Cannabidiol restores hematopoietic stem cell stemness in mouse through Atf2–Lrp6 axis after acute irradiation

Zhijie Bai , Congshu Huang , Huanhua Xu , Yuxin Wang , Zebin Liao , Pan Shen , Zhexin Ni , Chaoji Huangfu , Dezhi Sun , Yangyi Hu , Ningning Wang , Pengfei Zhang , Lei Zhou , Wei Zhou , Yue Gao

MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70092

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70092 DOI: 10.1002/mco2.70092
ORIGINAL ARTICLE

Cannabidiol restores hematopoietic stem cell stemness in mouse through Atf2–Lrp6 axis after acute irradiation

Author information +
History +
PDF

Abstract

Bone marrow serves as the residence of hematopoietic stem cells and is recognized as one of the most radiosensitive tissues. Exposure to acute radiation leads to severe damage to bone marrow hematopoiesis which can be fatal, while few clinically applicable medication or specific therapeutic targets have been discovered. In this study, we found that the administration of cannabidiol significantly enhanced individual survival and restored the reconstitution capacity of bone marrow hematopoietic stem cells within 14 days after irradiation. Single-cell RNA sequencing analysis demonstrated that the expression levels of genes associated with stemness along with Wnt and BMP signaling pathways were restored by the cannabidiol treatment through the upregulation of Atf2, a transcription factor possessing multifunctional properties. Atf2 upregulation induced by cannabidiol treatment potentially upregulated the expression of Lrp6 to improve the stemness of hematopoietic stem cells. Further functional experiments validated the crucial role of Atf2 in regulating multilineage differentiation potential of bone marrow hematopoietic stem and progenitor cells. Overall, our findings provide evidence for a promising radioprotective function of cannabidiol and Atf2 as a candidate therapeutic target for acute radiation-induced hematopoietic injury, thereby paving the way for future research in the field.

Keywords

Atf2 / cannabidiol / hematopoietic stem cell / radiation injury

Cite this article

Download citation ▾
Zhijie Bai, Congshu Huang, Huanhua Xu, Yuxin Wang, Zebin Liao, Pan Shen, Zhexin Ni, Chaoji Huangfu, Dezhi Sun, Yangyi Hu, Ningning Wang, Pengfei Zhang, Lei Zhou, Wei Zhou, Yue Gao. Cannabidiol restores hematopoietic stem cell stemness in mouse through Atf2–Lrp6 axis after acute irradiation. MedComm, 2025, 6(2): e70092 DOI:10.1002/mco2.70092

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Neo WH, Lie-A-Ling M, Fadlullah MZH, Lacaud G. Contributions of embryonic HSC-independent hematopoiesis to organogenesis and the adult hematopoietic system. Front Cell Dev Biol. 2021; 9: 631699.

[2]

Zhang F, Zhang B, Wang Y, et al. An extra-erythrocyte role of haemoglobin body in chondrocyte hypoxia adaption. Nature. 2023; 622(7984): 834-841.

[3]

Kobayashi M, Wei H, Yamanashi T, et al. HSC-independent definitive hematopoiesis persists into adult life. Cell Rep. 2023; 42(3): 112239.

[4]

Anjos-Afonso F, Bonnet D. Human CD34+ hematopoietic stem cell hierarchy: how far are we with its delineation at the most primitive level? Blood. 2023; 142(6): 509-518.

[5]

O’Reilly E, Zeinabad HA, Szegezdi E. Hematopoietic versus leukemic stem cell quiescence: challenges and therapeutic opportunities. Blood Rev. 2021; 50: 100850.

[6]

Huang D, Chen C, Xie L, Yu Z, Zheng J. Hematopoietic stem cell metabolism and stemness. Blood Sci. 2019; 1(1): 12-18.

[7]

Thapa R, Elfassy E, Olender L, Sharabi O, Gazit R. Rapid activation of hematopoietic stem cells. Stem Cell Res Ther. 2023; 14(1): 152.

[8]

Wei Y, Gong Y, Wei S, et al. Protection of the hematopoietic system against radiation-induced damage: drugs, mechanisms, and developments. Arch Pharmacal Res. 2022; 45(8): 558-571.

[9]

Cao Y, Fang Y, Cai J, et al. ROS functions as an upstream trigger for autophagy to drive hematopoietic stem cell differentiation. Hematology. 2016; 21(10): 613-618.

