Hypoxia-Induced O-GlcNAcylation of GATA3 Leads to Excessive Testosterone Production in Preeclamptic Placentas
Juan Liu , Yun Yang , Hongyu Wu , Feihong Dang , Xin Yu , Feiyang Wang , Yongqing Wang , Yangyu Zhao , Xiaoming Shi , Wei Qin , Yanling Zhang , Yu-Xia Li , Chu Wang , Xuan Shao , Yan-Ling Wang
MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70115
Hypoxia-Induced O-GlcNAcylation of GATA3 Leads to Excessive Testosterone Production in Preeclamptic Placentas
The maintenance of endocrine homeostasis in the placenta is crucial for ensuring successful pregnancy. An abnormally elevated production of placental testosterone (T0) has been documented in patients with early-onset preeclamptic (E-PE). However, the underlying mechanisms remain unclear. In this study, we found that E-PE placentas exhibited significantly increased expressions of 3β-HSD1 (3β-Hydroxysteroid Dehydrogenase 1) and 17β-HSD3 (17β-Hydroxysteroid Dehydrogenase 3), the rate-limiting enzymes for T0 synthesis. This was strongly correlated with an elevated level of O-linked N-acetylglucosaminylation (O-GlcNAcylation) of GATA3 (GATA binding protein 3). In human trophoblast cells, O-linked-N-acetylglucosamine (O-GlcNAc) modification of GATA3 on Thr322 stabilized the protein and enhanced the transcriptional regulation of 3β-HSD1 and 17β-HSD3, thereby increasing T0 production. Hypoxia, a well-established pathological factor in PE, significantly enhanced the O-GlcNAcylation of GATA3 in human trophoblast cells. Our findings suggest that hypoxia-induced overactive O-GlcNAcylation of GATA3 contributes to the exacerbated T0 production in E-PE placentas. These findings provide a new perspective on the pathogenesis of E-PE from the standpoint of posttranslational regulation and may illuminate novel therapeutic strategies for adverse pregnancy outcomes such as E-PE.
GATA3 / hypoxia / O-GlcNAcylation / preeclampsia / testosterone
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [47] |
|
| [48] |
|
| [49] |
|
| [50] |
|
| [51] |
|
| [52] |
|
| [53] |
|
| [54] |
|
| [55] |
|
| [56] |
|
| [57] |
|
| [58] |
|
| [59] |
|
| [60] |
|
| [61] |
|
2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.
/
| 〈 |
|
〉 |