Gene therapy for genetic diseases: challenges and future directions

Beibei Qie , Jianghua Tuo , Feilong Chen , Haili Ding , Lei Lyu

MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70091

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70091 DOI: 10.1002/mco2.70091
REVIEW

Gene therapy for genetic diseases: challenges and future directions

Author information +
History +
PDF

Abstract

Genetic diseases constitute the majority of rare human diseases, resulting from abnormalities in an individual’s genetic composition. Traditional treatments offer limited relief for these challenging conditions. In contrast, the rapid advancement of gene therapy presents significant advantages by directly addressing the underlying causes of genetic diseases, thereby providing the potential for precision treatment and the possibility of curing these disorders. This review aims to delineate the mechanisms and outcomes of current gene therapy approaches in clinical applications across various genetic diseases affecting different body systems. Additionally, genetic muscular disorders will be examined as a case study to investigate innovative strategies of novel therapeutic approaches, including gene replacement, gene suppression, gene supplementation, and gene editing, along with their associated advantages and limitations at both clinical and preclinical levels. Finally, this review emphasizes the existing challenges of gene therapy, such as vector packaging limitations, immunotoxicity, therapy specificity, and the subcellular localization and immunogenicity of therapeutic cargos, while discussing potential optimization directions for future research. Achieving delivery specificity, as well as long-term effectiveness and safety, will be crucial for the future development of gene therapies targeting genetic diseases.

Keywords

gene editing / gene replacement / gene therapy / muscular disorders / rare genetic diseases

Cite this article

Download citation ▾
Beibei Qie, Jianghua Tuo, Feilong Chen, Haili Ding, Lei Lyu. Gene therapy for genetic diseases: challenges and future directions. MedComm, 2025, 6(2): e70091 DOI:10.1002/mco2.70091

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Jackson M, Marks L, May GH, Wilson JB. The genetic basis of disease. Essays Biochem. 2018; 62(5): 643.

[2]

Oti M, Brunner H. The modular nature of genetic diseases. Clin Genet. 2007; 71(1): 1-11.

[3]

Roth TL, Marson A. Genetic disease and therapy. Annu Rev Pathol. 2021; 16: 145.

[4]

Szybalska EH, Szybalski W. Genetics of human cell lines, iv. Dna-mediated heritable transformation of a biochemical trait. Proc Nat Acad Sci USA. 1962; 48(12): 2026.

[5]

Raper SE, Chirmule N, Lee FS, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab. 2003; 80(1-2): 148-158.

[6]

Hacein-Bey-Abina S, von Kalle C, Schmidt M, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003; 348(3): 255-256.

[7]

Rogers S, Pfuderer P. Use of viruses as carriers of added genetic information. Nature. 1968; 219(5155): 749-751.

[8]

Blaese RM, Culver KW, Miller AD, et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4 years. Science. 1995; 270(5235): 475-480.

[9]

Gardlík R, Pálffy R, Hodosy J, Lukács J, Turna J, Celec P. Vectors and delivery systems in gene therapy. Med Sci Monit. 2005; 11(4): RA110-121.

[10]

Nathwani AC, Reiss UM, Tuddenham EGD, et al. Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med. 2014; 371(21): 1994-2004.

[11]

Maguire AM, Simonelli F, Pierce EA, et al. Safety and efficacy of gene transfer for leber’s congenital amaurosis. N Engl J Med. 2008; 358(21): 2240-2248.

[12]

Bryant LM, Christopher DM, Giles AR, et al. Lessons learned from the clinical development and market authorization of glybera. Hum Gene Ther Clin Dev. 2013; 24(2): 55-64.

[13]

Cetin B, Erendor F, Eksi YE, Sanlioglu AD, Sanlioglu S. Gene and cell therapy of human genetic diseases: Recent advances and future directions. J Cell Mol Med. 2024; 28(17): e70056.

[14]

Liu F, Li R, Zhu Z, Yang Y, Lu F. Current developments of gene therapy in human diseases. MedComm. 2024; 5(9): e645.

[15]

Dan J, Memczak S, Izpisua Belmonte JC. Expanding the Toolbox and Targets for Gene Editing. Trends Mol Med. 2021; 27(3): 203-206.

[16]

Approved cellular and gene therapy products. FDA; 2024. Published online November 21, 2024.

[17]

Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015; 96(3): 183-195.

[18]

Schiaffino S. Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies. FEBS J. 2018; 285(20): 3688-3694.

[19]

Muntoni F, Torelli S, Ferlini A. Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol. 2003; 2(12): 731-740.

[20]

Korlimarla A, Lim JA, Kishnani PS, Sun B. An emerging phenotype of central nervous system involvement in pompe disease: From bench to bedside and beyond. Ann Transl Med. 2019; 7(13): 289.

[21]

High KA, Roncarolo MG. Gene therapy. N Engl J Med. 2019; 381(5): 455-464.

[22]

Happi Mbakam C, Tremblay JP. Gene therapy for duchenne muscular dystrophy: an update on the latest clinical developments. Expert Rev Neurother. 2023; 23(10): 905-920.

[23]

Lemmers RJLF, van der Vliet PJ, Klooster R, et al. A unifying genetic model for facioscapulohumeral muscular dystrophy. Science. 2010; 329(5999): 1650-1653.

[24]

Ribieras AJ, Ortiz YY, Li Y, et al. E-selectin/AAV gene therapy promotes myogenesis and skeletal muscle recovery in a mouse hindlimb ischemia model. Xu B, ed. Cardiovasc Ther. 2023; 2023: 1-10.

