Mitigating Early Phosphatidylserine Exposure in a Tmem30a-Dependent Way Ameliorates Neuronal Damages After Ischemic Stroke

Chuanjie Wu , Jiaqi Guo , Yunxia Duan , Jiachen He , Shuaili Xu , Guiyou Liu , Chen Zhou , Yuchuan Ding , Xianjun Zhu , Xunming Ji , Di Wu

MedComm ›› 2025, Vol. 6 ›› Issue (4) : e70140

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (4) : e70140 DOI: 10.1002/mco2.70140
ORIGINAL ARTICLE

Mitigating Early Phosphatidylserine Exposure in a Tmem30a-Dependent Way Ameliorates Neuronal Damages After Ischemic Stroke

Author information +
History +
PDF

Abstract

Phosphatidylserine (PS) exposes to the outer plasma membrane after a pathological insult (e.g., stroke) but not under normal conditions whereby PS remains within the inner plasma membrane. However, the reversibility and translational potential of PS exposure in damaged cells after stroke are still unknown. Here, we demonstrated that plasma Annexin V, which has a high affinity to membranes bearing PS, was increased in patients with salvage penumbra after endovascular therapy, and associated with early neurological improvement. Moreover, Annexin V treatment could decrease PS exposure and mitigate neurological impairments in transient ischemia/reperfusion mouse models, but not in permanent ischemia. Furthermore, we used a combination of cell, rodent, and nonhuman primate ischemia/reperfusion models and found that transmembrane protein 30A (Tmem30a) was increased in the ischemic penumbra after stroke and imperative for less PS exposure and better neurological functions. Mechanistically, mitigation of PS exposure mediated by Tmem30a/Annexin V connection led to decreased expression of apoptosis and necroptosis markers in neurons of penumbra. Overall, our findings reveal a previously unappreciated role of reducing PS exposure by Annexin V treatment in protecting the penumbra in a clinically relevant ischemia/reperfusion model. Tmem30a is essential for reducing PS exposure in the penumbra after ischemic stroke.

Keywords

Annexin V / ischemic stroke / neuroprotection / penumbra / phosphatidylserine / Tmem30a

Cite this article

Download citation ▾
Chuanjie Wu, Jiaqi Guo, Yunxia Duan, Jiachen He, Shuaili Xu, Guiyou Liu, Chen Zhou, Yuchuan Ding, Xianjun Zhu, Xunming Ji, Di Wu. Mitigating Early Phosphatidylserine Exposure in a Tmem30a-Dependent Way Ameliorates Neuronal Damages After Ischemic Stroke. MedComm, 2025, 6(4): e70140 DOI:10.1002/mco2.70140

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. Iadecola and J. Anrather, “Stroke Research at a Crossroad: Asking the Brain for Directions,” Nature Neuroscience 14, no. 11 (2011): 1363-1368.

[2]

J. C. Baron, “Protecting the Ischaemic Penumbra as an Adjunct to Thrombectomy for Acute Stroke,” Nature Reviews Neurology 14, no. 6 (2018): 325-337.

[3]

C. Xing and E. H. Lo, “Help-Me Signaling: Non-Cell Autonomous Mechanisms of Neuroprotection and Neurorecovery,” Progress in Neurobiology 152 (2017): 181-199.

[4]

K. Hayakawa, E. Esposito, X. Wang, et al., “Transfer of Mitochondria From Astrocytes to Neurons After Stroke,” Nature 535, no. 7613 (2016): 551-555.

[5]

A. P. Jadhav, S. M. Desai, and T. G. Jovin, “Indications for Mechanical Thrombectomy for Acute Ischemic Stroke: Current Guidelines and Beyond,” Neurology 97, Suppl. S2 (2021): S126-S136.

[6]

N. Yang, H. Lee, and C. Wu, “Intravenous Thrombolysis for Acute Ischemic Stroke: From Alteplase to Tenecteplase,” Brain Circulation 9 (2023): 61-63.

[7]

T. J. Lyu, X. Qiu, Y. Wang, et al., “DNMT3A Dysfunction Promotes Neuroinflammation and Exacerbates Acute Ischemic Stroke,” MedComm 5, no. 7 (2024): e652.

