Sepsis: the evolution of molecular pathogenesis concepts and clinical management

Zhongxue Feng , Lijun Wang , Jing Yang , Tingting Li , Xuelian Liao , Yan Kang , Fei Xiao , Wei Zhang

MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70109

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70109 DOI: 10.1002/mco2.70109
REVIEW

Sepsis: the evolution of molecular pathogenesis concepts and clinical management

Author information +
History +
PDF

Abstract

The mortality rate of sepsis is approximately 22.5%, accounting for 19.7% of the total global mortality. Since Lewis Thomas proposed in 1972 that “it is our response that makes the disease (sepsis)” rather than the invading microorganisms, numerous drugs have been developed to suppress the “overwhelming” inflammatory response, but none of them has achieved the desired effect. Continued failure has led investigators to question whether deaths in septic patients are indeed caused by uncontrolled inflammation. Here, we review the history of clinical trials based on evolving concepts of sepsis pathogenesis over the past half century, summarize the factors that led to the failure of these historical drugs and the prerequisites for the success of future drugs, and propose the basic principles of preclinical research to ensure successful clinical translation. The strategy of targeting inflammatory factors are like attempting to eliminate invaders by suppressing the host’s armed forces, which is logically untenable. Sepsis may not be that complex; rather, sepsis may be the result of a failure to fight microbes when the force of an invading pathogen overwhelms our defenses. Thus, strengthening the body’s defense forces instead of suppressing them may be the correct strategy to overcome sepsis.

Keywords

anti-inflammatory drugs / clinical trials / host defenses / hyperinflammation / immunoenhancing drugs / immunosuppression / sepsis

Cite this article

Download citation ▾
Zhongxue Feng, Lijun Wang, Jing Yang, Tingting Li, Xuelian Liao, Yan Kang, Fei Xiao, Wei Zhang. Sepsis: the evolution of molecular pathogenesis concepts and clinical management. MedComm, 2025, 6(3): e70109 DOI:10.1002/mco2.70109

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Borges A, Bento L. Organ crosstalk and dysfunction in sepsis. Ann Intensive Care. 2024; 14(1): 147.

[2]

Liu Z, Ting Y, Li M, Li Y, Tan Y, Long Y. From immune dysregulation to organ dysfunction: understanding the enigma of Sepsis. Front Microbiol. 2024; 15: 1415274.

[3]

Girardis M, David S, Ferrer R, et al. Understanding, assessing and treating immune, endothelial and haemostasis dysfunctions in bacterial sepsis. Intensive Care Med. 2024.

[4]

Chiscano-Camon L, Ruiz-Sanmartin A, Bajana I, et al. Current perspectives in the management of sepsis and septic shock. Front Med (Lausanne). 2024; 11: 1431791.

[5]

Srdic T, Durasevic S, Lakic I, et al. From molecular mechanisms to clinical therapy: understanding sepsis-induced multiple organ dysfunction. Int J Mol Sci. 2024; 25(14).

[6]

Llitjos JF, Carrol ED, Osuchowski MF, et al. Enhancing sepsis biomarker development: key considerations from public and private perspectives. Crit Care. 2024; 28(1): 238.

[7]

Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020; 395(10219): 200-211.

[8]

Buchman TG, Simpson SQ, Sciarretta KL, et al. Sepsis among medicare beneficiaries: 1. The burdens of sepsis, 2012–2018. Crit Care Med. 2020; 48(3): 276-288.

[9]

Weng L, Xu Y, Yin P, et al. National incidence and mortality of hospitalized sepsis in China. Crit Care. 2023; 27(1): 84.

[10]

Thomas L. Germs. The New England journal of Medicine. 1972; 287(11): 553-555.

[11]

Yin Lui K, Zhu Y, Li S, et al. 1428: Characteristics of clinical trials in sepsis: systematic review of clinicaltrials.gov in 25 years. Critical care medicine. 2024; 52(1): S685.

[12]

Cavaillon JM, Singer M, Skirecki T. Sepsis therapies: learning from 30 years of failure of translational research to propose new leads. EMBO molecular medicine. 2020; 12(4): e10128.

[13]

Cohen J, Opal S, Calandra T. Sepsis studies need new direction. Lancet Infect Dis. 2012; 12(7): 503-505.

[14]

Russell JA. Management of sepsis. 2006; 355(16): 1699-1713.

[15]

Funk DJ, Parrillo JE, Kumar A. Sepsis and septic shock: a history. Crit Care Clin. 2009; 25(1): 83-101.

[16]

Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992; 101(6): 1644-1655.

[17]

Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Critical care medicine. 2003; 31(4): 1250-1256.

[18]

Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). Consensus Development Conference Research Support, Non-U.S. Gov’t. Jama. 2016; 315(8): 801-810.

[19]

Martin GS. Sepsis, severe sepsis and septic shock: changes in incidence, pathogens and outcomes. Expert Rev Anti Infect Ther. 2012; 10(6): 701-706.

[20]

Riedemann NC, Guo RF, Ward PA. The enigma of sepsis. J Clin Invest. 2003; 112(4): 460-467.

[21]

Natanson C, Hoffman WD, Suffredini AF, Eichacker PQ, Danner RL. Selected treatment strategies for septic shock based on proposed mechanisms of pathogenesis. Ann Intern Med. 1994; 120(9): 771-783.

[22]

Zeni F, Freeman B, Natanson C. Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Critical care medicine. 1997; 25(7): 1095-1100.

[23]

Warren HS. Strategies for the treatment of sepsis. The New England journal of medicine. 1997; 336(13): 952-953.

[24]

Weighardt H, Heidecke CD, Emmanuilidis K, et al. Sepsis after major visceral surgery is associated with sustained and interferon-gamma-resistant defects of monocyte cytokine production. Surgery. 2000; 127(3): 309-315.

[25]

Lederer JA, Rodrick ML, Mannick JA. The effects of injury on the adaptive immune response. Shock. 1999; 11(3): 153-159.

[26]

Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock. 2001; 16(2): 83-96.

[27]

Constantian MB. Association of sepsis with an immunosuppressive polypeptide in the serum of burn patients. Ann Surg. 1978; 188(2): 209-215.

[28]

Hotchkiss RS, Monneret G, Payen D. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013; 13(12): 862-874.

[29]

McMullan RR, McAuley DF, O’Kane CM, Silversides JA. Vascular leak in sepsis: physiological basis and potential therapeutic advances. Critical care. 2024; 28(1): 97.

[30]

Hu D, Sheeja Prabhakaran H, Zhang YY, Luo G, He W, Liou YC. Mitochondrial dysfunction in sepsis: mechanisms and therapeutic perspectives. Critical care. 2024; 28(1): 292.

[31]

Sun J, Fleishman JS, Liu X, Wang H, Huo L. Targeting novel regulated cell death:Ferroptosis, pyroptosis, and autophagy in sepsis-associated encephalopathy. Biomed Pharmacother. 2024; 174: 116453.

