PDF
Abstract
Protein palmitoylation, a reversible post-translational lipid modification, is catalyzed by the ZDHHC family of palmitoyltransferases and reversed by several acyl protein thioesterases, regulating protein localization, accumulation, secretion, and function. Neurological disorders encompass a spectrum of diseases that affect both the central and peripheral nervous system. Recently, accumulating studies have revealed that pathological protein associated with neurological diseases, such as β-amyloid, α-synuclein, and Huntingtin, could undergo palmitoylation, highlighting the crucial roles of protein palmitoylation in the onset and development of neurological diseases. However, few preclinical studies and clinical trials focus on the interventional strategies that target protein palmitoylation. Here, we comprehensively reviewed the emerging evidence on the role of protein palmitoylation in various neurological diseases and summarized the classification, processes, and functions of protein palmitoylation, highlighting its impact on protein stability, membrane localization, protein–protein interaction, as well as signal transduction. Furthermore, we also discussed the potential interventional strategies targeting ZDHHC proteins and elucidated their underlying pathogenic mechanisms in neurological diseases. Overall, an in-depth understanding of the functions and significances of protein palmitoylation provide new avenues for investigating the mechanisms and therapeutic approaches for neurological disorders.
Keywords
biological functions
/
neurological disorders
/
palmitoylation
/
post-translational modifications
/
therapeutic targets
Cite this article
Download citation ▾
Yan-Ran Qian, Yu-Jia Zhao, Feng Zhang.
Protein palmitoylation: biological functions, disease, and therapeutic targets.
MedComm, 2025, 6(3): e70096 DOI:10.1002/mco2.70096
| [1] |
Zafar S, Fatima SI, Schmitz M, Zerr I. Current technologies unraveling the significance of post-translational modifications (PTMs) as crucial players in neurodegeneration. Biomolecules. 2024; 14(1): 118.
|
| [2] |
Ryšlavá H, Doubnerová V, Kavan D, Vaněk O. Effect of posttranslational modifications on enzyme function and assembly. J Proteomics. 2013; 92: 80-109.
|
| [3] |
Bharaj P, Atkins C, Luthra P, et al. The host E3-ubiquitin ligase TRIM6 ubiquitinates the ebola virus VP35 protein and promotes virus replication. J Virol. 2017; 91(18): e00833.
|
| [4] |
Santos AL, Lindner AB. Protein posttranslational modifications: roles in aging and age-related disease. Oxid Med Cell Long. 2017; 2017: 5716409.
|
| [5] |
Schmidt MF, Schlesinger MJ. Fatty acid binding to vesicular stomatitis virus glycoprotein: a new type of post-translational modification of the viral glycoprotein. Cell. 1979; 17(4): 813-9.
|
| [6] |
Spinelli M, Fusco S, Grassi C. Nutrient-dependent changes of protein palmitoylation: impact on nuclear enzymes and regulation of gene expression. Int J Mol Sci. 2018; 19(12): 3820.
|
| [7] |
Sardana S, Nederstigt AE, Baggelaar MP. S-palmitoylation during retinoic acid-induced neuronal differentiation of SH-SY5Y neuroblastoma cells. J Proteome Res. 2023; 22(7): 2421-2435.
|
| [8] |
Chaibva M, Jawahery S, Pilkington AW, et al. Acetylation within the first 17 residues of huntingtin exon 1 alters aggregation and lipid binding. Biophys J. 2016; 111(2): 349-362.
|
| [9] |
Salaun C, Locatelli C, Zmuda F, Cabrera González J, Chamberlain LH. Accessory proteins of the zDHHC family of S-acylation enzymes. J Cell Sci. 2020; 133(22): jcs251819.
|
| [10] |
Greaves J, Carmichael JA, Chamberlain LH. The palmitoyl transferase DHHC2 targets a dynamic membrane cycling pathway: regulation by a C-terminal domain. Mol Biol Cell. 2011; 22(11): 1887-95.
|
| [11] |
Noritake J, Fukata Y, Iwanaga T, et al. Mobile DHHC palmitoylating enzyme mediates activity-sensitive synaptic targeting of PSD-95. J Cell Biol. 2009; 186(1): 147-60.
|
| [12] |
Ohno Y, Kihara A, Sano T, Igarashi Y. Intracellular localization and tissue-specific distribution of human and yeast DHHC cysteine-rich domain-containing proteins. Biochim Biophys Acta. 2006; 1761(4): 474-83.
|
| [13] |
Brown RW, Sharma AI, Engman DM. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence. Crit Rev Biochem Mol Biol. 2017; 52(2): 145-162.
|
| [14] |
Shafi S, Singh A, Gupta P, et al. Deciphering the role of aberrant protein post-translational modification in the pathology of neurodegeneration. CNS Neurol Disord Drug Targets. 2021; 20(1): 54-67.
|
| [15] |
Ouyang P, Cai Z, Peng J, et al. SELENOK-dependent CD36 palmitoylation regulates microglial functions and Aβ phagocytosis. Redox Biol. 2024; 70: 103064.
|
| [16] |
Yanai A, Huang K, Kang R, et al. Palmitoylation of huntingtin by HIP14 is essential for its trafficking and function. Nat Neurosci. 2006; 9(6): 824-31.
|
| [17] |
Moors TE, Li S, McCaffery TD, et al. Increased palmitoylation improves estrogen receptor alpha-dependent hippocampal synaptic deficits in a mouse model of synucleinopathy. Sci Adv. 2023; 9(46): eadj1454.
|
| [18] |
Raymond FL, Tarpey PS, Edkins S, et al. Mutations in ZDHHC9, which encodes a palmitoyltransferase of NRAS and HRAS, cause X-linked mental retardation associated with a Marfanoid habitus. Am J Hum Genet. 2007; 80(5): 982-7.
|
| [19] |
Henderson MX, Wirak GS, Zhang YQ, et al. Neuronal ceroid lipofuscinosis with DNAJC5/CSPα mutation has PPT1 pathology and exhibit aberrant protein palmitoylation. Acta Neuropathol. 2016; 131(4): 621-37.
|
| [20] |
Zhao Y, He A, Zhu F, et al. Integrating genome-wide association study and expression quantitative trait locus study identifies multiple genes and gene sets associated with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 81: 50-54.
|
| [21] |
Bavarsad NH, Bagheri S, Kourosh-Arami M, Komaki A. Aromatherapy for the brain: lavender’s healing effect on epilepsy, depression, anxiety, migraine, and Alzheimer’s disease: a review article. Heliyon. 2023; 9(8): e18492.
|
| [22] |
Ho GPH, Ramalingam N, Imberdis T, Wilkie EC, Dettmer U, Selkoe DJ. Upregulation of cellular palmitoylation mitigates α-synuclein accumulation and neurotoxicity. Mov Disord. 2021; 36(2): 348-359.
|
| [23] |
Zhang H, Li X, Ma C, et al. Fine-mapping of ZDHHC2 identifies risk variants for schizophrenia in the Han Chinese population. Mol Genet Genomic Med. 2020; 8(7): e1190.
|
| [24] |
Shipston MJ. Regulation of large conductance calcium-and voltage-activated potassium (BK) channels by S-palmitoylation. Biochem Soc Trans. 2013; 41(1): 67-71.
|
| [25] |
Sadhukhan T, Bagh MB, Appu AP, et al. In a mouse model of INCL reduced S-palmitoylation of cytosolic thioesterase APT1 contributes to microglia proliferation and neuroinflammation. J Inherit Metab Dis. 2021; 44(4): 1051-1069.
|
| [26] |
Hernandez JL, Majmudar JD, Martin BR. Profiling and inhibiting reversible palmitoylation. Curr Opin Chem Biol. 2013; 17(1): 20-6.
