The Peptide PROTAC Modality: A New Strategy for Drug Discovery

Youmin Zhu , Yu Dai , Yuncai Tian

MedComm ›› 2025, Vol. 6 ›› Issue (4) : e70133

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (4) : e70133 DOI: 10.1002/mco2.70133
REVIEW

The Peptide PROTAC Modality: A New Strategy for Drug Discovery

Author information +
History +
PDF

Abstract

In recent years, proteolysis targeting chimera (PROTAC) technology has made significant progress in the field of drug development. Traditional drugs mainly focus on inhibiting or activating specific proteins, while PROTAC technology provides new ideas for treating various diseases by inducing the degradation of target proteins. Especially for peptide PROTACs, due to their unique structural and functional characteristics, they have become a hot research topic. This review provides a detailed description of the key components, mechanisms, and design principles of peptide PROTACs, elaborates on their applications in skin-related diseases, oncology, and other potential therapeutic fields, analyzes their advantages and challenges, and looks forward to their future development prospects. The development of peptide PROTAC technology not only opens up new paths for drug research and development, but also provides new ideas for solving the resistance and safety issues faced by traditional small-molecule drugs. Compared with small-molecule PROTACs, peptide PROTACs have advantages such as multitargeting, biodegradability, low toxicity, and flexibility in structural design. With the deepening of research and the continuous maturity of technology, peptide PROTACs are expected to become one of the important strategies for future drug discovery, providing new hope for the treatment of more intractable diseases. Peptide PROTACs are ushering in a new era of precision medicine.

Keywords

peptide PROTAC / drug discovery / precision medicine

Cite this article

Download citation ▾
Youmin Zhu, Yu Dai, Yuncai Tian. The Peptide PROTAC Modality: A New Strategy for Drug Discovery. MedComm, 2025, 6(4): e70133 DOI:10.1002/mco2.70133

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

K. M. Sakamoto, K. B. Kim, A. Kumagai, F. Mercurio, C. M. Crews, and R. J. Deshaies, “Protacs: Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation,” Proceedings National Academy of Science United States of America 98, no. 15 (2001): 8554-8559.

[2]

H. Qin, Y. Zhang, Y. Lou, et al., “Overview of PROTACs Targeting the Estrogen Receptor: Achievements for Biological and Drug Discovery,” Current Medicinal Chemistry 29, no. 22 (2022): 3922-3944.

[3]

T. T. Nguyen, J. W. Kim, H. I. Choi, H. J. Maeng, and T. S. Koo, “Development of an LC-MS/MS Method for ARV-110, a PROTAC Molecule, and Applications to Pharmacokinetic Studies,” Molecules (Basel, Switzerland) 27, no. 6 (2022): 1977.

[4]

J. Jin, Y. Wu, J. Chen, et al., “The Peptide PROTAC Modality: A Novel Strategy for Targeted Protein Ubiquitination,” Theranostics 10, no. 22 (2020): 10141-10153.

[5]

A. D. Buhimschi, H. A. Armstrong, M. Toure, et al., “Targeting the C481S Ibrutinib-Resistance Mutation in Bruton's Tyrosine Kinase Using PROTAC-Mediated Degradation,” Biochemistry 57, no. 26 (2018): 3564-3575.

[6]

Y. Chen, I. Tandon, W. Heelan, Y. Wang, W. Tang, and Q. Hu, “Proteolysis-Targeting Chimera (PROTAC) Delivery System: Advancing Protein Degraders Towards Clinical Translation,” Chemical Society Reviews 51, no. 13 (2022): 5330-5350.

[7]

Y. Xiong, Y. Zhong, H. Yim, et al., “Bridged Proteolysis Targeting Chimera (PROTAC) Enables Degradation of Undruggable Targets,” Journal of the American Chemical Society 144, no. 49 (2022): 22622-22632.

[8]

D. Li, D. Yu, Y. Li, and R. Yang, “A Bibliometric Analysis of PROTAC From 2001 to 2021,” European Journal of Medicinal Chemistry 244 (2022): 114838.

[9]

K. Ma, X. X. Han, X. M. Yang, and S. L. Zhou, “Proteolysis Targeting Chimera Technology: A Novel Strategy for Treating Diseases of the Central Nervous System,” Neural Regeneration Research 16, no. 10 (2021): 1944-1949.

[10]

Y. Chen, H. Xue, and J. Jin, “Applications of Protein Ubiquitylation and Deubiquitylation in Drug Discovery,” Journal of Biological Chemistry 300, no. 5 (2024): 107264.

[11]

T. Lu, F. Chen, J. Yao, et al., “Design of FK866-Based Degraders for Blocking the Nonenzymatic Functions of Nicotinamide Phosphoribosyltransferase,” Journal of Medicinal Chemistry 67, no. 10 (2024): 8099-8121.

[12]

F. Niu, R. Yang, H. Feng, Y. Liu, R. Liu, and B. A. Ma, “GPX4 Non-Enzymatic Domain and MDM2 Targeting Peptide PROTAC for Acute Lymphoid Leukemia Therapy Through Ferroptosis Induction,” Biochemical and Biophysical Research Communications 684 (2023): 149125.

[13]

Y. Y. Shi, D. R. Dong, G. Fan, M. Y. Dai, and M. Liu, “A Cyclic Peptide-Based PROTAC Induces Intracellular Degradation of Palmitoyltransferase and Potently Decreases PD-L1 Expression in Human Cervical Cancer Cells,” Frontiers in Immunology 14 (2023): 1237964.

[14]

D. Zhang, B. Ma, D. Liu, et al., “Discovery of a Peptide Proteolysis-Targeting Chimera (PROTAC) Drug of p300 for Prostate Cancer Therapy,” EBioMedicine 105 (2024): 105212.

[15]

Y. Y. Shi, A. J. Wang, X. L. Liu, M. Y. Dai, and H. B. Cai, “Stapled Peptide PROTAC Induced Significantly Greater Anti-PD-L1 effects Than Inhibitor in Human Cervical Cancer Cells,” Frontiers in Immunology 14 (2023): 1193222.

[16]

S. Chen, Y. Zheng, B. Liang, et al., “The Application of PROTAC in HDAC,” European Journal of Medicinal Chemistry 260 (2023): 115746.

[17]

X. Li, W. Pu, Q. Zheng, M. Ai, S. Chen, and Y. Peng, “Proteolysis-Targeting Chimeras (PROTACs) in Cancer Therapy,” Molecular Cancer 21, no. 1 (2022): 99.

[18]

V. Poongavanam, Y. Atilaw, S. Siegel, et al., “Linker-Dependent Folding Rationalizes PROTAC Cell Permeability,” Journal of Medicinal Chemistry 65, no. 19 (2022): 13029-13040.