[32]

Salomao R, Ferreira BL, Salomao MC, Santos SS, Azevedo LCP, Brunialti MKC. Sepsis: evolving concepts and challenges. Braz J Med Biol Res. 2019; 52(4): e8595.

[33]

Janeway CA Jr. Approaching the asymptote? evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989; 54(Pt 1): 1-13.

[34]

Angus DC, van der Poll T. Severe sepsis and septic shock. The New England journal of medicine. 2013; 369(9): 840-851.

[35]

Tuttle K, McDonald M, Anderson E. Re-evaluating biologic pharmacotherapies that target the host response during sepsis. Int J Mol Sci. 2019; 20(23).

[36]

Giamarellos-Bourboulis EJ. Immunomodulatory therapies for sepsis: unexpected effects with macrolides. Int J Antimicrob Agents. 2008; 32(Suppl 1): S39-43.

[37]

Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. The New England journal of medicine. 2003; 348(2): 138-150.

[38]

Ulloa L, Brunner M, Ramos L, Deitch EA. Scientific and clinical challenges in sepsis. Curr Pharm Des. 2009; 15(16): 1918-1935.

[39]

Bennett IL, Kass EH, Lepper M, Waisbren BA. The effectiveness of hydrocortisone in the management of severe infections. Jama. 1963; 183(6): 4.

[40]

Schedlowski M, Engler H, Grigoleit JS. Endotoxin-induced experimental systemic inflammation in humans: a model to disentangle immune-to-brain communication. Brain Behav Immun. 2014; 35: 1-8.

[41]

Sandkühler J. Models and mechanisms of hyperalgesia and allodynia. Physiol Rev. 2009; 89(2): 707-758.

[42]

Luce JM. Introduction of new technology into critical care practice: a history of HA-1A human monoclonal antibody against endotoxin. Crit Care Med. 1993; 21(8): 1233-1241.

[43]

The HA-1A monoclonal antibody for gram-negative sepsis. The New England journal of medicine. 1991; 325(4): 279-283.

[44]

Barochia A, Solomon S, Cui X, Natanson C, Eichacker PQ. Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies. Expert Opin Drug Metab Toxicol. 2011; 7(4): 479-494.

[45]

Tidswell M, Tillis W, Larosa SP, et al. Phase 2 trial of eritoran tetrasodium (E5564), a toll-like receptor 4 antagonist, in patients with severe sepsis. Critical care medicine. 2010; 38(1): 72-83.

[46]

Opal SM, Laterre PF, Francois B, et al. Effect of eritoran, an antagonist of MD2-TLR4, on mortality in patients with severe sepsis: the ACCESS randomized trial. Jama. 2013; 309(11): 1154-1162.

[47]

Reinhart K, Wiegand-Löhnert C, Grimminger F, et al. Assessment of the safety and efficacy of the monoclonal anti-tumor necrosis factor antibody-fragment, MAK 195F, in patients with sepsis and septic shock: a multicenter, randomized, placebo-controlled, dose-ranging study. Crit Care Med. 1996; 24(5): 733-742.

[48]

Service RF. Protein evolution earns chemistry Nobel. Science. 2018; 362(6411): 142.

[49]

Pache I, Rogler G, Felley C. TNF-alpha blockers in inflammatory bowel diseases: practical consensus recommendations and a user’s guide. Swiss Med Wkly. 2009; 139(19-20): 278-287.

[50]

Burmester GR, Landewé R, Genovese MC, et al. Adalimumab long-term safety: infections, vaccination response and pregnancy outcomes in patients with rheumatoid arthritis. Ann Rheum Dis. 2017; 76(2): 414-417.

[51]

Vural S, Kuşdoğan M, Kaya HB, İkiz V, Albayrak L. Adalimumab (Humira®) induced recurrent peritonsillar abscess in a patient received three different anti-TNF therapies: a case report. Indian J Otolaryngol Head Neck Surg. 2023; 75(2): 1013-1015.

[52]

Scheinfeld N. Adalimumab: a review of side effects. Expert Opin Drug Saf. 2005; 4(4): 637-641.

[53]

Quartuccio L, Zabotti A, Del Zotto S, Zanier L, De Vita S, Valent F. Risk of serious infection among patients receiving biologics for chronic inflammatory diseases: usefulness of administrative data. J Adv Res. 2019; 15: 87-93.

[54]

Kennedy NA, Heap GA, Green HD, et al. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: a prospective, multicentre, cohort study. Lancet Gastroenterol Hepatol. 2019; 4(5): 341-353.

[55]

Sawamura S, Makino T, Johno T, et al. Severe bacterial sepsis results in delayed diagnosis of tuberculous lymphadenitis in a rheumatoid arthritis patient treated with adalimumab. Intractable Rare Dis Res. 2018; 7(2): 138-140.

[56]

Kishimoto T. Interleukin-6: from basic science to medicine–40 years in immunology. Annu Rev Immunol. 2005; 23: 1-21.

[57]

Chiesa C, Pacifico L, Natale F, Hofer N, Osborn JF, Resch B. Fetal and early neonatal interleukin-6 response. Cytokine. 2015; 76(1): 1-12.

[58]

Jones SA, Scheller J, Rose-John S. Therapeutic strategies for the clinical blockade of IL-6/gp130 signaling. J Clin Invest. 2011; 121(9): 3375-3383.

[59]

Song J, Park DW, Moon S, et al. Diagnostic and prognostic value of interleukin-6, pentraxin 3, and procalcitonin levels among sepsis and septic shock patients: a prospective controlled study according to the Sepsis-3 definitions. BMC Infect Dis. 2019; 19(1): 968.

[60]

Ling H, Chen M, Dai J, Zhong H, Chen R, Shi F. Evaluation of qSOFA combined with inflammatory mediators for diagnosing sepsis and predicting mortality among emergency department. Clin Chim Acta. 2023; 544: 117352.

[61]

Yu B, Chen M, Zhang Y, et al. Diagnostic and prognostic value of interleukin-6 in emergency department sepsis patients. Infect Drug Resist. 2022; 15: 5557-5566.

[62]

Xu X, Han M, Li T, et al. Effective treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad Sci USA. 2020; 117(20): 10970-10975.

[63]

RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021; 397(10285): 1637-1645.

[64]

Group WHOREAfC-TW, Shankar-Hari M, Vale CL, et al. Association between administration of IL-6 antagonists and mortality among patients hospitalized for COVID-19: a meta-analysis. Jama. 2021; 326(6): 499-518.

[65]

Peng J, Fu M, Mei H, et al. Efficacy and secondary infection risk of tocilizumab, sarilumab and anakinra in COVID-19 patients: a systematic review and meta-analysis. Rev Med Virol. 2022; 32(3): e2295.

[66]

Snow TAC, Saleem N, Ambler G, Nastouli E, Singer M, Arulkumaran N. Tocilizumab in COVID-19: a meta-analysis, trial sequential analysis, and meta-regression of randomized-controlled trials. Intensive Care Med. 2021; 47(6): 641-652.