[8]

L. Shi, M. Rocha, R. K. Leak, et al., “A New Era for Stroke Therapy: Integrating Neurovascular Protection With Optimal Reperfusion,” Journal of Cerebral Blood Flow and Metabolism 38, no. 12 (2018): 2073-2091.

[9]

W. Chen, Y. Zhang, X. Zhai, et al., “Microglial Phagocytosis and Regulatory Mechanisms After Stroke,” Journal of Cerebral Blood Flow and Metabolism 42, no. 9 (2022): 1579-1596.

[10]

K. Segawa and S. Nagata, “An Apoptotic ‘Eat Me’ Signal: Phosphatidylserine Exposure,” Trends in Cell Biology 25, no. 11 (2015): 639-650.

[11]

M. Fricker, J. J. Neher, J. W. Zhao, C. Théry, A. M. Tolkovsky, and G. C. Brown, “MFG-E8 Mediates Primary Phagocytosis of Viable Neurons During Neuroinflammation,” Journal of Neuroscience 32, no. 8 (2012): 2657-2666.

[12]

J. Park, Y. Choi, E. Jung, S. H. Lee, J. W. Sohn, and W. S. Chung, “Microglial MERTK Eliminates Phosphatidylserine-Displaying Inhibitory Post-Synapses,” Embo Journal 40, no. 15 (2021): e107121.

[13]

K. Segawa, S. Kurata, Y. Yanagihashi, T. R. Brummelkamp, F. Matsuda, and S. Nagata, “Caspase-Mediated Cleavage of Phospholipid Flippase for Apoptotic Phosphatidylserine Exposure,” Science 344, no. 6188 (2014): 1164-1168.

[14]

F. Yang, Y. Huang, X. Chen, et al., “Deletion of a Flippase Subunit Tmem30a in Hematopoietic Cells Impairs Mouse Fetal Liver Erythropoiesis,” Haematologica 104, no. 10 (2019): 1984-1994.

[15]

N. Kaneshiro, M. Komai, R. Imaoka, et al., “Lipid Flippase Dysfunction as a Therapeutic Target for Endosomal Anomalies in Alzheimer's Disease,” Iscience 25, no. 3 (2022): 103869.

[16]

U. Kato, H. Inadome, M. Yamamoto, K. Emoto, T. Kobayashi, and M. Umeda, “Role for Phospholipid Flippase Complex of ATP8A1 and CDC50A Proteins in Cell Migration,” Journal of Biological Chemistry 288, no. 7 (2013): 4922-4934.

[17]

L. Zhang, Y. Yang, S. Li, et al., “Loss of Tmem30a Leads to Photoreceptor Degeneration,” Scientific Reports 7, no. 1 (2017): 9296.

[18]

A. H. Alhusseiny, M. S. M. Al-Nimer, F. I. Mohammad, and S. A. Ali Jadoo, “Concomitant Measurements of Serum Annexin A5 Levels and Hematological Indices as Markers in Recent and Old Myocardial Infarction With Low Ejection Fraction: A Preliminary Study,” International Journal of Cardiology 223 (2016): 514-518.

[19]

J. He, Y. Zhang, Y. Guo, et al., “Blood-derived Factors to Brain Communication in Brain Diseases,” Science Bulletin (Beijing) 19 (2024): S2095-9273(24)00672-8.

[20]

B. Stamova, G. C. Jickling, B. P. Ander, et al., “Gene Expression in Peripheral Immune Cells Following Cardioembolic Stroke Is Sexually Dimorphic,” PLoS ONE 9, no. 7 (2014): e102550.

[21]

C. S. Weyland, Y. Mokli, J. A. Vey, et al., “Predictors for Failure of Early Neurological Improvement After Successful Thrombectomy in the Anterior Circulation,” Stroke; A Journal of Cerebral Circulation 52, no. 4 (2021): 1291-1298.

[22]

H. Kobeissi, S. Ghozy, C. Bilgin, R. Kadirvel, and D. F. Kallmes, “Early Neurological Improvement as a Predictor of Outcomes After Endovascular Thrombectomy for Stroke: A Systematic Review and Meta-Analysis,” Journal of Neurointerventional Surgery 15, no. 6 (2023): 547-551.