|
| [27] |
Kleuss C, Krause E. Galpha(s) is palmitoylated at the N-terminal glycine. EMBO J. 2003; 22(4): 826-32.
|
| [28] |
Torres VI, Godoy JA, Inestrosa NC. Modulating Wnt signaling at the root: Porcupine and Wnt acylation. Pharmacol Ther. 2019; 198: 34-45.
|
| [29] |
Konitsiotis AD, Chang SC, Jovanović B, et al. Attenuation of hedgehog acyltransferase-catalyzed sonic Hedgehog palmitoylation causes reduced signaling, proliferation and invasiveness of human carcinoma cells. PLoS One. 2014; 9(3): e89899.
|
| [30] |
Li Y, Qi B. Progress toward understanding protein S-acylation: prospective in plants. Front Plant Sci. 2017; 8: 346.
|
| [31] |
Sobocińska J, Roszczenko-Jasińska P, Ciesielska A, Kwiatkowska K. Protein palmitoylation and its role in bacterial and viral infections. Front Immunol. 2017; 8: 2003.
|
| [32] |
Blanc M, David F, Abrami L, et al. SwissPalm: protein Palmitoylation database. F1000Research. 2015; 4: 261.
|
| [33] |
Hornemann T. Palmitoylation and depalmitoylation defects. J Inherit Metab Dis. 2015; 38(1): 179-86.
|
| [34] |
Fan Z, Hao Y, Huo Y, et al. Modulators for palmitoylation of proteins and small molecules. Eur J Med Chem. 2024; 271: 116408.
|
| [35] |
Ohno Y, Kashio A, Ogata R, Ishitomi A, Yamazaki Y, Kihara A. Analysis of substrate specificity of human DHHC protein acyltransferases using a yeast expression system. Mol Biol Cell. 2012; 23(23): 4543-51.
|
| [36] |
Fukata M, Fukata Y, Adesnik H, Nicoll RA, Bredt DS. Identification of PSD-95 palmitoylating enzymes. Neuron. 2004; 44(6): 987-96.
|
| [37] |
Malgapo MIP, Linder ME. Substrate recruitment by zDHHC protein acyltransferases. Open Biol. 2021; 11(4): 210026.
|
| [38] |
Rana MS, Kumar P, Lee CJ, Verardi R, Rajashankar KR, Banerjee A. Fatty acyl recognition and transfer by an integral membrane S-acyltransferase. Science. 2018; 359(6372): eaao6326.
|
| [39] |
Vetrivel KS, Meckler X, Chen Y, et al. Alzheimer disease Abeta production in the absence of S-palmitoylation-dependent targeting of BACE1 to lipid rafts. J Biol Chem. 2009; 284(6): 3793-803.
|
| [40] |
Mukai J, Dhilla A, Drew LJ, et al. Palmitoylation-dependent neurodevelopmental deficits in a mouse model of 22q11 microdeletion. Nat Neurosci. 2008; 11(11): 1302-10.
|
| [41] |
Liao D, Huang Y, Liu D, et al. The role of s-palmitoylation in neurological diseases: implication for zDHHC family. Front Pharmacol. 2023; 14: 1342830.
|
| [42] |
Yang Q, Zheng F, Hu Y, et al. ZDHHC8 critically regulates seizure susceptibility in epilepsy. Cell Death Dis. 2018; 9(8): 795.
|
| [43] |
Shimell JJ, Shah BS, Cain SM, et al. The X-linked intellectual disability gene Zdhhc9 is essential for dendrite outgrowth and inhibitory synapse formation. Cell Rep. 2019; 29(8): 2422-2437. e8.
|
| [44] |
Linder ME, Deschenes RJ. Palmitoylation: policing protein stability and traffic. Nat Rev Mol Cell Biol. 2007; 8(1): 74-84.
|
| [45] |
Wang Y, Yan D, Liu J, Tang D, Chen X. Protein modification and degradation in ferroptosis. Redox Biol. 2024; 75: 103259.
|
| [46] |
Murphy J, Kolandaivelu S. Palmitoylation of progressive rod-cone degeneration (PRCD) regulates protein stability and localization. J Biol Chem. 2016; 291(44): 23036-23046.
|
| [47] |
McClellan B, Wilson CN, Brenner AJ, Jolly CA, deGraffenried L. Flotillin-1 palmitoylation is essential for its stability and subsequent tumor promoting capabilities. Oncogene. 2024; 43(14): 1063-1074.
|
| [48] |
Nguyen PL, Greentree WK, Kawate T, Linder ME. GCP16 stabilizes the DHHC9 subfamily of protein acyltransferases through a conserved C-terminal cysteine motif. Front Physiol. 2023; 14: 1167094.
|
| [49] |
Fhu CW, Ali A. Protein lipidation by palmitoylation and myristoylation in cancer. Front Cell Dev Biol. 2021; 9: 673647.
|
| [50] |
Chen W, Guo L, Wei W, Cai C, Wu G. Zdhhc1-and Zdhhc2-mediated Gpm6a palmitoylation is essential for maintenance of mammary stem cell activity. Cell Rep. 2024; 43(9): 114762.
|
| [51] |
Shahinian S, Silvius JR. Doubly-lipid-modified protein sequence motifs exhibit long-lived anchorage to lipid bilayer membranes. Biochemistry. 1995; 34(11): 3813-22.
|
| [52] |
Won SJ, Davda D, Labby KJ, et al. Molecular mechanism for isoform-selective inhibition of acyl protein thioesterases 1 and 2 (APT1 and APT2). ACS Chem Biol. 2016; 11(12): 3374-3382.
|
| [53] |
Kong E, Peng S, Chandra G, et al. Dynamic palmitoylation links cytosol-membrane shuttling of acyl-protein thioesterase-1 and acyl-protein thioesterase-2 with that of proto-oncogene H-ras product and growth-associated protein-43. J Biol Chem. 2013; 288(13): 9112-25.
|
| [54] |
Rudnik S, Heybrock S, Saftig P, Damme M. S-palmitoylation determines TMEM55B-dependent positioning of lysosomes. J Cell Sci. 2022; 135(5): jcs258566.
|
| [55] |
Kaur I, Yarov-Yarovoy V, Kirk LM, et al. Activity-dependent palmitoylation controls SynDIG1 stability, localization, and function. J Neurosci. 2016; 36(29): 7562-8.
|
| [56] |
Mueller GM, Maarouf AB, Kinlough CL, et al. Cys palmitoylation of the beta subunit modulates gating of the epithelial sodium channel. J Biol Chem. 2010; 285(40): 30453-62.
|
| [57] |
Mukherjee A, Mueller GM, Kinlough CL, et al. Cysteine palmitoylation of the γ subunit has a dominant role in modulating activity of the epithelial sodium channel. J Biol Chem. 2014; 289(20): 14351-9.
|
| [58] |
Zhang Z, Li X, Yang F, et al. DHHC9-mediated GLUT1 S-palmitoylation promotes glioblastoma glycolysis and tumorigenesis. Nat Commun. 2021; 12(1): 5872.
|
| [59] |
Tabata K, Imai K, Fukuda K, et al. Palmitoylation of ULK1 by ZDHHC13 plays a crucial role in autophagy. Nat Commun. 2024; 15(1): 7194.
|
| [60] |
Rajagopal N, Irudayanathan FJ, Nangia S. Palmitoylation of claudin-5 proteins influences their lipid domain affinity and tight junction assembly at the blood-brain barrier interface. J Phys Chem B. 2019; 123(5): 983-993.
