The emerging role of neutrophil extracellular traps in autoimmune and autoinflammatory diseases

Liuting Zeng , Wang Xiang , Wei Xiao , Yang Wu , Lingyun Sun

MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70101

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (3) : e70101 DOI: 10.1002/mco2.70101
REVIEW

The emerging role of neutrophil extracellular traps in autoimmune and autoinflammatory diseases

Author information +
History +
PDF

Abstract

Neutrophil extracellular traps (NETs) are unique fibrous structures released by neutrophils in response to various pathogens, exhibiting both anti-inflammatory and proinflammatory effects. In autoimmune conditions, NETs serve as crucial self-antigens triggering inflammatory cascades by activating the inflammasome and complement systems, disrupting self-tolerance mechanisms and accelerating autoimmune responses. Furthermore, NETs play a pivotal role in modulating immune cell activation, affecting adaptive immune responses. This review outlines the intricate relationship between NETs and various diseases, including inflammatory arthritis, systemic autoimmune diseases, Behçet’s disease, systemic lupus erythematosus, autoimmune kidney diseases, autoimmune skin conditions, systemic sclerosis, systemic vasculitis, and gouty arthritis. It highlights the potential of targeting NETs as a therapeutic strategy in autoimmune diseases. By examining the dynamic balance between NET formation and clearance in autoimmune conditions, this review offers critical insights and a theoretical foundation for future research on NET-related mechanisms. Advances in systems biology, flow cytometry, and single-cell multiomics sequencing have provided valuable tools for exploring the molecular mechanisms of neutrophils and NETs. These advancements have renewed focus on the role of neutrophils and NETs in autoimmune diseases, offering promising avenues for further investigation into their clinical implications.

Keywords

autoimmune kidney disease / autoimmune skin disease / autoinflammatory and autoimmune diseases / inflammatory arthritis / neutrophil extracellular traps / systemic vasculitis

Cite this article

Download citation ▾
Liuting Zeng, Wang Xiang, Wei Xiao, Yang Wu, Lingyun Sun. The emerging role of neutrophil extracellular traps in autoimmune and autoinflammatory diseases. MedComm, 2025, 6(3): e70101 DOI:10.1002/mco2.70101

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hedrick CC, Malanchi I. Neutrophils in cancer: heterogeneous and multifaceted. Nat Rev Immunol. 2022; 22(3): 173-187.

[2]

Németh T, Sperandio M, Mócsai A. Neutrophils as emerging therapeutic targets. Nat Rev Drug Discov. 2020; 19(4): 253-275.

[3]

Wang G, Wang J, Niu C, et al. Neutrophils: new critical regulators of glioma. Front Immunol. 2022; 13: 927233.

[4]

Kalafati L, Hatzioannou A, Hajishengallis G, et al. The role of neutrophils in trained immunity. Immunol Rev. 2023; 314(1): 142-157.

[5]

Aroca-Crevillén A, Vicanolo T, Ovadia S, Hidalgo A. Neutrophils in physiology and pathology. Annu Rev Pathol. 2024; 19: 227-259.

[6]

Danne C, Skerniskyte J, Marteyn B, Sokol H. Neutrophils: from IBD to the gut microbiota. Nat Rev Gastroenterol Hepatol. 2024; 21(3): 184-197.

[7]

Pollenus E, Gouwy M, Van den Steen PE. Neutrophils in malaria: the good, the bad or the ugly?. Parasite Immunol. 2022; 44(6): e12912.

[8]

Silva LM, Kim TS. Moutsopoulos NM. Neutrophils are gatekeepers of mucosal immunity. Immunol Rev. 2023; 314(1): 125-141.

[9]

Ma Y, Wei J, He W, Ren J. Neutrophil extracellular traps in cancer. MedComm. 2024; 5(8): e647.

[10]

Wigerblad G, Kaplan MJ. Neutrophil extracellular traps in systemic autoimmune and autoinflammatory diseases. Nat Rev Immunol. 2023; 23(5): 274-288.

[11]

Pérez-Figueroa E, Álvarez-Carrasco P, Ortega E, et al. Neutrophils: many ways to die. Front Immunol. 2021; 12: 631821.

[12]

Li Y, Wu Y, Huang J, et al. A variety of death modes of neutrophils and their role in the etiology of autoimmune diseases. Immunol Rev. 2024; 321(1): 280-299.

[13]

Herre M, Cedervall J, Mackman N, et al. Neutrophil extracellular traps in the pathology of cancer and other inflammatory diseases. Physiol Rev. 2023; 103(1): 277-312.

[14]

Charoensappakit A, Sae-Khow K, Leelahavanichkul A. Gut barrier damage and gut translocation of pathogen molecules in lupus, an impact of innate immunity (macrophages and neutrophils) in autoimmune disease. Int J Mol Sci. 2022; 23(15): 8223.

[15]

Vallejo J, Cochain C, Zernecke A, et al. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovasc Res. 2021; 117(13): 2537-2543.

[16]

Dai M, Xu Y, Gong G, et al. Roles of immune microenvironment in the female reproductive maintenance and regulation: novel insights into the crosstalk of immune cells. Front Immunol. 2023; 14: 1109122.

[17]

Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2021; 61(2): 194-211.

[18]

Castanheira FVS, Kubes P. Neutrophils during SARS-CoV-2 infection: friend or foe?. Immunol Rev. 2023; 314(1): 399-412.

[19]

Babatunde KA, Adenuga OF. Neutrophils in malaria: a double-edged sword role. Front Immunol. 2022; 13: 922377.

[20]

Kobayashi SD, DeLeo FR, Quinn MT. Microbes and the fate of neutrophils. Immunol Rev. 2023; 314(1): 210-228.

[21]

Dejas L, Santoni K, Meunier E, et al. Regulated cell death in neutrophils: from apoptosis to NETosis and pyroptosis. Semin Immunol. 2023; 70: 101849.

[22]

Klopf J, Brostjan C, Eilenberg W, et al. Neutrophil extracellular traps and their implications in cardiovascular and inflammatory disease. Int J Mol Sci. 2021; 22(2): 559.

[23]

Kupor D, Felder ML, Kodikalla S, et al. Nanoparticle-neutrophils interactions for autoimmune regulation. Adv Drug Deliv Rev. 2024; 209: 115316.

[24]

Demkow U. Molecular mechanisms of neutrophil extracellular trap (NETs) degradation. Int J Mol Sci. 2023; 24(5): 4896.

[25]

Rawat K, Shrivastava A. Neutrophils as emerging protagonists and targets in chronic inflammatory diseases. Inflamm Res. 2022; 71(12): 1477-1488.

[26]

Pillay J, den Braber I, Vrisekoop N, et al. In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood. 2010; 116(4): 625-627.

[27]

Chapple ILC, Hirschfeld J, Kantarci A, et al. The role of the host-neutrophil biology. Periodontol 2000. 2023.

[28]

Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science. 2004; 303(5663): 1532-1535.

[29]

Mantovani A, Cassatella MA, Costantini C, et al. Neutrophils in the activation and regulation of innate and adaptive immunity. Nat Rev Immunol. 2011; 11(8): 519-531.

[30]

Paudel S, Ghimire L, Jin L, et al. Regulation of emergency granulopoiesis during infection. Front Immunol. 2022; 13: 961601.

[31]

Denny MF, Yalavarthi S, Zhao W, et al. A distinct subset of proinflammatory neutrophils isolated ftom patients with systermic lupus erythematosus induces vascular damage and synthesizes type I IFNs. J Immunol. 2010; 184: 3284-3297.

[32]

Abramson SB, Given WP, Edelson HS, et al. Neutrophil aggregation induced by sera from patients with active systemic lupus erythematosus. Arthritis Rheum. 1983; 26: 630-636.

[33]

Brandt L, Hedberg H. Impaired phagocytosis by peripheral blood granulocytes in systemic lupus erythematosus. Scand J Haematol. 1969; 6: 348-353.

[34]

Courtney PA, Crockard AD, Williamnson K, et al. Increased apoptotic peripheral blood neutrophils in systemic lupus erythematosus: relations with disease activity, antibodies to double stranded DNA, and neutropenia. Ann Rheum Dis. 1999; 58: 309-314.

[35]

Wu CH, Hsieh SC, Li KJ, et al. Prermature telomere shortening in polymorphonuclear neutrophils from patients with systemic lupus erythematosus is related to the lupus disease activity. Lupus. 2007; 16: 265-272.

[36]

Hsieh SC, Wu TH, Tsai CY, et al. Abnormal in vitro CXCR2 modulation and defective cationic ion transporter expression on polymorphonuclear neutrophils responsible for hyporesponsiveness to IL-8 stimulation in patients with active systemic lupus erythematosus. Rheumatology (Oxford). 2008; 47(2): 150-157.

[37]

Chen K, Nishi H, Travers R, et al. Endocytosis of soluble immune complexes leads to their clearance by FcγRIIIB but induces neutrophil extracellular traps via FcγRIIA in vivo. Blood. 2012; 120(22): 4421-4431.

[38]

Geng L, Zhao J, Deng Y, et al. Human SLE variant NCF1-R90H promotes kidney damage and murine lupus through enhanced Tfh2 responses induced by defective efferocytosis of macrophages. Ann Rheum Dis. 2022; 81(2): 255-267.

[39]

Ma S, Jiang W, Zhang X, et al. Insights into the pathogenic role of neutrophils in systemic lupus erythematosus. Curr Opin Rheumatol. 2023; 35(2): 82-88.

[40]

Martínez-Baños D, Crispín JC, Lazo-Langner A, et al. Moderate and severe neutropenia in patients with systemic lupus erythematosus. Rheumatology (Oxford). 2006; 45(8): 994-998.

[41]

Zhang L, Chen W, Xia N, et al. Mesenchymal stem cells inhibit MRP-8/14 expression and neutrophil migration via TSG-6 in the treatment of lupus nephritis. Biochem Biophys Res Commun. 2023; 650: 87-95.

[42]

Fan X, Shu P, Wang Y, et al. Interactions between neutrophils and T-helper 17 cells. Front Immunol. 2023; 14: 1279837.

[43]

Cavalcante-Silva LHA, Carvalho DCM, Lima ÉA, et al. Neutrophils and COVID-19: the road so far. Int Immunopharmacol. 2021; 90: 107233.

[44]

Pulikkot S, Hu L, Chen Y, et al. Integrin regulators in neutrophils. Cells. 2022; 11(13): 2025.

[45]

Cao Z, Zhao M, Sun H, et al. Roles of mitochondria in neutrophils. Front Immunol. 2022; 13: 934444.

[46]

Bassani B, Cucchiara M, Butera A, et al. Neutrophils’ contribution to periodontitis and periodontitis-associated cardiovascular diseases. Int J Mol Sci. 2023; 24(20): 15370.

[47]

Tang J, Yan Z, Feng Q, et al. The roles of neutrophils in the pathogenesis of liver diseases. Front Immunol. 2021; 12: 625472.

[48]

Margraf A, Lowell CA, Zarbock A. Neutrophils in acute inflammation: current concepts and translational implications. Blood. 2022; 139(14): 2130-2144.

[49]

Cao W, Fan D. Neutrophils: a subgroup of neglected immune cells in ALS. Front Immunol. 2023; 14: 1246768.

[50]

Filep JG. Targeting neutrophils for promoting the resolution of inflammation. Front Immunol. 2022; 13: 866747.

[51]

Zhou W, Cao X, Xu Q, Qu J, Sun Y. The double-edged role of neutrophil heterogeneity in inflammatory diseases and cancers. MedComm. 2023; 4(4): e325.

[52]

Siwicki M, Kubes P. Neutrophils in host defense, healing, and hypersensitivity: dynamic cells within a dynamic host. J Allergy Clin Immunol. 2023; 151(3): 634-655.

[53]

Uriarte SM, Hajishengallis G. Neutrophils in the periodontium: interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol Rev. 2023; 314(1): 93-110.

[54]

Rosales C. Neutrophils vs. amoebas: immunity against the protozoan parasite Entamoeba histolytica. J Leukoc Biol. 2021; 110(6): 1241-1252.

[55]

Chou ML, Babamale AO, Walker TL, et al. Blood-brain crosstalk: the roles of neutrophils, platelets, and neutrophil extracellular traps in neuropathologies. Trends Neurosci. 2023; 46(9): 764-779.

[56]

Schoen J, Euler M, Schauer C, et al. Neutrophils’ extracellular trap mechanisms: from physiology to pathology. Int J Mol Sci. 2022; 23(21): 12855.

[57]

Chan L, Karimi N, Morovati S, et al. The roles of neutrophils in cytokine storms. Viruses. 2021; 13(11): 2318.

[58]

Nakabo S, Romo-Tena J, Kaplan MJ. Neutrophils as drivers of immune dysregulation in autoimmune diseases with skin manifestations. J Invest Dermatol. 2022; 142: 823-833. 3 Pt B.

[59]

Shafqat A, Khan JA, Alkachem AY, et al. How neutrophils shape the immune response: reassessing their multifaceted role in health and disease. Int J Mol Sci. 2023; 24(24): 17583.

[60]

Lee M, Lee SY, Bae YS. Emerging roles of neutrophils in immune homeostasis. BMB Rep. 2022; 55(10): 473-480.

[61]

Takei H, Araki A, Watanabe H. Rapid killing of human neutrophils by the potent activator (PMA) accompanied changes different from typical apoptosis. J Leukoc Biol. 1996; 59(2): 229-240.

[62]

Fuchs TA, Abed U, Goosmann C. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007; 176(2): 231-241.

[63]

Rochael NC, Guimarães-Costa AB, Nascimento MT. Classical ROS-dependent and early/rapid ROS-independent release of neutrophil extracellular traps triggered by Leishmania parasites. Sci Rep. 2015; 5: 18302.