[23]

N. C. Derecki, J. C. Cronk, Z. Lu, et al., “Wild-Type Microglia Arrest Pathology in a Mouse Model of Rett Syndrome,” Nature 484, no. 7392 (2012): 105-109.

[24]

D. Wu, J. Chen, L. Wu, et al., “A Clinically Relevant Model of Focal Embolic Cerebral Ischemia by Thrombus and Thrombolysis in Rhesus Monkeys,” Nature Protocols 17, no. 9 (2022): 2054-2084.

[25]

J. Chen, S. Xu, H. Lee, et al., “Hypothermic Neuroprotection by Targeted Cold Autologous Blood Transfusion in a Non-Human Primate Stroke Model,” Science Bulletin (Beijing) 68, no. 14 (2023): 1556-1566.

[26]

D. J. Cook, L. Teves, and M. Tymianski, “Treatment of Stroke With a PSD-95 Inhibitor in the Gyrencephalic Primate Brain,” Nature 483, no. 7388 (2012): 213-217.

[27]

S. Tiedt, A. M. Buchan, M. Dichgans, I. Lizasoain, M. A. Moro, and E. H. Lo, “The Neurovascular Unit and Systemic Biology in Stroke—Implications for Translation and Treatment,” Nature Reviews Neurology 18, no. 10 (2022): 597-612.

[28]

M. M. Adil, M. Luby, J. K. Lynch, et al., “Routine Use of FLAIR-Negative MRI in the Treatment of Unknown Onset Stroke,” Journal of Stroke & Cerebrovascular Diseases 29, no. 9 (2020): 105093.

[29]

Y. E. Kim, J. Chen, R. Langen, and J. R. Chan, “Monitoring Apoptosis and Neuronal Degeneration by Real-Time Detection of Phosphatidylserine Externalization Using a Polarity-Sensitive Indicator of Viability and Apoptosis,” Nature Protocols 5, no. 8 (2010): 1396-1405.

[30]

G. E. Yan and T. Efferth, “Cell Harvesting Methods Affect Cellular Integrity of Adherent Cells During Apoptosis Detection,” Anticancer Research 38, no. 12 (2018): 6669-6672.

[31]

C. Kiewert, A. Mdzinarishvili, J. Hartmann, U. Bickel, and J. Klein, “Metabolic and Transmitter Changes in Core and Penumbra After Middle Cerebral Artery Occlusion in Mice,” Brain Research 1312 (2010): 101-107.

[32]

S. L. Stevens, K. B. Vartanian, and M. P. Stenzel-Poore, “Reprogramming the Response to Stroke by Preconditioning,” Stroke; A Journal of Cerebral Circulation 45, no. 8 (2014): 2527-2531.

[33]

M. Fisher and S. I. Savitz, “Pharmacological Brain Cytoprotection in Acute Ischaemic Stroke—Renewed Hope in the Reperfusion Era,” Nature Reviews Neurology 18, no. 4 (2022): 193-202.

[34]

J. Zeng, Y. Wang, Z. Luo, et al., “TRIM9-Mediated Resolution of Neuroinflammation Confers Neuroprotection Upon Ischemic Stroke in Mice,” Cell Reports 27, no. 2 (2019): 549-560.e6.

[35]

J. J. Neher, J. V. Emmrich, M. Fricker, P. K. Mander, C. Théry, and G. C. Brown, “Phagocytosis Executes Delayed Neuronal Death After Focal Brain Ischemia,” PNAS 110, no. 43 (2013): E4098-E4107.

[36]

J. Guo, J. He, S. Xu, et al., “Phosphatidylserine: A Novel Target for Ischemic Stroke Treatment,” Biomolecules 14, no. 10 (2024): 1293.

[37]

F. Eren and S. E. Yilmaz, “Neuroprotective Approach in Acute Ischemic Stroke: A Systematic Review of Clinical and Experimental Studies,” Brain Circulation 8 (2022): 172-179.

[38]

X. Chen, H. An, D. Wu, and X. Ji, “Research Progress of Selective Brain Cooling Methods in the Prehospital Care for Stroke Patients: A Narrative Review,” Brain Circulation 9, no. 1 (2023): 16-20.