[10]

Le Q, Yao W, Chen Y, et al. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis. 2016; 7(11): e2478-e2478.

[11]

Yong W, Virginia P, Daohong Z. Cancer therapy-induced residual bone marrow injury: mechanisms of induction and implication for therapy. Curr Cancer Ther Rev. 2006; 2(3): 271-279.

[12]

Hayman JA, Callahan JW, Herschtal A, et al. Distribution of proliferating bone marrow in adult cancer patients determined using FLT-PET imaging. Int J Radiat Oncol Biol Phys. 2011; 79(3): 847-852.

[13]

Meng A, Wang Y, Brown SA, Van Zant G, Zhou D. Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and -independent mechanisms. Exp Hematol. 2003; 31(12): 1348-1356.

[14]

Meng A, Wang Y, Van Zant G, Zhou D. Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res. 2003; 63(17): 5414-5419.

[15]

Wei Y, Gong Y, Wei S, et al. Protection of the hematopoietic system against radiation-induced damage: drugs, mechanisms, and developments. Arch Pharm Res. 2022; 45(8): 558-571.

[16]

Piper JR, Stringfellow CR, Jr, Elliott RD, Johnston TP. S-2-(omega-aminoalkylamino)ethyl dihydrogen phosphorothioates and related compounds as potential antiradiation agents. J Med Chem. 1969; 12(2): 236-243.

[17]

Lv W, Zhang M, Zhang Z, et al. Amifostine acts upon mitochondria to stimulate growth of bone marrow and regulate cytokines. Adv Exp Med Biol. 2013; 789: 195-201.

[18]

Kouvaris JR, Kouloulias VE, Vlahos LJ. Amifostine: the first selective-target and broad-spectrum radioprotector. Oncologist. 2007; 12(6): 738-747.

[19]

Singh VK, Romaine PL, Seed TM. Medical countermeasures for radiation exposure and related injuries: characterization of medicines, FDA-approval status and inclusion into the strategic National Stockpile. Health Phys. 2015; 108(6): 607-630.

[20]

Singh VK, Newman VL, Seed TM. Colony-stimulating factors for the treatment of the hematopoietic component of the acute radiation syndrome (H-ARS): a review. Cytokine. 2015; 71(1): 22-37.

[21]

Yan G, Zhang X, Li H, Guo Y, Yong VW, Xue M. Anti-oxidant effects of cannabidiol relevant to intracerebral hemorrhage. Front Pharmacol. 2023; 14: 1247550.

[22]

Mendivil-Perez M, Felizardo-Otalvaro AA, Jimenez-Del-Rio M, Velez-Pardo C. Cannabidiol protects dopaminergic-like neurons against Paraquat-and Maneb-induced cell death through safeguarding DJ-1CYS(106) and Caspase 3 independently of cannabinoid receptors: relevance in Parkinson’s disease. ACS Chem Neurosci. 2023; 14(11): 2159-2171.

[23]

Pramhas S, Thalhammer T, Terner S, et al. Oral cannabidiol (CBD) as add-on to paracetamol for painful chronic osteoarthritis of the knee: a randomized, double-blind, placebo-controlled clinical trial. Lancet. 2023; 35: 100777.

[24]

Devinsky O, Cross JH, Laux L, et al. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017; 376(21): 2011-2020.

[25]

Gingrich J, Choudhuri S, Cournoyer P, Downey J, Muldoon Jacobs K. Review of the oral toxicity of cannabidiol (CBD). Food Chem Toxicol. 2023; 176: 113799.

[26]

Eskander JP, Spall J, Spall A, Shah RV, Kaye AD. Cannabidiol (CBD) as a treatment of acute and chronic back pain: a case series and literature review. J Opioid Manag. 2020; 16(3): 215-218.

[27]

Dieterle M, Zurbriggen L, Mauermann E, et al. Pain response to cannabidiol in opioid-induced hyperalgesia, acute nociceptive pain, and allodynia using a model mimicking acute pain in healthy adults in a randomized trial (CANAB II). Pain. 2022; 163(10): 1919-1928.

[28]

Dong F, Hao S, Zhang S, et al. Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis. Nat Cell Biol. 2020; 22(6): 630-639.

[29]

Wilkinson AC, Igarashi KJ, Nakauchi H. Haematopoietic stem cell self-renewal in vivo and ex vivo. Nat Rev Genet. 2020; 21(9): 541-554.

