 (2023): 817-831.

[283]

A. J. Thorpe, D. F. Doane, D. C. Sweet, J. L. Beverly, and C. M. Kotz, “Orexin A in the Rostrolateral Hypothalamic Area Induces Feeding by Modulating GABAergic Transmission,” Brain Research 1125, no. 1 (2006): 60-66.

[284]

I. Sato, H. Arima, N. Ozaki, et al., “Peripherally Administered baclofen Reduced Food Intake and Body Weight in db /db as Well as Diet-induced Obese Mice,” FEBS Letters 581, no. 25 (2007): 4857-4864.

[285]

R. M. Cassidy, Y. Lu, M. Jere, J. B. Tian, and Q. Tong, “A Lateral Hypothalamus to Basal Forebrain Neurocircuit Promotes Feeding by Suppressing Responses to Anxiogenic Environmental Cues,” Science Advances 5, no. 3 (2019): eaav1640.

[286]

Y. Han, K. Yuan, Y. Zheng, and L. Lu, “Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders,” Neuroscience Bulletin 36, no. 4 (2020): 432-448.

[287]

X. Y. Zhang, L. Yu, Q. X. Zhuang, J. N. Zhu, and J. J. Wang, “Central Functions of the Orexinergic System,” Neuroscience Bulletin 29, no. 3 (2013): 355-365.

[288]

A. M. Herman, J. Ortiz-Guzman, M. Kochukov, et al., “A Cholinergic Basal Forebrain Feeding Circuit Modulates Appetite Suppression,” Nature 538, no. 7624 (2016): 253-256.

[289]

E. H. Nieh, C. M. Vander Weele, G. A. Matthews, et al., “Inhibitory Input From the Lateral Hypothalamus to the Ventral Tegmental Area Disinhibits Dopamine Neurons and Promotes Behavioral Activation,” Neuron 90, no. 6 (2016): 1286-1298.

[290]

C. L. Padgett, A. L. Lalive, K. R. Tan, et al., “Methamphetamine-evoked Depression of GABA(B) Receptor Signaling in GABA Neurons of the VTA,” Neuron 73, no. 5 (2012): 978-989.

[291]

N. S. Narayanan, D. J. Guarnieri, and R. J. DiLeone, “Metabolic Hormones, Dopamine Circuits, and Feeding,” Frontiers in Neuroendocrinology 31, no. 1 (2010): 104-112.

[292]

E. H. Nieh, G. A. Matthews, S. A. Allsop, et al., “Decoding Neural Circuits That Control Compulsive Sucrose Seeking,” Cell 160, no. 3 (2015): 528-541.

[293]

M. F. Barbano, H. L. Wang, M. Morales, and R. A. Wise, “Feeding and Reward Are Differentially Induced by Activating GABAergic Lateral Hypothalamic Projections to VTA,” Journal of Neuroscience 36, no. 10 (2016): 2975-2985.

[294]

E. Qualls-Creekmore, S. Yu, M. Francois, et al., “Galanin-Expressing GABA Neurons in the Lateral Hypothalamus Modulate Food Reward and Noncompulsive Locomotion,” Journal of Neuroscience 37, no. 25 (2017): 6053-6065.

[295]

M. T. Brown, K. R. Tan, E. C. O'Connor, I. Nikonenko, D. Muller, and C. Lüscher, “Ventral Tegmental Area GABA Projections Pause Accumbal Cholinergic Interneurons to Enhance Associative Learning,” Nature 492, no. 7429 (2012): 452-456.

[296]

C. Lüscher and R. C. Malenka, “Drug-evoked Synaptic Plasticity in Addiction: From Molecular Changes to Circuit Remodeling,” Neuron 69, no. 4 (2011): 650-663.

[297]

B. L. Thompson, M. Oscar-Berman, and G. B. Kaplan, “Opioid-induced Structural and Functional Plasticity of Medium-spiny Neurons in the Nucleus Accumbens,” Neuroscience and Biobehavioral Reviews 120 (2021): 417-430.