[64]

Vorobjeva N, Galkin I, Pletjushkina O. Mitochondrial permeability transition pore is involved in oxidative burst and NETosis of human neutrophils. Biochim Biophys Acta Mol Basis Dis. 2020; 1866(5): 165664.

[65]

Rada B, Jendrysik MA, Pang L. Pyocyanin-enhanced neutrophil extracellular trap formation requires the NADPH oxidase. PloS One. 2013; 8(1): e54205.

[66]

Neumann A, Brogden G, Jerjomiceva N. Lipid alterations in human bloodderived neutrophils lead to formation of neutrophil extracellular traps. Eur J Cell Biol. 2014; 93(8-9): 347-354.

[67]

Palladino END, Katunga LA, Kolar GR. 2-Chlorofatty acids: lipid mediators of neutrophil extracellular trap formation. J Lipid Res. 2018; 59(8): 1424-1432.

[68]

Obama T, Ohinata H, Takaki T. Cooperative action of oxidized low-density lipoproteins and neutrophils on endothelial inflammatory responses through neutrophil extracellular trap formation. Front Immunol. 2019; 10: 1899.

[69]

erlich A. The antimicrobial peptide LL-37 facilitates the formation of neutrophil extracellular traps. Biochem J. 2014; 464(1): 3-11.

[70]

Arai Y, Nishinaka Y, Arai T. Uric acid induces NADPH oxidase-independent neutrophil extracellular trap formation. Biochem Biophys Res Commum. 2014; 443(2): 556-561.

[71]

Chen G, Zhang D, Fuchs TA. Heme-induced neutrophil extracellular traps contribute to the pathogenesis of sickle cell disease. Blood. 2014; 123(24): 3818-3827.

[72]

Yalavarthi S, Gould TJ, Rao AN. Antiphospholipid antibodies promote the release of neutrophil extracellular traps: a new mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015; 67(11): 2990-3003.

[73]

Tatsiy O, McDonald PP. Physiological stimuli induce PAD4-dependent, ROS-independent NETosis, with early and late events controlled by discrete signaling pathways. Front Immunol. 2018; 9: 2036.

[74]

Bianchi M, Hakkim A, Brinkmann V. Restoration of NET formation by gene therapy in CGD controls aspergillosis. Blood. 2009; 114(13): 2619-2622.

[75]

Zha C, Meng X, Li L. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis. Cancer Biol Med. 2020; 17(1): 154-168.

[76]

Zhou Z, Zhang S, Ding S. Excessive neutrophil extracellular trap formation aggravates acute myocardial infarction injury in apolipoprotein E deficiency mice via the ROS-dependent pathway. Oxid Med Cell Longev. 2019; 2019: 1209307.

[77]

Yao W, Chen J, Wu S. ONO-5046 suppresses reactive oxidative speciesassociated formation of neutrophil extracellular traps. Life Sci. 2018; 210: 243-250.

[78]

Branzk N. Molecular mechanisms regulating NETosis in infection and disease. SeminImmunopathol. 2013; 35(4): 513-530.

[79]

Pieterse E, Rother N, Yanginlar C. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation. Ann Rheum Dis. 2018; 77(12): 1790-1798.

[80]

De Bont CM, Koopman WJH, Boelens WC. Stimulus-dependent chromatin dynamics, citrullination, calcium signalling and ROS production during NET formation. Biochim Biophys Acta Mol Cell Res. 2018; 1865: 1621-1629. 11 Pt A.

[81]

Kraaij T, Tengström FC, Kamerling SW. A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes. Autoimmun Rev. 2016; 15(6): 577-584.

[82]

Konig MF. A critical reappraisal of neutrophil extracellular traps and NETosis mimics based on differential requirements for protein citrullination. Front Immunol. 2016; 7: 461.

[83]

Gößwein S, Lindemann A, Mahajan A. Citrullination licenses calpain to decondense nuclei in neutrophil extracellular trap formation. Front Immunol. 2019; 10: 2481.

[84]

Li P, Li M, Lindberg MR. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010; 207(9): 1853-1862.

[85]

Eghbalzadeh K, Georgi L, Louis T. Compromised anti-inflammatory action of neutrophil extracellular traps in PAD4-deficient mice contributes to aggravated acute inflammation after myocardial infarction. Front Immunol. 2019; 10: 2313.

[86]

Zeng J, Xu H, Fan PZ. Kaempferol blocks neutrophil extracellular traps formation and reduces tumour metastasis by inhibiting ROS-PAD4 pathway. J Cell Mol Med. 2020; 24(13): 7590-7599.

[87]

Zhang T, Mei Y, Dong W. Evaluation of protein arginine deiminase-4 inhibitor in TNBS-induced colitis in mice. Int Immunopharmacol. 2020; 84: 106583.

[88]

Li M, Lin C, Deng H. A novel peptidylarginine deiminase 4 (PAD4) inhibitor BMS-P5 blocks formation of neutrophil extracellular traps and delays progression of multiple myeloma [published online ahead of print, 2020 May 5]. Mol Cancer Ther. 2020; 19(7): 1530-1538.

[89]

Madhi R, Rahman M, Taha D. Targeting peptidylarginine deiminase reduces neutrophil extracellular trap formation and tissue injury in severe acute pancreatitis. J Cell Physiol. 2019; 234(7): 11850-11860.

[90]

Frangou E, Vassilopoulos D, Boletis J. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): implications for the pathogenesis and treatment. Autoimmun Rev. 2019; 18(8): 751-760.

[91]

Odqvist L, Jevnikar Z, Riise R. Genetic variations in A20 DUB domain provide a genetic link to citrullination and neutrophil extracellular traps in systemic lupus erythematosus. Ann Rheum Dis. 2019; 78(10): 1363-1370.

[92]

Hawez A, Al-Haidari A, Madhi R. MiR-155 regulates PAD4-dependent formation of neutrophil extracellular traps. Front Immunol. 2019; 10: 2462.

[93]

Guiducci E, Lemberg C, Küng N. Candida albicans-Induced NETosis is independent of peptidylarginine deiminase 4. Front Immunol. 2018; 9: 1573.

[94]

Díaz-Godínez C, Fonseca Z, Néquiz M. Trophozoites induce a rapid non-classical NETosis mechanism independent of NOX2-derived reactive oxygen species and PAD4 activity. Front Cell Infect Microbiol. 2018; 8: 184.

[95]

Münzer P, Negro R, Fukui S, et al. NLRP3 inflammasome assembly in neutrophils is supported by PAD4 and promotes NETosis under sterile conditions. Front Immunol. 2021; 12: 683803.

[96]

Sollberger G, Choidas A, Burn GL. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol. 2018; 3: eaar6689.

[97]

Chen KW, Monteleone M, Boucher D, et al. Noncanonical inflammasome signaling elicits gasdermin D-dependent neutrophil extracellular traps. Sci Immunol. 2018; 3: eaar6676.

[98]

Chen X, He WT, Hu L, et al. Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 2016; 26: 1007-1020.

[99]

Chen W, Zhao J, Mu D, et al. Pyroptosis mediates neutrophil extracellular trap formation during bacterial infection in zebrafish. J Immunol. 2021; 206: 1913-1922.

[100]

Ma R, Li T, Cao M, et al. Extracellular DNA traps released by acute promyelocytic leukemia cells through autophagy. Cell Death Dis. 2016; 7: e2283.

[101]

Xu F, Zhang C, Zou Z, et al. Aging-related Atg5 defect impairs neutrophil extracellular traps formation. Immunology. 2017; 151: 417-432.

[102]

Germic N, Stojkov D, Oberson K, et al. Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation. Immunology. 2017; 152: 517-525.

[103]

Desai J, Kumar SV, Mulay SR, et al. PMA and crystal-induced neutrophil extracellular trap formation involves RIPK1-RIPK3-MLKL signaling. Eur J Immunol. 2016; 46: 223-229.

[104]

Poli V, Zanoni I. Neutrophil intrinsic and extrinsic regulation of NETosis in health and disease. Trends Microbiol. 2023; 31(3): 280-293.

[105]

Zhu X, Chen J. Phosphoproteomic analyses provide insight into molecular mechanisms underlying NETosis. Proteomics. 2019; 19(19): e1900126.

[106]

Ravindran M, Khan MA. Neutrophil extracellular trap formation: physiology, pathology, and pharmacology. Biomolecules. 2019; 9(8): E365.

[107]

Shrestha S, Lee JM. Autophagy in neutrophils. Korean J Physiol Pharmacol. 2020; 24(1): 1-10.

[108]

Behnen M, Leschczyk C, Möller S. Immobilized immune complexes induce neutrophil extracellular trap release by human neutrophil granulocytes via FcγRIIIB and Mac-1. J Immunol. 2014; 193(4): 1954-1965.

[109]

Chen MS, Lin WC, Yeh HT. Propofol specifically reduces PMA-induced neutrophil extracellular trap formation through inhibition of p-ERK and HOCl. Life Sci. 2019; 221: 178-186.

[110]

Gillenius E. The adhesive protein invasin of Yersinia pseudotuberculosis induces neutrophil extracellular traps via β1 integrins. Microbes Infect. 2015; 17(5): 327-336.

[111]

Shao S, Fang H, Dang E. Neutrophil extracellular traps promote inflammatory responses in psoriasis via activating epidermal TLR4/IL-36R crosstalk. Front Immunol. 2019; 10: 746.

[112]

Grimberg-Peters D, Büren C, Windolf J. Hyperbaric oxygen reduces production of reactive oxygen species in neutrophils from polytraumatized patients yielding in the inhibition of p38 MAP kinase and downstream pathways. PLoS One. 2016; 11(8): e0161343.

[113]

Aleyd E, Al M, Tuk CW. IgA complexes in plasma and synovial fluid of patients with rheumatoid arthritis induce neutrophil extracellular traps via FcαRI. J Immunol. 2016; 197(12): 4552-4559.

[114]

Arumugam S, Girish Subbiah K, Kemparaju K, et al. Neutrophil extracellular traps in acrolein promoted hepatic ischemia reperfusion injury: therapeutic potential of NOX2 and p38MAPK inhibitors. J Cell Physiol. 2018; 233(4): 3244-3261.

[115]

Cai W, Wang J, Hu M, et al. All trans-retinoic acid protects against acute ischemic stroke by modulating neutrophil functions through STAT1 signaling. J Neuroinflammation. 2019; 16(1): 175.

[116]

Wang Y, Du F, Hawez A. Neutrophil extracellular trap-microparticle complexes trigger neutrophil recruitment via high-mobility group protein 1 (HMGB1)-toll-like receptors(TLR2)/TLR4 signalling. Br J Pharmacol. 2019; 176(17): 3350-3363.

[117]

Kimura H, Matsuyama Y, Araki S. The effect and possible clinical efficacy of in vivo inhibition of neutrophil extracellular traps by blockade of PI3K-gamma on the pathogenesis of microscopic polyangiitis. Mod Rheumatol. 2018; 28(3): 530-541.

[118]

Yang SC, Chen PJ, Chang SH. Luteolin attenuates neutrophilic oxidative stress and inflammatory arthritis by inhibiting Raf1 activity. BiochemPharmacol. 2018; 154: 384-396.

[119]

Sha LL, Wang H, Wang C. Autophagy is induced by anti-neutrophil cytoplasmic Abs and promotes neutrophil extracellular traps formation. Innate Immun. 2016; 22(8): 658-665.

[120]

Ullah I, Ritchie ND. The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae. Innate Immun. 2017; 23(5): 413-423.

[121]

Tang S, Zhang Y, Yin SW, et al. Neutrophil extracellular trap formation is associated with autophagy-related signalling in ANCA-associated vasculitis. Clin Exp Immunol. 2015; 180(3): 408-418.

[122]

Germic N, Stojkov D, Oberson K. Neither eosinophils nor neutrophils require ATG5-dependent autophagy for extracellular DNA trap formation. Immunology. 2017; 152(3): 517-525.

[123]

Boone BA, Orlichenko L, Schapiro NE, et al. The receptor for advanced glycation end products (RAGE) enhances autophagy and neutrophil extracellular traps in pancreatic cancer. Cancer Gene Ther. 2015; 22(6): 326-334.

[124]

Frangou E, Chrysanthopoulou A, Mitsios A. REDD1/autophagy pathway promotes thromboinflammation and fibrosis in human systemic lupus erythematosus (SLE) through NETs decorated with tissue factor (TF) and interleukin-17A (IL-17A). Ann Rheum Dis. 2019; 78(2): 238-248.

[125]

Ai Y, Meng Y, Yan B, et al. The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death. Mol Cell. 2024; 84(1): 170-179.

[126]

Zhu YP, Speir M, Tan Z, et al. NET formation is a default epigenetic program controlled by PAD4 in apoptotic neutrophils. Sci Adv. 2023; 9(51): eadj1397.

[127]

Wang JL, Hua SN, Bao HJ, et al. Pyroptosis and inflammasomes in cancer and inflammation. MedComm. 2023; 4(5): e374.

[128]

Kuang L, Wu Y, Shu J, et al. Pyroptotic macrophage-derived microvesicles accelerate formation of neutrophil extracellular traps via GSDMD-N-expressing mitochondrial transfer during sepsis. Int J Biol Sci. 2024; 20(2): 733-750.

[129]

Zhang H, Wang Y, Qu M, et al. Neutrophil, neutrophil extracellular traps and endothelial cell dysfunction in sepsis. Clin Transl Med. 2023; 13(1): e1170.

[130]

Adrover JM, McDowell SAC, He XY, et al. NETworking with cancer: the bidirectional interplay between cancer and neutrophil extracellular traps. Cancer Cell. 2023; 41(3): 505-526.