[67]

Peng J, She X, Mei H, et al. Association between tocilizumab treatment and clinical outcomes of COVID-19 patients: a systematic review and meta-analysis. Aging (Albany NY). 2022; 14(2): 557-571.

[68]

Opal SM, Fisher CJ Jr, Dhainaut JF, et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Critical care medicine. 1997; 25(7): 1115-1124.

[69]

Leventogiannis K, Kyriazopoulou E, Antonakos N, et al. Toward personalized immunotherapy in sepsis: the PROVIDE randomized clinical trial. Cell Rep Med. 2022(11):100817.

[70]

Neel A, Henry B, Barbarot S, et al. Long-term effectiveness and safety of interleukin-1 receptor antagonist (anakinra) in Schnitzler’s syndrome: a French multicenter study. Autoimmun Rev. 2014; 13(10): 1035-1041.

[71]

Maniscalco V, Abu-Rumeileh S, Mastrolia MV, et al. The off-label use of anakinra in pediatric systemic autoinflammatory diseases. Ther Adv Musculoskelet Dis. 2020; 12: 1759720-20959575.

[72]

Shapiro L, Scherger S, Franco-Paredes C, Gharamti A, Henao-Martinez AF. Anakinra authorized to treat severe coronavirus disease 2019; Sepsis breakthrough or time to reflect? Front Microbiol. 2023; 14: 1250483.

[73]

Pozzi S, Satchi-Fainaro R. The role of CCL2/CCR2 axis in cancer and inflammation: the next frontier in nanomedicine. Adv Drug Deliv Rev. 2024; 209: 115318.

[74]

Kohli K, Pillarisetty VG, Kim TS. Key chemokines direct migration of immune cells in solid tumors. Cancer Gene Ther. 2022; 29(1): 10-21.

[75]

Zhu Y, Herndon JM, Sojka DK, et al. Tissue-resident macrophages in pancreatic ductal adenocarcinoma originate from embryonic hematopoiesis and promote tumor progression. Immunity. 2017; 47(2): 323-338.

[76]

Nywening TM, Belt BA, Cullinan DR, et al. Targeting both tumour-associated CXCR2(+) neutrophils and CCR2(+) macrophages disrupts myeloid recruitment and improves chemotherapeutic responses in pancreatic ductal adenocarcinoma. Gut. 2018; 67(6): 1112-1123.

[77]

Bonapace L, Coissieux MM, Wyckoff J, et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature. 2014; 515(7525): 130-133.

[78]

Haringman JJ, Gerlag DM, Smeets TJ, et al. A randomized controlled trial with an anti-CCL2 (anti-monocyte chemotactic protein 1) monoclonal antibody in patients with rheumatoid arthritis. Arthritis Rheum. 2006; 54(8): 2387-2392.

[79]

Sandhu SK, Papadopoulos K, Fong PC, et al. A first-in-human, first-in-class, phase I study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 in patients with solid tumors. Cancer Chemother Pharmacol. 2013; 71(4): 1041-1050.

[80]

Brana I, Calles A, LoRusso PM, et al. Carlumab, an anti-C-C chemokine ligand 2 monoclonal antibody, in combination with four chemotherapy regimens for the treatment of patients with solid tumors: an open-label, multicenter phase 1b study. Target Oncol. 2015; 10(1): 111-123.

[81]

Monk BJ, Parkinson C, Lim MC, et al. A randomized, phase III trial to evaluate rucaparib monotherapy as maintenance treatment in patients with newly diagnosed ovarian cancer (ATHENA-MONO/GOG-3020/ENGOT-ov45). J Clin Oncol. 2022; 40(34): 3952-3964.

[82]

Propper DJ, Balkwill FR. Harnessing cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol. 2022; 19(4): 237-253.

[83]

Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021; 47(11): 1181-1247.

[84]

Bernard GR, Vincent JL, Laterre PF, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. The New England journal of medicine. 2001; 344(10): 699-709.

[85]

Abraham E, Laterre PF, Garg R, et al. Drotrecogin alfa (activated) for adults with severe sepsis and a low risk of death. The New England journal of medicine. 2005; 353(13): 1332-1341.

[86]

Sarangi PP, Lee HW, Kim M. Activated protein C action in inflammation. Br J Haematol. 2010; 148(6): 817-833.

[87]

Nadel S, Goldstein B, Williams MD, et al. Drotrecogin alfa (activated) in children with severe sepsis: a multicentre phase III randomised controlled trial. Lancet (London, England). 2007; 369(9564): 836-843.

[88]

Opal SM, Dellinger RP, Vincent JL, Masur H, Angus DC. The next generation of sepsis clinical trial designs: what is next after the demise of recombinant human activated protein C?*. Research support, non-U.S. Gov’t. Critical care medicine. 2014; 42(7): 1714-1721.

[89]

Marti-Carvajal AJ, Sola I, Gluud C, Lathyris D, Cardona AF. Human recombinant protein C for severe sepsis and septic shock in adult and paediatric patients. Cochrane Database Syst Rev. 2012; 12(CD004388).

[90]

Schumer W. Steroids in the treatment of clinical septic shock. Ann Surg. 1976; 184(3): 333-341.

[91]

Bone RC, Fisher CJ Jr, Clemmer TP, Slotman GJ, Metz CA, Balk RA. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987(11): 653-658.

[92]

Lamontagne F, Rochwerg B, Lytvyn L, et al. Corticosteroid therapy for sepsis: a clinical practice guideline. Bmj. 2018; 362: k3284.

[93]

Rhodes A, Evans LE, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017; 43(3): 304-377.

[94]

Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008; 358(2): 111-124.

[95]

Venkatesh B, Finfer S, Cohen J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. The New England journal of medicine. 2018; 378(9): 797-808.

[96]

Annane D, Renault A, Brun-Buisson C, et al. Hydrocortisone plus fludrocortisone for adults with septic shock. The New England journal of medicine. 2018; 378(9): 809-818.

[97]

Venkatesh B, Finfer S, Cohen J, et al. Hydrocortisone compared with placebo in patients with septic shock satisfying the sepsis-3 diagnostic criteria and APROCCHSS study inclusion criteria: a post hoc analysis of the ADRENAL trial. Anesthesiology. 2019; 131(6): 1292-1300.

[98]

Jolles S, Sewell WA, Misbah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol. 2005; 142(1): 1-11.

[99]

Jones RJ, Roe EA, Gupta JL. Controlled trial of Pseudomonas immunoglobulin and vaccine in burn patients. Lancet. 1980; 2(8207): 1263-1265.

[100]

Iizuka Y, Sanui M, Sasabuchi Y, et al. Low-dose immunoglobulin G is not associated with mortality in patients with sepsis and septic shock. Critical care. 2017; 21(1): 181.