[25]

Sopariwala DH, Rios AS, Saley A, Kumar A, Narkar VA. Estrogen-related receptor gamma gene therapy promotes therapeutic angiogenesis and muscle recovery in preclinical model of PAD. J Am Heart Assoc. 2023; 12(16): e028880.

[26]

Dong G, Moparthy C, Thome T, Kim K, Yue F, Ryan TE. IGF-1 therapy improves muscle size and function in experimental peripheral arterial disease. JACC: Basic Transl Sci. 2023; 8(6): 702-719.

[27]

Dhungel BP, Winburn I, da Fonseca Pereira C, Huang K, Chhabra A, Rasko JEJ. Understanding AAV vector immunogenicity: from particle to patient. Theranostics. 2024; 14(3): 1260.

[28]

Callejas D, Mann CJ, Ayuso E, et al. Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy. Diabetes. 2013; 62(5): 1718-1729.

[29]

Jaén ML, Vilà L, Elias I, et al. Long-term efficacy and safety of insulin and glucokinase gene therapy for diabetes: 8-year follow-up in dogs. Mol Ther, Methods Clin Dev. 2017; 6: 1-7.

[30]

Jimenez V, Jambrina C, Casana E, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. Embo Mol Med. 2018; 10(8): e8791.

[31]

Gardner MR, Kattenhorn LM, Kondur HR, et al. AAV-expressed eCD4-ig provides durable protection from multiple SHIV challenges. Nature. 2015; 519(7541): 87-91.

[32]

Borel F, Kay MA, Mueller C. Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. Mol Ther. 2014; 22(4): 692-701.

[33]

Wallace LM, Saad NY, Pyne NK, et al. Pre-clinical safety and off-target studies to support translation of AAV-mediated RNAi therapy for FSHD. Mol Ther Methods Clin Dev. 2018; 8: 121-130.

[34]

Zheng Y, Li Y, Zhou K, Li T, VanDusen NJ, Hua Y. Precise genome-editing in human diseases: mechanisms, strategies and applications. Signal Transduct Target Ther. 2024; 9(1): 47.

[35]

Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science. 2014; 346(6213): 1258096.

[36]

Liu G, Lin Q, Jin S, Gao C. The CRISPR-cas toolbox and gene editing technologies. Mol Cell. 2022; 82(2): 333-347.

[37]

Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012; 337(6096): 816-821.

[38]

Leal AF, Herreno-Pachón AM, Benincore-Flórez E, Karunathilaka A, Tomatsu S. Current strategies for increasing knock-in efficiency in CRISPR/Cas9-based approaches. Int J Mol Sci. 2024; 25(5): 2456.

[39]

Happi Mbakam C, Lamothe G, Tremblay G, Tremblay JP. CRISPR-Cas9 gene therapy for duchenne muscular dystrophy. Neurotherapeutics. 2022; 19(3): 931-941.

[40]

Danaeifar M. Recent advances in gene therapy: genetic bullets to the root of the problem. Clin Exp Med. 2022; 23(4): 1107-1121.

[41]

Pillay S, Zou W, Cheng F, et al. Adeno-associated virus (AAV) serotypes have distinctive interactions with domains of the cellular AAV receptor. Banks L, ed. J Virol. 2017; 91(18): e00391-17.

[42]

Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020; 21(4): 255-272.

[43]

Naso MF, Tomkowicz B, Perry WL, Strohl WR. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs. 2017; 31(4): 317-334.

[44]

Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol. 2016; 21: 75-80.

[45]

Issa SS, Shaimardanova AA, Solovyeva VV, Rizvanov AA. Various AAV serotypes and their applications in gene therapy: An overview. Cells. 2023; 12(5): 785.

[46]

Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021; 29(2): 464-488.

[47]

Chicoine LG, Rodino-Klapac LR, Shao G, et al. Vascular delivery of rAAVrh74.MCK.GALGT2 to the gastrocnemius muscle of the rhesus macaque stimulates the expression of dystrophin and laminin α2 surrogates. Mol Ther. 2014; 22(4): 713-724.

[48]

Balakrishnan B, Jayandharan GR. Basic biology of adeno-associated virus (AAV) vectors used in gene therapy. Curr Gene Ther. 2014; 14(2): 86-100.

[49]

Muhuri M, Maeda Y, Ma H, et al. Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest. 2021; 131(1): e143780.

[50]

Wang X, Ma C, Rodríguez Labrada R, et al. Recent advances in lentiviral vectors for gene therapy. Sci China Life Sci. 2021; 64(11): 1842-1857.

[51]

Sakuma T, Barry MA, Ikeda Y. Lentiviral vectors: Basic to translational. Biochem J. 2012; 443(3): 603-618.

[52]

Lesbats P, Engelman AN, Cherepanov P. Retroviral DNA integration. Chem Rev. 2016; 116(20): 12730-12757.

[53]

Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat Rev Genet. 2021; 22(4): 216-234.

[54]

Wang X, Zhu Y, Liu T, et al. Duchenne muscular dystrophy treatment with lentiviral vector containing mini-dystrophin gene in vivo. MedComm. 2024; 5(1): e423.

[55]

Goedeker NL, Dharia SD, Griffin DA, et al. Evaluation of rAAVrh74 gene therapy vector seroprevalence by measurement of total binding antibodies in patients with Duchenne muscular dystrophy. Ther Adv Neurol Disord. 2023; 16: 175628642211497.