[298]

H. Yang, J. W. de Jong, Y. Tak, J. Peck, H. S. Bateup, and S. Lammel, “Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations,” Neuron 97, no. 2 (2018): 434-449. e4.

[299]

C. M. Gremel and R. M. Costa, “Orbitofrontal and Striatal Circuits Dynamically Encode the Shift Between Goal-directed and Habitual Actions,” Nature Communications 4 (2013): 2264.

[300]

L. Y. Duan, N. K. Horst, S. A. W. Cranmore, et al., “Controlling One's World: Identification of Sub-regions of Primate PFC Underlying Goal-directed Behavior,” Neuron 109, no. 15 (2021): 2485-2498. e5.

[301]

B. Forget, A. Pushparaj, and B. Le Foll, “Granular Insular Cortex Inactivation as a Novel Therapeutic Strategy for Nicotine Addiction,” Biological Psychiatry 68, no. 3 (2010): 265-271.

[302]

N. M. Avena, M. E. Bocarsly, S. Murray, and M. S. Gold, “Effects of Baclofen and Naltrexone, Alone and in Combination, on the Consumption of Palatable Food in Male Rats,” Experimental and Clinical Psychopharmacology 22, no. 5 (2014): 460-467.

[303]

R. L. Corwin and F. H. Wojnicki, “Baclofen, Raclopride, and Naltrexone Differentially Affect Intake of Fat and Sucrose Under Limited Access Conditions,” Behavioural Pharmacology 20, no. 5-6 (2009): 537-548.

[304]

K. J. Wong, F. H. Wojnicki, and R. L. Corwin, “Baclofen, Raclopride, and Naltrexone Differentially Affect Intake of Fat/Sucrose Mixtures Under Limited Access Conditions,” Pharmacology Biochemistry and Behavior 92, no. 3 (2009): 528-536.

[305]

S. P. Vickers, D. Hackett, F. Murray, P. H. Hutson, and D. J. Heal, “Effects of Lisdexamfetamine in a Rat Model of Binge-eating,” Journal of Psychopharmacology 29, no. 12 (2015): 1290-1307.

[306]

G. Bonanno and M. Raiteri, “gamma-Aminobutyric Acid (GABA) Autoreceptors in Rat Cerebral Cortex and Spinal Cord Represent Pharmacologically Distinct Subtypes of the GABAB Receptor,” Journal of Pharmacology and Experimental Therapeutics 265, no. 2 (1993): 765-770.

[307]

L. A. Berner, M. E. Bocarsly, B. G. Hoebel, and N. M. Avena, “Baclofen Suppresses Binge Eating of Pure Fat but Not a Sugar-rich or Sweet-fat Diet,” Behavioural Pharmacology 20, no. 7 (2009): 631-634.

[308]

F. H. E. Wojnicki, D. C. S. Roberts, and R. L. W. Corwin, “Effects of baclofen on Operant Performance for Food Pellets and Vegetable Shortening After a History of Binge-type Behavior in Non-food Deprived Rats,” Pharmacology Biochemistry and Behavior 84, no. 2 (2006): 197-206.

[309]

A. Buda-Levin, F. H. Wojnicki, and R. L. Corwin, “Baclofen Reduces Fat Intake Under Binge-type Conditions,” Physiology & Behavior 86, no. 1-2 (2005): 176-184.

[310]

H. Arima and Y. Oiso, “Positive Effect of baclofen on Body Weight Reduction in Obese Subjects: A Pilot Study,” Internal Medicine 49, no. 19 (2010): 2043-2047.

[311]

A. I. Broft, A. Spanos, R. L. Corwin, et al., “Baclofen for Binge Eating: An Open-label Trial,” International Journal of Eating Disorders 40, no. 8 (2007): 687-691.

[312]

R. L. Corwin, J. Boan, K. F. Peters, and J. S. Ulbrecht, “Baclofen Reduces Binge Eating in a Double-blind, Placebo-controlled, Crossover Study,” Behavioural Pharmacology 23, no. 5-6 (2012): 616-625.