[101]

Hentrich M, Fehnle K, Ostermann H, et al. IgMA-enriched immunoglobulin in neutropenic patients with sepsis syndrome and septic shock: a randomized, controlled, multiple-center trial. Critical care medicine. 2006; 34(5): 1319-1325.

[102]

Evans L, Rhodes A, Alhazzani W, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock 2021. Critical care medicine. 2021; 49(11): e1063-e1143.

[103]

Biagioni E, Tosi M, Berlot G, et al. Adjunctive IgM-enriched immunoglobulin therapy with a personalised dose based on serum IgM-titres versus standard dose in the treatment of septic shock: a randomised controlled trial (IgM-fat trial). BMJ Open. 2021; 11(2): e036616.

[104]

Gharebaghi N, Nejadrahim R, Mousavi SJ, Sadat-Ebrahimi SR, Hajizadeh R. The use of intravenous immunoglobulin gamma for the treatment of severe coronavirus disease 2019: a randomized placebo-controlled double-blind clinical trial. BMC Infect Dis. 2020; 20(1): 786.

[105]

Tabarsi P, Barati S, Jamaati H, et al. Evaluating the effects of intravenous immunoglobulin (IVIg) on the management of severe COVID-19 cases: a randomized controlled trial. Int Immunopharmacol. 2021; 90: 107205.

[106]

Group IS. Hyperimmune immunoglobulin for hospitalised patients with COVID-19 (ITAC): a double-blind, placebo-controlled, phase 3, randomised trial. Lancet. 2022; 399(10324): 530-540.

[107]

Alemany A, Millat-Martinez P, Corbacho-Monne M, et al. Subcutaneous anti-COVID-19 hyperimmune immunoglobulin for prevention of disease in asymptomatic individuals with SARS-CoV-2 infection: a double-blind, placebo-controlled, randomised clinical trial. EClinicalMedicine. 2023; 57: 101898.

[108]

Lang FM, Lee KM, Teijaro JR, Becher B, Hamilton JA. GM-CSF-based treatments in COVID-19: reconciling opposing therapeutic approaches. Nat Rev Immunol. 2020; 20(8): 507-514.

[109]

Metcalf D. The molecular biology and functions of the granulocyte-macrophage colony-stimulating factors. Blood. 1986; 67(2): 257-267.

[110]

Gillan ER, Christensen RD, Suen Y, Ellis R, van de Ven C, Cairo MS. A randomized, placebo-controlled trial of recombinant human granulocyte colony-stimulating factor administration in newborn infants with presumed sepsis: significant induction of peripheral and bone marrow neutrophilia. Blood. 1994; 84(5): 1427-1433.

[111]

Cairo MS, Christensen R, Sender LS, et al. Results of a phase I/II trial of recombinant human granulocyte-macrophage colony-stimulating factor in very low birthweight neonates: significant induction of circulatory neutrophils, monocytes, platelets, and bone marrow neutrophils. Blood. 1995; 86(7): 2509-2515.

[112]

Drossou-Agakidou V, Kanakoudi-Tsakalidou F, Sarafidis K, et al. Administration of recombinant human granulocyte-colony stimulating factor to septic neonates induces neutrophilia and enhances the neutrophil respiratory burst and beta2 integrin expression. Results of a randomized controlled trial. Eur J Pediatr. 1998; 157(7): 583-588.

[113]

El-Ganzoury MM, El-Farrash RA, Saad AA, Mohamed AG, El-Sherbini IG. In vivo effect of recombinant human granulocyte colony-stimulating factor on neutrophilic expression of CD11b in septic neonates: a randomized controlled trial. Pediatr Hematol Oncol. 2012; 29(3): 272-284.

[114]

Carr R, Modi N, Dore CJ, El-Rifai R, Lindo D. A randomized, controlled trial of prophylactic granulocyte-macrophage colony-stimulating factor in human newborns less than 32 weeks gestation. Pediatrics. 1999; 103(4 Pt 1): 796-802.

[115]

Bilgin K, Yaramis A, Haspolat K, Tas MA, Gunbey S, Derman O. A randomized trial of granulocyte-macrophage colony-stimulating factor in neonates with sepsis and neutropenia. Pediatrics. 2001; 107(1): 36-41.

[116]

Carr R, Brocklehurst P, Dore CJ, Modi N. Granulocyte-macrophage colony stimulating factor administered as prophylaxis for reduction of sepsis in extremely preterm, small for gestational age neonates (the PROGRAMS trial): a single-blind, multicentre, randomised controlled trial. Lancet. 2009; 373(9659): 226-233.

[117]

Marlow N, Morris T, Brocklehurst P, et al. A randomised trial of granulocyte-macrophage colony-stimulating factor for neonatal sepsis: outcomes at 2 years. Arch Dis Child Fetal Neonatal Ed. 2013; 98(1): F46-53.

[118]

Meisel C, Schefold JC, Pschowski R, et al. Granulocyte-macrophage colony-stimulating factor to reverse sepsis-associated immunosuppression: a double-blind, randomized, placebo-controlled multicenter trial. Am J Respir Crit Care Med. 2009; 180(7): 640-648.

[119]

Schibler KR, Osborne KA, Leung LY, Le TV, Baker SI, Thompson DD. A randomized, placebo-controlled trial of granulocyte colony-stimulating factor administration to newborn infants with neutropenia and clinical signs of early-onset sepsis. Pediatrics. 1998; 102(1 Pt 1): 6-13.

[120]

Miura E, Procianoy RS, Bittar C, et al. A randomized, double-masked, placebo-controlled trial of recombinant granulocyte colony-stimulating factor administration to preterm infants with the clinical diagnosis of early-onset sepsis. Pediatrics. 2001; 107(1): 30-35.

[121]

Borjianyazdi L, Froomandi M, Noori Shadkam M, Hashemi A, Fallah R. The effect of granulocyte colony stimulating factor administration on preterm infant with neutropenia and clinical sepsis: a randomized clinical trial. Iran J Ped Hematol Oncol. 2013; 3(2): 64-68.

[122]

Gathwala G, Walia M, Bala H, Singh S. Recombinant human granulocyte colony-stimulating factor in preterm neonates with sepsis and relative neutropenia: a randomized, single-blind, non-placebo-controlled trial. J Trop Pediatr. 2012; 58(1): 12-18.

[123]

Chaudhuri J, Mitra S, Mukhopadhyay D, Chakraborty S, Chatterjee S. Granulocyte colony-stimulating factor for preterms with sepsis and neutropenia: a randomized controlled trial. J Clin Neonatol. 2012; 1(4): 202-206.

[124]

Cheng AC, Limmathurotsakul D, Chierakul W, et al. A randomized controlled trial of granulocyte colony-stimulating factor for the treatment of severe sepsis due to melioidosis in Thailand. Clin Infect Dis. 2007; 45(3): 308-314.