[19]

K. Li and C. M. Crews, “PROTACs: Past, Present and Future,” Chem. Soc. Rev. 51, no. 12 (2022): 5214-5236.

[20]

G. M. Burslem, B. E. Smith, A. C. Lai, et al., “The Advantages of Targeted Protein Degradation Over Inhibition: An RTK Case Study,” Cell Chem Biol 25, no. 1 (2018): 67-77.e3.

[21]

G. Weng, X. Cai, D. Cao, et al., “PROTAC-DB 2.0: An Updated Database of PROTACs,” Nucleic Acids Res. 51, no. D1 (2023): D1367-D1372.

[22]

M. K. Whittaker, G. N. Bendzunas, M. Shirani, et al., “Targeted Degradation of Protein Kinase A via a Stapled Peptide PROTAC,” Acs Chemical Biology 19, no. 9 (2024): 1888-1895.

[23]

J. Hines, J. D. Gough, T. W. Corson, and C. M. Crews, “Posttranslational Protein Knockdown Coupled to Receptor Tyrosine Kinase Activation with phosphoPROTACs,” Proceedings National Academy of Science USA 110, no. 22 (2013): 8942-8947.

[24]

X. He, Z. Weng, and Y. Zou, “Progress in the Controllability Technology of PROTAC,” European Journal of Medicinal Chemistry 265 (2024): 116096.

[25]

H. J. Shin, B. K. Lee, and H. A. Kang, “Transdermal Properties of Cell-Penetrating Peptides: Applications and Skin Penetration Mechanisms,” ACS Appl Bio Mater 7, no. 1 (2024): 1-16.

[26]

I. Kozlovskii and P. Popov, “Protein-Peptide Binding Site Detection Using 3D Convolutional Neural Networks,” Journal of Chemical Information and Modeling 61, no. 8 (2021): 3814-3823.

[27]

J. S. Schneekloth, F. FN, M. Koldobskiy, A. Mandal, et al., “Chemical Genetic Control of Protein Levels: Selective in Vivo Targeted Degradation,” Journal of the American Chemical Society 126, no. 12 (2004): 3748-3754. Jr.

[28]

I. Sosič, A. Bricelj, and C. Steinebach, “E3 Ligase Ligand Chemistries: From Building Blocks to Protein Degraders,” Chem. Soc. Rev. 51, no. 9 (2022): 3487-3534.

[29]

B. Ma, D. Liu, Z. Wang, et al., “A Top-Down Design Approach for Generating a Peptide PROTAC Drug Targeting Androgen Receptor for Androgenetic Alopecia Therapy,” Journal of Medicinal Chemistry 67, no. 12 (2024): 10336-10349.

[30]

L. Pašalić, B. Pem, D. D. Jurašin, M. Vazdar, and D. Bakarić, “Interaction of Guanidinium and Ammonium Cations with Phosphatidylcholine and Phosphatidylserine Lipid Bilayers—Calorimetric, Spectroscopic and Molecular Dynamics Simulations Study,” Biochim Biophys Acta Biomembr 1865, no. 4 (2023): 184122.

[31]

P. Gao and C. Sun, “Fast and efficient molecule delivery Into Euglena gracilis mediated by cell-penetrating peptide or dimethyl sulfoxide,” FEBS Open Bio 13, no. 4 (2023): 597-605.

[32]

X. Guo, L. Wang, K. Duval, J. Fan, S. Zhou, and Z. Chen, “Dimeric Drug Polymeric Micelles With Acid-Active Tumor Targeting and FRET-indicated Drug Release,” ArXiv [Preprint] (2024)

[33]

M. Chen, S. Kumar, A. C. Anselmo, et al., “Topical delivery of Cyclosporine A Into the skin using SPACE-peptide,” J Control Release 199 (2015): 190-197.

[34]

M. Behzadi, S. Arasteh, and M. Bagheri, “Palmitoylation of Membrane-Penetrating Magainin Derivatives Reinforces Necroptosis in A549 Cells Dependent on Peptide Conformational Propensities,” ACS Appl Mater Interfaces 12, no. 51 (2020): 56815-56829.

[35]

N. Schmidt, A. Mishra, G. H. Lai, and G. C. Wong, “Arginine-rich cell-penetrating peptides,” Febs Letters 584, no. 9 (2010): 1806-1813.

[36]

Z. Wang, X. Liu, D.a Teng, et al., “Development of chimeric peptides to facilitate the neutralisation of lipopolysaccharides During bactericidal targeting of multidrug-resistant Escherichia coli,” Communications Biology 3, no. 1 (2020): 41.

[37]

S. Su, X. Shen, X. Shi, et al., “Cell-penetrating peptides TAT and 8R functionalize P22 virus-Like particles to enhance tissue distribution and retention in vivo,” Front Vet Sci 11 (2024): 1460973.

[38]

B. Almarwani, E. N. Phambu, C. Alexander, H. A. T. Nguyen, N. Phambu, and A. Sunda-Meya, “Vesicles mimicking normal and cancer cell membranes exhibit differential responses to the cell-penetrating peptide Pep-1,” Biochim Biophys Acta Biomembr 1860, no. 6 (2018): 1394-1402.

[39]

E. Dupont, A. Prochiantz, and A. Joliot, “Penetratin Story: An Overview,” Methods in Molecular Biology 1324 (2015): 29-37.

[40]

A. Sahni, J. L. Ritchey, Z. Qian, and D. Pei, “Cell-Penetrating Peptides Translocate Across the Plasma Membrane by Inducing Vesicle Budding and Collapse,” Journal of the American Chemical Society 146, no. 36 (2024): 25371-25382.

[41]

A. L. Bennett, K. N. Cranford, A. L. Bates, C. R. Sabatini, and H. S. Lee, “A molecular dynamics study of cell-penetrating peptide transportan-10 (TP10): Binding, folding and insertion to transmembrane state in zwitterionic membrane,” Biochim Biophys Acta Biomembr 1866, no. 1 (2024): 184218.

[42]

K. Rittner, A. Benavente, A. Bompard-Sorlet, et al., “New basic membrane-destabilizing peptides for plasmid-based gene delivery in vitro and in vivo,” Molecular Therapy 5, no. 2 (2002): 104-114.

[43]

J. Mueller, I. Kretzschmar, R. Volkmer, and P. Boisguerin, “Comparison of cellular uptake using 22 CPPs in 4 different cell lines,” Bioconjugate Chem 19, no. 12 (2008): 2363-2374.

[44]

S. Liu, H. Yang, L. Wan, J. Cheng, and X. Lu, “Penetratin-mediated delivery enhances the antitumor activity of the cationic antimicrobial peptide Magainin II,” Cancer Biotherapy & Radiopharmaceuticals 28, no. 4 (2013): 289-297.

[45]

M. Naganuma, N. Ohoka, M. Hirano, et al., “Hydrophobic CPP/HDO conjugates: A new frontier in oligonucleotide-warheaded PROTAC delivery,” RSC Med Chem 15, no. 11 (2024): 3695-703.