[56]

Rivière C, Danos O, Douar AM. Long-term expression and repeated administration of AAV type 1, 2 and 5 vectors in skeletal muscle of immunocompetent adult mice. Gene Ther. 2006; 13(17): 1300-1308.

[57]

Wang Y, Zhang R, Tang L, Yang L. Nonviral delivery systems of mRNA vaccines for cancer gene therapy. Pharmaceutics. 2022; 14(3): 512.

[58]

Rao D, Ganguli M. Non-viral delivery of nucleic acid for treatment of rare diseases of the muscle. J Bioscience. 2024; 49(1): 27.

[59]

Astuti GDN, Bertelsen M, Preising MN, et al. Comprehensive genotyping reveals RPE65 as the most frequently mutated gene in leber congenital amaurosis in denmark. Eur J Hum Genet. 2016; 24(7): 1071-1079.

[60]

Redmond TM, Poliakov E, Yu S, Tsai JY, Lu Z, Gentleman S. Mutation of key residues of RPE65 abolishes its enzymatic role as isomerohydrolase in the visual cycle. Proc Natl Acad Sci USA. 2005; 102(38): 13658-13663.

[61]

Cai X, Conley SM, Naash MI. RPE65: Role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic Genet. 2009; 30(2): 57-62.

[62]

Kang J, Huang L, Zheng W, et al. Promoter CAG is more efficient than hepatocyte-targeting TBG for transgene expression via rAAV8 in liver tissues. Mol Med Rep. 2022; 25(1): 16.

[63]

Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet. 2017; 390(10097): 849-860.

[64]

Maguire AM, Russell S, Wellman JA, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation–associated inherited retinal dystrophy. Ophthalmology. 2019; 126(9): 1273-1285.

[65]

Maguire AM, Russell S, Chung DC, et al. Durability of voretigene neparvovec for biallelic RPE65-mediated inherited retinal disease. Ophthalmology. 2021; 128(10): 1460-1468.

[66]

Darrow JJ. Luxturna: FDA documents reveal the value of a costly gene therapy. Drug Discov Today. 2019; 24(4): 949-954.

[67]

Reddy OL, Savani BN, Stroncek DF, Panch SR. Advances in gene therapy for hematologic disease and considerations for transfusion medicine. Semin Hematol. 2020; 57(2): 83-91.

[68]

Ingram VM. A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. 1956; 178(4537): 792-794.

[69]

Origa R. β-thalassemia. Genet Med. 2017; 19(6): 609-619.

[70]

Lucarelli G, Isgrò A, Sodani P, Gaziev J. Hematopoietic stem cell transplantation in thalassemia and sickle cell anemia. Cold Spring Harb Perspect Med. 2012; 2(5): a011825.

[71]

Takekoshi KJ, Oh YH, Westerman KW, London IM, Leboulch P. Retroviral transfer of a human beta-globin/delta-globin hybrid gene linked to beta locus control region hypersensitive site 2 aimed at the gene therapy of sickle cell disease. Proc Natl Acad Sci USA. 1995; 92(7): 3014-3018.

[72]

Ribeil JA, Hacein-Bey-Abina S, Payen E, et al. Gene therapy in a patient with sickle cell disease. N Engl J Med. 2017; 376(9): 848-855.

[73]

Thompson AA, Walters MC, Kwiatkowski J, et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N Engl J Med. 2018; 378(16): 1479-1493.

[74]

Locatelli F, Thompson AA, Kwiatkowski JL, et al. Betibeglogene autotemcel gene therapy for non–β0/β0 genotype β-thalassemia. N Engl J Med. 2022; 386(5): 415-427.

[75]

Kwiatkowski JL, Walters MC, Hongeng S, et al. Betibeglogene autotemcel gene therapy in patients with transfusion-dependent, severe genotype β-thalassaemia (HGB-212): A non-randomised, multicentre, single-arm, open-label, single-dose, phase 3 trial. Lancet. 2024; 404(10468): 2175-2186.

[76]

Mirza A, Ritsert ML, Tao G, et al. Gene therapy in transfusion-dependent non-β0/β0 genotype β-thalassemia: First real-world experience of beti-cel. Blood Adv. 2025; 9(1): 29-38. Published online October 17, 2024.

[77]

Kanter J, Walters MC, Krishnamurti L, et al. Biologic and clinical efficacy of LentiGlobin for sickle cell disease. N Engl J Med. 2022; 386(7): 617-628.

[78]

Herring WL, Gallagher ME, Shah N, et al. Cost-effectiveness of lovotibeglogene autotemcel (lovo-cel) gene therapy for patients with sickle cell disease and recurrent vaso-occlusive events in the united states. Pharmacoeconomics. 2024; 42(6): 693.

[79]

Goyal S, Tisdale J, Schmidt M, et al. Acute myeloid leukemia case after gene therapy for sickle cell disease. N Engl J Med. 2022; 386(2): 138-147.

[80]

Uda M, Galanello R, Sanna S, et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of beta-thalassemia. Proc Natl Acad Sci USA. 2008; 105(5): 1620-1625.

[81]

Canver MC, Smith EC, Sher F, et al. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature. 2015; 527(7577): 192-197.

[82]

Frangoul H, Altshuler D, Cappellini MD, et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. N Engl J Med. 2021; 384(3): 252-260.