[131]

Wang H, Kim SJ, Lei Y, et al. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther. 2024; 9(1): 235.

[132]

Bell HN, Stockwell BR, Zou W. Ironing out the role of ferroptosis in immunity. Immunity. 2024; 57(5): 941-956.

[133]

Chu C, Wang X, Yang C, et al. Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol. 2023; 67: 102906.

[134]

Fei Y, Huang X, Ning F, et al. NETs induce ferroptosis of endothelial cells in LPS-ALI through SDC-1/HS and downstream pathways. Biomed Pharmacother. 2024; 175: 116621.

[135]

Li H, Zhao L, Wang Y, et al. Roles, detection, and visualization of neutrophil extracellular traps in acute pancreatitis. Front Immunol. 2022; 13: 974821.

[136]

de Buhr N, von Köckritz-Blickwede M. Detection, visualization, and quantification of neutrophil extracellular traps (NETs) and NET markers. Methods Mol Biol. 2020; 2087: 425-442.

[137]

Radermecker C, Hego A, Vanwinge C, et al. Methods to detect neutrophil extracellular traps in asthma. Methods Mol Biol. 2022; 2506: 281-295.

[138]

Zharkova O, Tay SH, Lee HY, et al. A flow cytometry-based assay for high-throughput detection and quantification of neutrophil extracellular traps in mixed cell populations. Cytometry A. 2019; 95(3): 268-278.

[139]

Ginley BG, Emmons T, Lutnick B, et al. Computational detection and quantification of human and mouse neutrophil extracellular traps in flow cytometry and confocal microscopy. Sci Rep. 2017; 7(1): 17755.

[140]

Yu Y, Kwon K, Pieper R, et al. Detection of neutrophil extracellular traps in urine. Methods Mol Biol. 2019; 2021: 241-257.

[141]

Lood C, Blanco LP, Purmalek MM. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA areinterferogenic and contribute to lupus-like disease. Nat Med. 2016; 22(2): 146-153.

[142]

Li M, Lin C, Leso A, et al. Quantification of citrullinated histone H3 bound DNA for detection of neutrophil extracellular traps. Cancers (Basel). 2020; 12(11): 3424.

[143]

de Boer P, Pirozzi NM, Wolters AHG, et al. Largescale electron microscopy database for human type 1 diabetes. Nat Commun. 2020; 11(1): 2475.

[144]

Borenstein A, Fine N, Hassanpour S, et al. Morphological characterization of para-and proinflammatory neutrophil phenotypes using transmission electron microscopy. J Periodontal Res. 2018; 53(6): 972-982.

[145]

Santos A, Martín P, Blasco A, et al. NETs detection and quantification in paraffin embedded samples using confocal microscopy. Micron. 2018; 114: 1-7.

[146]

Mohanty T, Nordenfelt P. Automated image-based quantification of neutrophil extracellular traps using NETQUANT. J Vis Exp. 2019(153).

[147]

Erpenbeck L, Gruhn AL, Kudryasheva G, et al. Effect of adhesion and substrate elasticity on neutrophil extracellular trap formation. Front Immunol. 2019; 10: 2320.

[148]

Elsherif L, Sciaky N, Metts CA, et al. Machine learning to quantitate neutrophil. NETosis Sci Rep. 2019; 9(1): 16891.

[149]

Wang H, Kim SJ, Lei Y, et al. Neutrophil extracellular traps in homeostasis and disease. Signal Transduct Target Ther. 2024; 9(1): 235.

[150]

Szekanecz Z, McInnes IB, Schett G, Szamosi S, Benkő S, Szűcs G. Autoinflammation and autoimmunity across rheumatic and musculoskeletal diseases. Nat Rev Rheumatol. 2021; 17(10): 585-595.

[151]

Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol. 2016; 12(7): 402-413.

[152]

Lazar S, Kahlenberg JM. Systemic lupus erythematosus: new diagnostic and therapeutic approaches. Annu Rev Med. 2023; 74: 339-352.

[153]

Zucchi D, Silvagni E, Elefante E, et al. Systemic lupus erythematosus: one year in review 2023. Clin Exp Rheumatol. 2023; 41(5): 997-1008.

[154]

Crow MK. Pathogenesis of systemic lupus erythematosus: risks, mechanisms and therapeutic targets. Ann Rheum Dis. 2023; 82(8): 999-1014.

[155]

Accapezzato D, Caccavale R, Paroli MP, et al. Advances in the pathogenesis and treatment of systemic lupus erythematosus. Int J Mol Sci. 2023; 24(7): 6578.

[156]

Accapezzato D, Caccavale R, Paroli MP, et al. Advances in the pathogenesis and treatment of systemic lupus erythematosus. Int J Mol Sci. 2023; 24(7): 6578.

[157]

Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the pathogenesis of rheumatoid arthritis and systemic lupus erythematosus: same foe different M.O. Front Immunol. 2021; 12: 649693.

[158]

Ambler WG, Kaplan MJ. Vascular damage in systemic lupus erythematosus. Nat Rev Nephrol. 2024; 20(4): 251-265.

[159]

Ma S, Jiang W, Zhang X, et al. Insights into the pathogenic role of neutrophils in systemic lupus erythematosus. Curr Opin Rheumatol. 2023; 35(2): 82-88.

[160]

Mistry P, Nakabo S, O’Neil L, et al. Transcriptomic, epigenetic, and functional analyses implicate neutrophil diversity in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci USA. 2019; 116(50): 25222-25228.

[161]

Ren Y, Tang J, Mok MY, et al. Increased apoptotic neutrophils and macrophages and impaired macrophage phagocytic clearance of apoptotic neutrophils in systemic lupus erythematosus. Arthritis Rheum. 2003; 48: 2888-2897.

[162]

Budman DR, Steinberg AD. Hematologic aspects of systemic lupus erythematosus. Current concepts. Ann Intern Med. 1977; 86: 220-229.

[163]

Kramers C, Hylkema MN, van Bruggen MC, et al. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo. J Clin Inves. 1994; 94: 568-577.

[164]

Arenas M, Abad A, Valverde V, et al. Selective inhibition of granulopoiesis with severe neutropenia in systemic lupus erythematosus. Arthritis and rheumatism. 1992; 35: 979-980.

[165]

Cairns AP, Crockard AD, McConnell JR, et al. Reduced expression of CD44 on monocytes and neutrophils in systemic lupus erythematosus: relations with apoptotic neutrophils and disease activity. Ann Rheum Dis. 2001; 60: 950-955.

[166]

Kurien BT, Newland J, Paczkowski C. Association of neutropenia in systemic lupus erythematosus (SLE) with anti - Ro and binding of an immunologically cross-reactive neutrophil membrane antigen. Clin Exp Immunol. 2000; 120: 209-217.

[167]

Hartman KR, LaRussa VF, Rothwell SW, et al. Antibodies to myeloid precursor cells in autoimmune neutropenia. Blood. 1994; 84: 625-631.

[168]

Christian L, Blanco LP, Purmalek MM, et al. Neutrophil extracel-lular traps enriched in oxidized mitochondrial DNA are interfero-genic and contribute to lupus-like disease. Nat Med. 2016; 22(2): 146-153.

[169]

Hakkim A, Fürnrohr BG, Amann K, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010; 107(21): 9813-9818.

[170]

Leffler J, Martin M, Gullstrand B. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol. 2012; 188(7): 3522-3531.

[171]

Courtney PA, Crockard AD, Williamson K, et al. Increased apoptotic peripheral blood neutrophils in systemic lupus erythematosus:relations with disease activity, antibodies to double stranded DNA, and neutropenia. Ann Rheum Dis. 1999; 58(5): 309-314.

[172]

Lande R, Ganguly D, Facchinetti V, et al. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNApeptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011; 3(73): 73ra19.

[173]

Carmona-Rivera C, Kaplan MJ. Low-density granulocytes in systemic autoimmunity and autoinflammation. Immunol Rev. 2023; 314(1): 313-325.

[174]

Yu C, Li P, Dang X, Zhang X, Mao Y, Chen X. Lupus nephritis: new progress in diagnosis and treatment. J Autoimmun. 2022; 132: 102871.

[175]

Anders HJ, Saxena R, Zhao MH, et al. Lupus nephritis. Nat Rev Dis Primers. 2020; 6(1): 7.

[176]

Miao N, Wang Z, Wang Q, et al. Oxidized mitochondrial DNA induces gasdermin D oligomerization in systemic lupus erythematosus. Nat Commun. 2023; 14(1): 872.

[177]

Whittall-Garcia LP, Naderinabi F, Gladman DD, et al. Circulating neutrophil extracellular trap remnants as a biomarker to predict outcomes in lupus nephritis. Lupus Sci Med. 2024; 11(1): e001038.

[178]

Hakkim A, Furnrohr BG, Amann K, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA. 2010; 107(21): 9813-9818.

[179]

Fan X, Ng CT, Guo D, et al. Dampened inflammation and improved survival after CXCL5 administration in murine lupus via myeloid and neutrophil pathways. Arthritis Rheumatol. 2023; 75(4): 553-566.

[180]

Skopelja-Gardner S, Tai J, Sun X, et al. Acute skin exposure to ultraviolet light triggers neutrophil-mediated kidney inflammation. Proc Natl Acad Sci USA. 2021; 118(3): e2019097118.

[181]

Yan JJ, Jambaldorj E, Lee JG, et al. Granulocyte colony-stimulating factor treatment ameliorates lupus nephritis through the expansion of regulatory T cells. BMC Nephrol. 2016; 17(1): 175.

[182]

Kolios AGA, Tsokos GC. Skin-kidney crosstalk in SLE. Nat Rev Rheumatol. 2021; 17(5): 253-254.

[183]

Li P, Jiang M, Li K, et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat Immunol. 2021; 22(9): 1107-1117.

[184]

Saadoun D, Bodaghi B, Cacoub P. Behçet’s Syndrome. N Engl J Med. 2024; 390(7): 640-651.

[185]

Emmi G, Bettiol A, Hatemi G, et al. Behçet’s syndrome. Lancet. 2024; 403(10431): 1093-1108.

[186]

Manuelyan Z, Butt E, Parupudi S, et al. Gastrointestinal Behçet’s disease: manifestations, diagnosis, and management. Dis Mon. 2024; 70(1S):101674.

[187]

Zhang M, Kang N, Yu X, et al. TNF inhibitors target a mevalonate metabolite/TRPM2/calcium signaling axis in neutrophils to dampen vasculitis in Behçet’s disease. Nat Commun. 2024; 15(1): 9261.

[188]

Zhang Y, Deng Y, Jing S, et al. Proteomic profiling of aqueous humor-derived exosomes in Vogt-Koyanagi-Harada disease and Behcet’s uveitis. Clin Immunol. 2024; 259: 109895.

[189]

Le Joncour A, Cacoub P, Boulaftali Y, et al. Neutrophil, NETs and Behçet’s disease: a review. Clin Immunol. 2023; 250: 109318.

[190]

Le Joncour A, Régnier P, Maciejewski-Duval A, et al. Reduction of neutrophil activation by phosphodiesterase 4 blockade in Behçet’s disease. Arthritis Rheumatol. 2023; 75(9): 1628-

[191]

Kobayashi M, Ito M, Nakagawa A, et al Neutrophil and endothelial cell activation in the vasa vasorum in vasculo-Behçet disease. Histopathology. 2000; 36: 362-371.

[192]

Ergun T, Gürbüz O, Harvell J, et al. The histopathology of pathergy: a chronologic study of skin hyperreactivity in Behçet’s disease. Int J Dermatol. 1998; 37: 929-933.

[193]

Safi R, Kallas R, Bardawil T, et al. Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in Behçet’s disease. J Dermatol Sci. 2018; 92: 143-150.

[194]

Garcia RJ, Francis L, Dawood M, et al. Attention deficit and hyperactivity disorder scores are elevated and respond to N-acetylcysteine treatment in patients with systemic lupus erythematosus. Arthritis Rheum. 2013; 65: 1313-1318.

[195]

Lai Z-W, Hanczko R, Bonilla E, et al. N-acetylcysteine reduces disease activity by blocking mammalian target of rapamycin in T cells from systemic lupus erythematosus patients: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum. 2012; 64: 2937-2946.

[196]

Willis VC, Gizinski AM, Banda NK, et al. N-α-benzoyl-N5-(2-chloro-1-Iminoethyl)-l-ornithine amide, a protein arginine deiminase inhibitor, reduces the severity of murine collagen-induced arthritis. J Immunol. 2011; 186: 4396-4404.

[197]

Gupta S, Kaplan MJ. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat Rev Nephrol. 2016; 12: 402-413.

[198]

Bettiol A, Becatti M, Silvestri E, et al. Neutrophil-mediated mechanisms of damage and in-vitro protective effect of colchicine in non-vascular Behçet’s syndrome. Clin Exp Immunol. 2021; 206(3): 410-421.

[199]

Li L, Yu X, Liu J, et al. Neutrophil extracellular traps promote aberrant macrophages activation in Behçet’s disease. Front Immunol. 2021; 11: 590622.

[200]

Murad M, Low L, Davidson M, et al. Low density neutrophils are increased in patients with Behçet’s disease but do not explain differences in neutrophil function. J Inflamm (Lond). 2022; 19(1): 5.

[201]

Emmi G, Becatti M, Bettiol A, et al. Behçet’s syndrome as a model of thrombo-inflammation: the role of neutrophils. Front Immunol. 2019; 10: 1085.

[202]

Perazzio SF, Soeiro-Pereira PV, Dos Santos VC, et al. Soluble CD40L is associated with increased oxidative burst and neutrophil extracellular trap release in Behçet’s disease. Arthritis Res Ther. 2017; 19: 235.