[46]

T. Horibe, A. Torisawa, M. Kohno, and K. Kawakami, “Synergetic cytotoxic activity Toward breast cancer cells enhanced by the combination of Antp-TPR hybrid peptide targeting Hsp90 and Hsp70-targeted peptide,” BMC cancer 14 (2014): 615.

[47]

Y. Chen, Y. Shen, X. Guo, et al., “Transdermal protein delivery by a coadministered peptide identified via phage display,” Nature Biotechnology 24, no. 4 (2006): 455-460.

[48]

C. D. Partidos, A. S. Beignon, F. Brown, E. Kramer, J. P. Briand, and S. Muller, “Applying peptide antigens Onto bare skin: Induction of humoral and cellular immune responses and potential for vaccination,” J Control Release 85, no. 1-3 (2002): 27-34.

[49]

Y. C. Kim, P. J. Ludovice, and M. R. Prausnitz, “Transdermal delivery enhanced by magainin pore-forming peptide,” J Control Release 122, no. 3 (2007): 375-383.

[50]

Y. Zhu, W. Xiao, W. Zhong, et al., “Study of the skin-penetration promoting effect and mechanism of combined system of curcumin liposomes prepared by microfluidic chip and skin penetrating peptides TD-1 for topical treatment of primary melanoma,” International Journal of Pharmaceutics 643 (2023): 123256.

[51]

L. Liu and A. Bockmayr, “Regulatory dynamic enzyme-cost flux balance analysis: A unifying framework for constraint-based modeling,” Journal of Theoretical Biology 501 (2020): 110317.

[52]

A. Bitton, M. Yialamas, B. D. Levy, J. T. Katz, and J. Loscalzo, “Clinical problem-solving. A fragile balance,” New England Journal of Medicine 361, no. 1 (2009): 74-79.

[53]

Y. Li, S. Li, and H. Wu, “Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress,” Cells 11, no. 5 (2022): 851.

[54]

D. Taillandier, “Metabolic pathways controlled by E3 ligases: An opportunity for therapeutic targeting,” Biol Aujourdhui 215, no. 1-2 (2021): 45-57.

[55]

P. Barman, P. Chakraborty, R. Bhaumik, and S. R. Bhaumik, “UPS writes a new saga of SAGA,” Biochim Biophys Acta Gene Regul Mech 1866, no. 4 (2023): 194981.

[56]

D. Han, L. Wang, S. Jiang, and Q. Yang, “The ubiquitin-proteasome system in breast cancer,” Trends in Molecular Medicine 29, no. 8 (2023): 599-621.

[57]

J. A. Gregory, C. M. Hickey, J. Chavez, and A. M. Cacace, “New therapies on the horizon: Targeted protein degradation in neuroscience,” Cell Chem Biol 31, no. 9 (2024): 1688-1698.

[58]

R. T. U. Haid and A. Reichel, “A Mechanistic Pharmacodynamic Modeling Framework for the Assessment and Optimization of Proteolysis Targeting Chimeras (PROTACs),” Pharmaceutics 15, no. 1 (2023): 195.

[59]

G. Wilms, K. Schofield, S. Maddern, et al., “Discovery and Functional Characterization of a Potent, Selective, and Metabolically Stable PROTAC of the Protein Kinases DYRK1A and DYRK1B,” Journal of Medicinal Chemistry 67, no. 19 (2024): 17259-17289.

[60]

B. Yang, Y. Cen, F. Li, et al., “Discovery of a proteolysis targeting chimera (PROTAC) as a potent regulator of FOXP3,” Bioorganic & medicinal chemistry letters 112 (2024): 129945.

[61]

Zhang, Y. Liu, J. Zhang, et al., “Discovery of novel penetrating peptides able to target human leukemia and lymphoma for enhanced PROTAC delivery,” European Journal of Medicinal Chemistry 277 (2024): 116734.

[62]

B. Ma, D. Liu, M. Zheng, et al., “Development of a Double-Stapled Peptide Stabilizing Both α-Helix and β-Sheet Structures for Degrading Transcription Factor AR-V7,” JACS Au 4, no. 2 (2024): 816-827.

[63]

G. Koch, A. Engstrom, J. Taechalertpaisarn, et al., “Chromatographic Determination of Permeability-Relevant Lipophilicity Facilitates Rapid Analysis of Macrocyclic Peptide Scaffolds,” Journal of Medicinal Chemistry 67, no. 21 (2024): 19612-19622.

[64]

H. C. Hymel, J. C. Anderson, D. Liu, T. J. Gauthier, and A. T. Melvin, “Incorporating a β-hairpin sequence motif to increase intracellular stability of a peptide-based PROTAC,” Biochemical Engineering Journal 199 (2023): 109063.

[65]

S. Xu, B. Ma, Y. Jian, et al., “Development of a PAK4-targeting PROTAC for renal carcinoma therapy: Concurrent inhibition of cancer cell proliferation and enhancement of immune cell response,” EBioMedicine 104 (2024): 105162.

[66]

A. V. Rawlings and C. R. Harding, “Moisturization and skin barrier function,” Dermatologic Therapy 1 (2004): 43-48.

[67]

M. Rinnerthaler, J. Bischof, M. K. Streubel, A. Trost, and K. Richter, “Oxidative stress in aging human skin,” Biomolecules 5, no. 2 (2015): 545-589.

[68]

S. Sunder, “Relevant Topical Skin Care Products for Prevention and Treatment of Aging Skin,” Facial Plastic Surgery Clinics of North America 27, no. 3 (2019): 413-418.

[69]

F. M. Ferguson, “PROTACs reach clinical development in inflammatory skin disease,” Nature Medicine 29, no. 12 (2023): 3006-3007.

[70]

D. Chirnomas, K. R. Hornberger, and C. M. Crews, “Protein degraders enter the clinic—a new approach to cancer therapy,” Nature reviews Clinical oncology 20, no. 4 (2023): 265-278.

[71]

J. K. Liu, “Natural products in cosmetics,” Nat Prod Bioprospect 12, no. 1 (2022): 40.

[72]

R. Hariri, M. Saeedi, and T. Akbarzadeh, “Naturally occurring and synthetic peptides: Efficient tyrosinase inhibitors,” Journal of Peptide Science 27, no. 7 (2021): e3329.

[73]

T. Hakozaki, T. Laughlin, S. Zhao, et al., “A regulator of ubiquitin-proteasome activity, 2-hexyldecanol, suppresses melanin synthesis and the appearance of facial hyperpigmented spots,” British Journal of Dermatology 169 (2013): 39-44. Suppl 2.

[74]

M. E. Jacobs, J. P. Petzer, J. Pretorius, S. J. Cloete, C. Crous, and A. Petzer, “Synthesis and evaluation of 3-hydroxyquinolin-2(1H)-one derivatives as inhibitors of tyrosinase,” Bioorganic & medicinal chemistry letters 109 (2024): 129823.