|
| [61] |
Wang C, Cui ZY, Chang HY, et al. 2-Bromopalmitate inhibits malignant behaviors of HPSCC cells by hindering the membrane location of Ras protein. Exp Biol Med (Maywood). 2023; 248(23): 2393-2407.
|
| [62] |
Kordyukova L, Krabben L, Serebryakova M, Veit M. S-acylation of proteins. Methods Mol Biol. 2019; 1934: 265-291.
|
| [63] |
Lakkaraju AK, Abrami L, Lemmin T, et al. Palmitoylated calnexin is a key component of the ribosome-translocon complex. EMBO J. 2012; 31(7): 1823-35.
|
| [64] |
Tien CF, Tsai WT, Chen CH, et al. Glycosylation and S-palmitoylation regulate SARS-CoV-2 spike protein intracellular trafficking. iScience. 2022; 25(8): 104709.
|
| [65] |
Yokoi N, Fukata M, Fukata Y. Synaptic plasticity regulated by protein-protein interactions and posttranslational modifications. Int Rev Cell Mol Biol. 2012; 297: 1-43.
|
| [66] |
Gök C, Plain F, Robertson AD, et al. Dynamic palmitoylation of the sodium-calcium exchanger modulates its structure, affinity for lipid-ordered domains, and inhibition by XIP. Cell Rep. 2020; 31(10): 107697.
|
| [67] |
Thomas GM, Hayashi T, Chiu SL, Chen CM, Huganir RL. Palmitoylation by DHHC5/8 targets GRIP1 to dendritic endosomes to regulate AMPA-R trafficking. Neuron. 2012; 73(3): 482-96.
|
| [68] |
Dong H, Zhang P, Song I, Petralia RS, Liao D, Huganir RL. Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. J Neurosci. 1999; 19(16): 6930-41.
|
| [69] |
West SJ, Boehning D, Akimzhanov AM. Regulation of T cell function by protein S-acylation. Front Physiol. 2022; 13: 1040968.
|
| [70] |
Yang X, Chatterjee V, Ma Y, Zheng E, Yuan SY. Protein palmitoylation in leukocyte signaling and function. Front Cell Dev Biol. 2020; 8: 600368.
|
| [71] |
Liu P, Jiao B, Zhang R, et al. Palmitoylacyltransferase Zdhhc9 inactivation mitigates leukemogenic potential of oncogenic Nras. Leukemia. 2016; 30(5): 1225-8.
|
| [72] |
Hovde MJ, Bolland DE, Armand A, et al. Sodium hydrogen exchanger (NHE1) palmitoylation and potential functional regulation. Life Sci. 2022; 288: 120142.
|
| [73] |
Cuiffo B, Ren R. Palmitoylation of oncogenic NRAS is essential for leukemogenesis. Blood. 2010; 115(17): 3598-605.
|
| [74] |
Qu M, Zhou X, Wang X, Li H. Lipid-induced S-palmitoylation as a vital regulator of cell signaling and disease development. Int J Biol Sci. 2021; 17(15): 4223-4237.
|
| [75] |
Kokabee M, Wang X, Voorand E, et al. Palmitoylation of the alternative amino terminus of the BTK-C isoform controls subcellular distribution and signaling. Cancer Genomics Proteomics. 2022; 19(4): 415-427.
|
| [76] |
Yang C, Wei M, Zhao Y, et al. Regulation of insulin secretion by the post-translational modifications. Front Cell Dev Biol. 2023; 11: 1217189.
|
| [77] |
Bhattacharyya R, Barren C, Kovacs DM. Palmitoylation of amyloid precursor protein regulates amyloidogenic processing in lipid rafts. J Neurosci. 2013; 33(27): 11169-83.
|
| [78] |
Zhang Y, Matt L, Patriarchi T, et al. Capping of the N-terminus of PSD-95 by calmodulin triggers its postsynaptic release. EMBO J. 2014; 33(12): 1341-53.
|
| [79] |
Ho GPH, Wilkie EC, White AJ, Selkoe DJ. Palmitoylation of the Parkinson’s disease-associated protein synaptotagmin-11 links its turnover to α-synuclein homeostasis. Sci Signal. 2023; 16(772): eadd7220.
|
| [80] |
Wu S, Hernandez Villegas NC, Sirkis DW, Thomas-Wright I, Wade-Martins R, Schekman R. Unconventional secretion of α-synuclein mediated by palmitoylated DNAJC5 oligomers. eLife. 2023; 12: e85837.
|
| [81] |
Rastedt DE, Vaughan RA, Foster JD. Palmitoylation mechanisms in dopamine transporter regulation. J Chem Neuroanat. 2017; 83-84: 3-9.
|
| [82] |
Lemarié FL, Sanders SS, Nguyen Y, Martin DDO, Hayden MR. Full-length huntingtin is palmitoylated at multiple sites and post-translationally myristoylated following caspase-cleavage. Front Physiol. 2023; 14: 1086112.
|
| [83] |
Fromer M, Pocklington AJ, Kavanagh DH, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014; 506(7487): 179-84.
|
| [84] |
Cho E, Park M. Palmitoylation in Alzheimer’s disease and other neurodegenerative diseases. Pharmacol Res. 2016; 111: 133-151.
|
| [85] |
Kouskou M, Thomson DM, Brett RR, et al. Disruption of the Zdhhc9 intellectual disability gene leads to behavioural abnormalities in a mouse model. Exp Neurol. 2018; 308: 35-46.
|
| [86] |
Mansouri MR, Marklund L, Gustavsson P, et al. Loss of ZDHHC15 expression in a woman with a balanced translocation t(X;15)(q13.3;cen) and severe mental retardation. Eur J Hum Genet. 2005; 13(8): 970-7.
|
| [87] |
Wang F, Chen X, Shi W, et al. Zdhhc15b regulates differentiation of diencephalic dopaminergic neurons in zebrafish. J Cell Biochem. 2015; 116(12): 2980-91.
|
| [88] |
Gorinski N, Bijata M, Prasad S, et al. Attenuated palmitoylation of serotonin receptor 5-HT1A affects receptor function and contributes to depression-like behaviors. Nat Commun. 2019; 10(1): 3924.
|
| [89] |
Zhang MM, Guo MX, Zhang QP, et al. IL-1R/C3aR signaling regulates synaptic pruning in the prefrontal cortex of depression. Cell Biosci. 2022; 12(1): 90.
|
| [90] |
Stapel B, Gorinski N, Gmahl N, et al. Fluoxetine induces glucose uptake and modifies glucose transporter palmitoylation in human peripheral blood mononuclear cells. Expert Opin Ther Targets. 2019; 23(10): 883-891.
|
| [91] |
Cai Y, Liu J, Wang B, Sun M, Yang H. Microglia in the neuroinflammatory pathogenesis of Alzheimer’s disease and related therapeutic targets. Front Immunol. 2022; 13: 856376.
|
| [92] |
Liu S, Fan M, Zheng Q, et al. MicroRNAs in Alzheimer’s disease: potential diagnostic markers and therapeutic targets. Biomed Pharmacother. 2022; 148: 112681.
|
| [93] |
Cavallucci V, D’Amelio M, Cecconi F. Aβ toxicity in Alzheimer’s disease. Mol Neurobiol. 2012; 45(2): 366-78.
|
| [94] |
Wang Y, Wang M, Fan K, et al. Protective effects of Alpinae Oxyphyllae Fructus extracts on lipopolysaccharide-induced animal model of Alzheimer’s disease. J Ethnopharmacol. 2018; 217: 98-106.
|
| [95] |
Schreiner B, Hedskog L, Wiehager B, Ankarcrona M. Amyloid-β peptides are generated in mitochondria-associated endoplasmic reticulum membranes. J Alzheimers Dis. 2015; 43(2): 369-74.