[83]

Locatelli F, Lang P, Wall D, et al. Exagamglogene autotemcel for transfusion-dependent β-thalassemia. N Engl J Med. 2024; 390(18): 1663-1676.

[84]

Frangoul H, Locatelli F, Sharma A, et al. Exagamglogene autotemcel for severe sickle cell disease. N Engl J Med. 2024; 390(18): 1649-1662.

[85]

Srivastava A, Santagostino E, Dougall A, et al. WFH guidelines for the management of hemophilia, 3rd edition. Haemophilia. 2020; 26(Suppl 6): 1-158.

[86]

McIntosh J, Lenting PJ, Rosales C, et al. Therapeutic levels of FVIII following a single peripheral vein administration of rAAV vector encoding a novel human factor VIII variant. Blood. 2013; 121(17): 3335-3344.

[87]

Spronck EA, Liu YP, Lubelski J, et al. Enhanced factor IX activity following administration of AAV5-R338L “padua” factor IX versus AAV5 WT human factor IX in NHPs. Mol Ther Methods Clin Dev. 2019; 15: 221-231.

[88]

Rangarajan S, Walsh L, Lester W, et al. AAV5-factor VIII gene transfer in severe hemophilia a. N Engl J Med. 2017; 377(26): 2519-2530.

[89]

Majowicz A, Nijmeijer B, Lampen MH, et al. Therapeutic hFIX activity achieved after single AAV5-hFIX treatment in hemophilia B patients and NHPs with pre-existing anti-AAV5 NABs. Mol Ther Methods Clin Dev. 2019; 14: 27-36.

[90]

Cuker A, Kavakli K, Frenzel L, et al. Gene therapy with fidanacogene elaparvovec in adults with hemophilia B. N Engl J Med. 2024; 391(12): 1108-1118.

[91]

Pipe SW, Leebeek FWG, Recht M, et al. Gene therapy with etranacogene dezaparvovec for hemophilia B. N Engl J Med. 2023; 388(8): 706-718.

[92]

Coppens M, Pipe SW, Miesbach W, et al. Etranacogene dezaparvovec gene therapy for haemophilia B (HOPE-B): 24-month post-hoc efficacy and safety data from a single-arm, multicentre, phase 3 trial. Lancet Haematol. 2024; 11(4): e265-e275.

[93]

Rosen S, Tiefenbacher S, Robinson M, et al. Activity of transgene-produced B-domain–deleted factor VIII in human plasma following AAV5 gene therapy. Blood. 2020; 136(22): 2524.

[94]

Ozelo MC, Mahlangu J, Pasi KJ, et al. Valoctocogene roxaparvovec gene therapy for hemophilia a. N Engl J Med. 2022; 386(11): 1013-1025.

[95]

Symington E, Rangarajan S, Lester W, et al. Valoctocogene roxaparvovec gene therapy provides durable haemostatic control for up to 7 years for haemophilia a. Haemophilia. 2024; 30(5): 1138-1147.

[96]

Itzler R, Buckner TW, Leebeek FWG, et al. Effect of etranacogene dezaparvovec on quality of life for severe and moderately severe haemophilia B participants: Results from the phase III HOPE-B trial 2 years after gene therapy. Haemophilia. 2024; 30(3): 709-719.

[97]

George LA, Ragni MV, Rasko JEJ, et al. Long-term follow-up of the first in human intravascular delivery of AAV for gene transfer: AAV2-hFIX16 for severe hemophilia B. Mol Ther. 2020; 28(9): 2073-2082.

[98]

Intong LRA, Murrell DF. Inherited epidermolysis bullosa: New diagnostic criteria and classification. Clin Dermatol. 2012; 30(1): 70-77.

[99]

Dang N, Murrell DF. Mutation analysis and characterization of COL7A1 mutations in dystrophic epidermolysis bullosa. Exp Dermatol. 2008; 17(7): 553-568.

[100]

Khan A, Riaz R, Ashraf S, Akilimali A. Revolutionary breakthrough: FDA approves vyjuvek, the first topical gene therapy for dystrophic epidermolysis bullosa. Ann Med Surg. 2023; 85(12): 6298.

[101]

Guide SV, Gonzalez ME, Bağcı IS, et al. Trial of beremagene geperpavec (B-VEC) for dystrophic epidermolysis bullosa. N Engl J Med. 2022; 387(24): 2211-2219.

[102]

Epstein AL, Haag-Molkenteller C. Herpes simplex virus gene therapy for dystrophic epidermolysis bullosa (DEB). Cell. 2023; 186(17): 3523-3523.e1.

[103]

Arnold WD, Kassar D, Kissel JT. Spinal muscular atrophy: Diagnosis and management in a new therapeutic era. Muscle Nerve. 2015; 51(2): 157-167.

[104]

Glascock J, Sampson J, Haidet-Phillips A, et al. Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening. J Neuromuscul Dis. 2018; 5(2): 145-158.

[105]

Swoboda KJ, Prior TW, Scott CB, et al. Natural history of denervation in SMA: Relation to age, SMN2 copy number, and function. Ann Neurol. 2005; 57(5): 704-712.

[106]

Strauss KA, Farrar MA, Muntoni F, et al. Onasemnogene abeparvovec for presymptomatic infants with two copies of SMN2 at risk for spinal muscular atrophy type 1: The phase III SPR1NT trial. Nat Med. 2022; 28(7): 1381.