[125]

Presneill JJ, Harris T, Stewart AG, Cade JF, Wilson JW. A randomized phase II trial of granulocyte-macrophage colony-stimulating factor therapy in severe sepsis with respiratory dysfunction. Am J Respir Crit Care Med. 2002; 166(2): 138-143.

[126]

Cheng LL, Guan WJ, Duan CY, et al. Effect of recombinant human granulocyte colony-stimulating factor for patients with coronavirus disease 2019 (COVID-19) and lymphopenia: a randomized clinical trial. JAMA Intern Med. 2021; 181(1): 71-78.

[127]

Romani L, Moretti S, Fallarino F, et al. Jack of all trades: thymosin α1 and its pleiotropy. Ann N Y Acad Sci. 2012; 1269: 1-6.

[128]

Liu Y, Pan Y, Hu Z, et al. Thymosin alpha 1 reduces the mortality of severe coronavirus disease 2019 by restoration of lymphocytopenia and reversion of exhausted t cells. Clin Infect Dis. 2020; 71(16): 2150-2157.

[129]

Tao N, Xu X, Ying Y, et al. Thymosin α1 and its role in viral infectious diseases: the mechanism and clinical application. Molecules. 2023; 28(8).

[130]

Chen C, Wang J, Xun J, et al. Role of thymosin α1 in restoring immune response in immunological nonresponders living with HIV. BMC Infect Dis. 2024; 24(1): 97.

[131]

Matteucci C, Grelli S, Balestrieri E, et al. Thymosin alpha 1 and HIV-1: recent advances and future perspectives. Future Microbiol. 2017; 12: 141-155.

[132]

Naylor PH, Naylor CW, Badamchian M, et al. Human immunodeficiency virus contains an epitope immunoreactive with thymosin alpha 1 and the 30-amino acid synthetic p17 group-specific antigen peptide HGP-30. Proc Natl Acad Sci USA. 1987; 84(9): 2951-2955.

[133]

Guo CL, Mei JD, Jia YL, et al. Impact of thymosin α1 as an immunomodulatory therapy on long-term survival of non-small cell lung cancer patients after R0 resection: a propensity score-matched analysis. Chin Med J (Engl). 2021; 134(22): 2700-2709.

[134]

Liu F, Qiu B, Xi Y, et al. Efficacy of thymosin α1 in management of radiation pneumonitis in patients with locally advanced non-small cell lung cancer treated with concurrent chemoradiotherapy: a phase 2 clinical trial (GASTO-1043). Int J Radiat Oncol Biol Phys. 2022; 114(3): 433-443.

[135]

Billich A. Thymosin alpha1. SciClone Pharmaceuticals. Curr Opin Investig Drugs. 2002; 3(5): 698-707.

[136]

King R, Tuthill C. Immune modulation with thymosin alpha 1 treatment. Vitam Horm. 2016; 102: 151-178.

[137]

Wang F, Li B, Fu P, Li Q, Zheng H, Lao X. Immunomodulatory and enhanced antitumor activity of a modified thymosin α1 in melanoma and lung cancer. Int J Pharm. 2018; 547(1-2): 611-620.

[138]

Wu J, Zhou L, Liu J, et al. The efficacy of thymosin alpha 1 for severe sepsis (ETASS): a multicenter, single-blind, randomized and controlled trial. Crit Care. 2013; 17(1).

[139]

Wu M, Ji JJ, Zhong L, et al. Thymosin alpha1 therapy in critically ill patients with COVID-19: a multicenter retrospective cohort study. Int Immunopharmacol. 2020; 88: 106873.

[140]

Shetty A, Chandrakant NS, Darnule RA, Manjunath BG, Sathe P. A double-blind multicenter two-arm randomized placebo-controlled phase-III clinical study to evaluate the effectiveness and safety of thymosin alpha1 as an add-on treatment to existing standard of care treatment in moderate-to-severe COVID-19 patients. Indian J Crit Care Med. 2022; 26(8): 913-919.

[141]

Liu X, Liu Y, Wang L, Hu L, Liu D, Li J. Analysis of the prophylactic effect of thymosin drugs on COVID-19 for 435 medical staff: a hospital-based retrospective study. J Med Virol. 2021; 93(3): 1573-1580.

[142]

Sun Q, Xie J, Zheng R, et al. The effect of thymosin alpha1 on mortality of critical COVID-19 patients: a multicenter retrospective study. Int Immunopharmacol. 2021; 90: 107143.

[143]

Liu T, Liu S, Li T, Zhang J. Thymosin a1 use is not associated with reduced COVID-19 mortality. Am J Emerg Med. 2022; 53: 252-253.

[144]

Huang C, Fei L, Xu W, et al. Efficacy evaluation of thymosin alpha 1 in non-severe patients with COVID-19: a retrospective cohort study based on propensity score matching. Front Med (Lausanne). 2021; 8: 664776.

[145]

Wang Z, Chen J, Zhu C, et al. Thymosin alpha-1 has no beneficial effect on restoring CD4+ and CD8+ T lymphocyte counts in COVID-19 patients. Front Immunol. 2021; 12: 568789.

[146]

Sun Q, Xie J, Zheng R, et al. The effect of thymosin α1 on mortality of critical COVID-19 patients: a multicenter retrospective study. Int Immunopharmacol. 2021; 90: 107143.

[147]

Liu J, Shen Y, Wen Z, et al. Efficacy of thymosin alpha 1 in the treatment of COVID-19: a multicenter cohort study. Front Immunol. 2021; 12: 673693.

[148]

Shang W, Zhang B, Ren Y, Wang W, Zhou D, Li Y. Thymosin alpha1 use in adult COVID-19 patients: a systematic review and meta-analysis on clinical outcomes. Int Immunopharmacol. 2023; 114: 109584.

[149]

Soeroto AY, Suryadinata H, Yanto TA, Hariyanto TI. The efficacy of thymosin alpha-1 therapy in moderate to critical COVID-19 patients: a systematic review, meta-analysis, and meta-regression. Inflammopharmacology. 2023; 31(6): 3317-3325.

[150]

Wu J, Pei F, Zhou L, et al. The efficacy and safety of thymosin α1 for sepsis (TESTS): multicentre, double blinded, randomised, placebo controlled, phase 3 trial. BMJ. 2025:e082583.

[151]

Boehm U, Klamp T, Groot M, Howard JC. Cellular responses to interferon-gamma. Annu Rev Immunol. 1997; 15: 749-795.

[152]

Casanova JL, MacMicking JD, Nathan CF. Interferon-γ and infectious diseases: lessons and prospects. Science. 2024; 384(6693): eadl2016.

[153]

Kann O, Almouhanna F, Chausse B. Interferon γ: a master cytokine in microglia-mediated neural network dysfunction and neurodegeneration. Trends Neurosci. 2022; 45(12): 913-927.

[154]

Leentjens J, Kox M, Koch RM, et al. Reversal of immunoparalysis in humans in vivo: a double-blind, placebo-controlled, randomized pilot study. Am J Respir Crit Care Med. 2012; 186(9): 838-845.