|
| [96] |
Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Nat Acad Sci USA. 2021; 118(33): e2102191118.
|
| [97] |
Zhu L, Su M, Lucast L, et al. Dynamin 1 regulates amyloid generation through modulation of BACE-1. PLoS One. 2012; 7(9): e45033.
|
| [98] |
Fukumori A, Feilen LP, Steiner H. Substrate recruitment by γ-secretase. Semin Cell Dev Biol. 2020; 105: 54-63.
|
| [99] |
Wilkins HM, Swerdlow RH. Amyloid precursor protein processing and bioenergetics. Brain Res Bull. 2017; 133: 71-79.
|
| [100] |
Bhattacharyya R, Fenn RH, Barren C, Tanzi RE, Kovacs DM. Palmitoylated APP forms dimers, cleaved by BACE1. PLoS One. 2016; 11(11): e0166400.
|
| [101] |
Devina T, Wong YH, Hsiao CW, Li YJ, Lien CC, Cheng IH. Endoplasmic reticulum stress induces Alzheimer disease-like phenotypes in the neuron derived from the induced pluripotent stem cell with D678H mutation on amyloid precursor protein. J Neurochem. 2022; 163(1): 26-39.
|
| [102] |
Globa AK, Bamji SX. Protein palmitoylation in the development and plasticity of neuronal connections. Curr Opin Neurobiol. 2017; 45: 210-220.
|
| [103] |
Li W, Pang Y, Wang Y, et al. Aberrant palmitoylation caused by a ZDHHC21 mutation contributes to pathophysiology of Alzheimer’s disease. BMC Med. 2023; 21(1): 223.
|
| [104] |
Eggert S, Midthune B, Cottrell B, Koo EH. Induced dimerization of the amyloid precursor protein leads to decreased amyloid-beta protein production. J Biol Chem. 2009; 284(42): 28943-52.
|
| [105] |
Kienlen-Campard P, Tasiaux B, Van Hees J, et al. Amyloidogenic processing but not amyloid precursor protein (APP) intracellular C-terminal domain production requires a precisely oriented APP dimer assembled by transmembrane GXXXG motifs. J Biol Chem. 2008; 283(12): 7733-44.
|
| [106] |
Bhatti JS, Kaur S, Mishra J, et al. Targeting dynamin-related protein-1 as a potential therapeutic approach for mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis. 2023; 1869(7): 166798.
|
| [107] |
Shi Z, Hong Y, Zhang K, et al. BAG-1M co-activates BACE1 transcription through NF-κB and accelerates Aβ production and memory deficit in Alzheimer’s disease mouse model. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(9): 2398-2407.
|
| [108] |
Guix FX, Sartório CL, Ill-Raga G. BACE1 translation: at the crossroads between Alzheimer’s disease neurodegeneration and memory consolidation. J Alzheimers Dis Rep. 2019; 3(1): 113-148.
|
| [109] |
Zhao Y, Zhou H, Zhao Y, et al. BACE1 SUMOylation deregulates phosphorylation and ubiquitination in Alzheimer’s disease pathology. J Neurochem. 2023; 166(2): 318-327.
|
| [110] |
Miyagawa T, Ebinuma I, Morohashi Y, et al. BIN1 regulates BACE1 intracellular trafficking and amyloid-β production. Hum Mol Genet. 2016; 25(14): 2948-2958.
|
| [111] |
Benjannet S, Elagoz A, Wickham L, et al. Post-translational processing of beta-secretase (beta-amyloid-converting enzyme) and its ectodomain shedding. The pro-and transmembrane/cytosolic domains affect its cellular activity and amyloid-beta production. J Biol Chem. 2001; 276(14): 10879-87.
|
| [112] |
Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ. Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Nat Acad Sci USA. 2003; 100(20): 11735-40.
|
| [113] |
Andrew RJ, Fernandez CG, Stanley M, et al. Lack of BACE1 S-palmitoylation reduces amyloid burden and mitigates memory deficits in transgenic mouse models of Alzheimer’s disease. Proc Nat Acad Sci USA. 2017; 114(45): E9665-E9674.
|
| [114] |
Ohno M, Chang L, Tseng W, et al. Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci. 2006; 23(1): 251-60.
|
| [115] |
Oakley H, Cole SL, Logan S, et al. Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci. 2006; 26(40): 10129-40.
|
| [116] |
Miranda A, Montiel E, Ulrich H, Paz C. Selective secretase targeting for Alzheimer’s disease therapy. J Alzheimers Dis. 2021; 81(1): 1-17.
|
| [117] |
Marlow L, Canet RM, Haugabook SJ, Hardy JA, Lahiri DK, Sambamurti K. APH1, PEN2, and Nicastrin increase Abeta levels and gamma-secretase activity. Biochem Biophys Res Commun. 2003; 305(3): 502-9.
|
| [118] |
Ma X, Xia Q, Liu K, et al. Palmitoylation at residue C221 of Japanese encephalitis virus NS2A protein contributes to viral replication efficiency and virulence. J Virol. 2023; 97(6): e0038223.
|
| [119] |
Meckler X, Roseman J, Das P, et al. Reduced Alzheimer’s disease ß-amyloid deposition in transgenic mice expressing S-palmitoylation-deficient APH1aL and nicastrin. J Neurosci. 2010; 30(48): 16160-9.
|
| [120] |
Baumrind NL, Parkinson D, Wayne DB, Heuser JE, Pearlman AL. EMA: a developmentally regulated cell-surface glycoprotein of CNS neurons that is concentrated at the leading edge of growth cones. Dev Dyn. 1992; 194(4): 311-25.
|
| [121] |
Kang R, Wan J, Arstikaitis P, et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature. 2008; 456(7224): 904-9.
|
| [122] |
Xu PT, Li YJ, Qin XJ, et al. Differences in apolipoprotein E3/3 and E4/4 allele-specific gene expression in hippocampus in Alzheimer disease. Neurobiol Dis. 2006; 21(2): 256-75.
|
| [123] |
Abels ER, Breakefield XO. Introduction to extracellular vesicles: biogenesis, RNA cargo selection, content, release, and uptake. Cell Mol Neurobiol. 2016; 36(3): 301-12.
|
| [124] |
Ma X, Yang R, Li H, Zhang X, Zhang X, Li X. Role of exosomes in the communication and treatment between OSCC and normal cells. Heliyon. 2024; 10(7): e28148.
|
| [125] |
Wassenberg T, Geurtz BPH, Monnens L, Wevers RA, Willemsen MA, Verbeek MM. Blood, urine and cerebrospinal fluid analysis in TH and AADC deficiency and the effect of treatment. Mol Genet Metab Rep. 2021; 27: 100762.
|
| [126] |
Guo BB, Bellingham SA, Hill AF. Stimulating the release of exosomes increases the intercellular transfer of prions. J Biol Chem. 2016; 291(10): 5128-37.
|
| [127] |
Muraoka S, DeLeo AM, Sethi MK, et al. Proteomic and biological profiling of extracellular vesicles from Alzheimer’s disease human brain tissues. Alzheimers Dement. 2020; 16(6): 896-907.
|
| [128] |
Quiroz-Baez R, Hernández-Ortega K, Martínez-Martínez E. Insights Into the proteomic profiling of extracellular vesicles for the identification of early biomarkers of neurodegeneration. Front Neurol. 2020; 11: 580030.
|
| [129] |
Yang S, Du Y, Li Y, Tang Q, Zhang Y, Zhao X. Tyrosine phosphorylation and palmitoylation of TRPV2 ion channel tune microglial beta-amyloid peptide phagocytosis. J Neuroinflam. 2024; 21(1): 218.
