TDP-43/ALKBH5-mediated m6A modification of CDC25A mRNA promotes glioblastoma growth by facilitating G1/S cell cycle transition

Yunxiao Zhang , Sidi Xie , Weizhao Li , Junwei Gu , Xi-an Zhang , Bowen Ni , Ziyu Wang , Runwei Yang , Haimin Song , Yaxuan Zhong , Peiting Huang , Jinyao Zhou , Yongfu Cao , Jing Guo , Yawei Liu , Songtao Qi , Hai Wang

MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70108

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70108 DOI: 10.1002/mco2.70108
ORIGINAL ARTICLE

TDP-43/ALKBH5-mediated m6A modification of CDC25A mRNA promotes glioblastoma growth by facilitating G1/S cell cycle transition

Author information +
History +
PDF

Abstract

Glioblastoma (GBM) exhibits significant intratumor heterogeneity (ITH), indicating the presence of tumor cells with diverse growth rates. Here, we aimed to identify fast-growing cells in GBM and elucidate the underlying mechanisms. Precisely targeting these cells could offer an improved treatment option. Our results found that targeting ALKBH5 expression impaired GBM proliferation and tumor stemness. Nuclear but not overall expression of ALKBH5 differs between monoclonal cells derived from the same patient with different proliferation rates. Mechanistically, ALKBH5 interacted with TAR DNA-binding protein 43 (TDP-43) in fast-growing cells. Furthermore, TDP-43 facilitated the nuclear localization of ALKBH5 and its binding to cell division cycle 25A (CDC25A) pre-mRNA. The TDP-43/ALKBH5 complex regulates CDC25A mRNA splicing via N6-methyladenosine (m6A) demethylation to maintain the expression of its oncogenic isoform (CDC25A-1), ultimately promoting the G1/S phase transition and growth of GBM cells. TRAD01 selectively targeted the interaction between TDP-43 and ALKBH5, leading to significant antitumor effects both in vitro and in vivo. Our study identified a novel epigenetic mechanism by which TDP-43/ALKBH5 contributes to GBM growth via m6A modification and alternative splicing. Therefore, targeting the TDP-43/ALKBH5 axis might be a promising therapeutic strategy for GBM patients.

Keywords

ALKBH5 / CDC25A / glioblastoma / intratumor heterogeneity / TDP-43

Cite this article

Download citation ▾
Yunxiao Zhang, Sidi Xie, Weizhao Li, Junwei Gu, Xi-an Zhang, Bowen Ni, Ziyu Wang, Runwei Yang, Haimin Song, Yaxuan Zhong, Peiting Huang, Jinyao Zhou, Yongfu Cao, Jing Guo, Yawei Liu, Songtao Qi, Hai Wang. TDP-43/ALKBH5-mediated m6A modification of CDC25A mRNA promotes glioblastoma growth by facilitating G1/S cell cycle transition. MedComm, 2025, 6(3): e70108 DOI:10.1002/mco2.70108

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 2021; 23(8): 1231-1251.

[2]

Jacob F, Salinas RD, Zhang DY, et al. A patient-derived glioblastoma organoid model and Biobank recapitulates inter-and intra-tumoral heterogeneity. Cell. 2020; 180(1): 188-204.

[3]

Reardon DA, Wen PY. Glioma in 2014: unravelling tumour heterogeneity-implications for therapy. Nat Rev Clin Oncol. 2015; 12(2): 69-70.

[4]

Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G. High-grade glioma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014; 25(suppl 3): iii93-101.

[5]

Tang T, Liang H, Wei W, et al. Aloperine targets lysosomes to inhibit late autophagy and induces cell death through apoptosis and paraptosis in glioblastoma. Mol Biomed. 2023; 4(1): 42.

[6]

Ahmed T. Oncolytic virotherapy using neural stem cells as a novel treatment option for glioblastoma multiforme. MedComm—Oncol. 2023; 2(1):e23

[7]

Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science. 2014; 344(6190): 1396-1401.

[8]

Yabo YA, Niclou SP, Golebiewska A. Cancer cell heterogeneity and plasticity: a paradigm shift in glioblastoma. Neuro Oncol. 2022; 24(5): 669-682.

[9]

Cihoric N, Tsikkinis A, Minniti G, et al. Current status and perspectives of interventional clinical trials for glioblastoma—analysis of ClinicalTrials.gov. Radiat Oncol. 2017; 12: 1.

[10]

Liau LM. Glioblastoma: molecular mechanisms and clinical trials. Neurosurg Clin N Am. 2021; 32(2): xiii.

[11]

Mandel JJ, Yust-Katz S, Patel AJ, et al. Inability of positive phase II clinical trials of investigational treatments to subsequently predict positive phase III clinical trials in glioblastoma. Neuro Oncol. 2018; 20(1): 113-122.

[12]

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022; 12(1): 31-46.