[30]

Shen X, Cao H, Zhu Y, et al. B-Myb participated in ionizing radiation-induced apoptosis and cell cycle arrest in human glioma cells. Biochem Biophys Res Commun. 2021; 573: 19-26.

[31]

Wilkinson AC, Ishida R, Kikuchi M, et al. Long-term ex vivo haematopoietic-stem-cell expansion allows nonconditioned transplantation. Nature. 2019; 571(7763): 117-121.

[32]

Chitteti BR, Cheng YH, Kacena MA, Srour EF. Hierarchical organization of osteoblasts reveals the significant role of CD166 in hematopoietic stem cell maintenance and function. Bone. 2013; 54(1): 58-67.

[33]

Renders S, Svendsen AF, Panten J, et al. Niche derived netrin-1 regulates hematopoietic stem cell dormancy via its receptor neogenin-1. Nat Commun. 2021; 12(1): 608.

[34]

Land RH, Rayne AK, Vanderbeck AN, et al. The orphan nuclear receptor NR4A1 specifies a distinct subpopulation of quiescent myeloid-biased long-term HSCs. Stem Cells. 2015; 33(1): 278-288.

[35]

Carpenter KA, Thurlow KE, Craig SEL, Grainger S. Wnt regulation of hematopoietic stem cell development and disease. Curr Top Dev Biol. 2023; 153: 255-279.

[36]

Reya T, Duncan AW, Ailles L, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003; 423(6938): 409-414.

[37]

Warsi S, Blank U, Dahl M, et al. BMP signaling is required for postnatal murine hematopoietic stem cell self-renewal. Haematologica. 2021; 106(8): 2203-2214.

[38]

Singbrant S, Wall M, Moody J, et al. The SKI proto-oncogene enhances the in vivo repopulation of hematopoietic stem cells and causes myeloproliferative disease. Haematologica. 2014; 99(4): 647-655.

[39]

Wu Y, Zhu H, Wu H. PTEN in regulating hematopoiesis and leukemogenesis. Cold Spring Harb Perspect Med. 2020; 10(10): a036244.

[40]

Liu J, Cui Z, Wang F, et al. Lrp5 and Lrp6 are required for maintaining self-renewal and differentiation of hematopoietic stem cells. Faseb J. 2019; 33(4): 5615-5625.

[41]

Chen D, Wang P, Lewis RL, et al. A microarray analysis of the emergence of embryonic definitive hematopoiesis. Exp Hematol. 2007; 35(9): 1344-1357.

[42]

Sheng Y, Ma R, Yu C, et al. Role of c-Myc haploinsufficiency in the maintenance of HSCs in mice. Blood. 2021; 137(5): 610-623.

[43]

Watson G, Ronai ZA, Lau E. ATF2, a paradigm of the multifaceted regulation of transcription factors in biology and disease. Pharmacol Res. 2017; 119: 347-357.

[44]

Ng VH, Spencer Z, Neitzel LR, et al. The USP46 complex deubiquitylates LRP6 to promote Wnt/β-catenin signaling. Nat Commun. 2023; 14(1): 6173.

[45]

Maekawa T, Bernier F, Sato M, et al. Mouse ATF-2 null mutants display features of a severe type of meconium aspiration syndrome. J Biol Chem. 1999; 274(25): 17813-17819.

[46]

Bhoumik A, Lopez-Bergami P, Ronai Z. ATF2 on the double-activating transcription factor and DNA damage response protein. Pigm Cell Res. 2007; 20(6): 498-506.

[47]

Kandarakov O, Belyavsky A, Semenova E. Bone marrow niches of hematopoietic stem and progenitor cells. Int J Mol Sci. 2022; 23(8): 4462.

[48]

Sunda F, Arowolo A. A molecular basis for the anti-inflammatory and anti-fibrosis properties of cannabidiol. Faseb J. 2020; 34(11): 14083-14092.

[49]

Orschell CM, Wu T, Patterson AM. Impact of Age, sex, and genetic diversity in murine models of the hematopoietic acute radiation syndrome (H-ARS) and the delayed effects of acute radiation exposure (DEARE). Curr Stem Cell Rep. 2022; 8(3): 139-149.

[50]

Li H, Wang Y, Shao S, et al. Rabdosia serra alleviates dextran sulfate sodium salt-induced colitis in mice through anti-inflammation, regulating Th17/Treg balance, maintaining intestinal barrier integrity, and modulating gut microbiota. J Pharm Anal. 2022; 12(6): 824-838.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/