[313]

M. M. Hurley, B. Maunze, M. E. Block, et al., “Pituitary Adenylate-Cyclase Activating Polypeptide Regulates Hunger- and Palatability-Induced Binge Eating,” Frontiers in neuroscience 10 (2016): 383.

[314]

P. Brunault and N. Ballon, “Inter-Individual Differences in Food Addiction and Other Forms of Addictive-Like Eating Behavior,” Nutrients 13, no. 2 (2021).

[315]

A. N. Gearhardt and E. M. Schulte, “Is Food Addictive? A Review of the Science,” Annual Review of Nutrition (2021).

[316]

C. Liu, K. Rotaru, R. S. C. Lee, et al., “Distress-driven Impulsivity Interacts With Cognitive Inflexibility to Determine Addiction-Like Eating,” Journal of Behavioral Addictions (2021).

[317]

M. Paola and C. Giancarlo, “Potential of GABAB Receptor Positive Allosteric Modulators in the Treatment of Alcohol Use Disorder,” CNS Drugs (2019).

[318]

L. Marti-Prats, A. Belin-Rauscent, M. Fouyssac, et al., “Baclofen Decreases Compulsive Alcohol Drinking in Rats Characterized by Reduced Levels of GAT-3 in the central Amygdala,” Addiction Biology 26, no. 4 (2021): e13011.

[319]

M. Farokhnia, S. L. Deschaine, A. Sadighi, et al., “A Deeper Insight Into How GABA-B Receptor Agonism via baclofen May Affect Alcohol Seeking and Consumption: Lessons Learned From a human Laboratory Investigation,” Molecular Psychiatry (2018).

[320]

D. V. Coscina, “GABA and Feeding: Reversal of Overeating by central GABA-transaminase Inhibition,” Progress in Neuro-Psychopharmacology & Biological Psychiatry 7, no. 4-6 (1983): 463-467.

[321]

S. Fan, Y. Xu, Y. Lu, et al., “A Neural Basis for Brain Leptin Action on Reducing Type 1 Diabetic Hyperglycemia,” Nature Communications 12, no. 1 (2021): 2662.

[322]

C. F. Durant, L. M. Paterson, S. Turton, et al., “Using Baclofen to Explore GABA-B Receptor Function in Alcohol Dependence: Insights from Pharmacokinetic and Pharmacodynamic Measures,” Front Psychiatry 9 (2018): 664.

[323]

E. Niedzielska-Andres, L. Pomierny-Chamioło, M. Andres, et al., “Cocaine Use Disorder: A Look at Metabotropic Glutamate Receptors and Glutamate Transporters,” Pharmacology & Therapeutics 221 (2021): 107797.

[324]

G. Addolorato, F. Caputo, E. Capristo, G. Colombo, G. L. Gessa, and G. Gasbarrini, “Ability of baclofen in Reducing Alcohol Craving and Intake: II-Preliminary Clinical Evidence,” Alcoholism, Clinical and Experimental Research 24, no. 1 (2000): 67-71.

[325]

G. Addolorato, L. Leggio, S. Cardone, A. Ferrulli, and G. Gasbarrini, “Role of the GABA(B) Receptor System in Alcoholism and Stress: Focus on Clinical Studies and Treatment Perspectives,” Alcohol 43, no. 7 (2009): 559-563.

[326]

G. Addolorato, F. Caputo, E. Capristo, et al., “Baclofen Efficacy in Reducing Alcohol Craving and Intake: A Preliminary Double-blind Randomized Controlled Study,” Alcohol and Alcoholism 37, no. 5 (2002): 504-508.

[327]

L. Piqueras and V. Martinez, “Peripheral GABAB Agonists Stimulate Gastric Acid Secretion in Mice,” British Journal of Pharmacology 142, no. 6 (2004): 1038-1048.

[328]

E. R. Partosoedarso, R. L. Young, and L. A. Blackshaw, “GABA(B) Receptors on Vagal Afferent Pathways: Peripheral and central Inhibition,” American Journal of Physiology Gastrointestinal & Liver Physiology 280, no. 4 (2001): G658.