[155]

Delsing CE, Gresnigt MS, Leentjens J, et al. Interferon-gamma as adjunctive immunotherapy for invasive fungal infections: a case series. BMC Infect Dis. 2014; 14: 166.

[156]

Payen D, Faivre V, Miatello J, et al. Multicentric experience with interferon gamma therapy in sepsis induced immunosuppression. A case series. BMC Infect Dis. 2019; 19(1): 931.

[157]

Barata JT, Durum SK, Seddon B. Flip the coin: iL-7 and IL-7R in health and disease. Nat Immunol. 2019; 20(12): 1584-1593.

[158]

Kaiser FMP, Janowska I, Menafra R, et al. IL-7 receptor signaling drives human B-cell progenitor differentiation and expansion. Blood. 2023; 142(13): 1113-1130.

[159]

Meyer A, Parmar PJ, Shahrara S. Significance of IL-7 and IL-7R in RA and autoimmunity. Autoimmun Rev. 2022; 21(7): 103120.

[160]

Francois B, Jeannet R, Daix T, et al. Interleukin-7 restores lymphocytes in septic shock: the IRIS-7 randomized clinical trial. JCI Insight. 2018; 3(5).

[161]

Daix T, Mathonnet A, Brakenridge S, et al. Intravenously administered interleukin-7 to reverse lymphopenia in patients with septic shock: a double-blind, randomized, placebo-controlled trial. Ann Intensive Care. 2023; 13(1): 17.

[162]

Turnbull IR, Mazer MB, Hoofnagle MH, et al. IL-7 immunotherapy in a nonimmunocompromised patient with intractable fungal wound sepsis. Open Forum Infect Dis. 2021; 8(6): ofab256.

[163]

Laterre PF, Francois B, Collienne C, et al. Association of interleukin 7 immunotherapy with lymphocyte counts among patients with severe coronavirus disease 2019 (COVID-19). JAMA Netw Open. 2020; 3(7).

[164]

Huang X, Venet F, Wang YL, et al. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis. Proc Natl Acad Sci U S A. 2009; 106(15): 6303-6308.

[165]

Watanabe E, Nishida O, Kakihana Y, et al. Pharmacokinetics, pharmacodynamics, and safety of nivolumab in patients with sepsis-induced immunosuppression: a multicenter, open-label phase 1/2 study. Shock. 2020; 53(6): 686-694.

[166]

Hotchkiss RS, Colston E, Yende S, et al. Immune checkpoint inhibition in sepsis: a phase 1b randomized study to evaluate the safety, tolerability, pharmacokinetics, and pharmacodynamics of nivolumab. Intensive Care Med. 2019; 45(10): 1360-1371.

[167]

Karampoor S, Hesamizadeh K, Shams Z, et al. The role of lovastatin in the attenuation of COVID-19. Int Immunopharmacol. 2021; 101(Pt A):108192.

[168]

Wang J, Liang J, Chen L, et al. Structural basis for the biosynthesis of lovastatin. Nat Commun. 2021; 12(1): 867.

[169]

Hague WE, Simes J, Kirby A, et al. Long-term effectiveness and safety of pravastatin in patients with coronary heart disease: sixteen years of follow-up of the LIPID study. Circulation. 2016; 133(19): 1851-1860.

[170]

Byington RP, Davis BR, Plehn JF, et al. Reduction of stroke events with pravastatin: the Prospective Pravastatin Pooling (PPP) Project. Circulation. 2001; 103(3): 387-392.

[171]

Hills TE, Lorenzi E, Berry LR, et al. Simvastatin in critically ill patients with Covid-19. N Engl J Med. 2023; 389(25): 2341-2354.

[172]

Sapey E, Patel JM, Greenwood HL, et al. Pulmonary infections in the elderly lead to impaired neutrophil targeting, which is improved by simvastatin. Am J Respir Crit Care Med. 2017; 196(10): 1325-1336.

[173]

Park JH, Shim JK, Song JW, Soh S, Kwak YL. Effect of atorvastatin on the incidence of acute kidney injury following valvular heart surgery: a randomized, placebo-controlled trial. Intensive Care Med. 2016; 42(9): 1398-1407.

[174]

Horiguchi A, Sumitomo M, Asakuma J, Asano T, Asano T, Hayakawa M. 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitor, fluvastatin, as a novel agent for prophylaxis of renal cancer metastasis. Clin Cancer Res. 2004; 10(24): 8648-8655.

[175]

Laffin LJ, Bruemmer D, Garcia M, et al. Comparative effects of low-dose rosuvastatin, placebo, and dietary supplements on lipids and inflammatory biomarkers. J Am Coll Cardiol. 2023; 81(1): 1-12.

[176]

Sahebkar A, Kiaie N, Gorabi AM, et al. A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res. 2021; 84: 101127.

[177]

Kothe H, Dalhoff K, Rupp J, et al. Hydroxymethylglutaryl coenzyme A reductase inhibitors modify the inflammatory response of human macrophages and endothelial cells infected with Chlamydia pneumoniae. Circulation. 2000; 101(15): 1760-1763.

[178]

Romano M, Diomede L, Sironi M, et al. Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab Invest. 2000; 80(7): 1095-1100.

[179]

Yoshida M, Sawada T, Ishii H, et al. Hmg-CoA reductase inhibitor modulates monocyte-endothelial cell interaction under physiological flow conditions in vitro: involvement of Rho GTPase-dependent mechanism. Arterioscler Thromb Vasc Biol. 2001; 21(7): 1165-1171.

[180]

Grip O, Janciauskiene S, Lindgren S. Atorvastatin activates PPAR-gamma and attenuates the inflammatory response in human monocytes. Inflamm Res. 2002; 51(2): 58-62.

[181]

Pruefer D, Makowski J, Schnell M, et al. Simvastatin inhibits inflammatory properties of Staphylococcus aureus alpha-toxin. Circulation. 2002; 106(16): 2104-2110.

[182]

Arnaud C, Burger F, Steffens S, et al. Statins reduce interleukin-6-induced C-reactive protein in human hepatocytes: new evidence for direct antiinflammatory effects of statins. Arterioscler Thromb Vasc Biol. 2005; 25(6): 1231-1236.

[183]

Kruger PS, Harward ML, Jones MA, et al. Continuation of statin therapy in patients with presumed infection: a randomized controlled trial. Am J Respir Crit Care Med. 2011; 183(6): 774-781.

[184]

Kruger P, Bailey M, Bellomo R, et al. A multicenter randomized trial of atorvastatin therapy in intensive care patients with severe sepsis. Am J Respir Crit Care Med. 2013; 187(7): 743-750.

[185]

McAuley DF, Laffey JG, O’Kane CM, et al. Simvastatin in the acute respiratory distress syndrome. The New England journal of medicine. 2014; 371(18): 1695-1703.