[203]

Le Joncour A, Martos R, Loyau S, et al. Critical role of neutrophil extracellular traps (NETs) in patients with Behcet’s disease. Ann Rheum Dis. 2019; 78(9): 1274-1282.

[204]

Safi R, Kallas R, Bardawil T, et al. Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in Behçet’s disease. J Dermatol Sci. 2018; 92(2): 143-150.

[205]

Kawakami T, Yokoyama K, Ikeda T, et al. Presence of neutrophil extracellular traps in superficial venous thrombosis of Behçet’s disease. J Dermatol. 2022; 49(7): 741-745.

[206]

von Brühl M-L, Stark K, Steinhart A, et al. Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo. J Exp Med. 2012; 209: 819-835.

[207]

Beiter T, Fragasso A, Hudemann J, et al. Neutrophils release extracellular DNA traps in response to exercise. J Appl Physiol. 2014; 117: 325-333.

[208]

Chen Z, Wang W, Hua Y. Metabolic regulation of immune response and tissue remodeling in gouty arthritis (review). Crit Rev Eukaryot Gene Expr. 2023; 33(5): 1-16.

[209]

Liu YR, Wang JQ, Li J. Role of NLRP3 in the pathogenesis and treatment of gout arthritis. Front Immunol. 2023; 14: 1137822.

[210]

Chen Y, Liu J, Li Y, et al. The independent value of neutrophil to lymphocyte ratio in gouty arthritis: a narrative review. J Inflamm Res. 2023; 16: 4593-4601.

[211]

Jia E, Li Z, Geng H, et al. Neutrophil extracellular traps induce the bone erosion of gout. BMC Musculoskelet Disord. 2022; 23(1): 1128.

[212]

de Lima JD, de Paula AGP, Yuasa BS, et al. Genetic and epigenetic regulation of the innate immune response to gout. Immunol Invest. 2023; 52(3): 364-397.

[213]

Chen P, Luo Z, Lu C, et al. Gut-immunity-joint axis: a new therapeutic target for gouty arthritis. Front Pharmacol. 2024; 15: 1353615.

[214]

Lenertz LY, Gavala ML, Zhu Y, et al. Transcriptional control mechanisms associated with the nucleotide receptor P2×7, a critical regulator of immunologic, osteogenic, and neurologic functions. Immunol Res. 2011; 50(1): 22-38.

[215]

Kim SK, Choe JY, Park KY. TXNIP-mediated nuclear factor-κB signaling pathway and intracellular shifting of TXNIP in uric acid-induced NLRP3 inflammasome. Biochem Biophys Res Commun. 2019; 511(4): 725-731.

[216]

Tavares LD, Galvão I, Costa VV, et al. Phosphoinositide-3 kinase gamma regulates caspase-1 activation and leukocyte recruitment in acute murine gout. J Leukoc Biol. 2019; 106(3): 619-629. .

[217]

Caution K, Young N, Robledo-Avila F, et al. Caspase-11 mediates neutrophil chemotaxis and extracellular trap formation during acute gouty arthritis through alteration of cofilin phosphorylation. Front Immunol. 2019; 10: 2519.

[218]

Huang JH, Chiang BL. Regulatory T cells induced by B cells suppress NLRP3 inflammasome activation and alleviate monosodium urate-induced gouty inflammation. iScience. 2021; 24(2): 102103.

[219]

Jeong JH, Choi SJ, Ahn SM, et al. Neutrophil extracellular trap clearance by synovial macrophages in gout. Arthritis Res Ther. 2021; 23(1): 88.

[220]

Schauer C, Janko C, Munoz LE. Aggregated neutrophil extracellular traps limit inflammation by degrading cytokines and chemokines. Nat Med. 2014; 20(5): 511-517.

[221]

Steiger S, Harper JL. Neutrophil cannibalism triggers transforming growth factor β1 production and self regulation of neutrophil inflammatory function in monosodium urate monohydrate crystal-induced inflammation in mice. Arthritis Rheum. 2013; 65(3): 815-823.

[222]

Scanu A, Oliviero F, Ramonda R, et al. Cytokine levels in human synovial fluid during the different stages of acute gout: role of transforming growth factor β1 in the resolution phase. Ann Rheum Dis. 2012; 71(4): 621-624.

[223]

Garcia-Gonzalez E, Gamberucci A, Lucherini OM, et al. Neutrophil extracellular traps release in gout and pseudogout depends on the number of crystals regardless of leukocyte count. Rheumatology (Oxford). 2021; 60(10): 4920-4928.

[224]

Li Y, Cao X, Liu Y, et al. Neutrophil extracellular traps formation and aggregation orchestrate induction and resolution of sterile crystal-mediated inflammation. Front Immunol. 2018; 9: 1559.

[225]

Chatfield SM, Grebe K, Whitehead LW, et al. Monosodium urate crystals generate nuclease-resistant neutrophil extracellular traps via a distinct molecular pathway. J Immunol. 2018; 200(5): 1802-1816.

[226]

Punzi L, Scanu A, Galozzi P, et al. One year in review 2020: gout. Clin Exp Rheumatol. 2020; 38(5): 807-821

[227]

Mutua V, Gershwin LJ. A review of neutrophil extracellular traps (NETs) in disease: potential anti-NETs therapeutics. Clin Rev Allergy Immunol. 2020; 1: 1-18.

[228]

Tiening G, Li L, Bai J, et al. Efectul quercetinei asupra NET-urilor serice şi a nivelurilor de limfocite la şobolani cu model de gută. Jurnalul internațional de medicină de laborator. 2021; 42(08): 996-998+1002.

[229]

Dai SH, Yu LL. Clinical observation on 30 cases of acute attack of gout treated with Western medicine combined with Jiawei Si Miao Tang Si Miao Jiawei Si Miao Tang. Chinese Ethnic Chinese Folk Med. 2018; 27(22): 81-83+92.

[230]

Ertao J, Jianyong Z. Effects of TCM on urate-induced neutrophil extracellular uptake network of urate-induced neutrophil extracellular uptake via turbidity expelling and blood stasis elimination. J Guizhou Univ Tradit Chinese Med. 2020; 42(05): 13-17.

[231]

Díaz-González F, Hernández-Hernández MV. Rheumatoid arthritis. Med Clin (Barc). 2023; 161(12): 533-542.

[232]

Gravallese EM, Firestein GS. Rheumatoid arthritis—common origins, divergent mechanisms. N Engl J Med. 2023; 388(6): 529-542.

[233]

Di Matteo A, Bathon JM, Emery P. Rheumatoid arthritis. Lancet. 2023; 402(10416): 2019-2033.

[234]

Prasad P, Verma S, Surbhi , Ganguly NK, Chaturvedi V, Mittal SA. Rheumatoid arthritis: advances in treatment strategies. Mol Cell Biochem. 2023; 478(1): 69-88.

[235]

Wright HL, Moots RJ, Edwards SW. The multifactorial role of neutrophils in rheumatoid arthritis. Nat Rev Rheumatol. 2014; 10(10): 593-601.

[236]

Wright HL, Chikura B, Bucknall RC, et al. Changes in expression of membrane TNF, NF-{kappa}B activation and neutrophil apoptosis during active and resolved inflammation. Ann Rheum Dis. 2011; 70(3): 537-543.

[237]

Marchi LF, Paoliello-Paschoalato AB, Oliveira RDR, et al. Activation status of peripheral blood neutrophils and the complement system in adult rheumatoid arthritis patients undergoing combined therapy with infliximab and methotrexate. Rheumatol Int. 2018; 38(6): 1043-1052.

[238]

Martelli-Palomino G, Paoliello-Paschoalato AB, Crispim JC, et al. DNA damage increase in peripheral neutrophils from patients with rheumatoid arthritis is associated with the disease activity and the presence of shared epitope. Clin Exp Rheumatol. 2017; 35(2): 247-254.

[239]

Wittkowski H, Foell D, af Klint E, De Rycke L, De Keyser F, Frosch M. Effects of intra-articular corticosteroids and anti-TNF therapy on neutrophil activation in rheumatoid arthritis. Ann Rheum Dis. 2007; 66(8): 1020-1025.

[240]

Turunen S, Huhtakangas J, Nousiainen T, et al. Rheumatoid arthritis antigens homocitrulline and citrulline are generated by local myeloperoxidase and peptidyl arginine deiminases 2, 3 and 4 in rheumatoid nodule and synovial tissue. Arthritis Res Ther. 2016; 18(1): 239.

[241]

Malamud M, Whitehead L, McIntosh A, et al. Recognition and control of neutrophil extracellular trap formation by MICL. Nature. 2024; 633(8029): 442-450.

[242]

Edwards SW, Hughes V, Barlow J, Bucknall R. Immunological detection of myeloperoxidase in synovial fluid from patients with rheumatoid arthritis. Biochem J. 1988; 250(1): 81-85.

[243]

Thieblemont N, Wright HL, Edwards SW, Witko-Sarsat V. Human neutrophils in auto-immunity. Semin Immunol. 2016; 28(2): 159-173.

[244]

Wong SH, Francis N, Chahal H, Raza K, Salmon M, Scheel-Toellner D. Lactoferrin is a survival factor for neutrophils in rheumatoid synovial fluid. Rheumatol (Oxford). 2009; 48(1): 39-44.

[245]

Nzeusseu Toukap A, Delporte C, Noyon C, Franck T, Rousseau A, Serteyn D. Myeloperoxidase and its products in synovial fluid of patients with treated or untreated rheumatoid arthritis. Free Radic Res. 2014; 48(4): 461-465.

[246]

Birkelund S, Bennike TB, Kastaniegaard K, Lausen M, Poulsen TBG, Kragstrup TW. Proteomic analysis of synovial fluid from rheumatic arthritis and spondyloarthritis patients. Clin Proteomics. 2020; 17: 29.

[247]

Pham CT. Neutrophil serine proteases: specific regulators of inflammation. Nat Rev Immunol. 2006; 6(7): 541-550.

[248]

Baici A, Salgam P, Cohen G, Fehr K, Boni A. Action of collagenase and elastase from human polymorphonuclear leukocytes on human articular cartilage. Rheumatol Int. 1982; 2(1): 11-16.

[249]

Van den Steen PE, Proost P, Grillet B, Brand DD, Kang AH, Van Damme J. Cleavage of denatured natural collagen type II by neutrophil gelatinase B reveals enzyme specificity, post-translational modifications in the substrate, and the formation of remnant epitopes in rheumatoid arthritis. FASEB J. 2002; 16(3): 379-389.

[250]

Desgeorges A, Gabay C, Silacci P, Novick D, Roux-Lombard P, Grau G. Concentrations and origins of soluble interleukin 6 receptor-alpha in serum and synovial fluid. J Rheumatol. 1997; 24(8): 1510-1516.

[251]

El Benna J, Hayem G, Dang PM, Fay M, Chollet-Martin S, Elbim C. NADPH oxidase priming and p47phox phosphorylation in neutrophils from synovial fluid of patients with rheumatoid arthritis and spondylarthropathy. Inflammation. 2002; 26(6): 273-278.

[252]

Cross A, Bucknall RC, Cassatella MA, Edwards SW, Moots RJ. Synovial fluid neutrophils transcribe and express class II major histocompatibility complex molecules in rheumatoid arthritis. Arthritis Rheumatol. 2003; 48(10): 2796-2806.

[253]

Quayle JA, Watson F, Bucknall RC, Edwards SW. Neutrophils from the synovial fluid of patients with rheumatoid arthritis express the high affinity immunoglobulin G receptor, Fc gamma RI (CD64): role of immune complexes and cytokines in induction of receptor expression. Immunology. 1997; 91(2): 266-273.

[254]

Robinson J, Watson F, Bucknall RC, Edwards SW. Activation of neutrophil reactive-oxidant production by synovial fluid from patients with inflammatory joint disease. Soluble and insoluble immunoglobulin aggregates activate different pathways in primed and unprimed cells. Biochem J. 1992; 286(Pt 2): 345-351.

[255]

Cedergren J, Forslund T, Sundqvist T, Skogh T. Intracellular oxidative activation in synovial fluid neutrophils from patients with rheumatoid arthritis but not from other arthritis patients. J Rheumatol. 2007; 34(11): 2162-2170.

[256]

Wipke BT, Allen PM. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J Immunol. 2001; 167(3): 1601-1608.

[257]

Kasama T, Kobayashi K, Yajima N, Shiozawa F, Yoda Y, Takeuchi HT. Expression of vascular endothelial growth factor by synovial fluid neutrophils in rheumatoid arthritis (RA). Clin Exp Immunol. 2000; 121(3): 533-538.

[258]

McCurdy L, Chatham WW, Blackburn WD Jr. Rheumatoid synovial fibroblast adhesion to human articular cartilage. Enhancement by neutrophil proteases. Arthritis Rheumatol. 1995; 38(11): 1694-1700.

[259]

Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013; 5(178): 178ra140.

[260]

Pieterse E, Rother N, Yanginlar C, Gerretsen J, Boeltz S, Munoz LE. Cleaved N-terminal histone tails distinguish between NADPH oxidase (NOX)-dependent and NOX-independent pathways of neutrophil extracellular trap formation. Ann Rheum Dis. 2018; 77(12): 1790-1798.

[261]

Spengler J, Lugonja B, Ytterberg AJ, Zubarev RA, Creese AJ, Pearson MJ. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol. 2015; 67(12): 3135-3145.

[262]

de Bont CM, Stokman MEM, Faas P, Thurlings RM, Boelens WC, Wright HL. Autoantibodies to neutrophil extracellular traps represent a potential serological biomarker in rheumatoid arthritis. J Autoimmun. 2020; 113: 102484.