[329]

K. Kaneko, M. Iwasaki, M. Yoshikawa, and K. Ohinata, “Orally Administered Soymorphins, Soy-derived Opioid Peptides, Suppress Feeding and Intestinal Transit via Gut Mu(1)-receptor Coupled to 5-HT(1A), D(2), and GABA(B) Systems,” American journal of physiology Gastrointestinal and liver physiology 299, no. 3 (2010): G799-805.

[330]

T. H. Kim, J. B. Bulitta, D. H. Kim, S. Shin, and B. S. Shin, “Novel Extended in Vitro-in Vivo Correlation Model for the Development of Extended-release Formulations for baclofen: From Formulation Composition to in Vivo Pharmacokinetics,” International Journal of Pharmaceutics 556 (2019): 276-286.

[331]

F. Schoeller, A. H. Horowitz, A. Jain, et al., “Interoceptive Technologies for Psychiatric Interventions: From Diagnosis to Clinical Applications,” Neuroscience and Biobehavioral Reviews 156 (2024): 105478.

[332]

M. Vourc'h, E. Dailly, Y. Hourmant, et al., “Pharmacokinetics and Toxicity of High-dose Baclofen in ICU Patients,” Progress in Neuro-Psychopharmacology & Biological Psychiatry 92 (2019): 450-456.

[333]

M. Vourc'h, E. Dailly, Y. Hourmant, et al., “Pharmacokinetic Data on High Dose Baclofen Administration in Unhealthy Alcohol User in the ICU,” Data Brief 25 (2019): 104231.

[334]

Q. Lyu, W. Xue, R. Liu, et al., “A Brain-to-gut Signal Controls Intestinal Fat Absorption,” Nature (2024).

[335]

K. S. Golombeck, K. Bönte, C. Mönig, et al., “Evidence of a Pathogenic Role for CD8(+) T Cells in Anti-GABAB Receptor Limbic Encephalitis,” Neurol Neuroimmunol Neuroinflamm 3, no. 3 (2016): e232.

[336]

M. Abdul, S. D. McCray, and N. M. Hoosein, “Expression of Gamma-aminobutyric Acid Receptor (subtype A) in Prostate Cancer,” Acta Oncol 47, no. 8 (2008): 1546-1550.

[337]

Y. Yang, L. Ren, W. Li, et al., “GABAergic Signaling as a Potential Therapeutic Target in Cancers,” Biomedicine & Pharmacotherapy 161 (2023): 114410.

[338]

D. Zhang, X. Li, Z. Yao, C. Wei, N. Ning, and J. Li, “GABAergic Signaling Facilitates Breast Cancer Metastasis by Promoting ERK1/2-dependent Phosphorylation,” Cancer Letters 348, no. 1-2 (2014): 100-108.

[339]

A. Zekeridou, M. Majed, I. Heliopoulos, and V. A. Lennon, “Paraneoplastic Autoimmunity and Small-cell Lung Cancer: Neurological and Serological Accompaniments,” Thorac Cancer 10, no. 4 (2019): 1001-1004.

[340]

H. M. Schuller, “Regulatory Role of G Protein-coupled Receptors in Pancreatic Cancer Development and Progression,” Current Medicinal Chemistry 25, no. 22 (2018): 2566-2575.

[341]

K. Kanbara, Y. Otsuki, M. Watanabe, et al., “GABA(B) Receptor Regulates Proliferation in the High-grade Chondrosarcoma Cell Line OUMS-27 via Apoptotic Pathways,” BMC cancer 18, no. 1 (2018): 263.

[342]

J. Gao, S. Lin, Y. Gao, et al., “Pinocembrin Inhibits the Proliferation and Migration and Promotes the Apoptosis of Ovarian Cancer Cells Through Down-regulating the mRNA Levels of N-cadherin and GABAB Receptor,” Biomedicine & Pharmacotherapy 120 (2019): 109505.

[343]

J. X. Wu, F. X. Shan, J. N. Zheng, and D. S. Pei, “β-arrestin Promotes c-Jun N-terminal Kinase Mediated Apoptosis via a GABA(B)R·β-arrestin·JNK Signaling Module,” Asian Pacific Journal of Cancer Prevention 15, no. 2 (2014): 1041-1046.