[107]

Strauss KA, Farrar MA, Muntoni F, et al. Onasemnogene abeparvovec for presymptomatic infants with three copies of SMN2 at risk for spinal muscular atrophy: The phase III SPR1NT trial. Nat Med. 2022; 28(7): 1390.

[108]

Neil EE, Bisaccia EK. Nusinersen: A novel antisense oligonucleotide for the treatment of spinal muscular atrophy. J Pediatr Pharmacol Ther. 2019; 24(3): 194-203.

[109]

Day JW, Finkel RS, Chiriboga CA, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy in patients with two copies of SMN2 (STR1VE): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021; 20(4): 284-293.

[110]

Mercuri E, Muntoni F, Baranello G, et al. Onasemnogene abeparvovec gene therapy for symptomatic infantile-onset spinal muscular atrophy type 1 (STR1VE-EU): an open-label, single-arm, multicentre, phase 3 trial. Lancet Neurol. 2021; 20(10): 832-841.

[111]

Mendell JR, Al-Zaidy SA, Lehman KJ, et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. 2021; 78(7): 1.

[112]

Lowes LP, Alfano LN, Arnold WD, et al. Impact of age and motor function in a phase 1/2A study of infants with SMA type 1 receiving single-dose gene replacement therapy. Pediatr Neurol. 2019; 98: 39-45.

[113]

Hinderer C, Katz N, Buza EL, et al. Severe toxicity in nonhuman primates and piglets following high-dose intravenous administration of an adeno-associated virus vector expressing human SMN. Hum Gene Ther. 2018; 29(3): 285.

[114]

Chand D, Mohr F, McMillan H, et al. Hepatotoxicity following administration of onasemnogene abeparvovec (AVXS-101) for the treatment of spinal muscular atrophy. J Hepatol. 2021; 74(3): 560-566.

[115]

Thomsen G, Burghes AHM, Hsieh C, et al. Biodistribution of onasemnogene abeparvovec DNA, mRNA and SMN protein in human tissue. Nat Med. 2021; 27(10): 1701-1711.

[116]

Brun L, Ngu LH, Keng WT, et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology. 2010; 75(1): 64-71.

[117]

Wassenberg T, Molero-Luis M, Jeltsch K, et al. Consensus guideline for the diagnosis and treatment of aromatic l-amino acid decarboxylase (AADC) deficiency. Orphanet J Rare Dis. 2017; 12(1): 12.

[118]

Chien YH, Lee NC, Tseng SH, et al. Efficacy and safety of AAV2 gene therapy in children with aromatic L-amino acid decarboxylase deficiency: An open-label, phase 1/2 trial. Lancet Child Adolesc Health. 2017; 1(4): 265-273.

[119]

Tai CH, Lee NC, Chien YH, et al. Long-term efficacy and safety of eladocagene exuparvovec in patients with AADC deficiency. Mol Ther. 2022; 30(2): 509-518.

[120]

Compton DR, DeMarco SJ, Yalamanchili P. AAV2-hAADC (eladocagene exuparvovec) biodistribution and expression: Superiority of intraputaminal versus intracerebroventricular and intrathecal (lumbar) routes of administration. Int J Toxicol. 2023; 42(2): 135-145.

[121]

Theadom A, Rodrigues M, Roxburgh R, et al. Prevalence of muscular dystrophies: a systematic literature review. Neuroepidemiology. 2014; 43(3-4): 259-268.

[122]

Basumatary LJ, Das M, Goswami M, Kayal AK. Deletion pattern in the dystrophin gene in Duchenne muscular dystrophy patients in northeast India. Journal of Neurosciences in Rural Practice. 2013; 4(2): 227-229.

[123]

Le Rumeur E. Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies. Bosnian J Basic Med. 2015; 15(3): 14-20.

[124]

Echevarría L, Aupy P, Goyenvalle A. Exon-skipping advances for Duchenne muscular dystrophy. Hum Mol Genet. 2018; 27(R2): R163-R172.

[125]

Bendicksen L, Zuckerman DM, Avorn J, Phillips S, Kesselheim AS. The regulatory repercussions of approving muscular dystrophy medications on the basis of limited evidence. Ann Intern Med. 2023; 176(9): 1251-1256.

[126]

Shehata Z, Metry A, Rabea H, El Sherif R, Abdelrahim M, Dawoud D. Early cost-utility analysis of ataluren and eteplirsen in the treatment of duchenne muscular dystrophy in egypt. Value in Health Regional Issues. 2023; 38: 109-117.

[127]

Mullard A. FDA approves first gene therapy for Duchenne muscular dystrophy, despite internal objections. Nat Rev Drug Discov. 2023; 22(8): 610.

[128]

Salva MZ, Himeda CL, Tai PW, et al. Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther. 2007; 15(2): 320-329.

[129]

Asher DR, Thapa K, Dharia SD, et al. Clinical development on the frontier: gene therapy for duchenne muscular dystrophy. Expert Opin Biol Ther. 2020; 20(3): 263-274.

[130]

Mendell JR, Shieh PB, McDonald CM, et al. Expression of SRP-9001 dystrophin and stabilization of motor function up to 2 years post-treatment with delandistrogene moxeparvovec gene therapy in individuals with Duchenne muscular dystrophy. Front Cell Dev Biol. 2023; 11: 1167762.

[131]

Mendell JR, Proud C, Zaidman CM, et al. Practical considerations for delandistrogene moxeparvovec gene therapy in patients with duchenne muscular dystrophy. Pediatr Neurol. 2024; 153: 11-18.