[75]

S. Jan, J. I. Mir, D. B. Singh, et al., “Effect of environmental variables on phytonutrients of Origanum vulgare L. in the sub-humid region of the northwestern Himalayas,” Environmental Monitoring and Assessment 190, no. 10 (2018): 571.

[76]

M. A. Kazi, R. Sahito, Q. Abbas, et al., “The Inhibitory Effect of Polyphenon 60 From Green Tea on Melanin and Tyrosinase in Zebrafish and A375 Human Melanoma Cells,” Evid Based Complement Alternat Med 2022 (2022): 7739023.

[77]

H. Nie, L. Liu, H. Yang, et al., “A Novel Heptapeptide With Tyrosinase Inhibitory Activity Identified From a Phage Display Library,” Applied Biochemistry and Biotechnology 181, no. 1 (2017): 219-232.

[78]

N. Chen, Y. Hu, W. H. Li, M. Eisinger, M. Seiberg, and C. B. Lin, “The role of keratinocyte growth factor in melanogenesis: A possible mechanism for the initiation of solar lentigines,” Experimental Dermatology 19, no. 10 (2010): 865-872.

[79]

K. Yang, J. Yin, B. Sheng, et al., “AhRE2F1KGFR signaling is involved in KGFinduced intestinal epithelial cell proliferation,” Mol Med Rep 15, no. 5 (2017): 3019-3026.

[80]

M. Papas, L. Arroyo, A. Bassols, et al., “Activities of antioxidant seminal plasma enzymes (SOD, CAT, GPX and GSR) are higher in jackasses Than in stallions and are correlated With sperm motility in jackasses,” Theriogenology 140 (2019): 180-187.

[81]

J. J. Kim, S. B. Lee, J. K. Park, and Y. D. Yoo, “TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L),” Cell Death and Differentiation 17, no. 9 (2010): 1420-1434.

[82]

T. Mann, W. Gerwat, J. Batzer, et al., “Inhibition of Human Tyrosinase Requires Molecular Motifs Distinctively Different From Mushroom Tyrosinase,” Journal of Investigative Dermatology 138, no. 7 (2018): 1601-1608.

[83]

R. G. Guenette, S. W. Yang, J. Min, B. Pei, and P. R. Potts, “Target and tissue selectivity of PROTAC degraders,” Chem. Soc. Rev. 51, no. 14 (2022): 5740-5756.

[84]

M. Xu, Z. Zhang, P. Zhang, et al., “Beyond traditional methods: Unveiling the skin whitening properties of Rhein-Embedded PROTACs,” Bioorganic & Medicinal Chemistry 96 (2023): 117537.

[85]

Z. Zhang, H. Zhu, Y. Zheng, et al., “The effects and mechanism of collagen peptide and elastin peptide on skin aging induced by D-galactose combined With ultraviolet radiation,” Journal of Photochemistry and Photobiology B Biology 210 (2020): 111964.

[86]

E. S. Lee, Y. Ahn, I. H. Bae, et al., “Synthetic Retinoid Seletinoid G Improves Skin Barrier Function Through Wound Healing and Collagen Realignment in Human Skin Equivalents,” International Journal of Molecular Sciences 21, no. 9 (2020): 3198.

[87]

Y. Jia, L. Han, C. L. Ramage, et al., “Co-targeting BCL-XL and BCL-2 by PROTAC 753B eliminates leukemia cells and enhances efficacy of chemotherapy by targeting senescent cells,” Haematologica 108, no. 10 (2023): 2626-2638.

[88]

L. E. LTT, B. K. Kim, P. N. Chien, et al., “Investigating the Anti-Aging Effects of Caviar Oil on Human Skin,” In Vivo (Athens, Greece) 37, no. 5 (2023): 2078-2091.

[89]

G. O. Bou Ghanem, D. Koktysh, R. O. Baratta, et al., “Collagen Mimetic Peptides Promote Repair of MMP-1-Damaged Collagen in the Rodent Sclera and Optic Nerve Head,” International Journal of Molecular Sciences 24, no. 23 (2023): 17031.

[90]

R. Vallon, R. Müller, D. Moosmayer, E. Gerlach, and P. Angel, “The catalytic domain of activated collagenase I (MMP-1) is absolutely required for interaction With its specific inhibitor, tissue inhibitor of metalloproteinases-1 (TIMP-1),” European Journal of Biochemistry 244, no. 1 (1997): 81-88.

[91]

A. R. Mihailovici, R. C. Deliu, C. Mărgăritescu, et al., “Collagen I and III, MMP-1 and TIMP-1 immunoexpression in dilated cardiomyopathy,” Romanian Journal of Morphology and Embryology 58, no. 3 (2017): 777-781.

[92]

R. Q. Yang, Y. L. Chen, L. C. Sun, et al., “Involvement of MMP-9 in collagen degradation of sea bass (Lateolabrax japonicus): Cloning, expression, and characterization,” Journal of Food Science 88, no. 2 (2023): 638-649.

[93]

A. C. Minella, J. Swanger, E. Bryant, M. Welcker, H. Hwang, and B. E. Clurman, “p53 and p21 form an inducible barrier that protects cells Against cyclin E-cdk2 deregulation,” Current Biology 12, no. 21 (2002): 1817-1827.

[94]

J. Kim, M. Nakasaki, D. Todorova, et al., “p53 Induces skin aging by depleting Blimp1+ sebaceous gland cells,” Cell death & disease 5, no. 3 (2014): e1141.

[95]

B. L. Allen, K. Quach, T. Jones, et al., “Suppression of p53 response by targeting p53-Mediator binding With a stapled peptide,” Cell reports 39, no. 1 (2022): 110630.

[96]

G. F. Chen, T. H. Xu, Y. Yan, et al., “Amyloid beta: Structure, biology and structure-based therapeutic development,” Acta Pharmacologica Sinica 38, no. 9 (2017): 1205-1235.

[97]

J. H. Catterson, L. Minkley, S. Aspe, et al., “Protein retention in the endoplasmic reticulum rescues Aβ toxicity in Drosophila,” Neurobiology of Aging 132 (2023): 154-174.

[98]

X. Zhao, J. Sun, L. Xiong, et al., “β-amyloid binds to microglia Dectin-1 to induce inflammatory response in the pathogenesis of Alzheimer's disease,” Int J Biol Sci 19, no. 10 (2023): 3249-3265.

[99]

T. Takahashi and H. Mihara, “Peptide and protein mimetics inhibiting amyloid beta-peptide aggregation,” Accounts of Chemical Research 41, no. 10 (2008): 1309-1318.

[100]

P. Boukamp, “Skin aging: A role for telomerase and telomere dynamics?,” Current Molecular Medicine 5, no. 2 (2005): 171-177.

[101]

H. Vaziri and S. Benchimol, “Alternative pathways for the extension of cellular life span: Inactivation of p53/pRb and expression of telomerase,” Oncogene 18, no. 53 (1999): 7676-7680.