[13]

Kinker GS, Greenwald AC, Tal R, et al. Pan-cancer single-cell RNA-seq identifies recurring programs of cellular heterogeneity. Nat Genet. 2020; 52(11): 1208-1218.

[14]

Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974; 71(10): 3971-3975.

[15]

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012; 485(7397): 201-206.

[16]

Liu N, Pan T. N6-methyladenosine-encoded epitranscriptomics. Nat Struct Mol Biol. 2016; 23(2): 98-102.

[17]

Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014; 505(7481): 117-120.

[18]

Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014; 10(2): 93-95.

[19]

Liu P, Li F, Lin J, et al. m(6)A-independent genome-wide METTL3 and METTL14 redistribution drives the senescence-associated secretory phenotype. Nat Cell Biol. 2021; 23(4): 355-365.

[20]

Ping XL, Sun BF, Wang L, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014; 24(2): 177-189.

[21]

Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011; 7(12): 885-887.

[22]

Zheng G, Dahl JA, Niu Y, et al. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013; 49(1): 18-29.

[23]

Liao S, Sun H, Xu C. YTH domain: a family of N(6)-methyladenosine (m(6)A) readers. Genom Proteom Bioinform. 2018; 16(2): 99-107.

[24]

He L, Li H, Wu A, et al. Functions of N6-methyladenosine and its role in cancer. Mol Cancer. 2019; 18(1): 176.

[25]

Zhang C, Samanta D, Lu H, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA. Proc Natl Acad Sci U S A. 2016; 113(14): E2047-E2056.

[26]

Zhang S, Zhao BS, Zhou A, et al. m(6)A demethylase ALKBH5 maintains tumorigenicity of glioblastoma stem-like cells by sustaining FOXM1 expression and cell proliferation program. Cancer Cell. 2017; 31(4): 591-606.

[27]

Shen C, Sheng Y, Zhu AC, et al. RNA demethylase ALKBH5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia. Cell Stem Cell. 2020; 27(1): 64-80.

[28]

Roskoski RJ. Properties of FDA-approved small molecule protein kinase inhibitors: a 2022 update. Pharmacol Res. 2022; 175: 106037.

[29]

Cohen P, Cross D, Janne PA. Kinase drug discovery 20 years after imatinib: progress and future directions. Nat Rev Drug Discov. 2021; 20(7): 551-569.

[30]

Wang S, Chen FE. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur J Med Chem. 2022; 236: 114334.

[31]

Liu S, Chen L, Zhang Y, et al. M6AREG: m6A-centered regulation of disease development and drug response. Nucleic Acids Res. 2023; 51(D1):D1333.

[32]

Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 2012; 134(43): 17963-17971.

[33]

Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015; 43(1): 373-384.

[34]

Huang Y, Su R, Sheng Y, et al. Small-molecule targeting of oncogenic FTO demethylase in acute myeloid leukemia. Cancer Cell. 2019; 35(4): 677-691.

[35]

Broyde J, Simpson DR, Murray D, et al. Oncoprotein-specific molecular interaction maps (SigMaps) for cancer network analyses. Nat Biotechnol. 2021; 39(2): 215-224.

[36]

Kato Y, Katsuki T, Kokubo H, Masuda A, Saga Y. Dazl is a target RNA suppressed by mammalian NANOS2 in sexually differentiating male germ cells. Nat Commun. 2016; 7: 11272.

[37]

Arnold ES, Ling SC, Huelga SC, et al. ALS-linked TDP-43 mutations produce aberrant RNA splicing and adult-onset motor neuron disease without aggregation or loss of nuclear TDP-43. Proc Natl Acad Sci U S A. 2013; 110(8): E736-E745.

[38]

Brown AL, Wilkins OG, Keuss MJ, et al. TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature. 2022; 603(7899): 131-137.

[39]

Wegener S, Hampe W, Herrmann D, Schaller HC. Alternative splicing in the regulatory region of the human phosphatases CDC25A and CDC25C. Eur J Cell Biol. 2000; 79(11): 810-815.

[40]

Tang W, Xu N, Zhou J, et al. ALKBH5 promotes PD-L1-mediated immune escape through m6A modification of ZDHHC3 in glioma. Cell Death Discov. 2022; 8(1): 497.

[41]

Dong F, Qin X, Wang B, et al. ALKBH5 facilitates hypoxia-induced paraspeckle assembly and IL8 secretion to generate an immunosuppressive tumor microenvironment. Cancer Res. 2021; 81(23): 5876-5888.

[42]

Chang G, Xie GS, Ma L, et al. USP36 promotes tumorigenesis and drug sensitivity of glioblastoma by deubiquitinating and stabilizing ALKBH5. Neuro Oncol. 2023; 25(5): 841-853.

[43]

Shen T, Huang S. The role of Cdc25A in the regulation of cell proliferation and apoptosis. Anticancer Agents Med Chem. 2012; 12(6): 631-639.