[132]

Zaidman CM, Proud CM, McDonald CM, et al. Delandistrogene moxeparvovec gene therapy in ambulatory patients (aged ≥4 to <8 years) with duchenne muscular dystrophy: 1-year interim results from study SRP -9001-103 (ENDEAVOR). Ann Neurol. 2023; 94(5): 955-968.

[133]

Mendell JR, Sahenk Z, Lehman K, et al. Assessment of systemic delivery of rAAVrh74.MHCK7.micro-dystrophin in children with duchenne muscular dystrophy: a nonrandomized controlled trial. JAMA Neurol. 2020; 77(9): 1122-1131.

[134]

Mendell JR, Sahenk Z, Lehman KJ, et al. Long-term safety and functional outcomes of delandistrogene moxeparvovec gene therapy in patients with Duchenne muscular dystrophy: a phase 1/2a nonrandomized trial. Muscle Nerve. 2024; 69(1): 93-98.

[135]

Bhattacharyya M, Miller LE, Miller AL, Bhattacharyya R. The FDA approval of delandistrogene moxeparvovec-rokl for duchenne muscular dystrophy: A critical examination of the evidence and regulatory process. Expert Opin Biol Ther. 2024; 24(9): 869-871.

[136]

Simons CL, Hwu WL, Zhang R, Simons MJHG, Bergkvist M, Bennison C. Long-term outcomes of eladocagene exuparvovec compared with standard of care in aromatic L-amino acid decarboxylase (AADC) deficiency: A modelling study. Adv Ther. 2023; 40(12): 5399-5414.

[137]

Turner C, Hilton-Jones D. The myotonic dystrophies: diagnosis and management. J Neurol Neurosurg Psychiatry. 2010; 81(4): 358-367.

[138]

Theadom A, Rodrigues M, Poke G, et al. A nationwide, population-based prevalence study of genetic muscle disorders. Neuroepidemiology. 2019; 52(3-4): 128-135.

[139]

Mercuri E, Bönnemann CG, Muntoni F. Muscular dystrophies. Lancet (London, England). 2019; 394(10213): 2025-2038.

[140]

Cardamone M, Darras B, Ryan M. Inherited myopathies and muscular dystrophies. Semin Neurol. 2008; 28(2): 250-259.

[141]

Georganopoulou DG, Moisiadis VG, Malik FA, et al. A journey with LGMD: from protein abnormalities to patient impact. Protein J. 2021; 40(4): 466-488.

[142]

Brais B, Bouchard JP, Xie YG, et al. Short GCG expansions in the PABP2 gene cause oculopharyngeal muscular dystrophy. Nat Genet. 1998; 18(2): 164-167.

[143]

Apponi LH, Corbett AH, Pavlath GK. Control of mRNA stability contributes to low levels of nuclear poly(A) binding protein 1 (PABPN1) in skeletal muscle. Skeletal Muscle. 2013; 3(1): 23.

[144]

Younger DS. Congenital myopathies. Handbook of Clinical Neurology. 2023; 195: 533-561.

[145]

van der Ploeg AT, Reuser AJJ. Pompe’s disease. Lancet (London, England). 2008; 372(9646): 1342-1353.

[146]

Singh S, Singh T, Kunja C, Dhoat NS, Dhania NK. Gene-editing, immunological and iPSCs based therapeutics for muscular dystrophy. Eur J Pharmacol. 2021; 912: 174568.

[147]

Veerapandiyan A, Rao V, Dastgir J, et al. RGX-202, an investigational gene therapy for the treatment of duchenne muscular dystrophy: interim clinical data (S21.005). Neurology. 2024; 102(17_supplement_1): 6773.

[148]

Dastgir J. RGX-202*, an investigational gene therapy for the treatment of duchenne muscular dystrophy: Interim Clinical Data.

[149]

Roberts TC, Wood MJA, Davies KE. Therapeutic approaches for Duchenne muscular dystrophy. Nat Rev Drug Discov. 2023; 22(11): 917-934.

[150]

Zaiss AK, Cotter MJ, White LR, et al. Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol. 2008; 82(6): 2727.

[151]

High-dose AAV gene therapy deaths. Nat Biotechnol. 2020; 38(8): 910-910.

[152]

Roberts TC, Wood MJA, Davies KE. Therapeutic approaches for Duchenne muscular dystrophy. Nat Rev Drug Discov. 2023; 22(11): 917-934.

[153]

Duan D. Systemic AAV micro-dystrophin gene therapy for duchenne muscular dystrophy. Mol Ther. 2018; 26(10): 2337-2356.

[154]

Mendell JR, Sahenk Z, Malik V, et al. A phase 1/2a follistatin gene therapy trial for becker muscular dystrophy. Mol Ther. 2015; 23(1): 192-201.

[155]

Sandonà D, Betto R. Sarcoglycanopathies: molecular pathogenesis and therapeutic prospects. Expert Rev Mol Med. 2009; 11: e28.

[156]

Piccolo F, Roberds SL, Jeanpierre M, et al. Primary adhalinopathy: a common cause of autosomal recessive muscular dystrophy of variable severity. Nat Genet. 1995; 10(2): 243-245.

[157]

Bönnemann CG, Modi R, Noguchi S, et al. Beta-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nat Genet. 1995; 11(3): 266-273.