[263]

Wright HL, Lyon M, Chapman EA, Moots RJ, Edwards SW. Rheumatoid arthritis synovial fluid neutrophils drive inflammation through production of chemokines, reactive oxygen species, and neutrophil extracellular traps. Front Immunol. 2021; 11: 584116.

[264]

Neeli I, Khan SN, Radic M. Histone deimination as a response to inflamma-tory stimuli in neutrophils. J Immunol. 2008; 180(3): 1895-1902.

[265]

Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013. 5(178):178ra40.

[266]

Romero V, Fert-Bober J, Nigrovic PA, .Immune-mediated pore-forming pathways induce cellular hypercitrullination and generate citrullinated autoantigens in rheumatoid arthritis. Sci Transl Med. 2013; 5(209): 209ra150.

[267]

Corsiero E, Bombardieri M, Carlotti E. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Ann Rheum Dis. 2016; 75: 1866-1875.

[268]

Ciesielski O, Biesiekierska M, Panthu B, Soszyński M, Pirola L, Balcerczyk A. Citrullination in the pathology of inflammatory and autoimmune disorders: recent advances and future perspectives. Cell Mol Life Sci. 2022; 79(2): 94.

[269]

Eleftheriadis T, Pissas G, Karioti A, Antoniadi G, et al. Uric acid induces caspase-1 activation, IL-1β secretion and P2×7 receptor dependent proliferation in primary human lymphocytes. Hippokratia. 2013; 17(2): 141-145.

[270]

Tutturen AE, Fleckenstein B, de Souza GA. Assessing the citrullinome in rheumatoid arthritis synovial fluid with and without enrichment of citrullinated peptides. J Proteome Res. 2014; 13(6): 2867-2873.

[271]

Kessenbrock K, Krumbholz M, Schönermarck U, et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009; 15(6): 623-625.

[272]

Su H. Studiu privind implicarea SAA în mecanismul inflamator al AR prin inducerea neutrofilelor să formeze NET-uri [D]. Universitatea de Medicină din Tianjin. 2016.

[273]

Meng HM, Wei W, Jiao YC, et al. Serul amiloid A induce formarea rețelei de capcane extracelulare în neutrofile în artrita reumatoidă prin intermediul căii receptorului Toll-like 4. Chinese J Rheumatol. 2017; 21(06): 404-408+435.

[274]

Xiaoli Z. SAA promovează formarea NET-urilor în artrita reumatoidă prin intermediul căii de semnalizare TLR2 [D]. Tianjin Medical University. 2020.

[275]

Darrah E, Andrade F. NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol. 2013; 3: 428.

[276]

Buckley CD, Pilling D, Lord JM. Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation. Trends Immunol. 2001; 22(4): 199-204.

[277]

Katz Y, Nadiv O, Beer Y. Interleukin-17 enhances tumor necrosis factor alpha-induced synthesis of interleukins 1, 6 and 8 in skin and synovial fibroblasts: a possible role as a “fine-tuning cytokine” in inflammation processes. Arthritis Rheum. 2001; 44: 2176-2184.

[278]

Fan L, He D, Wang Q. Citrullinated vimentin stimulates proliferation pro-inflammatory cytokine secretion and PADI4 and RANKL expression of fibroblast-like synoviocytes in rheumatoid arthritis. Scand J Rheumatol. 2012; 41: 354-358.

[279]

Carmona-Rivera C, Carlucci PM, Goel RR, et al. Neutrophil extracellular traps mediate articular cartilage damage and enhance cartilage component immunogenicity in rheumatoid arthritis. JCI Insight. 2020; 5(13): e139388.

[280]

Loh JT, Lam KP. Neutrophils in the pathogenesis of rheumatic diseases. Rheumatol Immunol Res. 2022; 3(3): 120-127.

[281]

Carmona-Rivera C, Carlucci PM, Moore E, et al. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Sci Immunol. 2017; 2(10): eaag3358.

[282]

Geng J, Sun X, Wang P, et al. Kinases Mst1 and Mst2 positively regulate phagocytic induction of reactive oxygen species and bactericidal activity. Nat Immunol. 2015; 16(11): 1142-1152.

[283]

Li W, Xiao J, Zhou X, et al. STK4 regulates TLR pathways and protects against chronic inflammation-related hepatocellular carcinoma. J Clin Invest. 2015; 125(11): 4239-4254.

[284]

Zhu D, Lu Y, Wang Y, Wang Y. PAD4 and its inhibitors in cancer progression and prognosis. Pharmaceutics. 2022; 14(11): 2414.

[285]

Thirugnanasambandham I, Radhakrishnan A, Kuppusamy G, Kumar Singh S, Dua K. Peptidylarginine deiminase-4: medico-formulative strategy towards management of rheumatoid arthritis. Biochem Pharmacol. 2022; 200: 115040.

[286]

Spengler J, Lugonja B, Ytterberg AJ. Release of active peptidyl arginine deiminases by neutrophils can explain production of extracellular citrullinated autoantigens in rheumatoid arthritis synovial fluid. Arthritis Rheumatol. 2015; 67(12): 3135-3145.

[287]

Meng W, Paunel-Görgülü A, Flohé S. Deoxyribonuclease is a potential counter regulator of aberrant neutrophil extracellular traps formation after major trauma. Mediators Inflamm. 2012; 2012(1): 149560.

[288]

Barnado A, Crofford LJ, Oates JC. At the Bedside: neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol. 2016; 99(2): 265-278.

[289]

Munafo DB, Johnson JL, Brzezinska AA, Ellis BA, Wood MR, Catz SD. DNase I inhibits a late phase of reactive oxygen species production in neutrophils. J Innate Immun. 2009; 1(6): 527-542.

[290]

Nakazawa D, Shida H, Kusunoki Y. The responses of macrophages in interaction with neutrophils that undergo NETosis. J Autoimmun. 2016; 67(9): 19-28.

[291]

Padhy DS, Palit P, Ikbal AMA, Das N, Roy DK, Banerjee S. Selective inhibition of peptidyl-arginine deiminase (PAD): can it control multiple inflammatory disorders as a promising therapeutic strategy? Inflammopharmacology. 2023; 31(2): 731-744.

[292]

Brown P, Pratt AG, Hyrich KL. Therapeutic advances in rheumatoid arthritis. BMJ. 2024; 384: e070856.

[293]

Kinloch AJ, Alzabin S, Brintnell W, et al. Immunization with Porphyromonas gingivalis enolase induces autoimmunity to mammalian α-enolase and arthritis in DR4-IE-transgenic mice. Arthritis Rheum. 2011; 63(12): 3818-3823.

[294]

Xiao Y, Cheng Y, Liu WJ, et al. Effects of neutrophil fate on inflammation. Inflamm Res. 2023; 72(12): 2237-2248.

[295]

Delbosc S, Alsac JM, Journe C. Porphyromonas gingivalis participates in pathogenesis of human abdominal aortic aneurysm by neutrophil activation. PLoS One. 2011; 6: e18679.

[296]

Willis VC, Gizinski AM, Banda NK, . Nalpha-benzoyl-N5-(2-chloro-1-iminoethyl)-L-ornithine amide a protein arginine deiminase inhibitorreduces the severity of murine collagen-induced arthritis. J Immunol. 2011; 186: 4396-4404.

[297]

Yu Y, Koehn CD, Yue Y, et al. Celastrol inhibits inflammatory stimuli-induced neutrophil extracellular trap formation. Curr Mol Med. 2015; 15(4): 401-410.

[298]

Xiaohong L. Mechanism study of andrographolide in the treatment of rheumatoid arthritis by regulating neutrophil activity[D]. Beijing University of Chinese Medicine, 2020.

[299]

Jiang HX, Xu J, Lu QY. Research progress of quercetin in the treatment of rheumatoid arthritis[J]. Chin J Exp Form. 2021; 27(05): 243-250.

[300]

Huijuan S. Mechanism study on the regulation of neutrophil activity by Ascophyllum officinale in the treatment of rheumatoid arthritis [D]. China Academy of Traditional Chinese Medicine, 2020.

[301]

Lu Q. Mechanism study on the treatment of rheumatoid arthritis by regulating neutrophil activity with hanfengjiajiaosu [D]. Beijing University of Chinese Medicine, 2020.

[302]

Mengmeng Z. Mechanism study of rhodopsin in the treatment of rheumatoid arthritis by regulating neutrophil activity[D]. Beijing University of Traditional Chinese Medicine, 2019.

[303]

Yuan K. Mechanistic study on the treatment of rheumatoid arthritis by regulating neutrophil activity with tretinoin and tretinoin erythropoietin [D]. Beijing University of Traditional Chinese Medicine, 2017.

[304]

Shan Z. Study on the treatment of rheumatoid arthritis by tanshinone IIA through regulating neutrophil activity [D]. Beijing University of Traditional Chinese Medicine, 2017.

[305]

Govoni M, Bortoluzzi A, Rossi D, Modena V. How I treat patients with adult onset Still’s disease in clinical practice. Autoimmun Rev. 2017; 16(10): 1016-1023.

[306]

Mahroum N, Mahagna H, Amital H. Diagnosis and classification of adult Still’s disease. J Autoimmun. 2014; 48-49: 34-37.

[307]

Zou YQ, Lu LJ, Li SJ, et al. The levels of macrophage migration inhibitory factor as an indicator of disease activity and severity in adult-onset Still’s disease. Clin Biochem. 2008; 41(7–8): 519-524.

[308]

Gerfaud-Valentin M, Jamilloux Y, Iwaz J, Seve P. Adult-onset Still’s disease. Autoimmun Rev. 2014; 13(7): 708-722.

[309]

Fautrel B, Le Moel G, Saint-Marcoux B, et al. Diagnostic value of ferritin and glycosylated ferritin in adult onset Still’s disease. J Rheumatol. 2001; 28(2): 322-329.

[310]

Mitrovic S, Fautrel B. New markers for adult-onset Still’s disease. Joint Bone Spine. 2018; 85(3): 285-293.

[311]

Hu Q, Shi H, Zeng T, et al. Increased neutrophil extracellular traps activate NLRP3 and inflammatory macrophages in adult-onset Still’s disease. Arthritis Res Ther. 2019; 21(1): 9.

[312]

Ahn MH, Han JH, Chwae YJ, et al. Neutrophil extracellular traps may contribute to the pathogenesis in adult-onset still disease. J Rheumatol. 2019; 46(12): 1560-1569.

[313]

Skendros P, Chrysanthopoulou A, Rousset F, Kambas K, Arampatzioglou A, Mitsios A. Regulated in development and DNA damage responses 1 (REDD1) links stress with IL-1β-mediated familial Mediterranean fever attack through autophagy-driven neutrophil extracellular traps. J Allergy Clin Immunol. 2017; 140: 1378-1387.

[314]

Bildirici AE. Familial Mediterranean fever and microRNAs. Int J Immunogenet. 2023; 50(6): 273-280.

[315]

Ozen S., Bilginer Y. A clinical guide to autoinflammatory diseases: familial mediterranean fever and next-of-kin. Nat Rev Rheumatol. 2014; 10: 135-147.

[316]

Shohat M., Halpern G.J. Familial Mediterranean fever—a review. Genet Med. 2011; 13: 487-498.

[317]

Manukyan G., Petrek M., Kriegova E., Ghazaryan K., Fillerova R., Boyajyan A. Activated phenotype of circulating neutrophils in familial mediterranean fever. Immunobiology. 2013; 218: 892-898.

[318]

Skendros P., Papagoras C., Mitroulis I., Ritis K. Autoinflammation: lessons from the study of familial Mediterranean fever. J Autoimmun. 2019; 104: 102305.

[319]

Kimura T, Jain A, Choi SW, et al. TRIM-mediated precision autophagy targets cytoplasmic regulators of innate immunity. J Cell Biol. 2015; 210: 973-989.

[320]

Gohar F, Orak B, Kallinich T, et al. Correlation of secretory activity of neutrophils with genotype in patients with familial Mediterranean fever. Arthritis Rheumatol. 2016; 68: 3010-3022.

[321]

Chae JJ, Cho YH, Lee GS, et al. Gain-of-function pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity. 2011; 34: 755-768.

[322]

Apostolidou E, Skendros P, Kambas K, et al. Neutrophil extracellular traps regulate IL-1β-mediated inflammation in familial Mediterranean fever. Ann Rheum Dis. 2016; 75: 269-277.

[323]

Skendros P, Chrysanthopoulou A, Rousset F, et al. Regulated in development and DNA damage responses 1 (REDD1) links stress with IL-1β-mediated familial mediterranean fever attack through autophagy-driven neutrophil extracellular traps. J Allergy Clin Immunol. 2017; 140: 1378-1387. e13.

[324]

Su Z, Zeng YP. Dupilumab-associated psoriasis and psoriasiform manifestations: a scoping review. Dermatology. 2023; 239(4): 646-657.

[325]

Jiang Y, Chen Y, Yu Q, Shi Y. Biologic and small-molecule therapies for moderate-to-severe psoriasis: focus on psoriasis comorbidities. BioDrugs. 2023; 37(1): 35-55.

[326]

Estevinho T, AM, Torres T. Deucravacitinib in the treatment of psoriasis. J Dermatolog Treat. 2023; 34(1): 2154122.

[327]

Zeng L, Yang K, Zhang T, et al. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: a review. J Autoimmun. 2022; 133: 102919.

[328]

Wang P, Liu D, Zhou Z, et al. The role of protein arginine deiminase 4-dependent neutrophil extracellular traps formation in ulcerative colitis. Front Immunol. 2023; 14: 1144976.

[329]

Andersen V, Bennike TB, Bang C, et al. Investigating the crime scene-molecular signatures in inflammatory bowel disease. Int J Mol Sci. 2023; 24(13): 11217.