[186]

Novack V, Eisinger M, Frenkel A, et al. The effects of statin therapy on inflammatory cytokines in patients with bacterial infections: a randomized double-blind placebo controlled clinical trial. Intensive Care Med. 2009; 35(7): 1255-1260.

[187]

Papazian L, Roch A, Charles PE, et al. Effect of statin therapy on mortality in patients with ventilator-associated pneumonia: a randomized clinical trial. Jama. 2013; 310(16): 1692-1700.

[188]

Patel JM, Snaith C, Thickett DR, et al. Randomized double-blind placebo-controlled trial of 40 mg/day of atorvastatin in reducing the severity of sepsis in ward patients (ASEPSIS Trial). Critical care. 2012; 16(6): R231.

[189]

National Heart L, Blood Institute ACTN, Truwit JD, Bernard GR, Matthay MA, et al. Rosuvastatin for sepsis-associated acute respiratory distress syndrome. The New England journal of medicine. 2014; 370(23): 2191-2200.

[190]

Singh RK, Agarwal V, Baronia AK, Kumar S, Poddar B, Azim A. The effects of atorvastatin on inflammatory responses and mortality in septic shock: a single-center, randomized controlled trial. Indian J Crit Care Med. 2017; 21(10): 646-654.

[191]

Chen M, Ji M, Si X. The effects of statin therapy on mortality in patients with sepsis: a meta-analysis of randomized trials. Medicine (Baltimore). 2018; 97(31): e11578.

[192]

Makris D, Manoulakas E, Komnos A, et al. Effect of pravastatin on the frequency of ventilator-associated pneumonia and on intensive care unit mortality: open-label, randomized study. Critical care medicine. 2011; 39(11): 2440-2446.

[193]

Viasus D, Garcia-Vidal C, Simonetti AF, et al. The effect of simvastatin on inflammatory cytokines in community-acquired pneumonia: a randomised, double-blind, placebo-controlled trial. BMJ Open. 2015; 5(1).

[194]

Shao H, Wang C, Zhu W, et al. Influence of simvastatin treatment on Toll-like receptor 4 in monocytes of peripheral blood in patients with sepsis and severe sepsis]. Zhonghua wei zhong bing ji jiu yi xue. 2016; 28(2): 159-163.

[195]

Pertzov B, Eliakim-Raz N, Atamna H, Trestioreanu AZ, Yahav D, Leibovici L. Hydroxymethylglutaryl-CoA reductase inhibitors (statins) for the treatment of sepsis in adults—A systematic review and meta-analysis. Clin Microbiol Infect. 2019; 25(3): 280-289.

[196]

Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): role as guardians of inflammation. Mol Ther. 2012; 20(1): 14-20.

[197]

Zhou J, Shi Y. Mesenchymal stem/stromal cells (MSCs): origin, immune regulation, and clinical applications. Cell Mol Immunol. 2023; 20(6): 555-557.

[198]

Galipeau J, Sensébé L. Mesenchymal stromal cells: clinical challenges and therapeutic opportunities. Cell Stem Cell. 2018; 22(6): 824-833.

[199]

Aghayan AH, Mirazimi Y, Fateh K, Keshtkar A, Rafiee M, Atashi A. Therapeutic effects of mesenchymal stem cell-derived extracellular vesicles in sepsis: a systematic review and meta-analysis of preclinical studies. Stem Cell Rev Rep. 2024; 20(6): 1480-1500.

[200]

Hum C, Tahir U, Mei SHJ, et al. Efficacy and safety of umbilical cord-derived mesenchymal stromal cell therapy in preclinical models of sepsis: a systematic review and meta-analysis. Stem Cells Transl Med. 2024; 13(4): 346-361.

[201]

Nemeth K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009; 15(1): 42-49.

[202]

Pei L, Li R, Wang X, et al. MSCs-derived extracellular vesicles alleviate sepsis-associated liver dysfunction by inhibiting macrophage glycolysis-mediated inflammatory response. Int Immunopharmacol. 2024; 128: 111575.

[203]

Hoogduijn MJ, Popp F, Verbeek R, et al. The immunomodulatory properties of mesenchymal stem cells and their use for immunotherapy. Int Immunopharmacol. 2010; 10(12): 1496-1500.

[204]

Alp E, Gonen ZB, Gundogan K, et al. The effect of mesenchymal stromal cells on the mortality of patients with sepsis and septic shock: a promising therapy. Emerg Med Int. 2022; 2022: 9222379.

[205]

Caliezi C, Zeerleder S, Redondo M, et al. C1-inhibitor in patients with severe sepsis and septic shock: beneficial effect on renal dysfunction. Critical care medicine. 2002; 30(8): 1722-1728.

[206]

Igonin AA, Protsenko DN, Galstyan GM, et al. C1-esterase inhibitor infusion increases survival rates for patients with sepsis*. Critical care medicine. 2012; 40(3): 770-777.

[207]

Bauer M, Weyland A, Marx G, et al. Efficacy and safety of vilobelimab (IFX-1), a novel monoclonal anti-c5a antibody, in patients with early severe sepsis or septic shock—a randomized, placebo-controlled, double-blind, multicenter, phase IIa trial (SCIENS study). Crit Care Explor. 2021; 3(11): e0577.

[208]

Vlaar APJ, Witzenrath M, van Paassen P, et al. Anti-C5a antibody (vilobelimab) therapy for critically ill, invasively mechanically ventilated patients with COVID-19 (PANAMO): a multicentre, double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Respir Med. 2022; 10(12): 1137-1146.

[209]

Liu S, Yao C, Zhang J, Yang Y, Qiu H. Efficacy of Xuebijing injection for sepsis (EXIT-SEP): protocol for a randomised controlled trial. BMJ Open. 2019; 9(8): e028664.

[210]

Gharamti AA, Samara O, Monzon A, et al. Proinflammatory cytokines levels in sepsis and healthy volunteers, and tumor necrosis factor-alpha associated sepsis mortality: a systematic review and meta-analysis. Cytokine. 2022; 158: 156006.

[211]

van der Poll T, Shankar-Hari M, Wiersinga WJ. The immunology of sepsis. Immunity. 2021; 54(11): 2450-2464.

[212]

Sharma SP. Study sheds new light on cytokine response in sepsis. The Lancet Infectious Diseases. 2007; 7(10): 639.

[213]

Fajgenbaum DC, June CH. Cytokine storm. N Engl J Med. 2020; 383(23): 2255-2273.

[214]

Shapiro L, Scherger S, Franco-Paredes C, Gharamti AA, Fraulino D, Henao-Martinez AF. Chasing the ghost: hyperinflammation does not cause sepsis. Front Pharmacol. 2022; 13: 910516.

[215]

Nedeva C, Menassa J, Puthalakath H. Sepsis: inflammation is a necessary evil. Front Cell Dev Biol. 2019; 7: 108.