|
| [130] |
Topinka JR, Bredt DS. N-terminal palmitoylation of PSD-95 regulates association with cell membranes and interaction with K+ channel Kv1.4. Neuron. 1998; 20(1): 125-34.
|
| [131] |
El-Husseini AE, Craven SE, Chetkovich DM, et al. Dual palmitoylation of PSD-95 mediates its vesiculotubular sorting, postsynaptic targeting, and ion channel clustering. J Cell Biol. 2000; 148(1): 159-72.
|
| [132] |
El-Husseini Ael D, Schnell E, Dakoji S, et al. Synaptic strength regulated by palmitate cycling on PSD-95. Cell. 2002; 108(6): 849-63.
|
| [133] |
Irie M, Hata Y, Takeuchi M, et al. Binding of neuroligins to PSD-95. Science. 1997; 277(5331): 1511-5.
|
| [134] |
Won S, Levy JM, Nicoll RA, Roche KW. MAGUKs: multifaceted synaptic organizers. Curr Opin Neurobiol. 2017; 43: 94-101.
|
| [135] |
Zhang Y, Hu Y, Han Z, et al. Cattle encephalon glycoside and ignotin ameliorate palmitoylation of PSD-95 and enhance expression of synaptic proteins in the frontal cortex of a APPswe/PS1dE9 mouse model of Alzheimer’s disease. J Alzheimers Dis. 2022; 88(1): 141-154.
|
| [136] |
Dore K, Carrico Z, Alfonso S, et al. PSD-95 protects synapses from β-amyloid. Cell Rep. 2021; 35(9): 109194.
|
| [137] |
Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm (Vienna, Austria : 1996). 2017; 124(8): 901-905.
|
| [138] |
Mukherjee S, Sakunthala A, Gadhe L, et al. Liquid-liquid phase separation of α-synuclein: a new mechanistic insight for α-synuclein aggregation associated with Parkinson’s disease pathogenesis. J Mol Biol. 2023; 435(1): 167713.
|
| [139] |
Wiseman JA, Murray HC, Faull R, et al. Aggregate-prone brain regions in Parkinson’s disease are rich in unique N-terminus α-synuclein conformers with high proteolysis susceptibility. NPJ Parkinsons Dis. 2024; 10(1): 1.
|
| [140] |
Butler B, Saha K, Rana T, et al. Dopamine transporter activity is modulated by α-synuclein. J Biol Chem. 2015; 290(49): 29542-54.
|
| [141] |
Li J, Jian L, Huang J, Xiong N, Wang T. The rs3129882/rs4248166 in HLA-DRA and rs34372695 in SYT11 are not associated with sporadic Parkinson’s disease in Central Chinese population. Int J Neurosci. 2021; 131(7): 674-680.
|
| [142] |
Du C, Wang Y, Zhang F, et al. Synaptotagmin-11 inhibits cytokine secretion and phagocytosis in microglia. Glia. 2017; 65(10): 1656-1667.
|
| [143] |
Wang C, Wang Y, Hu M, et al. Synaptotagmin-11 inhibits clathrin-mediated and bulk endocytosis. EMBO Rep. 2016; 17(1): 47-63.
|
| [144] |
Shimojo M, Madara J, Pankow S, et al. Synaptotagmin-11 mediates a vesicle trafficking pathway that is essential for development and synaptic plasticity. Genes Dev. 2019; 33(5-6): 365-376.
|
| [145] |
Li WR, Wang YL, Li C, et al. Synaptotagmin-11 inhibits spontaneous neurotransmission through vti1a. J Neurochem. 2021; 159(4): 729-741.
|
| [146] |
Wang C, Kang X, Zhou L, et al. Synaptotagmin-11 is a critical mediator of parkin-linked neurotoxicity and Parkinson’s disease-like pathology. Nat Commun. 2018; 9(1): 81.
|
| [147] |
Cuveillier C, Delaroche J, Seggio M, et al. MAP6 is an intraluminal protein that induces neuronal microtubules to coil. Sci Adv. 2020; 6(14): eaaz4344.
|
| [148] |
Gory-Fauré S, Windscheid V, Bosc C, et al. STOP-like protein 21 is a novel member of the STOP family, revealing a Golgi localization of STOP proteins. J Biol Chem. 2006; 281(38): 28387-96.
|
| [149] |
Guerrero K, Monge C, Brückner A, et al. Study of possible interactions of tubulin, microtubular network, and STOP protein with mitochondria in muscle cells. Mol Cell Biochem. 2010; 337(1-2): 239-49.
|
| [150] |
Guillaud L, Bosc C, Fourest-Lieuvin A, et al. STOP proteins are responsible for the high degree of microtubule stabilization observed in neuronal cells. J Cell Biol. 1998; 142(1): 167-79.
|
| [151] |
Pirollet F, Rauch CT, Job D, Margolis RL. Monoclonal antibody to microtubule-associated STOP protein: affinity purification of neuronal STOP activity and comparison of antigen with activity in neuronal and nonneuronal cell extracts. Biochemistry. 1989; 28(2): 835-42.
|
| [152] |
Ma L, Song J, Sun X, et al. Role of microtubule-associated protein 6 glycosylated with Gal-(β-1, 3)-GalNAc in Parkinson’s disease. Aging. 2019; 11(13): 4597-4610.
|
| [153] |
Gory-Fauré S, Windscheid V, Brocard J, et al. Non-microtubular localizations of microtubule-associated protein 6 (MAP6). PLoS One. 2014; 9(12): e114905.
|
| [154] |
Cuveillier C, Boulan B, Ravanello C, et al. Beyond neuronal microtubule stabilization: MAP6 and CRMPS, two converging stories. Front Mol Neurosci. 2021; 14: 665693.
|
| [155] |
Tortosa E, Adolfs Y, Fukata M, Pasterkamp RJ, Kapitein LC, Hoogenraad CC. Dynamic palmitoylation targets MAP6 to the axon to promote microtubule stabilization during neuronal polarization. Neuron. 2017; 94(4): 809-825. e7.
|
| [156] |
Chamberlain LH, Shipston MJ. The physiology of protein S-acylation. Physiol Rev. 2015; 95(2): 341-76.
|
| [157] |
Huang Q, Zhang YF, Li LJ, et al. Adult-onset neuronal ceroid lipofuscinosis with a novel DNAJC5 mutation exhibits aberrant protein palmitoylation. Front Aging Neurosci. 2022; 14: 829573.
|
| [158] |
Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell. 2005; 123(3): 383-96.
|
| [159] |
Tecalco-Cruz AC, López-Canovas L, Azuara-Liceaga E. Estrogen signaling via estrogen receptor alpha and its implications for neurodegeneration associated with Alzheimer’s disease in aging women. Metab Brain Dis. 2023; 38(3): 783-793.
|
| [160] |
Ishunina TA. Alternative splicing in aging and Alzheimer’s disease: highlighting the role of tau and estrogen receptor α isoforms in the hypothalamus. Handb Clin Neurol. 2021; 182: 177-189.
|
| [161] |
Reddy V, McCarthy M, Raval AP. Xenoestrogens impact brain estrogen receptor signaling during the female lifespan: A precursor to neurological disease? Neurobiol Dis. 2022; 163: 105596.
|
| [162] |
Tsang KL, Ho SL, Lo SK. Estrogen improves motor disability in parkinsonian postmenopausal women with motor fluctuations. Neurology. 2000; 54(12): 2292-8.
|
| [163] |
Meitzen J, Luoma JI, Boulware MI, et al. Palmitoylation of estrogen receptors is essential for neuronal membrane signaling. Endocrinology. 2013; 154(11): 4293-304.