[158]

Mendell JR, Chicoine LG, Al-Zaidy SA, et al. Gene delivery for limb-girdle muscular dystrophy type 2D by isolated limb infusion. Hum Gene Ther. 2019; 30(7): 794-801.

[159]

Griffin DA, Pozsgai ER, Heller KN, Potter RA, Peterson EL, Rodino-Klapac LR. Preclinical systemic delivery of adeno-associated α-sarcoglycan gene transfer for limb-girdle muscular dystrophy. Hum Gene Ther. 2021; 32(7-8): 390-404.

[160]

Pozsgai ER, Griffin DA, Heller KN, Mendell JR, Rodino-Klapac LR. β-Sarcoglycan gene transfer decreases fibrosis and restores force in LGMD2E mice. Gene Ther. 2016; 23(1): 57-66.

[161]

Mendell JR, Pozsgai ER, Lewis S, et al. Gene therapy with bidridistrogene xeboparvovec for limb-girdle muscular dystrophy type 2E/R4: phase 1/2 trial results. Nat Med. 2024; 30(1): 199-206.

[162]

Brockington M, Yuva Y, Prandini P, et al. Mutations in the fukutin-related protein gene (FKRP) identify limb girdle muscular dystrophy 2I as a milder allelic variant of congenital muscular dystrophy MDC1C. Hum Mol Genet. 2001; 10(25): 2851-2859.

[163]

Vannoy CH, Leroy V, Lu QL. Dose-dependent effects of FKRP gene-replacement therapy on functional rescue and longevity in dystrophic mice. Molecular Therapy Methods & Clinical Development. 2018; 11: 106-120.

[164]

First clinical results of ATA-100, a gene therapy for the treatment of limb-girdle muscular dystrophy type 2I/R9 (LGMD2I/R9), presented at ESGCT - atamyo therapeutics.

[165]

Abu-Baker A, Kharma N, Perreault J, et al. RNA-based therapy utilizing oculopharyngeal muscular dystrophy transcript knockdown and replacement. Molecular Therapy - Nucleic Acids. 2019; 15: 12-25.

[166]

Strings-Ufombah V, Malerba A, Kao SC, et al. BB-301: a silence and replace AAV-based vector for the treatment of oculopharyngeal muscular dystrophy. Molecular Therapy Nucleic Acids. 2021; 24: 67-78.

[167]

McEntagart M, Parsons G, Buj-Bello A, et al. Genotype-phenotype correlations in X-linked myotubular myopathy. Neuromuscular disorders: NMD. 2002; 12(10): 939-946.

[168]

Jonuschies J, Antoniou M, Waddington S, et al. The human desmin promoter drives robust gene expression for skeletal muscle stem cell-mediated gene therapy. Curr Gene Ther. 2014; 14(4): 276-288.

[169]

Shieh PB, Kuntz NL, Dowling JJ, et al. Safety and efficacy of gene replacement therapy for X-linked myotubular myopathy (ASPIRO): A multinational, open-label, dose-escalation trial. Lancet Neurol. 2023; 22(12): 1125-1139.

[170]

George LA, Sullivan SK, Giermasz A, et al. Hemophilia B gene therapy with a high-specific-activity factor IX variant. N Engl J Med. 2017; 377(23): 2215.

[171]

Eggers M, Vannoy CH, Huang J, et al. Muscle-directed gene therapy corrects pompe disease and uncovers species-specific GAA immunogenicity. EMBO Mol Med. 2021; 14(1): e13968.

[172]

Costa-Verdera H, Collaud F, Riling CR, et al. Hepatic expression of GAA results in enhanced enzyme bioavailability in mice and non-human primates. Nat Commun. 2021; 12(1): 6393.

[173]

Smith BK, Martin AD, Lawson LA, et al. Inspiratory muscle conditioning exercise and diaphragm gene therapy in Pompe disease: Clinical evidence of respiratory plasticity. Exp Neurol. 2017; 287(Pt 2): 216-224.

[174]

Corti M, Liberati C, Smith BK, et al. Safety of intradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by pompe disease. Human Gene Therapy Clinical Development. 2017; 28(4): 208-218.

[175]

Smith EC, Hopkins S, Case LE, et al. Phase I study of liver depot gene therapy in late-onset pompe disease. Mol Ther. 2023; 31(7): 1994.

[176]

Gilbert LA, Horlbeck MA, Adamson B, et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 2014; 159(3): 647-661.

[177]

Lek A, Wong B, Keeler A, et al. Unexpected Death of a Duchenne Muscular Dystrophy Patient in an N-of-1 Trial of rAAV9-delivered CRISPR-transactivator. Published online 2023.

[178]

Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. 2016; 533(7603): 420-424.

[179]

Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature. 2017; 551(7681): 464-471.

[180]

Lin J, Jin M, Yang D, et al. Adenine base editing-mediated exon skipping restores dystrophin in humanized duchenne mouse model. Nat Commun. 2024; 15: 5927.

[181]

Kong X, Zhang H, Li G, et al. Engineered CRISPR-OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat Commun. 2023; 14(1): 2046.

[182]

Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006; 126(4): 663-676.

[183]

Astellas announces positive safety data from the FORTIS study of AT845 in adults with late-onset pompe disease - feb 7, 2022.

[184]

Benasutti H, Maricelli JW, Seto J, et al. Efficacy and muscle safety assessment of fukutin-related protein gene therapy. Molecular Therapy Methods & Clinical Development. 2023; 30: 65-80.