[330]

Ding Y, Ouyang Z, Zhang C, et al. Tyrosine phosphatase SHP2 exacerbates psoriasis-like skin inflammation in mice via ERK5-dependent NETosis. MedComm. 2022; 3(1): e120.

[331]

Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm. 2022; 3(3): e162.

[332]

Byrd AS, Carmona-Rivera C, O’Neil LJ, et al. Neutrophil extracellular traps, B cells, and type I interferons contribute to immune dysregulation in hidradenitis suppurativa. Sci Transl Med. 2019; 11(508): eaav5908.

[333]

Tillack K, Breiden P, Martin R, Sospedra M. T lymphocyte priming by neutrophil extracellular traps links innate and adaptive immune responses. J Immunol. 2012; 188(7): 3150-3159.

[334]

Hu SC, Yu HS, Yen FL, Lin CL, Chen GS, Lan CC. Neutrophil extracellular trap formation is increased in psoriasis and induces human β-defensin-2 production in epidermal keratinocytes. Sci Rep. 2016; 6: 31119.

[335]

Günther J, Petzl W, Zerbe H, Schuberth HJ, Seyfert HM. TLR ligands, but not modulators of histone modifiers, can induce the complex immune response pattern of endotoxin tolerance in mammary epithelial cells. Innate Immun. 2017; 23(2): 155-164.

[336]

Mrowietz U, Barker J, Boehncke WH, et al. Clinical use of dimethyl fumarate in moderate-to-severe plaque-type psoriasis: a European expert consensus. J Eur Acad Dermatol Venereol. 2018; 32(Suppl 3): 3-14.

[337]

Okuda DT, Kantarci O, Lebrun-Frénay C, et al. Dimethyl fumarate delays multiple sclerosis in radiologically isolated syndrome. Ann Neurol. 2023; 93(3): 604-614.

[338]

van de Kerkhof PCM, Loewe R, Mrowietz U, Falques M, Pau-Charles I, Szepietowski JC. Quality of life outcomes in adults with moderate-to-severe plaque psoriasis treated with dimethylfumarate (DMF): a post hoc analysis of the BRIDGE study. J Eur Acad Dermatol Venereol. 2020; 34(1): 119-126.

[339]

Hoffmann JHO, Schaekel K, Hartl D, Enk AH, Hadaschik EN. Dimethyl fumarate modulates neutrophil extracellular trap formation in a glutathione-and superoxide-dependent manner. Br J Dermatol. 2018; 178(1): 207-214.

[340]

Cao T, Yuan X, Fang H, et al. Neutrophil extracellular traps promote keratinocyte inflammation via AIM2 inflammasome and AIM2-XIAP in psoriasis. Exp Dermatol. 2023; 32(4): 368-378.

[341]

Lande R, Chamilos G, Ganguly D, et al. Cationic antimicrobial peptides in psoriatic skin cooperate to break innate tolerance to self-DNA. Eur J Immunol. 2015; 45(1): 203-213.

[342]

Herster F, Bittner Z, Archer NK, et al. Neutrophil extracellular trap-associated RNA and LL37 enable self-amplifying inflammation in psoriasis. Nat Commun. 2020; 11(1): 105.

[343]

Zabieglo K, Majewski P, Majchrzak-Gorecka M, et al. The inhibitory effect of secretory leukocyte protease inhibitor (SLPI) on formation of neutrophil extracellular traps. J Leukoc Biol. 2015; 98(1): 99-106.

[344]

Jin T, Sun Z, Chen X, et al. Serum human beta-defensin-2 is a possible biomarker for monitoring response to jak inhibitor in psoriasis patients. Dermatology. 2017; 233(2-3): 164-169.

[345]

Shao S, Cao T, Jin L, et al. Increased lipocalin-2 contributes to the pathogenesis of psoriasis by modulating neutrophil chemotaxis and cytokine secretion. J Invest Dermatol. 2016; 136(7): 1418-1428.

[346]

Bhat S, Click B, Regueiro M. Safety and monitoring of inflammatory bowel disease advanced therapies. Inflamm Bowel Dis. 2024; 30(5): 829-843.

[347]

Macaluso FS, Caprioli F, Benedan L, et al. The management of patients with inflammatory bowel disease-associated spondyloarthritis: Italian Group for the Study of Inflammatory Bowel Disease (IG-IBD) and Italian Society of Rheumatology (SIR) recommendations based on a pseudo-Delphi consensus. Autoimmun Rev. 2024; 23(5): 103533.

[348]

Adolph TE, Meyer M, Schwärzler J, Mayr L, Grabherr F, Tilg H. The metabolic nature of inflammatory bowel diseases. Nat Rev Gastroenterol Hepatol. 2022; 19(12): 753-767.

[349]

Chang JT. Pathophysiology of inflammatory bowel diseases. N Engl J Med. 2020; 383(27): 2652-2664.

[350]

Plevris N, Lees CW. Disease monitoring in inflammatory bowel disease: evolving principles and possibilities. Gastroenterology. 2022; 162(5): 1456-1475. e1.

[351]

Drury B, Hardisty G, Gray RD, Ho GT. Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation. Cell Mol Gastroenterol Hepatol. 2021; 12(1): 321-333.

[352]

Uchiyama K, Naito Y, Takagi T, et al. Serpin B1 protects colonic epithelial cell via blockage of neutrophil elastase activity and its expression is enhanced in patients with ulcerative colitis. Am J Physiol Gastrointest Liver Physiol. 2012; 302(10): G1163-70.

[353]

Dinallo V, Marafini I, Di Fusco D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis. J Crohns Colitis. 2019; 13(6): 772-784.

[354]

Hu Z, Murakami T, Tamura H, et al. Neutrophil extracellular traps induce IL-1β production by macrophages in combination with lipopolysaccharide. Int J Mol Med. 2017; 39(3): 549-558.

[355]

Li T, Wang C, Liu Y, et al. Neutrophil extracellular traps induce intestinal damage and thrombotic tendency in inflammatory bowel disease. J Crohns Colitis. 2020; 14(2): 240-253.

[356]

Marin-Esteban V, Turbica I, Dufour G, et al. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells. Infect Immun. 2012; 80(5): 1891-1899.

[357]

Ruemmele FM, Targan SR, Levy G, Dubinsky M, Braun J, Seidman EG. Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology. 1998; 115(4): 822-829.

[358]

Mahler M, Bogdanos DP, Pavlidis P, et al. PR3-ANCA: a promising biomarker for ulcerative colitis with extensive disease. Clin Chim Acta. 2013; 424: 267-273.

[359]

Gupta AK, Joshi MB, Philippova M, et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 2010; 584(14): 3193-3197.

[360]

Laridan E, Martinod K, De Meyer SF. Neutrophil extracellular traps in arterial and venous thrombosis. Semin Thromb Hemost. 2019; 45(1): 86-93.

[361]

Esmon CT. Targeting factor Xa and thrombin: impact on coagulation and beyond. Thromb Haemost. 2014; 111(4): 625-633.

[362]

Fuchs TA, Bhandari AA, Wagner DD. Histones induce rapid and profound thrombocytopenia in mice. Blood. 2011; 118(13): 3708-3714.

[363]

Jorch SK, Kubes P. An emerging role for neutrophil extra-cellular traps in noninfectious disease. Nat Med. 2017; 23(3): 279-287.

[364]

Holko P, Kawalec P, Stawowczyk E. Prevalence and drug treatment practices of inflammatory bowel diseases in Po-land in the years 2012–2014:an analysis of nationwide databases. Eur J Gastroenterol Hepatol. 2018; 30(4): 456-464.

[365]

Hakansson A, Tormo-Badia N, Baridi A. Immu-nological alteration and changes of gut microbiota after dextran sulfate sodium(DSS)administration in mice. Clin Exp Med. 2015; 15(1): 107-120.

[366]

Vong L, Yeung C W, Pinnell LJ. Adherent-inva-sive Escherichia coli exacerbates antibiotic-associated intestinal dysbiosis and neutrophil extracellular trap activation. Inflamm Bowel Dis. 2016; 22(1): 42-54.

[367]

Vong L, Lorentz RJ, Assa A. Probiotic Lactobacil-lus rhamnosus inhibits the formation of neutrophil extracellular traps. J Immunol. 2014; 192(4): 1870-1877.

[368]

Fites JS, Gui M, Kernien JF, et al. An unappreciated role for neutrophil-DC hybrids in immunity to invasive fungal infections. PLoS Pathog. 2018; 14: e1007073.

[369]

Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet. 2018; 391: 1622-1636.

[370]

Casserly CS, Nantes JC, Whittaker RF, Vallières L. Neutrophil perversion in demyelinating autoimmune diseases: mechanisms to medicine. Autoimmun Rev. 2017; 16: 294-307.

[371]

De Bondt M, Hellings N, Opdenakker G, Struyf S. Neutrophils: underestimated players in the pathogenesis of multiple sclerosis (MS). Int J Mol Sci. 2020; 21(12): 4558.

[372]

Guo Y, Zeng H, Gao C. The role of neutrophil extracellular traps in central nervous system diseases and prospects for clinical application. Oxid Med Cell Longev. 2021; 2021: 9931742.

[373]

Naegele M, Tillack K, Reinhardt S, Schippling S, Martin R, Sospedra M. Neutrophils in multiple sclerosis are characterized by a primed phenotype. J Neuroimmunol. 2012; 242: 60-71.

[374]

Tillack K, Naegele M, Haueis C, et al. Gender differences in circulating levels of neutrophil extracellular traps in serum of multiple sclerosis patients. J Neuroimmunol. 2013; 261: 108-119.

[375]

Irizar H, Muñoz-Culla M, Sepúlveda L, et al. Transcriptomic profile reveals gender-specific molecular mechanisms driving multiple sclerosis progression. PLoS ONE. 2014; 9: e90482.

[376]

Zhang H, Ray A, Miller NM, Hartwig D, Pritchard KA, Dittel BN. Inhibition of myeloperoxidase at the peak of experimental autoimmune encephalomyelitis restores blood-brain barrier integrity and ameliorates disease severity. J Neurochem. 2016; 136: 826-836.

[377]

Yu G, Zheng S, Zhang H. Inhibition of myeloperoxidase by N-acetyl lysyltyrosylcysteine amide reduces experimental autoimmune encephalomyelitis-induced injury and promotes oligodendrocyte regeneration and neurogenesis in a murine model of progressive multiple sclerosis. Neuroreport. 2018; 29: 208-213.

[378]

Allen C, Thornton P, Denes A, et al. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J Immunol. 2012; 189: 381-392.

[379]

Paryzhak S, Dumych T, Mahorivska I, et al. Neutrophil-released enzymes can influence composition of circulating immune complexes in multiple sclerosis. Autoimmunity. 2018; 51: 297-303.

[380]

Afraei S, Sedaghat R, Zavareh FT. Therapeutic effects of pegylated-interferon-Α2a in a mouse model of multiple sclerosis. Cent Eur J Immunol. 2018; 43: 9-17.

[381]

Zhang H, Ray A, Miller NM, Hartwig D, Pritchard KA, Dittel BN. Inhibition of myeloperoxidase at the peak of experimental autoimmune encephalomyelitis restores blood-brain barrier integrity and ameliorates disease severity. J Neurochem. 2016; 136: 826-836.

[382]

Woodberry T, Bouffler SE, Wilson AS, Buckland RL, Brüstle A. The emerging role of neutrophil granulocytes in multiple sclerosis. J Clin Med. 2018; 7(12): 511.

[383]

Xiangyi L, Jinglan P, Changchuan Y, Siyuan C, Xiawei W, Hengxiu Y. Inhibition of NETs by CXCR2 antagonists alleviates experimental autoimmune encephalomyelitis[J]. J Immunol. 2021; 37(06): 481-488.

[384]

Zhang L, Gao H, Yang L, et al. FTY720 induces neutrophil extracellular traps via a NADPH oxidase-independent pathway. Arch Biochem Biophys. 2021; 711: 109015.

[385]

Knight JS, Branch DW, Ortel TL. Antiphospholipid syndrome: advances in diagnosis, pathogenesis, and management. BMJ. 2023; 380: e069717.

[386]

Mauracher LM, Krall M, Roiß J, et al. Neutrophil subpopulations and their activation potential in patients with antiphospholipid syndrome and healthy individuals. Rheumatology (Oxford). 2021; 60(4): 1687-1699.

[387]

Mazetto BM, Hounkpe BW, da Silva Saraiva S, et al. Association between neutrophil extracellular traps (NETs) and thrombosis in antiphospholipid syndrome. Thromb Res. 2022; 214: 132-137.

[388]

Meng H, Yalavarthi S, Kanthi Y, et al. In vivo role of neutrophil extracellular traps in antiphospholipid antibody-mediated venous thrombosis. Arthritis Rheumatol. 2017; 69(3): 655-667.

[389]

Foret T, Dufrost V, Salomon du Mont L, et al. A new pro-thrombotic mechanism of neutrophil extracellular traps in antiphospholipid syndrome: impact on activated protein C resistance. Rheumatology (Oxford). 2022; 61(7): 2993-2998.

[390]

Tambralli A, Gockman K, Knight JS. NETs in APS: current knowledge and future perspectives. Curr Rheumatol Rep. 2020; 22(10): 67.

[391]

Sule G, Kelley WJ, Gockman K, Yalavarthi S, Vreede AP, Banka AL. Increased adhesive potential of antiphospholipid syndrome neutrophils mediated by β2 integrin Mac-1. Arthritis Rheumatol Hoboken NJ. 2020; 72(1): 114-124.