|
| [164] |
Daniels GM, Amara SG. Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J Biol Chem. 1999; 274(50): 35794-801.
|
| [165] |
Cervilla-Martínez JF, Rodríguez-Gotor JJ, Wypijewski KJ, et al. Altered cortical palmitoylation induces widespread molecular disturbances in Parkinson’s disease. Int J Mol Sci. 2022; 23(22): 14018.
|
| [166] |
Stoker TB, Mason SL, Greenland JC, Holden ST, Santini H, Barker RA. Huntington’s disease: diagnosis and management. Pract Neurol. 2022; 22(1): 32-41.
|
| [167] |
Jiang A, Handley RR, Lehnert K, Snell RG. From pathogenesis to therapeutics: a review of 150 years of Huntington’s disease research. Int J Mol Sci. 2023; 24(16): 13021.
|
| [168] |
Sanders SS, Hayden MR. Aberrant palmitoylation in Huntington disease. Biochem Soc Trans. 2015; 43(2): 205-10.
|
| [169] |
Kumar A, Kumar V, Singh K, et al. Therapeutic advances for Huntington’s disease. Brain Sci. 2020; 10(1): 43.
|
| [170] |
Singaraja RR, Hadano S, Metzler M, et al. HIP14, a novel ankyrin domain-containing protein, links huntingtin to intracellular trafficking and endocytosis. Hum Mol Genet. 2002; 11(23): 2815-28.
|
| [171] |
Huang K, Yanai A, Kang R, et al. Huntingtin-interacting protein HIP14 is a palmitoyl transferase involved in palmitoylation and trafficking of multiple neuronal proteins. Neuron. 2004; 44(6): 977-86.
|
| [172] |
Huang K, Sanders SS, Kang R, et al. Wild-type HTT modulates the enzymatic activity of the neuronal palmitoyl transferase HIP14. Hum Mol Genet. 2011; 20(17): 3356-65.
|
| [173] |
Lemarié FL, Caron NS, Sanders SS, et al. Rescue of aberrant huntingtin palmitoylation ameliorates mutant huntingtin-induced toxicity. Neurobiol Dis. 2021; 158: 105479.
|
| [174] |
Virlogeux A, Scaramuzzino C, Lenoir S, et al. Increasing brain palmitoylation rescues behavior and neuropathology in Huntington disease mice. Sci Adv. 2021; 7(14): eabb0799.
|
| [175] |
Cao H, Zuo C, Gu Z, et al. High frequency repetitive transcranial magnetic stimulation alleviates cognitive deficits in 3xTg-AD mice by modulating the PI3K/Akt/GLT-1 axis. Redox Biol. 2022; 54: 102354.
|
| [176] |
Behrens PF, Franz P, Woodman B, Lindenberg KS, Landwehrmeyer GB. Impaired glutamate transport and glutamate-glutamine cycling: downstream effects of the Huntington mutation. Brain. 2002; 125(Pt 8): 1908-22.
|
| [177] |
Huang K, Kang MH, Askew C, et al. Palmitoylation and function of glial glutamate transporter-1 is reduced in the YAC128 mouse model of Huntington disease. Neurobiol Dis. 2010; 40(1): 207-15.
|
| [178] |
Faden J, Citrome L. Schizophrenia: one name, many different manifestations. Med Clin North Am. 2023; 107(1): 61-72.
|
| [179] |
Yuan X, Kang Y, Zhuo C, Huang XF, Song X. The gut microbiota promotes the pathogenesis of schizophrenia via multiple pathways. Biochem Biophys Res Commun. 2019; 512(2): 373-380.
|
| [180] |
Fernandez-Enright F, Andrews JL, Newell KA, Pantelis C, Huang XF. Novel implications of Lingo-1 and its signaling partners in schizophrenia. Transl Psychiatry. 2014; 4(1): e348.
|
| [181] |
Menniti FS, Lindsley CW, Conn PJ, Pandit J, Zagouras P, Volkmann RA. Allosteric modulators for the treatment of schizophrenia: targeting glutamatergic networks. Curr Top Med Chem. 2013; 13(1): 26-54.
|
| [182] |
Boks MP, Hoogendoorn M, Jungerius BJ, et al. Do mood symptoms subdivide the schizophrenia phenotype? Association of the GMP6A gene with a depression subgroup. Am J Med Genet B Neuropsychiatr Genet. 2008; 147b(6): 707-11.
|
| [183] |
Alfonso J, Fernández ME, Cooper B, Flugge G, Frasch AC. The stress-regulated protein M6a is a key modulator for neurite outgrowth and filopodium/spine formation. Proc Nat Acad Sci USA. 2005; 102(47): 17196-201.
|
| [184] |
Alfonso J, Frick LR, Silberman DM, Palumbo ML, Genaro AM, Frasch AC. Regulation of hippocampal gene expression is conserved in two species subjected to different stressors and antidepressant treatments. Biol Psychiatry. 2006; 59(3): 244-51.
|
| [185] |
Baaré WF, van Oel CJ, Hulshoff Pol HE, et al. Volumes of brain structures in twins discordant for schizophrenia. Arch Gen Psychiatry. 2001; 58(1): 33-40.
|
| [186] |
Philippe JM, Jenkins PM. Spatial organization of palmitoyl acyl transferases governs substrate localization and function. Mol Membr Biol. 2019; 35(1): 60-75.
|
| [187] |
Fraser NJ, Howie J, Wypijewski KJ, Fuller W. Therapeutic targeting of protein S-acylation for the treatment of disease. Biochem Soc Trans. 2020; 48(1): 281-290.
|
| [188] |
Mukai J, Tamura M, Fénelon K, et al. Molecular substrates of altered axonal growth and brain connectivity in a mouse model of schizophrenia. Neuron. 2015; 86(3): 680-95.
|
| [189] |
Li Y, Hu J, Höfer K, et al. DHHC5 interacts with PDZ domain 3 of post-synaptic density-95 (PSD-95) protein and plays a role in learning and memory. J Biol Chem. 2010; 285(17): 13022-31.
|
| [190] |
Shimell JJ, Globa A, Sepers MD, et al. Regulation of hippocampal excitatory synapses by the Zdhhc5 palmitoyl acyltransferase. J Cell Sci. 2021; 134(9): cs254276.
|
| [191] |
Woolfrey KM, Sanderson JL, Dell’Acqua ML. The palmitoyl acyltransferase DHHC2 regulates recycling endosome exocytosis and synaptic potentiation through palmitoylation of AKAP79/150. J Neurosci. 2015; 35(2): 442-56.
|
| [192] |
Falco-Walter J. Epilepsy—definition, classification, pathophysiology, and epidemiology. Semin Neurol. 2020; 40(6): 617-623.
|
| [193] |
Itoh M, Yamashita M, Kaneko M, et al. Deficiency of AMPAR-palmitoylation aggravates seizure susceptibility. J Neurosci. 2018; 38(47): 10220-10235.
|
| [194] |
Díaz-Alonso J, Nicoll RA. AMPA receptor trafficking and LTP: Carboxy-termini, amino-termini and TARPs. Neuropharmacology. 2021; 197: 108710.
|
| [195] |
Dron MY, Zhigulin AS, Tikhonov DB, Barygin OI. Screening for activity against AMPA receptors among anticonvulsants-focus on phenytoin. Front Pharmacol. 2021; 12: 775040.
|
| [196] |
Sohn H, Park M. Palmitoylation-mediated synaptic regulation of AMPA receptor trafficking and function. Arch Pharmacal Res. 2019; 42(5): 426-435.