[39]

D. E. Folmer, K. S. Mok, S. W. de Wee, et al., “Cellular Localization and Biochemical Analysis of Mammalian CDC50A, a Glycosylated β-Subunit for P4 ATPases,” Journal of Histochemistry and Cytochemistry 60, no. 3 (2012): 205-218.

[40]

L. Liu, L. Zhang, L. Zhang, et al., “Hepatic Tmem30a Deficiency Causes Intrahepatic Cholestasis by Impairing Expression and Localization of Bile Salt Transporters,” American Journal of Pathology 187, no. 12 (2017): 2775-2787.

[41]

D. Ennishi, S. Healy, A. Bashashati, et al., “TMEM30A Loss-of-Function Mutations Drive Lymphomagenesis and Confer Therapeutically Exploitable Vulnerability in B-Cell Lymphoma,” Nature Medicine 26, no. 4 (2020): 577-588.

[42]

K. Hayakawa, M. Bruzzese, S. H.-Y. Chou, M. Ning, X. Ji, and E. H. Lo, “Extracellular Mitochondria for Therapy and Diagnosis in Acute Central Nervous System Injury,” JAMA Neurology 75, no. 1 (2018): 119-122.

[43]

Á. Chamorro, E. H. Lo, A. Renú, K. van Leyen, and P. D. Lyden, “The Future of Neuroprotection in Stroke,” Journal of Neurology, Neurosurgery, and Psychiatry 92, no. 2 (2021): 129-135.

[44]

C. P. Reutelingsperger and W. L. van Heerde, “Annexin V, the Regulator of Phosphatidylserine-Catalyzed Inflammation and Coagulation During Apoptosis,” Cellular and Molecular Life Sciences 53, no. 6 (1997): 527-532.

[45]

C. Gidon-Jeangirard, B. Hugel, V. Holl, et al., “Annexin V Delays Apoptosis While Exerting an External Constraint Preventing the Release of CD4+ and PrPc+ Membrane Particles in a Human T Lymphocyte Model,” Journal of Immunology 162, no. 10 (1999): 5712-5718.

[46]

Y. E. Kim, J. Chen, J. R. Chan, and R. Langen, “Engineering a Polarity-Sensitive Biosensor for Time-Lapse Imaging of Apoptotic Processes and Degeneration,” Nature Methods 7, no. 1 (2010): 67-73.

[47]

Z. Lu, M. R. Elliott, Y. Chen, et al., “Phagocytic Activity of Neuronal Progenitors Regulates Adult Neurogenesis,” Nature Cell Biology 13, no. 9 (2011): 1076-1083.

[48]

J. Hu, J. Guo, C. Wu, X. He, J. Jing, and M. Tao, “Annexin A5 Derived From Lung Alleviates Brain Damage After Ischemic Stroke,” Brain Research 1846, (2024): 149303.

[49]

H. Kenis, H. van Genderen, N. M. Deckers, et al., “Annexin A5 Inhibits Engulfment Through Internalization of PS-Expressing Cell Membrane Patches,” Experimental Cell Research 312, no. 6 (2006): 719-726.

[50]

P. D. Lyden, J. Lamb, S. Kothari, S. Toossi, P. Boitano, and P. S. Rajput, “Differential Effects of Hypothermia on Neurovascular Unit Determine Protective or Toxic Results: Toward Optimized Therapeutic Hypothermia,” Journal of Cerebral Blood Flow and Metabolism 39, no. 9 (2019): 1693-1709.

[51]

W. Li, Z. Qi, Q. Ma, et al., “Normobaric Hyperoxia Combined with Endovascular Treatment for Patients With Acute Ischemic Stroke: A Randomized Controlled Clinical Trial,” Neurology 99, no. 8 (2022): e824-e834.

[52]

W. Zhao, R. Liu, W. Yu, et al., “Elevated Pulsatility Index Is Associated With Poor Functional Outcome in Stroke Patients Treated With Thrombectomy: A Retrospective Cohort Study,” CNS Neuroscience & Therapeutics 28, no. 10 (2022): 1568-1575.

[53]

J. Ruan and Y. Yao, “Behavioral Tests in Rodent Models of Stroke,” Brain Hemorrhages 1, no. 4 (2020): 171-184.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

13

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/