[102]

J. A. Garcia-Ranea, G. Mirey, J. Camonis, and A. Valencia, “23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families,” Febs Letters 529, no. 2-3 (2002): 162-167.

[103]

J. T. O'Malley, R. A. Clark, and H. R. Widlund, “Skin Inflammation in Human Health and Disease: 2018 International Conference,” Journal of Investigative Dermatology 139, no. 5 (2019): 991-994.

[104]

A. Eccleston, “PROTAC in clinic for autoimmune skin disease,” Nat Rev Drug Discovery 23, no. 1 (2024): 18.

[105]

D. I. Jang, A. H. Lee, H. Y. Shin, et al., “The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics,” International Journal of Molecular Sciences 22, no. 5 (2021): 2719.

[106]

W. Shen, Z. Zhang, J. Ma, D. Lu, and L. Lyu, “The Ubiquitin Proteasome System and Skin Fibrosis,” Mol Diagn Ther 25, no. 1 (2021): 29-40.

[107]

B. Li, M. Du, Q. Sun, Z. Cao, and H. He, “m6 A demethylase Fto regulates the TNF-α-induced inflammatory response in cementoblasts,” Oral Diseases 29, no. 7 (2023): 2806-2815.

[108]

M. Chima and M. Lebwohl, “TNF inhibitors for psoriasis,” Seminars in Cutaneous Medicine and Surgery 37, no. 3 (2018): 134-142.

[109]

J. Brunetti, B. Lelli, S. Scali, C. Falciani, L. Bracci, and A. Pini, “A novel phage-library-selected peptide inhibits human TNF-α binding to its receptors,” Molecules (Basel, Switzerland) 19, no. 6 (2014): 7255-7268.

[110]

M. C. Mulero, T. Huxford, and G. Ghosh, “NF-κB, IκB, and IKK: Integral Components of Immune System Signaling,” Advances in Experimental Medicine and Biology 1172 (2019): 207-226.

[111]

C. Zhang, X. Han, L. Yang, et al., “Circular RNA circPPM1F modulates M1 macrophage activation and pancreatic islet inflammation in type 1 diabetes mellitus,” Theranostics 10, no. 24 (2020): 10908-10924.

[112]

W. S. Lee, J. S. Shin, D. S. Jang, and K. T. Lee, “Cnidilide, an alkylphthalide isolated From the roots of Cnidium officinale, suppresses LPS-induced NO, PGE2, IL-1β, IL-6 and TNF-α production by AP-1 and NF-κB inactivation in RAW 264.7 macrophages,” International Immunopharmacology 40 (2016): 146-155.

[113]

Z. P. Wang, S. X. Cai, D. B. Liu, X. Xu, and H. P. Liang, “Anti-inflammatory effects of a novel peptide designed to bind With NF-kappaB p50 subunit,” Acta Pharmacologica Sinica 27, no. 11 (2006): 1474-1478.

[114]

Y. Wang, T. Chu, X. Pan, Y. Bian, and J. Li, “Escin ameliorates inflammation via inhibiting mechanical stretch and chemically induced Piezo1 activation in vascular endothelial cells,” European Journal of Pharmacology 956 (2023): 175951.

[115]

Y. Jiang, Q. Deng, H. Zhao, et al., “Development of Stabilized Peptide-Based PROTACs Against Estrogen Receptor α,” Acs Chemical Biology 13, no. 3 (2018): 628-635.

[116]

R. K. Henning, J. O. Varghese, S. Das, et al., “Degradation of Akt using protein-catalyzed capture agents,” Journal of Peptide Science 22, no. 4 (2016): 196-200.

[117]

K. Wang, X. Dai, A. Yu, C. Feng, K. Liu, and L. Huang, “Peptide-based PROTAC degrader of FOXM1 suppresses cancer and decreases GLUT1 and PD-L1 expression,” Journal of Experimental & Clinical Cancer Research 41, no. 1 (2022): 289.

[118]

D. Ma, Y. Zou, Y. Chu, et al., “A cell-permeable peptide-based PROTAC Against the oncoprotein CREPT proficiently inhibits pancreatic cancer,” Theranostics 10, no. 8 (2020): 3708-3721.

[119]

B. Ma, Y. Fan, D. Zhang, et al., “Novo Design of an Androgen Receptor DNA Binding Domain-Targeted peptide PROTAC for Prostate Cancer Therapy,” Adv Sci (Weinh) 9, no. 28 (2022): e2201859.

[120]

S. Liu, Q. Lv, X. Mao, et al., “O-GlcNAcylated RALY Contributes to Hepatocellular Carcinoma Cells Proliferation by Regulating USP22 mRNA Nuclear Export,” Int J Biol Sci 20, no. 9 (2024): 3675-3690.

[121]

X. Gan, F. Wang, J. Luo, et al., “Proteolysis Targeting Chimeras (PROTACs) based on celastrol induce multiple protein degradation for triple-negative breast cancer treatment,” European Journal of Pharmaceutical Sciences 192 (2024): 106624.

[122]

L. Kong, F. Meng, P. Zhou, et al., “An engineered DNA aptamer-based PROTAC for precise therapy of p53-R175H hotspot mutant-driven cancer,” Sci Bull (Beijing) 69, no. 13 (2024): 2122-2135.

[123]

S. Khan, X. Zhang, D. Lv, et al., “A selective BCL-XL PROTAC degrader achieves safe and potent antitumor activity,” Nature Medicine 25, no. 12 (2019): 1938-1947.

[124]

M. Zheng, Y. Liu, C. Wu, et al., “Novel PROTACs for degradation of SHP2 protein,” Bioorganic Chemistry 110 (2021): 104788.

[125]

H. Zhou, L. Bai, R. Xu, et al., “Structure-Based Discovery of SD-36 as a Potent, Selective, and Efficacious PROTAC Degrader of STAT3 Protein,” Journal of Medicinal Chemistry 62, no. 24 (2019): 11280-11300.

[126]

A. Kaneshige, L. Bai, M. Wang, et al., “A selective small-molecule STAT5 PROTAC degrader capable of achieving tumor regression in vivo,” Nature Chemical Biology 19, no. 6 (2023): 703-711.

[127]

W. McCoull, T. Cheung, E. Anderson, et al., “Development of a Novel B-Cell Lymphoma 6 (BCL6) PROTAC To Provide Insight Into Small Molecule Targeting of BCL6,” Acs Chemical Biology 13, no. 11 (2018): 3131-3141.

[128]

G. Y. Kim, C. W. Song, Y. S. Yang, et al., “Chemical Degradation of Androgen Receptor (AR) Using Bicalutamide Analog-Thalidomide PROTACs,” Molecules (Basel, Switzerland) 26, no. 9 (2021): 2525.