[344]

J. An, H. Seok, and E. M. Ha, “GABA-producing Lactobacillus Plantarum Inhibits Metastatic Properties and Induces Apoptosis of 5-FU-resistant Colorectal Cancer Cells via GABA(B) Receptor Signaling,” Journal of Microbiology (Seoul, Korea) 59, no. 2 (2021): 202-216.

[345]

H. Tian, J. X. Wu, F. X. Shan, et al., “Gamma-aminobutyric Acid Induces Tumor Cells Apoptosis via GABABR1·β-arrestins·JNKs Signaling Module,” Cell Biochemistry and Biophysics 71, no. 2 (2015): 679-688.

[346]

S. K. Agarwal, R. L. Kriel, J. C. Cloyd, et al., “A Pilot Study Assessing Pharmacokinetics and Tolerability of Oral and Intravenous Baclofen in Healthy Adult Volunteers,” Journal of Child Neurology 30, no. 1 (2015): 37-41.

[347]

M. L. Aisen, M. A. Dietz, P. Rossi, J. M. Cedarbaum, and H. Kutt, “Clinical and Pharmacokinetic Aspects of High Dose Oral baclofen Therapy,” Journal of the American Paraplegia Society 15, no. 4 (1992): 211-216.

[348]

L. J. Schep, K. Knudsen, R. J. Slaughter, J. A. Vale, and B. Mégarbane, “The Clinical Toxicology of γ-hydroxybutyrate, γ-butyrolactone and 1,4-butanediol,” Clin Toxicol (Phila) 50, no. 6 (2012): 458-470.

[349]

L. Leggio, “Understanding and Treating Alcohol Craving and Dependence: Recent Pharmacological and Neuroendocrinological Findings,” Alcohol and Alcoholism 44, no. 4 (2009): 341-352.

[350]

M. Brunet, M. Léger, P. A. Billat, et al., “Baclofen Self-poisoning: Is Renal Replacement Therapy Efficient in Patient With Normal Kidney Function?,” Anaesth Crit Care Pain Med 39, no. 6 (2020): 813-817.

[351]

N. Simon, N. Franchitto, and B. Rolland, “Pharmacokinetic Studies of Baclofen Are Not Sufficient to Establish an Optimized Dosage for Management of Alcohol Disorder,” Front Psychiatry 9 (2018): 485.

[352]

E. Wolf, N. R. Kothari, J. K. Roberts, and M. A. Sparks, “Baclofen Toxicity in Kidney Disease,” American Journal of Kidney Diseases 71, no. 2 (2018): 275-280.

[353]

E. W. Wuis, M. J. Dirks, E. F. Termond, T. B. Vree, and E. Van der Kleijn, “Plasma and Urinary Excretion Kinetics of Oral Baclofen in Healthy Subjects,” European Journal of Clinical Pharmacology 37, no. 2 (1989): 181-184.

[354]

M. Chartier, S. Tannous, N. Benturquia, et al., “Baclofen-Induced Neuro-Respiratory Toxicity in the Rat: Contribution of Tolerance and Characterization of Withdrawal Syndrome,” Toxicological Sciences 164, no. 1 (2018): 153-165.

[355]

P. A. Dahlin and J. George, “Baclofen Toxicity Associated With Declining Renal Clearance After ibuprofen,” Drug Intelligence & Clinical Pharmacy 18, no. 10 (1984): 805-808.

[356]

E. W. Wuis, M. J. Dirks, E. F. Termond, T. B. Vree, and E. Van der Kleijn, “Comparison of the Pharmacokinetics of Intravenously Administered Rac-baclofen and Its (-)-(R)- and (+)-(S)-enantiomers in Dogs,” International Journal of Clinical Pharmacology Research 9, no. 4 (1989): 239-246.