[216]

Hutchings MI, Truman AW, Wilkinson B. Antibiotics: past, present and future. Curr Opin Microbiol. 2019; 51: 72-80.

[217]

Landecker H. Antimicrobials before antibiotics: war, peace, and disinfectants. Palgrave Communications. 2019; 5(1): 45.

[218]

Peltan ID, Brown SM, Bledsoe JR, et al. ED door-to-antibiotic time and long-term mortality in sepsis. Chest. 2019; 155(5): 938-946.

[219]

Liu VX, Fielding-Singh V, Greene JD, et al. The timing of early antibiotics and hospital mortality in sepsis. Am J Respir Crit Care Med. 2017; 196(7): 856-863.

[220]

Baran A, Kwiatkowska A, Potocki L. Antibiotics and bacterial resistance-a short story of an endless arms race. Int J Mol Sci. 2023; 24(6).

[221]

Klompas M, Calandra T, Singer M. Antibiotics for sepsis-finding the equilibrium. Jama. 2018; 320(14): 1433-1434.

[222]

Stocker M, Klingenberg C, Navér L, et al. Less is more: antibiotics at the beginning of life. Nat Commun. 2023; 14(1): 2423.

[223]

Frost I, Balachandran A, Paulin-Deschenaux S, Sati H, Hasso-Agopsowicz M. The approach of World Health Organization to articulate the role and assure impact of vaccines against antimicrobial resistance. Hum Vaccin Immunother. 2022; 18(6): 2145069.

[224]

Steinhagen F, Schmidt SV, Schewe JC, Peukert K, Klinman DM, Bode C. Immunotherapy in sepsis—brake or accelerate? Pharmacol Ther. 2020; 208: 107476.

[225]

Angus DC. The search for effective therapy for sepsis: back to the drawing board? Jama. 2011; 306(23): 2614-2615.

[226]

van der Poll T. Immunotherapy of sepsis. The Lancet Infectious Diseases. 2001; 1(3): 165-174.

[227]

Reck M, Rodriguez-Abreu D, Robinson AG, et al. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. The New England journal of medicine. 2016; 375(19): 1823-1833.

[228]

Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. The New England journal of medicine. 2015; 372(26): 2521-2532.

[229]

Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. The New England journal of medicine. 2015; 373(17): 1627-1639.

[230]

Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. The New England journal of medicine. 2016; 375(19): 1856-1867.

[231]

Motzer RJ, Escudier B, McDermott DF, et al. Nivolumab versus everolimus in advanced renal-cell carcinoma. The New England journal of medicine. 2015; 373(19): 1803-1813.

[232]

Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. The New England journal of medicine. 2015; 373(2): 123-135.

[233]

Rittmeyer A, Barlesi F, Waterkamp D, et al. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet. 2017; 389(10066): 255-265.

[234]

Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015; 160(1-2): 48-61.

[235]

Brown SD, Warren RL, Gibb EA, et al. Neo-antigens predicted by tumor genome meta-analysis correlate with increased patient survival. Genome Res. 2014; 24(5): 743-750.

[236]

Sun JY, Zhang D, Wu S, et al. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomark Res. 2020; 8: 35.

[237]

Chang KC, Burnham CA, Compton SM, et al. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Critical care. 2013; 17(3): R85.

[238]

Wu H, Tang T, Deng H, et al. Immune checkpoint molecule Tim-3 promotes NKT cell apoptosis and predicts poorer prognosis in Sepsis. Clin Immunol. 2023; 254: 109249.

[239]

Lou JS, Wang JF, Fei MM, et al. Targeting lymphocyte activation gene 3 to reverse T-lymphocyte dysfunction and improve survival in murine polymicrobial sepsis. The Journal of infectious diseases. 2020; 222(6): 1051-1061.

[240]

Rittirsch D, Huber-Lang MS, Flierl MA, Ward PA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009; 4(1): 31-36.

[241]

Leendertse M, Willems RJ, Giebelen IA, et al. Cecal ligation and puncture induced sepsis impairs host defense against Enterococcus faecium peritonitis. Intensive Care Med. 2009; 35(5): 924-932.

[242]

Kasuda S, Matsui H, Ono S, et al. Von Willebrand factor-dependent inflammatory responses in mouse septic model by cecal ligation and puncture. Blood. 2014; 124(21): 2773-2773.

[243]

Luna CM, Sibila O, Agusti C, Torres A. Animal models of ventilator-associated pneumonia. Eur Respir J. 2009; 33(1): 182-188.

[244]

Sécher T, Dalonneau E, Ferreira M, et al. In a murine model of acute lung infection, airway administration of a therapeutic antibody confers greater protection than parenteral administration. J Control Release. 2019; 303: 24-33.

[245]

London NR, Zhu W, Bozza FA, et al. Targeting Robo4-dependent slit signaling to survive the cytokine storm in sepsis and influenza. Sci Transl Med. 2010; 2(23): 23ra19.

[246]

Zhao D, Tang M, Ma Z, et al. Synergy of bacteriophage depolymerase with host immunity rescues sepsis mice infected with hypervirulent Klebsiella pneumoniae of capsule type K2. Virulence. 2024; 15(1): 2415945.

[247]

Joshi PR, Adhikari S, Onah C, et al. Lung-innervating nociceptor sensory neurons promote pneumonic sepsis during carbapenem-resistant Klebsiella pneumoniae lung infection. Sci Adv. 2024; 10(36): eadl6162.

[248]

Byrnes D, Masterson CH, Brady J, et al. Differential effects of cytokine versus hypoxic preconditioning of human mesenchymal stromal cells in pulmonary sepsis induced by antimicrobial-resistant Klebsiella pneumoniae. Pharmaceuticals (Basel). 2023; 16(2).

[249]

Secher T, Dalonneau E, Ferreira M, et al. In a murine model of acute lung infection, airway administration of a therapeutic antibody confers greater protection than parenteral administration. J Control Release. 2019; 303: 24-33.

[250]

Osuchowski MF, Ayala A, Bahrami S, et al. Minimum quality threshold in pre-clinical sepsis studies (MQTiPSS): an international expert consensus initiative for improvement of animal modeling in sepsis. Intensive Care Med Exp. 2018; 6(1): 26.

[251]

Barichello T, Generoso JS, Singer M, Dal-Pizzol F. Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care. 2022; 26(1): 14.

[252]

Pierrakos C, Velissaris D, Bisdorff M, Marshall JC, Vincent JL. Biomarkers of sepsis: time for a reappraisal. Crit Care. 2020; 24(1): 287.

[253]

Liu D, Huang SY, Sun JH, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options. Mil Med Res. 2022; 9(1): 56.

[254]

Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther. 2021; 6(1): 407.

[255]

Goodacre S, Fuller GW. New guidance on initial antimicrobial treatment of sepsis. Bmj. 2022; 377: o1354.

[256]

Widmer AF. Infection control and prevention strategies in the ICU. Intensive Care Medicine. 1994; 20(4): S7-S11.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/