[129]

W. Xiang, L. Zhao, X. Han, et al., “Discovery of ARD-2585 as an Exceptionally Potent and Orally Active PROTAC Degrader of Androgen Receptor for the Treatment of Advanced Prostate Cancer,” Journal of Medicinal Chemistry 64, no. 18 (2021): 13487-13509.

[130]

J. Hu, B. Hu, M. Wang, et al., “Discovery of ERD-308 as a Highly Potent Proteolysis Targeting Chimera (PROTAC) Degrader of Estrogen Receptor (ER),” Journal of Medicinal Chemistry 62, no. 3 (2019): 1420-1442.

[131]

M. J. Bond, L. Chu, D. A. Nalawansha, K. Li, and C. M. Crews, “Targeted Degradation of Oncogenic KRASG12C by VHL-Recruiting PROTACs,” ACS Cent Sci 6, no. 8 (2020): 1367-1375.

[132]

Y. Wu, C. Pu, Y. Fu, G. Dong, M. Huang, and C. Sheng, “NAMPT-targeting PROTAC promotes antitumor immunity via suppressing myeloid-derived suppressor cell expansion,” Acta Pharm Sin B 12, no. 6 (2022): 2859-2868.

[133]

M. Jin and Y. Zhang, “Autophagy and Immune-Related Diseases,” Advances in Experimental Medicine and Biology 1207 (2020): 401-403.

[134]

M. Vijaykrishnaraj, P. Patil, S. D. Ghate, A. K. Bhandary, V. M. Haridas, and P. Shetty, “Efficacy of HDAC inhibitors and epigenetic modulation in the amelioration of synovial inflammation, cellular invasion, and bone erosion in rheumatoid arthritis pathogenesis,” International Immunopharmacology 122 (2023): 110644.

[135]

T. Tao, Y. Zhang, H. Wei, and K. Heng, “Downregulation of IRAK3 by miR-33b-3p relieves chondrocyte inflammation and apoptosis in an in vitro osteoarthritis model,” Bioscience, Biotechnology, and Biochemistry 85, no. 3 (2021): 545-552.

[136]

S. L. Degorce, O. Tavana, E. Banks, et al., “Discovery of Proteolysis-Targeting Chimera Molecules that Selectively Degrade the IRAK3 Pseudokinase,” Journal of Medicinal Chemistry 63, no. 18 (2020): 10460-10473.

[137]

J. Martin, Q. Cheng, S. A. Laurent, et al., “B-Cell Maturation Antigen (BCMA) as a Biomarker and Potential Treatment Target in Systemic Lupus Erythematosus,” International Journal of Molecular Sciences 25, no. 19 (2024): 10845.

[138]

R. S. Peebles and M. A. Aronica, “Proinflammatory Pathways in the Pathogenesis of Asthma,” Clin Chest Med 40, no. 1 (2019): 29-50.

[139]

E. Takeshita, H. Komaki, H. Tachimori, et al., “Urinary prostaglandin metabolites as Duchenne muscular dystrophy progression markers,” Brain & Development 40, no. 10 (2018): 918-925.

[140]

H. Yokoo, N. Shibata, M. Naganuma, et al., “Development of a Hematopoietic Prostaglandin D Synthase-Degradation Inducer,” Acs Medicinal Chemistry Letters 12, no. 2 (2021): 236-241.

[141]

H. Yokoo, N. Shibata, A. Endo, et al., “Discovery of a Highly Potent and Selective Degrader Targeting Hematopoietic Prostaglandin D Synthase via In Silico Design,” Journal of Medicinal Chemistry 64, no. 21 (2021): 15868-15882.

[142]

A. Ménoret, F. Agliano, T. A. Karginov, X. Hu, and A. T. Vella, “IRAK4 is an immunological checkpoint in neuropsychiatric systemic lupus erythematosus,” Scientific Reports 14, no. 1 (2024): 16393.

[143]

R. W. Sabnis, “Novel IRAK4 Inhibitors for Treating Asthma,” Acs Medicinal Chemistry Letters 13, no. 8 (2022): 1219-1220.

[144]

J. Zhang, L. Fu, B. Shen, et al., “Assessing IRAK4 Functions in ABC DLBCL by IRAK4 Kinase Inhibition and Protein Degradation,” Cell Chem Biol 27, no. 12 (2020): 1500-1509.

[145]

Y. Topal and M. Gyrd-Hansen, “RIPK2 NODs to XIAP and IBD,” Seminars in cell & developmental biology 109 (2021): 144-150.

[146]

H. Honjo, T. Watanabe, K. Kamata, K. Minaga, and M. Kudo, “RIPK2 as a New Therapeutic Target in Inflammatory Bowel Diseases,” Frontiers in pharmacology 12 (2021): 650403.

[147]

D. P. Bondeson, A. Mares, I. E. Smith, et al., “Catalytic in vivo protein knockdown by small-molecule PROTACs,” Nature Chemical Biology 11, no. 8 (2015): 611-617.

[148]

H. Su and Y. Yang, “The roles of CyPA and CD147 in cardiac remodelling,” Experimental and Molecular Pathology 104, no. 3 (2018): 222-226.

[149]

X. Liu, S. Huuskonen, T. Laitinen, et al., “SARS-CoV-2-host proteome interactions for antiviral drug discovery,” Molecular Systems Biology 17, no. 11 (2021): e10396.

[150]

D. Heinzmann, M. Noethel, S. V. Ungern-Sternberg, et al., “CD147 is a Novel Interaction Partner of Integrin αMβ2 Mediating Leukocyte and Platelet Adhesion,” Biomolecules 10, no. 4 (2020): 541.

[151]

X. Zhu, Z. Song, S. Zhang, A. Nanda, and G. Li, “CD147: A novel modulator of inflammatory and immune disorders,” Current Medicinal Chemistry 21, no. 19 (2014): 2138-2145.

[152]

Z. Zhou, J. Long, Y. Wang, et al., “Targeted degradation of CD147 proteins in melanoma,” Bioorganic Chemistry 105 (2020): 104453.

[153]

J. Root, A. Mendsaikhan, G. Taylor, et al., “Granulins rescue inflammation, lysosome dysfunction, lipofuscin, and neuropathology in a mouse model of progranulin deficiency,” Cell reports 43, no. 12 (2024): 114985.

[154]

Y. Zhang, M. Zou, H. Wu, J. Zhu, and T. Jin, “The cGAS-STING pathway drives neuroinflammation and neurodegeneration via cellular and molecular mechanisms in neurodegenerative diseases,” Neurobiology of Disease (2024): 106710.

[155]

R. Ossenkoppele, Y. A. Pijnenburg, D. C. Perry, et al., “The behavioural/dysexecutive variant of Alzheimer's disease: Clinical, neuroimaging and pathological features,” Brain 138 (2015): 2732-2749.