[357]

A. Balla, M. E. Nattini, H. Sershen, A. Lajtha, D. S. Dunlop, and D. C. Javitt, “GABAB/NMDA Receptor Interaction in the Regulation of Extracellular Dopamine Levels in Rodent Prefrontal Cortex and Striatum,” Neuropharmacology 56, no. 5 (2009): 915-921.

[358]

I. S. Ebenezer, “Effects of Intraperitoneal Administration of the GABAB Receptor Positive Allosteric Modulator 2,6-di Tert-butyl-4-(2-hydroxy-2,2-dimethyl-propyl)-phenol (CGP7930) on Food Intake in Non-deprived Rats,” European Journal of Pharmacology 690, no. 1-3 (2012): 115-118.

[359]

A. Orrù, D. Fujani, C. Cassina, M. Conti, A. Di Clemente, and L. Cervo, “Operant, Oral Alcoholic Beer Self-administration by C57BL/6J Mice: Effect of BHF177, a Positive Allosteric Modulator of GABA(B) Receptors,” Psychopharmacology 222, no. 4 (2012): 685-700.

[360]

A. González-Coloma, F. Valencia, N. Martín, et al., “Silphinene Sesquiterpenes as Model Insect Antifeedants,” Journal of Chemical Ecology 28, no. 1 (2002): 117-129.

[361]

P. Maccioni, A. Zaru, B. Loi, et al., “Comparison of the Effect of the GABAΒ Receptor Agonist, Baclofen, and the Positive Allosteric Modulator of the GABAB Receptor, GS39783, on Alcohol Self-administration in 3 Different Lines of Alcohol-preferring Rats,” Alcoholism Clinical & Experimental Research 36, no. 10 (2012): 1748-1766.

[362]

X. Li, M. Terunuma, T. G. Deeb, S. Wiseman, and P. A. Slesinger, “Direct Interaction of PP2A Phosphatase With GABAB Receptors Alters Functional Signaling,” The Journal of Neuroscience 40, no. 14 (2020): 2808-2816.

[363]

M. Hearing, L. Kotecki, E. Marron Fernandez de Velasco, et al., “Repeated Cocaine Weakens GABA(B)-Girk Signaling in Layer 5/6 Pyramidal Neurons in the Prelimbic Cortex,” Neuron 80, no. 1 (2013): 159-170.

[364]

J. Dalmau, C. Geis, and F. Graus, “Autoantibodies to Synaptic Receptors and Neuronal Cell Surface Proteins in Autoimmune Diseases of the Central Nervous System,” Physiological Reviews 97, no. 2 (2017): 839-887.

[365]

N. Kuramoto, M. E. Wilkins, B. P. Fairfax, et al., “Phospho-Dependent Functional Modulation of GABAB Receptors by the Metabolic Sensor AMP-Dependent Protein Kinase,” Neuron 53, no. 2 (2007): 233-247.

[366]

N. Guetg, S. Abdel Aziz, N. Holbro, et al., “NMDA Receptor-dependent GABAB Receptor Internalization via CaMKII Phosphorylation of Serine 867 in GABAB1,” PNAS 107, no. 31 (2010): 13924-13929.

[367]

L. G. Miller, A. J. Kastin, R. B. Roy, A. Gaver, A. J. Fischman, and A. Horvath, “Structural Specificity of MIF-1 and Tyr-MIF-1 in Augmenting GABA-stimulated Benzodiazepine Receptor Binding,” Research Communications in Chemical Pathology and Pharmacology 62, no. 2 (1988): 365-368.

[368]

J. Chen, L. Liang, H. Ning, et al., “Cloning, Synthesis and Functional Characterization of a Novel α-Conotoxin Lt1.3,” Marine Drugs 16, no. 4 (2018).

[369]

W. Zhang, C. Xu, H. Tu, et al., “GABAB Receptor Upregulates Fragile X Mental Retardation Protein Expression in Neurons,” Scientific Reports 5 (2015): 10468.

[370]

J. Zhao, C. L. Meyerkord, Y. Du, F. R. Khuri, and H. Fu, “14-3-3 proteins as Potential Therapeutic Targets,” Seminars in Cell & Developmental Biology 22, no. 7 (2011): 705-712.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

14

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/