[392]

Yalavarthi S, Gould TJ, Rao AN, Mazza LF, Morris AE, Nunez-Alvarez C. Release of neutrophil extracellular traps by neutrophils stimulated with antiphospholipid antibodies: a newly identified mechanism of thrombosis in the antiphospholipid syndrome. Arthritis Rheumatol. 2015; 67(11): 2990-3003.

[393]

Sule G, Kelley WJ, Gockman K, Yalavarthi S, Vreede AP, Banka AL. Increased adhesive potential of antiphospholipid syndrome neutrophils mediated by beta2 Integrin Mac-1. Arthritis Rheumatol. 2020; 72(1): 114-124.

[394]

Knight JS, Meng H, Coit P, Yalavarthi S, Sule G, Gandhi AA. Activated signature of antiphospholipid syndrome neutrophils reveals potential therapeutic target. JCI Insight. 2017; 2(18): e93897.

[395]

Sule G, Kelley WJ, Gockman K, et al. Increased adhesive potential of antiphospholipid syndrome neutrophils mediated by β2 integrin Mac-1. Arthritis Rheumatol. 2020; 72(1): 114-124.

[396]

Lu Y, Dong Y, Zhang Y, et al. Antiphospholipid antibody-activated NETs exacerbate trophoblast and endothelial cell injury in obstetric antiphospholipid syndrome. J Cell Mol Med. 2020; 24(12): 6690-6703.

[397]

Ali RA, Gandhi AA, Meng H, et al. Adenosine receptor agonism protects against NETosis and thrombosis in antiphospholipid syndrome. Nat Commun. 2019; 10(1): 1916.

[398]

Ali RA, Estes SK, Gandhi AA, et al. Defibrotide inhibits antiphospholipid antibody-mediated neutrophil extracellular trap formation and venous thrombosis. Arthritis Rheumatol. 2022; 74(5): 902-907.

[399]

de Bont CM, Boelens WC, Pruijn GJM. NETosis, complement, and coagulation: a triangular relationship. Cell Mol Immunol. 2019; 16(1): 19-27.

[400]

Leffler J, Martin M, Gullstrand B, Tyden H, Lood C, Truedsson L. Neutrophil extracellular traps that are not degraded in systemic lupus erythematosus activate complement exacerbating the disease. J Immunol. 2012; 188(7): 3522-3531.

[401]

Zuo Y, Yalavarthi S, Gockman K, et al. Anti-neutrophil extracellular trap antibodies and impaired neutrophil extracellular trap degradation in antiphospholipid syndrome. Arthritis Rheumatol. 2020; 72(12): 2130-2135.

[402]

van der Linden M, van den Hoogen LL, Westerlaken GHA, et al. Neutrophil extracellular trap release is associated with antinuclear antibodies in systemic lupus erythematosus and anti-phospholipid syndrome. Rheumatology (Oxford). 2018; 57(7): 1228-1234.

[403]

Pérez-Sánchez C, Aguirre , Ruiz-Limón P, et al. Ubiquinol effects on antiphospholipid syndrome prothrombotic profile: a randomized, placebo-controlled trial. Arterioscler Thromb Vasc Biol. 2017; 37(10): 1923-1932.

[404]

Brill A, Fuchs TA, Savchenko AS, Thomas GM, Martinod K, De Meyer SF. Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost. 2012; 10(1): 136-144.

[405]

Furumoto Y, Smith CK, Blanco L, Zhao W, Brooks SR, Thacker SG. Tofacitinib ameliorates murine lupus and its associated vascular dysfunction. Arthritis Rheumatol. 2017; 69(1): 148-160.

[406]

Nakazawa D, Masuda S, Tomaru U, Ishizu A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat Rev Rheumatol. 2019; 15(2): 91-101.

[407]

Hunter RW, Welsh N, Farrah TE, Gallacher PJ, Dhaun N. ANCA associated vasculitis. BMJ. 2020; 369: m1070.

[408]

Guchelaar NAD, Waling MM, Adhin AA, van Daele PLA, Schreurs MWJ, Rombach SM. The value of anti-neutrophil cytoplasmic antibodies (ANCA) testing for the diagnosis of ANCA-associated vasculitis, a systematic review and meta-analysis. Autoimmun Rev. 2021; 20(1): 102716.

[409]

Kempiners N, Mahrhold J, Hellmich B, Csernok E. Evaluation of PR3-and MPO-ANCA line and dot immunoassays in ANCA-associated vasculitis. Rheumatology (Oxford). 2021; 60(9): 4390-4394.

[410]

Fernando SL, Boyle T. Presence of dual anti-MPO and anti-PR3 antibodies in systemic lupus erythematosus/ANCA-associated vasculitis. J Clin Pathol. 2020; 73(10): 687-688.

[411]

O’Sullivan KM, Holdsworth SR. Neutrophil extracellular traps: a potential therapeutic target in MPO-ANCA associated vasculitis? Front Immunol. 2021; 12: 635188.

[412]

Söderberg D, Segelmark M. Neutrophil extracellular traps in ANCA-associated vasculitis. Front Immunol. 2016; 7: 256.

[413]

Huugen D, Xiao H, van Esch A. Aggravation of antimyeloperoxidase antibody-induced glomerulonephritis by bacterial lipopolysaccharide: role of tumor necrosis factor-alpha. Am J Pathol. 2005; 167: 47-58.

[414]

Deguchi Y, Shibata N, Kishimoto S. Enhanced expression of the tumour necrosis factor/cachectin gene in peripheral blood mononuclear cells from patients with systemic vasculitis. Clin Exp Immunol. 1990; 81: 311-314.

[415]

Halbwachs L, Lesavre P. Endothelium-neutrophil interactions in ANCA-associated diseases. J Am Soc Nephrol. 2012; 23: 1449-1461.

[416]

Michailidou D, Mustelin T, Lood C. Role of neutrophils in systemic vasculitides. Front Immunol. 2020; 11: 619705.

[417]

Nakazawa D, Masuda S, Tomaru U. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat Rev Rheumatol. 2019; 15: 91-101.

[418]

Wang C, Gou SJ, Chang DY, Yu F, Zhao MH, Chen M. Association of circulating level of high mobility group box 1 with disease activity in antineutrophil cytoplasmic autoantibody-associated vasculitis. Arthritis Care Res (Hoboken). 2013; 65(11): 1828-1834.

[419]

Frangou E, Vassilopoulos D, Boletis J, Boumpas DT. An emerging role of neutrophils and NETosis in chronic inflammation and fibrosis in systemic lupus erythematosus (SLE) and ANCA-associated vasculitides (AAV): implications for the pathogenesis and treatment. Autoimmun Rev. 2019; 18(8): 751-760.

[420]

Sadeghi M, Dehnavi S, Jamialahmadi T, Johnston TP, Sahebkar A. Neutrophil extracellular trap: a key player in the pathogenesis of autoimmune diseases. Int Immunopharmacol. 2023; 116: 109843.

[421]

Guntur VP, Manka LA, Denson JL. Benralizumab as a steroid-sparing treatment option in eosinophilic granulomatosis with polyangiitis. J Allergy Clin Immunol Pract. 2021; 9: 1186-1193. e1181.

[422]

Li P, Li M, Lindberg MR. PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med. 2010; 207: 1853-1862.

[423]

Rao AN, Kazzaz NM, Knight JS. Do neutrophil extracellular traps contribute to the heightened risk of thrombosis in inflammatory diseases? World J Cardiol. 2015; 7: 829-842.

[424]

Sollberger G, Choidas A, Burn GL. Gasdermin D plays a vital role in the generation of neutrophil extracellular traps. Sci Immunol. 2018; 3(26): eaar6689.

[425]

Li H, Zhou X, Tan H. Neutrophil extracellular traps contribute to the pathogenesis of acid-aspiration-induced ALI/ARDS. Oncotarget. 2018; 9: 1772-1784.

[426]

O’Sullivan KM, Holdsworth SR. Neutrophil extracellular traps: a potential therapeutic target in MPO-ANCA associated vasculitis? Front Immunol. 2021; 12: 635188.

[427]

Savage CO. Pathogenesis of anti-neutrophil cytoplasmic autoantibody (ANCA) - associated vasculitis. Clin Exp Immunol. 2011; 164(Suppl 1): 23-26.

[428]

Kimura H, Matsuyama Y, Araki S. The effect and possible clinical efficacy of in vivo inhibition of neutrophil extracellular traps by blockade of PI3K-gamma on the pathogenesis of microscopic polyangiitis. Mod Rheumatol. 2018; 28: 530-541.

[429]

Stark AK, Sriskantharajah S, Hessel EM. PI3K inhibitors in inflammation, autoimmunity and cancer. Curr Opin Pharmacol. 2015; 23: 82-91.

[430]

Schreiber A, Rousselle A, Becker JU. Necroptosis controls NET generation and mediates complement activation, endothelial damage, and autoimmune vasculitis. Proc Natl Acad Sci USA. 2017; 114: E9618-E9625.

[431]

van Dam LS, Rabelink TJ, van Kooten C. Clinical Implications of excessive neutrophil extracellular trap formation in renal autoimmune diseases. Kidney Int Rep. 2019; 4: 196-211.

[432]

Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M. Gene therapy comes of age. Science. 2018; 359(6372): eaan4672.

[433]

Yaseen K, Mandell BF. ANCA associated vasculitis (AAV): a review for internists. Postgrad Med. 2023; 135(sup1): 3-13.

[434]

Austin K, Janagan S, Wells M, Crawshaw H, McAdoo S, Robson JC. ANCA associated vasculitis subtypes: recent insights and future perspectives. J Inflamm Res. 2022; 15: 2567-2582.

[435]

Nguyen ID, Sinnathamby ES, Mason J, et al. Avacopan, a novel competitive C5a receptor antagonist, for severe antineutrophil cytoplasmic autoantibody-associated vasculitis. Clin Drug Investig. 2023; 43(8): 595-603.

[436]

uattrin T, Mastrandrea LD, Walker LSK. Type 1 diabetes. Lancet. 2023; 401(10394): 2149-2162.

[437]

Redondo MJ, Morgan NG. Heterogeneity and endotypes in type 1 diabetes mellitus. Nat Rev Endocrinol. 2023; 19(9): 542-554.

[438]

Riddell MC, Peters AL. Exercise in adults with type 1 diabetes mellitus. Nat Rev Endocrinol. 2023; 19(2): 98-111.

[439]

Wang Y, Xiao Y, Zhong L. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with β-cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014; 63(12): 4239-4248.

[440]

Diana J, Simoni Y, Furio L. Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med. 2013; 19(1): 65-73.

[441]

You Q, He DM, Shu GF, et al. Increased formation of neutrophil extracellular traps is associated with gut leakage in patients with type 1 but not type 2 diabetes. J Diabetes. 2019; 11(8): 665-673.

[442]

Singh S, Kirtschig G, Anchan VN, et al. Interventions for bullous pemphigoid. Cochrane Database Syst Rev. 2023; 8(8): CD002292.

[443]

Liu Z, Giudice GJ, Zhou X. A major role for neutrophils in experimental bullous pemphigoid J Clin Invest. 1991; 100: 1256-1263.

[444]

Oswald E, Sesarman A, Franzke CW. The flavonoid luteolin inhibits Fcgamma-dependent respiratory burst in granulocytes, but not skin blistering in a new model of pemphigoid in adult mice. PloS One. 2012; 7: e31066.

[445]

Kasperkiewicz M, Zillikens D. The pathophysiology of bullous pemphigoid. Clin Rev Allergy Immunol. 2007; 33: 67-77.

[446]

Lin L, Betsuyaku T, Heimbach L. Neutrophil elastase cleaves the murine hemidesmosomal protein BP180 /type XVII collagen and generates degradation products that modulate experimental bullous pemphigoid. Matrix Biol. 2012; 31: 38-44.

[447]

Hellberg L, Samavedam UK, Holdorf K. Methylprednisolone blocks autoantibody-induced tissue damage in experimental models of bullous pemphigoid and epidermolysis bullosa acquisita through inhibition of neutrophil activation J Invest Dermatol. 2013; 133: 2390-2399.

[448]

Simon D, Borradori L, Simon HU. Glucocorticoids in autoimmune bullous diseases: are neutrophils the key cellular target. J Invest Dermatol. 2013; 133: 2314-2315.

[449]

Furue M, Kadono T. Bullous pemphigoid: what’s ahead J Dermatol. 2016; 43: 237-240.

[450]

van den Hoogen F, Khanna D, Fransen J, et al. 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthr Rheum. 2013; 65: 2737-2747.

[451]

Elhai M, Meune C, Boubaya M, et al. Mapping and predicting mortality from systemic sclerosis. Ann Rheum Dis. 2017; 76: 1897-1905.

[452]

Vona R, Giovannetti A, Gambardella L, Malorni W, Pietraforte D, Straface E. Oxidative stress in the pathogenesis of systemic scleroderma: an overview. J Cell Mol Med. 2018; 22: 3308-3314.

[453]

Maugeri N, Capobianco A, Rovere-Querini P, et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci Transl Med. 2018; 10: eaao3089.

[454]

Impellizzieri D, Egholm C, Valaperti A, Distler O, Boyman O. Patients with systemic sclerosis show phenotypic and functional defects in neutrophils. Allergy. 2022; 77(4): 1274-1284.

[455]

Lande R, Lee EY, Palazzo R, et al. CXCL4 assembles DNA into liquid crystalline complexes to amplify TLR9-mediated interferon-α production in systemic sclerosis. Nat Commun. 2019; 10: 1731.

[456]

Didier K, Giusti D, Le Jan S, et al. Neutrophil extracellular traps generation relates with early stage and vascular complications in systemic sclerosis. J Clin Med. 2020; 9(7): 2136.