[44]

Ray D, Terao Y, Nimbalkar D, et al. Hemizygous disruption of Cdc25A inhibits cellular transformation and mammary tumorigenesis in mice. Cancer Res. 2007; 67(14): 6605-6611.

[45]

Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005; 434(7035): 864-870.

[46]

Pereg Y, Liu BY, O’Rourke KM, et al. Ubiquitin hydrolase Dub3 promotes oncogenic transformation by stabilizing Cdc25A. Nat Cell Biol. 2010; 12(4): 400-406.

[47]

Vijayakumar S, Liu G, Rus IA, et al. High-frequency canonical Wnt activation in multiple sarcoma subtypes drives proliferation through a TCF/beta-catenin target gene, CDC25A. Cancer Cell. 2011; 19(5): 601-612.

[48]

Beyeler S, Joly S, Fries M, et al. Targeting the bHLH transcriptional networks by mutated E proteins in experimental glioma. Stem Cells. 2014; 32(10): 2583-2595.

[49]

Liang J, Cao R, Zhang Y, et al. PKM2 dephosphorylation by Cdc25A promotes the Warburg effect and tumorigenesis. Nat Commun. 2016; 7: 12431.

[50]

Wright CJ, Smith C, Jiggins CD. Alternative splicing as a source of phenotypic diversity. Nat Rev Genet. 2022; 23(11): 697-710.

[51]

Ule J, Blencowe BJ. Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol Cell. 2019; 76(2): 329-345.

[52]

Hakim NH, Majlis BY, Suzuki H, Tsukahara T. Neuron-specific splicing. Biosci Trends. 2017; 11(1): 16-22.

[53]

Nehls J, Koppensteiner H, Brack-Werner R, Floss T, Schindler M. HIV-1 replication in human immune cells is independent of TAR DNA binding protein 43 (TDP-43) expression. PLoS One. 2014; 9(8): e105478.

[54]

Liao YZ, Ma J, Dou JZ. The role of TDP-43 in neurodegenerative disease. Mol Neurobiol. 2022; 59(7): 4223-4241.

[55]

Suk TR, Rousseaux M. The role of TDP-43 mislocalization in amyotrophic lateral sclerosis. Mol Neurodegener. 2020; 15(1): 45.

[56]

Bhardwaj A, Myers MP, Buratti E, Baralle FE. Characterizing TDP-43 interaction with its RNA targets. Nucleic Acids Res. 2013; 41(9): 5062-5074.

[57]

Tollervey JR, Curk T, Rogelj B, et al. Characterizing the RNA targets and position-dependent splicing regulation by TDP-43. Nat Neurosci. 2011; 14(4): 452-458.

[58]

Wang A, Conicella AE, Schmidt HB, et al. A single N-terminal phosphomimic disrupts TDP-43 polymerization, phase separation, and RNA splicing. EMBO J. 2018; 37(5).

[59]

Ke H, Zhao L, Zhang H, et al. Loss of TDP43 inhibits progression of triple-negative breast cancer in coordination with SRSF3. Proc Natl Acad Sci U S A. 2018; 115(15): E3426-E3435.

[60]

Polymenidou M, Lagier-Tourenne C, Hutt KR, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011; 14(4): 459-468.

[61]

Meng X, Franklin DA, Dong J, Zhang Y. MDM2-p53 pathway in hepatocellular carcinoma. Cancer Res. 2014; 74(24): 7161-7167.

[62]

Konopleva M, Martinelli G, Daver N, et al. MDM2 inhibition: an important step forward in cancer therapy. Leukemia. 2020; 34(11): 2858-2874.

[63]

Abdul RA, Bauer S, Suarez C, et al. Co-Targeting of MDM2 and CDK4/6 with siremadlin and ribociclib for the treatment of patients with well-differentiated or dedifferentiated liposarcoma: results from a proof-of-concept, phase Ib study. Clin Cancer Res. 2022; 28(6): 1087-1097.

[64]

Haronikova L, Bonczek O, Zatloukalova P, et al. Resistance mechanisms to inhibitors of p53-MDM2 interactions in cancer therapy: can we overcome them?. Cell Mol Biol Lett. 2021; 26(1): 53.

[65]

Yi GZ, Huang G, Guo M, et al. Acquired temozolomide resistance in MGMT-deficient glioblastoma cells is associated with regulation of DNA repair by DHC2. Brain. 2019; 142(8): 2352-2366.

[66]

Xie S, Zhang Y, Peng T, et al. TMEFF2 promoter hypermethylation is an unfavorable prognostic marker in gliomas. Cancer Cell Int. 2021; 21(1): 148.

[67]

Li Y, Wang X, Qi S, et al. Spliceosome-regulated RSRP1-dependent NF-kappaB activation promotes the glioblastoma mesenchymal phenotype. Neuro Oncol. 2021; 23(10): 1693-1708.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

258

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/