[156]

M. S. Uddin and M. T. Kabir, “Emerging Signal Regulating Potential of Genistein Against Alzheimer's Disease: A Promising Molecule of Interest,” Frontiers in Cell and Developmental Biology 7 (2019): 197.

[157]

T. Ishizawa, L. W. Ko, N. Cookson, P. Davias, M. Espinoza, and D. W. Dickson, “Selective neurofibrillary degeneration of the hippocampal CA2 sector is associated With four-repeat tauopathies,” Journal of Neuropathology and Experimental Neurology 61, no. 12 (2002): 1040-1047.

[158]

A. R. Kelley, G. Perry, and S. B. H. Bach, “Characterization of Proteins Present in Isolated Senile Plaques From Alzheimer's Diseased Brains by MALDI-TOF MS With MS/MS,” Acs Chemical Neuroscience 9, no. 4 (2018): 708-714.

[159]

S. Lehmann, S. Schraen-Maschke, L. Buée, et al., “Clarifying the association of CSF Aβ, tau, BACE1, and neurogranin With AT(N) stages in Alzheimer disease,” Mol Neurodegener 19, no. 1 (2024): 66. Alzheimer's Disease Neuroimaging Initiative (ADNI).

[160]

T. Saito, N. Mihira, Y. Matsuba, et al., “Humanization of the entire murine Mapt gene provides a murine model of pathological human tau propagation,” Journal of Biological Chemistry 294, no. 34 (2019): 12754-12765.

[161]

H. Trzeciakiewicz, D. Ajit, J. H. Tseng, et al., “An HDAC6-dependent surveillance mechanism suppresses tau-mediated neurodegeneration and cognitive decline,” Nature Communications 11, no. 1 (2020): 5522.

[162]

S. Wegmann, S. Nicholls, S. Takeda, Z. Fan, and B. T. Hyman, “Formation, release, and internalization of stable tau oligomers in cells,” Journal of Neurochemistry 139, no. 6 (2016): 1163-1174.

[163]

A. Pahrudin Arrozi, D. Yanagisawa, T. Kato, et al., “Nasal Extracts From Patients With Alzheimer's Disease Induce Tau Aggregates in a Cellular Model of Tau Propagation,” J Alzheimers Dis Rep 5, no. 1 (2021): 263-274.

[164]

L. Li, R. Shi, J. Gu, et al., “Alzheimer's disease brain contains tau fractions With differential prion-Like activities,” Acta Neuropathol Commun 9, no. 1 (2021): 28.

[165]

T. T. Chu, N. Gao, Q. Q. Li, et al., “Specific Knockdown of Endogenous Tau Protein by Peptide-Directed Ubiquitin-Proteasome Degradation,” Cell Chem Biol 23, no. 4 (2016): 453-461.

[166]

M. Lu, T. Liu, Q. Jiao, et al., “Discovery of a Keap1-dependent peptide PROTAC to knockdown Tau by ubiquitination-proteasome degradation pathway,” European Journal of Medicinal Chemistry 146 (2018): 251-259.

[167]

W. Wang, Q. Zhou, T. Jiang, et al., “A novel small-molecule PROTAC selectively promotes tau clearance to improve cognitive functions in Alzheimer-Like models,” Theranostics 11, no. 11 (2021): 5279-5295.

[168]

T. Engel, R. Gómez-Sintes, M. Alves, et al., “Bi-directional genetic modulation of GSK-3β exacerbates hippocampal neuropathology in experimental status epilepticus,” Cell death & disease 9, no. 10 (2018): 969.

[169]

M. Llorens-Martín, A. Fuster-Matanzo, C. M. Teixeira, et al., “GSK-3β overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo,” Molecular Psychiatry 18, no. 4 (2013): 451-460.

[170]

M. Sirerol-Piquer, P. Gomez-Ramos, F. Hernández, et al., “GSK3β overexpression induces neuronal death and a depletion of the neurogenic niches in the dentate gyrus,” Hippocampus 21, no. 8 (2011): 910-922.

[171]

A. Akhtar and S. P. Sah, “Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer's disease,” Neurochemistry International 135 (2020): 104707.

[172]

X. Jiang, J. Zhou, Y. Wang, et al., “PROTACs suppression of GSK-3β, a crucial kinase in neurodegenerative diseases,” European Journal of Medicinal Chemistry 210 (2021): 112949.

[173]

A. Westenberger, N. Brüggemann, and C. Klein, “Genetics of Parkinson's Disease: From Causes to Treatment,” Cold Spring Harbor perspectives in medicine (2024): a041774.

[174]

Y. Chen, Y. Gu, C. Cao, et al., “Exploring α-synuclein Interaction Partners and their Potential Clinical Implications for Parkinson's Disease,” Neurochemical Research 50, no. 1 (2024): 23.

[175]

T. Wen, J. Chen, W. Zhang, and P. J. Design, “Synthesis and Biological Evaluation of α-Synuclein Proteolysis-Targeting Chimeras,” Molecules (Basel, Switzerland) 28, no. 11 (2023): 4458.

[176]

E. Yektadoust, A. Janghorbani, and A. F. Talebi, “XCNN-SC: Explainable CNN for SARS-CoV-2 variants classification and mutation detection,” Computers in Biology and Medicine 167 (2023): 107606.

[177]

J. He, S. Zhong, C. Qin, et al., “The Trend, Prevalence and Potential Risk Factors of Secondary HIV Transmission Among HIV/AIDS Individuals Receiving ART in Guangxi, China: A Longitudinal cross-sectional Study,” Emerg Microbes Infect (2024): 2429622.

[178]

S. Demirdjian, V. N. Duong, J. N. Byrum, et al., “Lack of activity of HIV-1 integrase strand-transfer inhibitors on recombinase activating gene (RAG) activity at clinically relevant concentrations,” Microbiology Spectrum (2024): e0246824.

[179]

L. A. Emert-Sedlak, C. M. Tice, H. Shi, et al., “PROTAC-mediated Degradation of HIV-1 Nef Efficiently Restores Cell-surface CD4 and MHC-I Expression and Blocks HIV-1 Replication,” Cell Chem Biol 31, no. 4 (2024): 658-668.e14, https://doi.org/10.1101/2023.08.14.553289. bioRxiv [Preprint]. 2023 Sep 5:2023.08.14.553289. Update in.

[180]

D. Luo, R. Luo, W. Wang, et al., “Discovery of L15 as a novel Vif PROTAC degrader With antiviral activity Against HIV-1,” Bioorganic & medicinal chemistry letters 111 (2024): 129880.

[181]

H. Yun, J. S. Jeon, and J. K. Kim, “Analysis of Inflammatory and Thyroid Hormone Levels Based on Hepatitis A and B Virus Immunity Status: Age and Sex Stratification,” Viruses. 16, no. 8 (2024): 1329.

[182]

Y. Li, N. Hwang, A. Snedeker, et al., “PROTAC' modified dihydroquinolizinones (DHQs) that cause degradation of PAPD-5 and inhibition of hepatitis A virus and hepatitis B virus, in vitro,” Bioorganic & medicinal chemistry letters 102 (2024): 129680.