[457]

Pope JE, Denton CP, Johnson SR, Fernandez-Codina A, Hudson M, Nevskaya T. State-of-the-art evidence in the treatment of systemic sclerosis. Nat Rev Rheumatol. 2023; 19(4): 212-226.

[458]

Tourkina E, Richard M, Oates J, et al. Caveolin-1 regulates leucocyte behaviour in fibrotic lung disease. Ann Rheum Dis. 2010; 69: 1220-1226.

[459]

Vaseruk A, Bila G, Bilyy R. Nanoparticles for stimulation of neutrophil extracellular trap-mediated immunity. Eur J Immunol. 2024; 54(4): e2350582.

[460]

Volkmann ER, Andréasson K, Smith V. Systemic sclerosis. Lancet. 2023; 401(10373): 304-318.

[461]

Kuley R, Stultz RD, Duvvuri B, et al. N-formyl methionine peptide-mediated neutrophil activation in systemic sclerosis. Front Immunol. 2022; 12: 785275.

[462]

Maugeri N, Capobianco A, Rovere-Querini P, Ramirez GA, Tombetti E, Valle PD. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci Transl Med. 2018; 10: eaao3089.

[463]

Valenzi E, Tabib T, Papazoglou A, et al. Disparate interferon signaling and shared aberrant basaloid cells in single-cell profiling of idiopathic pulmonary fibrosis and systemic sclerosis-associated interstitial lung disease. Front Immunol. 2021; 12: 595811.

[464]

Maugeri N, Rovere-Querini P, Baldini M, et al. Oxidative stress elicits platelet/leukocyte inflammatory interactions via HMGB1: a candidate for microvessel injury in sytemic sclerosis. Antioxid Redox Signal. 2014; 20(7): 1060-1074.

[465]

Maugeri N, Capobianco A, Rovere-Querini P, et al. Platelet microparticles sustain autophagy-associated activation of neutrophils in systemic sclerosis. Sci Transl Med. 2018; 10(451): eaao3089.

[466]

Manfredi AA, Ramirez GA, Godino C, et al. Platelet phagocytosis via P-selectin glycoprotein ligand 1 and accumulation of microparticles in systemic sclerosis. Arthritis Rheumatol. 2022; 74(2): 318-328.

[467]

Findlay AR, Goyal NA, Mozaffar T. An overview of polymyositis and dermatomyositis. Muscle Nerve. 2015; 51(5): 638-656.

[468]

Sasaki H, Kohsaka H. Current diagnosis and treatment of polymyositis and dermatomyositis. Mod Rheumatol. 2018; 28(6): 913-921.

[469]

Long K, Danoff SK. Interstitial lung disease in polymyositis and dermatomyositis. Clin Chest Med. 2019; 40(3): 561-572.

[470]

Sun KY, Fan Y, Wang YX, Zhong YJ, Wang GF. Prevalence of interstitial lung disease in polymyositis and dermatomyositis: a meta-analysis from 2000 to 2020. Semin Arthritis Rheum. 2021; 51(1): 175-191.

[471]

Ashton C, Paramalingam S, Stevenson B, Brusch A, Needham M. Idiopathic inflammatory myopathies: a review. Intern Med J. 2021; 51(6): 845-852.

[472]

Pipitone N, Salvarani C. Up-to-date treatment and management of myositis. Curr Opin Rheumatol. 2020; 32(6): 523-527.

[473]

Franco C, Gatto M, Iaccarino L, Ghirardello A, Doria A. Lymphocyte immunophenotyping in inflammatory myositis: a review. Curr Opin Rheumatol. 2021; 33(6): 522-528.

[474]

Venalis P, Lundberg IE. Immune mechanisms in polymyositis and dermatomyositis and potential targets for therapy. Rheumatology (Oxford). 2014; 53(3): 397-405.

[475]

Haq SA, Tournadre A. Idiopathic inflammatory myopathies: from immunopathogenesis to new therapeutic targets. Int J Rheum Dis. 2015; 18(8): 818-825.

[476]

Si-Gong Z, Xiao-Lan T, Yin-Li Z, et al. Correlation between neutrophil extracellular reticular traps and interstitial lung disease associated with dermatomyositis patients. Chinese J Rheumatol. 2013; 17(12): 796-799+865.

[477]

Yan Z, Bing Y, Yi L. Role of neutrophil extracellular trap-induced vascular endothelial cell injury in dermatomyositis combined with interstitial lung lesions[J]. Chinese J Intern Med. 2017; 56(9): 650-654.

[478]

Peng Y, Zhang S, Zhao Y, Liu Y, Yan B. Neutrophil extracellular traps may contribute to interstitial lung disease associated with anti-MDA5 autoantibody positive dermatomyositis. Clin Rheumatol. 2018; 37(1): 107-115.

[479]

Torres-Ruiz J, Carrillo-Vázquez DA, Leal-Alanis A, et al. Low-density granulocytes and neutrophil extracellular traps as biomarkers of disease activity in adult inflammatory myopathies. J Clin Rheumatol. 2022; 28(2): e480-e487.

[480]

Zhang S, Shu X, Tian X, Chen F, Lu X, Wang G. Enhanced formation and impaired degradation of neutrophil extracellular traps in dermatomyositis and polymyositis: a potential contributor to interstitial lung disease complications. Clin Exp Immunol. 2014; 177(1): 134-141.

[481]

Chrysanthopoulou A, Mitroulis I, Apostolidou E, et al. Neutrophil extracellular traps promote differentiation and function of fibroblasts. J Pathol. 2014; 233(3): 294-307.

[482]

Zhang S, Jia X, Zhang Q, et al. Neutrophil extracellular traps activate lung fibroblast to induce polymyositis-related interstitial lung diseases via TLR9-miR-7-Smad2 pathway. J Cell Mol Med. 2020; 24(2): 1658-1669.

[483]

Lu X, Peng Q, Wang G. Anti-MDA5 antibody-positive dermatomyositis: pathogenesis and clinical progress. Nat Rev Rheumatol. 2024; 20(1): 48-62.

[484]

Paik JJ, Lubin G, Gromatzky A, Mudd PN Jr, Ponda MP, Christopher-Stine L. Use of Janus kinase inhibitors in dermatomyositis: a systematic literature review. Clin Exp Rheumatol. 2023; 41(2): 348-358.

[485]

Yasui M, Iwamoto T, Furuta S. New therapies in anti-MDA5 antibody-positive dermatomyositis. Curr Opin Rheumatol. 2024; 36(1): 61-68.

[486]

Vignesh P, Barman P, Basu S, et al. Juvenile dermatomyositis associated with autoantibodies to small ubiquitin-like modifier activating enzyme: a report of 4 cases from North India and a review of literature. Immunol Res. 2023; 71(1): 112-120.

[487]

Jia S, Taylor-Cousar JL. Cystic fibrosis modulator therapies. Annu Rev Med. 2023; 74: 413-426.

[488]

Melki I, Frémond ML. JAK inhibition in juvenile idiopathic arthritis (JIA): better understanding of a promising therapy for refractory cases. J Clin Med. 2023; 12(14): 4695.

[489]

Jia X, Chen J, Huang R, Wang D, Wang X. Effect-enhancing and toxicity-reducing effects of Chaihu Jia Longgu Muli decoction in the treatment of multimorbidity with depression: a systematic review and meta-analysis. Pharm Biol. 2023; 61(1): 1094-1106.

[490]

Luo X, Tang X. Single-cell RNA sequencing in juvenile idiopathic arthritis. Genes Dis. 2023; 11(2): 633-644.

[491]

Cimaz R, Von Scheven A, Hofer M. Systemic-onset juvenile idiopathic arthritis: the changing life of a rare disease. Swiss Med Wkly. 2012; 142: w13582.

[492]

Foell D, Wittkowski H, Vogl T, Roth J. S100 proteins expressed in phagocytes: a novel group of damage-associated molecular pattern molecules. J Leukoc Biol. 2007; 81(1): 28-37.

[493]

Xu J, Zhang X, Pelayo R, Monestier M, Ammollo CT, Semeraro F. Extracellular histones are major mediators of death in sepsis. Nat Med. 2009; 15(11): 1318-1321.

[494]

Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS. Neutrophil extracellular traps kill bacteria. Science. 2004; 303(5663): 1532-1535.

[495]

Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA. 2010; 107(36): 15880-15885.

[496]

Hu X, Xie Q, Mo X, Jin Y. The role of extracellular histones in systemic-onset juvenile idiopathic arthritis. Ital J Pediatr. 2019; 45(1): 14.

[497]

Mor-Vaknin N, Saha A, Legendre M, et al. DEK-targeting DNA aptamers as therapeutics for inflammatory arthritis. Nat Commun. 2017; 8: 14252.

[498]

Kolaczkowska E, Jenne CN, Surewaard BG, Thanabalasuriar A, Lee WY, Sanz MJ. Molecular mechanisms of NET formation and degradation revealed by intravital imaging in the liver vasculature. Nat Commun. 2015; 6: 6673.

[499]

Sur Chowdhury C, Hahn S, Hasler P, Hoesli I, Lapaire O, Giaglis S. Elevated levels of total cell-free DNA in maternal serum samples arise from the generation of neutrophil extracellular traps. Fetal Diagn Ther. 2016; 40(4): 263-267.

[500]

Krautgartner WD, Vitkov L. Visualization of neutrophil extracellular traps in TEM. Micron. 2008; 39(4): 367-372.

[501]

Wang Y, Xiao Y, Zhong L, Ye D, Zhang J, Tu Y. Increased neutrophil elastase and proteinase 3 and augmented NETosis are closely associated with beta-cell autoimmunity in patients with type 1 diabetes. Diabetes. 2014; 63(12): 4239-4248.

[502]

Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. 2009; 15(6): 623-625.

[503]

Khandpur R, Carmona-Rivera C, Vivekanandan-Giri A, Gizinski A, Yalavarthi S, Knight JS. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013; 5(178):178ra140h.

[504]

Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J. Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med. 2011; 3(73): 73ra19.

[505]

Remijsen Q, Vanden Berghe T, Wirawan E, Asselbergh B, Parthoens E, De Rycke R. Neutrophil extracellular trap cell death requires both autophagy and superoxide generation. Cell Res. 2011; 21(2): 290-304.

[506]

Scherz-Shouval R, Elazar Z. Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci. 2011; 36(1): 30-38.

[507]

Sur Chowdhury C, Giaglis S, Walker UA, Buser A, Hahn S, Hasler P. Enhanced neutrophil extracellular trap generation in rheumatoid arthritis: analysis of underlying signal transduction pathways and potential diagnostic utility. Arthritis Res Ther. 2014; 16(3): R122.

[508]

Webers C, Ortolan A, Sepriano A, et al. Efficacy and safety of biological DMARDs: a systematic literature review informing the 2022 update of the ASAS-EULAR recommendations for the management of axial spondyloarthritis. Ann Rheum Dis. 2023; 82(1): 130-141.

[509]

Navarro-Compán V, Sepriano A, El-Zorkany B, van der Heijde D. Axial spondyloarthritis. Ann Rheum Dis. 2021; 80(12): 1511-1521.

[510]

Sieper J, Poddubnyy D. Axial spondyloarthritis. Lancet. 2017; 390(10089): 73-84.

[511]

Ritchlin C, Adamopoulos IE. Axial spondyloarthritis: new advances in diagnosis and management. BMJ. 2021; 372: m4447.

[512]

Taurog JD, Chhabra A, Colbert RA. Ankylosing spondylitis and axial spondyloarthritis. N Engl J Med. 2016; 374(26): 2563-2574.

[513]

Agrawal P, Machado PM. Recent advances in managing axial spondyloarthritis. F1000Res. 2020; 9: F1000 Faculty Rev-697.

[514]

Mauro D, Thomas R, Guggino G, Lories R, Brown MA, Ciccia F. Ankylosing spondylitis: an autoimmune or autoinflammatory disease? Nat Rev Rheumatol. 2021; 17(7): 387-404.

[515]

Fragoulis GE, Siebert S. Treatment strategies in axial spondyloarthritis: what, when and how? Rheumatology (Oxford). 2020; 59(Suppl4): iv79-iv89.

[516]

Robinson PC, van der Linden S, Khan MA, Taylor WJ. Axial spondyloarthritis: concept, construct, classification and implications for therapy. Nat Rev Rheumatol. 2021; 17(2): 109-118.

[517]

Danve A, Deodhar A. Treatment of axial spondyloarthritis: an update. Nat Rev Rheumatol. 2022; 18(4): 205-216.

[518]

Zambrano-Zaragoza JF, Gutiérrez-Franco J, Durán-Avelar MJ, et al. Neutrophil extracellular traps and inflammatory response: implications for the immunopathogenesis of ankylosing spondylitis. Int J Rheum Dis. 2021; 24(3): 426-433.

[519]

Papagoras C, Chrysanthopoulou A, Mitsios A, et al. IL-17A expressed on neutrophil extracellular traps promotes mesenchymal stem cell differentiation toward bone-forming cells in ankylosing spondylitis. Eur J Immunol. 2021; 51(4): 930-942.

[520]

Ruiz-Limon P, Ladehesa-Pineda ML, Castro-Villegas MDC, et al. Enhanced NETosis generation in radiographic axial spondyloarthritis: utility as biomarker for disease activity and anti-TNF-α therapy effectiveness. J Biomed Sci. 2020; 27(1): 54.

[521]

Kaplan MJ. Neutrophils in the pathogenesis and manifestations of SLE. Nat Rev Rheumatol. 2011; 7(12): 691-699.

[522]

Wu Y, Ma J, Yang X, et al. Neutrophil profiling illuminates anti-tumor antigen-presenting potency. Cell. 2024; 187(6): 1422-1439. e24.

[523]

Xue R, Zhang Q, Cao Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022; 612(7938): 141-147.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/