Early-life antibiotic exposure aggravates hepatic steatosis through enhanced endotoxemia and lipotoxic effects driven by gut Parabacteroides

Xi Zhang , Darren Chak Lun Chan , Jie Zhu , Daniel Zhen Ye Sin , Ye Peng , Matthew Kwok Leong Wong , Wenyi Zhu , Yee Tsui , Andrea M. Haqq , Joseph Y. Ting , Anita Kozyrskyj , Francis Ka Leung Chan , Siew Chien Ng , Hein Min Tun

MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70104

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70104 DOI: 10.1002/mco2.70104
ORIGINAL ARTICLE

Early-life antibiotic exposure aggravates hepatic steatosis through enhanced endotoxemia and lipotoxic effects driven by gut Parabacteroides

Author information +
History +
PDF

Abstract

Compelling evidence supports a link between early-life gut microbiota and the metabolic outcomes in later life. Using an early-life antibiotic exposure model in BALB/c mice, we investigated the life-course impact of prenatal and/or postnatal antibiotic exposures on the gut microbiome of offspring and the development of metabolic dysfunction-associated steatotic liver disease (MASLD). Compared to prenatal antibiotic exposure alone, postnatal antibiotic exposure more profoundly affected gut microbiota development and succession, which led to aggravated endotoxemia and metabolic dysfunctions. This was primarily resulted from the overblooming of gut Parabacteroides and hepatic accumulation of cytotoxic lysophosphatidyl cholines (LPCs), which acted in conjunction with LPS derived from Parabacteroides distasonis (LPS_PA) to induce cholesterol metabolic dysregulations, endoplasmic reticulum (ER) stress and apoptosis. Integrated serum metabolomics, hepatic lipidomics and transcriptomics revealed enhanced glycerophospholipid hydrolysis and LPC production in association with the upregulation of PLA2G10, the gene controlling the expression of the group X secretory Phospholipase A2s (sPLA2-X). Taken together, our results show microbial modulations on the systemic MASLD pathogenesis and hepatocellular lipotoxicity pathways following early-life antibiotic exposure, hence help inform refined clinical practices to avoid any prolonged maternal antibiotic administration in early life and potential gut microbiota-targeted intervention strategies.

Keywords

antibiotics / early life / gut microbiota / lipotoxicity / metabolic dysfunction-associated steatotic liver disease

Cite this article

Download citation ▾
Xi Zhang, Darren Chak Lun Chan, Jie Zhu, Daniel Zhen Ye Sin, Ye Peng, Matthew Kwok Leong Wong, Wenyi Zhu, Yee Tsui, Andrea M. Haqq, Joseph Y. Ting, Anita Kozyrskyj, Francis Ka Leung Chan, Siew Chien Ng, Hein Min Tun. Early-life antibiotic exposure aggravates hepatic steatosis through enhanced endotoxemia and lipotoxic effects driven by gut Parabacteroides. MedComm, 2025, 6(3): e70104 DOI:10.1002/mco2.70104

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med. 2015; 21(2): 109-117.

[2]

Rautava S, Luoto R, Salminen S, Isolauri E. Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol. 2012; 9(12): 565-576.

[3]

Koenig JE, Spor A, Scalfone N, et al. Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A. 2011; 108(Suppl 1): 4578-4585.

[4]

Mueller NT, Whyatt R, Hoepner L, et al. Prenatal exposure to antibiotics, cesarean section and risk of childhood obesity. Int J Obes (Lond). 2015; 39(4): 665-670. 10.1038/ijo.2014.180

[5]

Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO. Development of the human infant intestinal microbiota. PLoS Biol. 2007; 5(7): e177.

[6]

Ainonen S, Tejesvi MV, Mahmud MdR, et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. Pediatr Res. 2022; 91(1): 154-162.

[7]

Le Doare K, O’driscoll M, Turner K, et al. Intrapartum antibiotic chemoprophylaxis policies for the prevention of group b streptococcal disease worldwide: systematic review. Clin Infect Dis 2017; 65(Suppl 1): S143-S151.

[8]

Chung H, Pamp SJ, Hill JA, et al. Gut immune maturation depends on colonization with a host-specific microbiota. Cell. 2012; 149(7): 1578-1593. 10.1016/j.cell.2012.04.037

[9]

Dierikx TH, Visser DH, Benninga MA, et al. The influence of prenatal and intrapartum antibiotics on intestinal microbiota colonisation in infants: a systematic review. J Infect. 2020; 81(3): 190-204. 10.1016/j.jinf.2020.05.002

[10]

Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012; 489(7415): 231-241.