|
| [197] |
Van Dolah DK, Mao LM, Shaffer C, et al. Reversible palmitoylation regulates surface stability of AMPA receptors in the nucleus accumbens in response to cocaine in vivo. Biol Psychiatry. 2011; 69(11): 1035-42.
|
| [198] |
Spinelli M, Fusco S, Mainardi M, et al. Brain insulin resistance impairs hippocampal synaptic plasticity and memory by increasing GluA1 palmitoylation through FoxO3a. Nat Commun. 2017; 8(1): 2009.
|
| [199] |
van der Spek SJF, Pandya NJ, Koopmans F, et al. Expression and interaction proteomics of GluA1-and GluA3-subunit-containing AMPARs reveal distinct protein composition. Cells. 2022; 11(22): 3648.
|
| [200] |
Wu QL, Gao Y, Li JT, Ma WY, Chen NH. The role of AMPARs composition and trafficking in synaptic plasticity and diseases. Cell Mol Neurobiol. 2022; 42(8): 2489-2504.
|
| [201] |
Keith DJ, Sanderson JL, Gibson ES, et al. Palmitoylation of A-kinase anchoring protein 79/150 regulates dendritic endosomal targeting and synaptic plasticity mechanisms. J Neurosci. 2012; 32(21): 7119-36.
|
| [202] |
Xia ZX, Shen ZC, Zhang SQ, et al. De-palmitoylation by N-(tert-Butyl) hydroxylamine inhibits AMPAR-mediated synaptic transmission via affecting receptor distribution in postsynaptic densities. CNS Neurosci Ther. 2019; 25(2): 187-199.
|
| [203] |
Shin HD, Park BL, Bae JS, et al. Association of ZDHHC8 polymorphisms with smooth pursuit eye movement abnormality. Am J Med Genet B Neuropsychiatr Genet. 2010; 153b(6): 1167-72.
|
| [204] |
Baker K, Astle DE, Scerif G, et al. Epilepsy, cognitive deficits and neuroanatomy in males with ZDHHC9 mutations. Ann Clin Transl Neurol. 2015; 2(5): 559-69.
|
| [205] |
Patel DR, Cabral MD, Ho A, Merrick J. A clinical primer on intellectual disability. Transl Pediatr. 2020; 9(Suppl 1): S23-S35.
|
| [206] |
Zare Ashrafi F, Akhtarkhavari T, Fattahi Z, et al. Emerging epidemiological data on rare intellectual disability syndromes from analyzing the data of a large iranian cohort. Arch Iran Med. 2023; 26(4): 186-197.
|
| [207] |
Yang P, Gui BH, Wu LQ. [Etiology and diagnosis of intellectual disability]. Zhongguo Dang Dai Er Ke Za Zhi. 2015; 17(6): 543-8.
|
| [208] |
Dakopolos A, Condy E, Smith E, et al. Developmental associations between cognition and adaptive behavior in intellectual and developmental disability. J Neurodev Disord. 2024; 16(1): 31.
|
| [209] |
Moeschler JB, Shevell M. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics. 2014; 134(3): e903-18.
|
| [210] |
Ramos AKS, Caldas-Rosa ECC, Ferreira BM, et al. ZDHHC9 X-linked intellectual disability: clinical and molecular characterization. Am J Med Genet A. 2023; 191(2): 599-604.
|
| [211] |
Cherezov V, Rosenbaum DM, Hanson MA, et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science. 2007; 318(5854): 1258-65.
|
| [212] |
Peier AM, McIlwain KL, Kenneson A, Warren ST, Paylor R, Nelson DL. (Over)correction of FMR1 deficiency with YAC transgenics: behavioral and physical features. Hum Mol Genet. 2000; 9(8): 1145-59.
|
| [213] |
Nielsen DM, Derber WJ, McClellan DA, Crnic LS. Alterations in the auditory startle response in Fmr1 targeted mutant mouse models of fragile X syndrome. Brain Res. 2002; 927(1): 8-17.
|
| [214] |
Zang JB, Nosyreva ED, Spencer CM, et al. A mouse model of the human fragile X syndrome I304N mutation. PLoS Genet. 2009; 5(12): e1000758.
|
| [215] |
Mitchell DA, Hamel LD, Reddy KD, et al. Mutations in the X-linked intellectual disability gene, zDHHC9, alter autopalmitoylation activity by distinct mechanisms. J Biol Chem. 2014; 289(26): 18582-92.
|
| [216] |
Ohta E, Misumi Y, Sohda M, Fujiwara T, Yano A, Ikehara Y. Identification and characterization of GCP16, a novel acylated Golgi protein that interacts with GCP170. J Biol Chem. 2003; 278(51): 51957-67.
|
| [217] |
Linhares ND, Valadares ER, da Costa SS, et al. Inherited Xq13.2-q21.31 duplication in a boy with recurrent seizures and pubertal gynecomastia: Clinical, chromosomal and aCGH characterization. Meta Gene. 2016; 9: 185-90.
|
| [218] |
Wang SY, Xia ZX, Yang SW, et al. Regulation of depressive-like behaviours by palmitoylation: Role of AKAP150 in the basolateral amygdala. Br J Pharmacol. 2024; 181(13): 1897-1915.
|
| [219] |
Dean J, Keshavan M. The neurobiology of depression: an integrated view. Asian J Psychiatr. 2017; 27: 101-111.
|
| [220] |
Albert PR, Zhou QY, Van Tol HH, Bunzow JR, Civelli O. Cloning, functional expression, and mRNA tissue distribution of the rat 5-hydroxytryptamine1A receptor gene. J Biol Chem. 1990; 265(10): 5825-32.
|
| [221] |
Pompeiano M, Palacios JM, Mengod G. Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci. 1992; 12(2): 440-53.
|
| [222] |
Garcia-Garcia AL, Newman-Tancredi A, Leonardo ED. 5-HT(1A) [corrected] receptors in mood and anxiety: recent insights into autoreceptor versus heteroreceptor function. Psychopharmacology (Berl). 2014; 231(4): 623-36.
|
| [223] |
Rodrigues FTS, de Souza MRM, Lima CNC, et al. Major depression model induced by repeated and intermittent lipopolysaccharide administration: Long-lasting behavioral, neuroimmune and neuroprogressive alterations. J Psychiatr Res. 2018; 107: 57-67.
|
| [224] |
Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry. 2019; 85(6): 443-453.
|
| [225] |
Nita DA, Mole SE, Minassian BA. Neuronal ceroid lipofuscinoses. Epileptic Disord. 2016; 18(S2): 73-88.
|
| [226] |
Bennett MJ, Hofmann SL. The neuronal ceroid-lipofuscinoses (Batten disease): a new class of lysosomal storage diseases. J Inherit Metab Dis. 1999; 22(4): 535-44.
|
| [227] |
Bennett MJ, Rakheja D. The neuronal ceroid-lipofuscinoses. Dev Disabil Res Rev. 2013; 17(3): 254-9.
|
| [228] |
Greaves J, Lemonidis K, Gorleku OA, Cruchaga C, Grefen C, Chamberlain LH. Palmitoylation-induced aggregation of cysteine-string protein mutants that cause neuronal ceroid lipofuscinosis. J Biol Chem. 2012; 287(44): 37330-9.
|
| [229] |
Thirumal Kumar D, Shaikh N, Udhaya Kumar S, George Priya Doss C. Computational and structural investigation of palmitoyl-protein thioesterase 1 (PPT1) protein causing neuronal ceroid lipofuscinoses (NCL). Adv Protein Chem Struct Biol. 2022; 132: 89-109.
|
| [230] |
Levin SW, Baker EH, Zein WM, et al. Oral cysteamine bitartrate and N-acetylcysteine for patients with infantile neuronal ceroid lipofuscinosis: a pilot study. Lancet Neurol. 2014; 13(8): 777-87.