[183]

H. Li, S. Wang, W. Ma, et al., “Discovery of Pentacyclic Triterpenoid PROTACs as a Class of Effective Hemagglutinin Protein Degraders,” Journal of Medicinal Chemistry 65, no. 10 (2022): 7154-7169.

[184]

L. Si, Q. Shen, J. Li, et al., “Generation of a live attenuated influenza A vaccine by proteolysis targeting,” Nature Biotechnology 40, no. 9 (2022): 1370-1377.

[185]

D. G. Zhao, J. Liu, Z. Su, et al., “Discovery of novel KSP-targeting PROTACs With potent antitumor effects in vitro and in vivo,” European Journal of Medicinal Chemistry 282 (2024): 117052.

[186]

J. Ge, C. Y. Hsieh, M. Fang, H. Sun, and T. Hou, “Development of PROTACs using computational approaches,” Trends in Pharmacological Sciences S0165-6147, no. 24 (2024): 00216-00215.

[187]

H. Yang, H. Xu, X. Lin, et al., “Design, synthesis and biological evaluation of novel TMPRSS2-PROTACs With florosubstituted 4-guanidino-N-phenylbenzamide derivative ligands,” Bioorganic & Medicinal Chemistry 116 (2024): 117982.

[188]

E. Sflakidou, B. Adhikari, C. Siokatas, E. Wolf, and V. Sarli, “Development of 2-Aminoadenine-Based Proteolysis-Targeting Chimeras (PROTACs) as Novel Potent Degraders of Monopolar Spindle 1 and Aurora Kinases,” ACS Pharmacol Transl Sci 7, no. 11 (2024): 3488-3501.

[189]

H. Zhu, J. Wang, Q. Zhang, X. Pan, and J. Zhang, “Novel strategies and promising opportunities for targeted protein degradation: An innovative therapeutic approach to overcome cancer resistance,” Pharmacology & Therapeutics 244 (2023): 108371.

[190]

Y. Tan, L. Xin, Q. Wang, et al., “FLT3-selective PROTAC: Enhanced safety and increased synergy With Venetoclax in FLT3-ITD mutated acute myeloid leukemia,” Cancer Letters 592 (2024): 216933.

[191]

E. P. Hamilton, C. Ma, M. De Laurentiis, et al., “VERITAC-2: A Phase III study of vepdegestrant, a PROTAC ER degrader, versus fulvestrant in ER+/HER2- advanced breast cancer,” Future oncology 20, no. 32 (2024): 2447-2455.

[192]

Z. Santisteban Valencia, J. Kingston, F. Miljković, et al., “Closing the Design-Make-Test-Analyze Loop: Interplay Between Experiments and Predictions Drives PROTACs Bioavailability,” Journal of Medicinal Chemistry 67, no. 22 (2024): 20242-20257.

[193]

P. Akkapeddi, K. W. Teng, and S. Koide, “Monobodies as tool biologics for accelerating target validation and druggable site discovery,” RSC Med Chem 12, no. 11 (2021): 1839-1853.

[194]

Y. Y. Shi, G. Fan, R. Tan, et al., “Treating ICB-resistant cancer by inhibiting PD-L1 via DHHC3 degradation induced by cell penetrating peptide-induced chimera conjugates,” Cell death & disease 15, no. 9 (2024): 701, https://doi.org/10.1038/s41419-024-07073-y. Erratum in: Cell Death Dis. 2024;15(11):839.

[195]

P. Kothuri, H. Bhumannagari, S. Battula, K. Rekha, and K. Nayani, “N-Protection Dependent Phosphorylation of Dehydroamino Acids: Facile Synthesis of Phosphono- Amino Acids and Short Peptides,” Chemistry - An Asian Journal (2024): e202401244.

[196]

Y. Zhu, Y. Li, Y. Fang, et al., “Boosting Expression of a Specifically Targeted Antimicrobial Peptide K in Pichia pastoris by Employing a 2A Self-Cleaving Peptide-Based Expression System,” Antibiotics (Basel) 13, no. 10 (2024): 986.

[197]

A. A. Sachkova, D. V. Andreeva, A. S. Tikhomirov, et al., “Design, Synthesis and In Vitro Investigation of Cabozantinib-Based PROTACs to Target c-Met Kinase,” Pharmaceutics 14, no. 12 (2022): 2829.

[198]

M. Tarahi, F. Aghababaei, D. J. McClements, M. Pignitter, and M. Hadidi, “Bioactive peptides derived From insect proteins: Preparation, biological activities, potential applications, and safety issues,” Food Chemistry 465 (2024): 142113. Pt 1.

[199]

D. Sindhikara, S. E. Iskandar, L. Guan, et al., “Analysis and Prediction of Chymotrypsin Substrate Preferences Through Large Data Acquisition With Target-Free mRNA Display,” Chembiochem (2024): e202400760.

[200]

W. Shi, R. Ma, J. Y. Zhou, et al., “Expression and identification of Apidaecin in pichiapastoris,” Journal of Oral Science Research 33, no. 5 (2017): 471-474.

[201]

X. J. Dai, S. K. Ji, M. J. Fu, et al., “Degraders in epigenetic therapy: PROTACs and Beyond,” Theranostics 14, no. 4 (2024): 1464-1499.

[202]

H. Wang, M. Chen, X. Zhang, S. Xie, J. Qin, and J. Li, “Peptide-based PROTACs: Current Challenges and Future Perspectives,” Current Medicinal Chemistry 31, no. 2 (2024): 208-222.

[203]

S. Chen, X. Li, Y. Li, et al., “Design of stapled peptide-based PROTACs for MDM2/MDMX atypical degradation and tumor suppression,” Theranostics 12, no. 15 (2022): 6665-6681.

[204]

R. Thapa, A. A. Bhat, G. Gupta, et al., “CRBN-PROTACs in Cancer Therapy: From Mechanistic Insights to Clinical Applications,” Chemical Biology and Drug Design 104, no. 5 (2024): e70009.

[205]

S. He, Y. Fang, M. Wu, et al., “Enhanced Tumor Targeting and Penetration of Proteolysis-Targeting Chimeras Through iRGD Peptide Conjugation: A Strategy for Precise Protein Degradation in Breast Cancer,” Journal of Medicinal Chemistry 66, no. 24 (2023): 16828-16842.

[206]

H. Li, Y. Hu, Y. Sun, et al., “Co-delivery of Bee Venom Melittin and a Photosensitizer With an Organic-Inorganic Hybrid Nanocarrier for Photodynamic Therapy and Immunotherapy,” ACS Nano 13, no. 11 (2019): 12638-12652.

[207]

Y. Zhu, “Advances in CRISPR/Cas9,” BioMed research International 2022 (2022): 9978571.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

28

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/