[11]

Faye AS, Allin KH, Iversen AT, et al. Antibiotic use as a risk factor for inflammatory bowel disease across the ages: a population-based cohort study. Gut. 2023; 72(4): 663-670. gutjnl-2022-327845. 10.1136/gutjnl-2022-327845

[12]

Rinella ME, Lazarus JV, Ratziu V, et al. A multi-society Delphi consensus statement on new fatty liver disease nomenclature. J Hepatol. 2023; 78(6): 1966-1986. 10.1016/j.jhep.2023.06.003

[13]

Lim GEH, Tang A, Ng CH, et al. An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD. Clin Gastroenterol Hepatol. 2023; 21(3): 619-629.e617.

[14]

Friedman SL, Neuschwander-Tetri BA, Rinella M, Sanyal AJ. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018; 24(7): 908-922.

[15]

Nassir F. NAFLD: mechanisms, treatments, and biomarkers. Biomolecules. 2022; 12(6): 824. 10.3390/biom12060824

[16]

Huang T, Yu B, Zhou X, et al. Exploration of the link between COVID-19 and alcoholic hepatitis from the perspective of bioinformatics and systems biology. MedComm. 2023; 2(1): e42.

[17]

Lim GEH, Nakanishi N, Kawai T, et al. An observational data meta-analysis on the differences in prevalence and risk factors between MAFLD vs NAFLD. Clin Gastroenterol Hepatol. 2021; 21(3): 619-629.e617.

[18]

Martin-Mateos R, Albillos A. The role of the gut-liver axis in metabolic dysfunction-associated fatty liver disease. Front Immunol. 2021; 12: 660179.

[19]

Zeybel M, Arif M, Li X, et al. Multiomics analysis reveals the impact of microbiota on host metabolism in hepatic steatosis. Adv Sci (Weinh). 2022;e2104373.

[20]

Hamilton MK, Boudry G, Lemay DG, Raybould HE. Changes in intestinal barrier function and gut microbiota in high-fat diet-fed rats are dynamic and region dependent. Am J Physiol Gastrointest Liver Physiol. 2015; 308(10): G840-851.

[21]

Brun P, Castagliuolo I, Leo VDi, et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 2007; 292(3): G518-525.

[22]

Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007; 56(8): 1761-1772.

[23]

Min HK, Kapoor A, Fuchs M, et al. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metab. 2012; 15(5): 665-674.

[24]

Van Rooyen DM, Larter CZ, Haigh WG, et al. Hepatic free cholesterol accumulates in obese, diabetic mice and causes nonalcoholic steatohepatitis. Gastroenterology. 2011; 141(4): 1393-1403.e1391-1395.

[25]

Henkel A, Green RM. The unfolded protein response in fatty liver disease. Semin Liver Dis. 2013; 33(4): 321-329.

[26]

Musso G, Cassader M, Paschetta E, Gambino R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology. 2018; 155(1): 282-302.e288.

[27]

Cho I, Yamanishi S, Cox L, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012; 488(7412): 621-626.

[28]

Cox LM, Yamanishi S, Sohn J, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014; 158(3): 705-721.

[29]

Wang L, Wang S, Zhang Q, et al. The role of the gut microbiota in health and cardiovascular diseases. Mol Biomed. 2022; 3(1): 30.

[30]

Trasande L, Blustein J, Liu M, et al. Infant antibiotic exposures and early-life body mass. Int J Obes (Lond). 2013; 37(1): 16-23.

[31]

Ajslev TA, Andersen CS, Gamborg M, Sorensen TI, Jess T. Childhood overweight after establishment of the gut microbiota: the role of delivery mode, pre-pregnancy weight and early administration of antibiotics. Int J Obes (Lond). 2011; 35(4): 522-529.

[32]

Korpela K, Salonen A, Virta LJ, et al. Association of early-life antibiotic use and protective effects of breastfeeding: role of the intestinal microbiota. JAMA Pediatr. 2016; 170(8): 750-757.

[33]

Imoto N, Kano C, Aoyagi Y, et al. Administration of beta-lactam antibiotics and delivery method correlate with intestinal abundances of Bifidobacteria and Bacteroides in early infancy, in Japan. Sci Rep. 2021; 11(1): 6231.

[34]

Clavenna A, Bonati M. Differences in antibiotic prescribing in paediatric outpatients. Arch Dis Child. 2011; 96(6): 590-595.

[35]

Schulfer AF, Battaglia T, Alvarez Y, et al. Intergenerational transfer of antibiotic-perturbed microbiota enhances colitis in susceptible mice. Nat Microbiol. 2018; 3: 234-242.

[36]

Carter CP, Howles PN, Hui DY. Genetic variation in cholesterol absorption efficiency among inbred strains of mice. J Nutr. 1997; 127: 1344-1348.