|
| [231] |
Mondal A, Appu AP, Sadhukhan T, et al. Ppt1-deficiency dysregulates lysosomal Ca(++) homeostasis contributing to pathogenesis in a mouse model of CLN1 disease. J Inherit Metab Dis. 2022; 45(3): 635-656.
|
| [232] |
Sarkar C, Chandra G, Peng S, Zhang Z, Liu A, Mukherjee AB. Neuroprotection and lifespan extension in Ppt1(-/-) mice by NtBuHA: therapeutic implications for INCL. Nat Neurosci. 2013; 16(11): 1608-17.
|
| [233] |
Wu X, Xu M, Geng M, et al. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther. 2023; 8(1): 220.
|
| [234] |
He Y, Li S, Jiang L, et al. Palmitic acid accelerates endothelial cell injury and cardiovascular dysfunction via palmitoylation of PKM2. Adv Sci (Weinh, Baden-Wurttemberg, Germany). 2024:e2412895.
|
| [235] |
Liu Z, Xiao M, Mo Y, et al. Emerging roles of protein palmitoylation and its modifying enzymes in cancer cell signal transduction and cancer therapy. Int J Biol Sci. 2022; 18(8): 3447-3457.
|
| [236] |
Wang H, Wang J, Cui H, et al. Inhibition of fatty acid uptake by TGR5 prevents diabetic cardiomyopathy. Nat Metab. 2024; 6(6): 1161-1177.
|
| [237] |
Zhuang Z, Gu J, Li BO, Yang L. Inhibition of gasdermin D palmitoylation by disulfiram is crucial for the treatment of myocardial infarction. Transl Res. 2024; 264: 66-75.
|
| [238] |
Hu JJ, Liu X, Xia S, et al. FDA-approved disulfiram inhibits pyroptosis by blocking gasdermin D pore formation. Nat Immunol. 2020; 21(7): 736-745.
|
| [239] |
Zhou B, Liu Y, Ma H, et al. Zdhhc1 deficiency mitigates foam cell formation and atherosclerosis by inhibiting PI3K-Akt-mTOR signaling pathway through facilitating the nuclear translocation of p110α. Biochim Biophys Acta Mol Basis Dis. 2025; 1871(2): 167577.
|
| [240] |
Gómez-Herranz M, Taylor J, Sloan RD. IFITM proteins: Understanding their diverse roles in viral infection, cancer, and immunity. J Biol Chem. 2023; 299(1): 102741.
|
| [241] |
Chlanda P, Mekhedov E, Waters H, et al. Palmitoylation contributes to membrane curvature in influenza a virus assembly and hemagglutinin-mediated membrane fusion. J Virol. 2017; 91(21): e00947.
|
| [242] |
Zeng XT, Yu XX, Cheng W. The interactions of ZDHHC5/GOLGA7 with SARS-CoV-2 spike (S) protein and their effects on S protein’s subcellular localization, palmitoylation and pseudovirus entry. Virol J. 2021; 18(1): 257.
|
| [243] |
Ramadan AA, Mayilsamy K, McGill AR, et al. Identification of SARS-CoV-2 spike palmitoylation inhibitors that results in release of attenuated virus with reduced infectivity. Viruses. 2022; 14(3): 531.
|
| [244] |
Wang Z, Qiu M, Ji Y, et al. Palmitoylation of SARS-CoV-2 Envelope protein is central to virus particle formation. J Virol. 2024; 98(10): e0107224.
|
| [245] |
Xie F, Su P, Pan T, et al. Engineering extracellular vesicles enriched with palmitoylated ACE2 as COVID-19 therapy. Adv Mater (Deerfield Beach, Fla). 2021; 33(49): e2103471.
|
| [246] |
Yuan M, Chen X, Sun Y, et al. ZDHHC12-mediated claudin-3 S-palmitoylation determines ovarian cancer progression. Acta Pharm Sin B. 2020; 10(8): 1426-1439.
|
| [247] |
Pei X, Li KY, Shen Y, et al. Palmitoylation of MDH2 by ZDHHC18 activates mitochondrial respiration and accelerates ovarian cancer growth. Sci China Life Sci. 2022; 65(10): 2017-2030.
|
| [248] |
Huang J, Li J, Tang J, et al. ZDHHC22-mediated mTOR palmitoylation restrains breast cancer growth and endocrine therapy resistance. Int J Biol Sci. 2022; 18(7): 2833-2850.
|
| [249] |
Jin Q, Qi D, Zhang M, et al. CLDN6 inhibits breast cancer growth and metastasis through SREBP1-mediated RAS palmitoylation. Cell Mol Biol Lett. 2024; 29(1): 112.
|
| [250] |
Lin Z, Huang K, Guo H, et al. Targeting ZDHHC9 potentiates anti-programmed death-ligand 1 immunotherapy of pancreatic cancer by modifying the tumor microenvironment. Biomedicine & pharmacotherapy. 2023; 161: 114567.
|
| [251] |
Feigin VL, Vos T, Nichols E, et al. The global burden of neurological disorders: translating evidence into policy. Lancet Neurol. 2020; 19(3): 255-265.
|
| [252] |
Rahimi Darehbagh R, Seyedoshohadaei SA, Ramezani R, Rezaei N. Stem cell therapies for neurological disorders: current progress, challenges, and future perspectives. Eur J Med Res. 2024; 29(1): 386.
|
| [253] |
Sudhakar V, Richardson RM. Gene therapy for neurodegenerative diseases. Neurotherapeutics. 2019; 16(1): 166-175.
|
| [254] |
Anthony K. RNA-based therapeutics for neurological diseases. RNA Biol. 2022; 19(1): 176-190.
|
| [255] |
Stephenson D, Belfiore-Oshan R, Karten Y, et al. Transforming drug development for neurological disorders: proceedings from a multidisease area workshop. Neurotherapeutics. 2023; 20(6): 1682-1691.
|
| [256] |
Nelvagal HR, Eaton SL, Wang SH, et al. Cross-species efficacy of enzyme replacement therapy for CLN1 disease in mice and sheep. J Clin Invest. 2022; 132(20): e163107.
|
| [257] |
Hu J, Lu JY, Wong AM, et al. Intravenous high-dose enzyme replacement therapy with recombinant palmitoyl-protein thioesterase reduces visceral lysosomal storage and modestly prolongs survival in a preclinical mouse model of infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2012; 107(1-2): 213-221.
|
| [258] |
Bolland DE, Moritz AE, Stanislowski DJ, Vaughan RA, Foster JD. Palmitoylation by Multiple DHHC Enzymes Enhances Dopamine Transporter Function and Stability. ACS Chem Neurosci. 2019; 10(6): 2707-2717.
|
| [259] |
Mengr A, Hrubá L, Exnerová A, et al. Palmitoylated Prolactin-releasing peptide reduced Aβ plaques and microgliosis in the cerebellum: APP/PS1 mice study. Curr Alzheimer Res. 2021; 18(8): 607-622.
|
| [260] |
Kordasiewicz HB, Stanek LM, Wancewicz EV, et al. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron. 2012; 74(6): 1031-44.
|
| [261] |
Southwell AL, Kordasiewicz HB, Langbehn D, et al. Huntingtin suppression restores cognitive function in a mouse model of Huntington’s disease. Sci Transl Med. 2018; 10(461): eaar3959.
|
| [262] |
Peng J, Liang D, Zhang Z. Palmitoylation of synaptic proteins: roles in functional regulation and pathogenesis of neurodegenerative diseases. Cell Mol Biol Lett. 2024; 29(1): 108.
|
RIGHTS & PERMISSIONS
2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.