[37]

Dueland S, France D, Wang SL, Trawick JD, Davis RA. Cholesterol 7alpha-hydroxylase influences the expression of hepatic apoA-I in two inbred mouse strains displaying different susceptibilities to atherosclerosis and in hepatoma cells. J Lipid Res. 1997; 38: 1445-1453.

[38]

Kirk EA, Moe GL, Caldwell MT, et al. Hyper-and hypo-responsiveness to dietary fat and cholesterol among inbred mice: searching for level and variability genes. J Lipid Res. 1995; 36: 1522-1532.

[39]

Kumashiro N, Erion DM, Zhang D, et al. Cellular mechanism of insulin resistance in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A. 2011; 108: 16381-16385.

[40]

Dial EJ, Tran DM, Romero JJ, Zayat M, Lichtenberger LM. A direct role for secretory phospholipase A2 and lysophosphatidylcholine in the mediation of LPS-induced gastric injury. Shock. 2010; 33: 634-638.

[41]

Han MS, Park SY, Shinzawa K, et al. Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. J Lipid Res. 2008; 49: 84-97.

[42]

Takahashi M, Okazaki H, Ogata Y, et al. Lysophosphatidylcholine induces apoptosis in human endothelial cells through a p38-mitogen-activated protein kinase-dependent mechanism. Atherosclerosis. 2002; 161: 387-394.

[43]

Cha MH, Lee SM, Jung J. Lysophosphatidylcholine induces expression of genes involved in cholesterol biosynthesis in THP-1 derived macrophages. Steroids. 2018; 139: 28-34.

[44]

Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 2016; 65: 1038-1048.

[45]

Cox LM, Blaser MJ. Pathways in microbe-induced obesity. Cell Metab. 2013; 17: 883-894.

[46]

Schwartz DJ, Langdon AE, Dantas G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med. 2020; 12: 82.

[47]

Palleja A, Mikkelsen KH, Forslund SK, et al. Recovery of gut microbiota of healthy adults following antibiotic exposure. Nat Microbiol. 2018; 3: 1255-1265.

[48]

Stewart CJ, Ajami NJ, O’brien JL, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. 2018; 562: 583-588.

[49]

Korpela K, Salonen A, Virta LJ, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016; 7: 10410.

[50]

Vangay P, Ward T, Gerber JS, Knights D. Antibiotics, pediatric dysbiosis, and disease. Cell Host Microbe. 2015; 17: 553-564.

[51]

Bar-Oz B, Bulkowstein M, Benyamini L, et al. Use of antibiotic and analgesic drugs during lactation. Drug Saf. 2003; 26: 925-935.

[52]

Million M, Angelakis E, Paul M, et al. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb Pathog. 2012; 53: 100-108.

[53]

Blaser MJ. The theory of disappearing microbiota and the epidemics of chronic diseases. Nat Rev Immunol. 2017; 17: 461-463.

[54]

Yan W, Luo B, Zhang X, Ni Y, Tian F. Association and occurrence of bifidobacterial phylotypes between breast milk and fecal microbiomes in mother-infant dyads during the first 2 years of life. Front Microbiol. 2021; 12: 669442.

[55]

Woo JG, Martin LJ. Does breastfeeding protect against childhood obesity? Moving beyond observational evidence. Curr Obes Rep. 2015; 4: 207-216.

[56]

Wei W, Wong CC, Jia Z, et al. Parabacteroides distasonis uses dietary inulin to suppress NASH via its metabolite pentadecanoic acid. Nat Microbiol. 2023; 8: 1534-1548.

[57]

Zhao Q, Dai M-Y, Huang R-Y, et al. Parabacteroides distasonis ameliorates hepatic fibrosis potentially via modulating intestinal bile acid metabolism and hepatocyte pyroptosis in male mice. Nat Commun. 2023; 14: 1829.

[58]

Ezeji JC, Sarikonda DK, Hopperton A, et al. Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes. 2021; 13: 1922241.

[59]

Feingold KR, Staprans I, Memon Ra, et al. Endotoxin rapidly induces changes in lipid metabolism that produce hypertriglyceridemia: low doses stimulate hepatic triglyceride production while high doses inhibit clearance. J Lipid Res. 1992; 33: 1765-1776.

[60]

d’Hennezel E, Abubucker S, Murphy LO, Cullen TW. Total lipopolysaccharide from the human gut microbiome silences Toll-like receptor signaling. mSystems. 2017; 2.

[61]

Carpino G, Del Ben M, Pastori D, et al. Increased liver localization of lipopolysaccharides in human and experimental NAFLD. Hepatology. 2020; 72: 470-485.

[62]

Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J Lipid Res. 2016; 57: 1329-1338.

[63]

Hirsova P, Gores GJ. Death receptor-mediated cell death and proinflammatory signaling in nonalcoholic steatohepatitis. Cell Mol Gastroenterol Hepatol. 2014; 1: 17-27.

[64]

Huang H, Guo S, Chen Ya-Q, et al. Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway. MedComm. 2023; 4: e226.

[65]

Tam AB, Roberts LS, Chandra V, et al. The UPR activator ATF6 responds to proteotoxic and lipotoxic stress by distinct mechanisms. Dev Cell. 2018; 46: 327-343.e327.

[66]

Jones BE, Lo CR, Liu H, et al. Hepatocytes sensitized to tumor necrosis factor-alpha cytotoxicity undergo apoptosis through caspase-dependent and caspase-independent pathways. J Biol Chem. 2000; 275: 705-712.

[67]

Diczfalusy U, Olofsson KE, Carlsson A-M, et al. Marked upregulation of cholesterol 25-hydroxylase expression by lipopolysaccharide. J Lipid Res. 2009; 50: 2258-2264.

[68]

Feingold KR, Hardardottir I, Memon R, et al. Effect of endotoxin on cholesterol biosynthesis and distribution in serum lipoproteins in Syrian hamsters. J Lipid Res. 1993; 34: 2147-2158.

[69]

Memon RA, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. In vivo and in vitro regulation of sterol 27-hydroxylase in the liver during the acute phase response. Potential role of hepatocyte nuclear factor-1. J Biol Chem. 2001; 276: 30118-30126.

[70]

Shridas P, Bailey WM, Gizard F, et al. Group X secretory phospholipase A2 negatively regulates ABCA1 and ABCG1 expression and cholesterol efflux in macrophages. Arterioscler Thromb Vasc Biol. 2010; 30: 2014-2021.

[71]

Pacifici GM. Placental transfer of antibiotics administered to the mother: a review. Int J Clin Pharmacol Ther. 2006; 44: 57-63.

[72]

Tang X, Wang W, Hong G, et al. Gut microbiota-mediated lysophosphatidylcholine generation promotes colitis in intestinal epithelium-specific Fut2 deficiency. J Biomed Sci. 2021; 28: 20.

[73]

Xu HM, Huang H-Li, Liu Y-Di, et al. Selection strategy of dextran sulfate sodium-induced acute or chronic colitis mouse models based on gut microbial profile. BMC Microbiol. 2021; 21: 279.

[74]

Cui Y, Zhang L, Wang X, et al. Roles of intestinal Parabacteroides in human health and diseases. FEMS Microbiol Lett. 2022; 369.

[75]

Liu S, Qin P, Wang J. High-fat diet alters the intestinal microbiota in streptozotocin-induced type 2 diabetic mice. Microorganisms. 2019; 7.

[76]

Kverka M, Zakostelska Z, Klimesova K, et al. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol. 2011; 163: 250-259.

[77]

Ferrell JM, Boehme S, Li F, Chiang JY. Cholesterol 7alpha-hydroxylase-deficient mice are protected from high-fat/high-cholesterol diet-induced metabolic disorders. J Lipid Res. 2016; 57: 1144-1154.

[78]

Pullinger CR, Eng C, Salen G, et al. Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J Clin Invest. 2002; 110: 109-117.

[79]

Leclercq S, Mian FM, Stanisz AM, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cytokines and behavior. Nat Commun. 2017; 8: 15062.

[80]

Nobel YR, Cox LM, Kirigin FF, et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun. 2015; 6: 7486.

[81]

Kukolja S, Wright WE, Quay JF, et al. Oral absorption of cephalosporin antibiotics. 1. Synthesis, biological properties, and oral bioavailability of 7-(arylacetamido)-3-chloro cephalosporins in animals. J Med Chem. 1988; 31: 1987-1993.

[82]

Gunn PJ, Green CJ, Pramfalk C, Hodson L. In vitro cellular models of human hepatic fatty acid metabolism: differences between Huh7 and HepG2 cell lines in human and fetal bovine culturing serum. Physiol Rep. 2017; 5.

[83]

Bolyen E, Rideout JR, Dillon MR, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019; 37: 852-857.

[84]

Liu R, Hong J, Xu X, et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017; 23: 859-868.

[85]

Wen B, Mei Z, Zeng C, Liu S. metaX: a flexible and comprehensive software for processing metabolomics data. BMC Bioinformatics. 2017; 18: 183.

[86]

Westerhuis JA, Hoefsloot HCJ, Smit S, et al. Assessment of PLSDA cross validation. Metabolomics. 2008; 4: 81-89.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/