[185]

Cataldi MP, Vannoy CH, Blaeser A, et al. Improved efficacy of FKRP AAV gene therapy by combination with ribitol treatment for LGMD2I. Mol Ther. 2023; 31(12): 3478-3489.

[186]

Bashir R, Britton S, Strachan T, et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet. 1998; 20(1): 37-42.

[187]

Aoki M, Liu J, Richard I, et al. Genomic organization of the dysferlin gene and novel mutations in Miyoshi myopathy. Neurology. 2001; 57(2): 271-278.

[188]

Sondergaard PC, Griffin DA, Pozsgai ER, et al. AAV.dysferlin overlap vectors restore function in dysferlinopathy animal models. Ann Clin Transl Neurol. 2015; 2(3): 256-270.

[189]

Yakovlev IA, Emelin AM, Slesarenko YS, et al. Dual adeno-associated virus 9 with codon-optimized DYSF gene promotes in vivo muscle regeneration and may decrease inflammatory response in limb girdle muscular dystrophy type R2. Int J Mol Sci. 2023; 24(17): 13551.

[190]

Miyagoe-Suzuki Y, Nakagawa M, Takeda S. Merosin and congenital muscular dystrophy. Microsc Res Tech. 2000; 48(3-4): 181-191.

[191]

Colognato H, Yurchenco PD. Form and function: the laminin family of heterotrimers. Developmental Dynamics: An Official Publication of the American Association of Anatomists. 2000; 218(2): 213-234.

[192]

Ringelmann B, Röder C, Hallmann R, et al. Expression of laminin alpha1, alpha2, alpha4, and alpha5 chains, fibronectin, and tenascin-C in skeletal muscle of dystrophic 129ReJ dy/dy mice. Exp Cell Res. 1999; 246(1): 165-182.

[193]

Moll J, Barzaghi P, Lin S, et al. An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy. Nature. 2001; 413(6853): 302-307.

[194]

Reinhard JR, Lin S, McKee KK, et al. Linker proteins restore basement membrane and correct LAMA2 - related muscular dystrophy in mice. Sci Transl Med. 2017; 9(396): eaal4649.

[195]

Mitrani-Rosenbaum S, Yakovlev L, Becker Cohen M, Argov Z, Fellig Y, Harazi A. Pre clinical assessment of AAVrh74.MCK.GNE viral vector therapeutic potential: robust activity despite lack of consistent animal model for GNE myopathy. Journal of Neuromuscular Diseases. 2022; 9(1): 179-192.

[196]

Zygmunt DA, Lam P, Ashbrook A, et al. Development of assays to measure gne gene potency and gene replacement in skeletal muscle. Journal of Neuromuscular Diseases. 2023; 10(5): 797-812.

[197]

Ueta R, Sugita S, Minegishi Y, et al. DOK7 gene therapy enhances neuromuscular junction innervation and motor function in aged mice. iScience. 2020; 23(8): 101385.

[198]

Abbadi D, Andrews JJ, Katsara O, Schneider RJ. AUF1 gene transfer increases exercise performance and improves skeletal muscle deficit in adult mice. Mol Ther Methods Clin Dev. 2021; 22: 222-236.

[199]

Liu J, Koay TW, Maiakovska O, Zayas M, Grimm D. Progress in bioengineering of myotropic adeno-associated viral gene therapy vectors. Hum Gene Ther. 2023; 34(9-10): 350-364.

[200]

Karstoft K, Pedersen BK. Skeletal muscle as a gene regulatory endocrine organ. Curr Opin Clin Nutr Metab Care. 2016; 19(4): 270-275.

[201]

Buchlis G, Podsakoff GM, Radu A, et al. Factor IX expression in skeletal muscle of a severe hemophilia B patient 10 years after AAV-mediated gene transfer. Blood. 2012; 119(13): 3038-3041.

[202]

Brook JD, McCurrach ME, Harley HG, et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3’ end of a transcript encoding a protein kinase family member. Cell. 1992; 68(4): 799-808.

[203]

Liquori CL, Ricker K, Moseley ML, et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science. 2001; 293(5531): 864-867.

[204]

Davis BM, McCurrach ME, Taneja KL, Singer RH, Housman DE. Expansion of a CUG trinucleotide repeat in the 3’ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci USA. 1997; 94(14): 7388-7393.

[205]

Kanadia RN, Johnstone KA, Mankodi A, et al. A muscleblind knockout model for myotonic dystrophy. Science. 2003; 302(5652): 1978-1980.

[206]

Bisset DR, Stepniak-Konieczna EA, Zavaljevski M, et al. Therapeutic impact of systemic AAV-mediated RNA interference in a mouse model of myotonic dystrophy. Hum Mol Genet. 2015; 24(17): 4971-4983.

[207]

Wallace LM, Liu J, Domire JS, et al. RNA interference inhibits DUX4-induced muscle toxicity in vivo: implications for a targeted FSHD therapy. Mol Ther. 2012; 20(7): 1417-1423.

[208]

Chang HHY, Pannunzio NR, Adachi N, Lieber MR. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat Rev Mol Cell Biol. 2017; 18(8): 495-506.

[209]

Tabebordbar M, Zhu K, Cheng JKW, et al. In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. 2016; 351(6271): 407-411.

[210]

Maggio I, Stefanucci L, Janssen JM, et al. Selection-free gene repair after adenoviral vector transduction of designer nucleases: rescue of dystrophin synthesis in DMD muscle cell populations. Nucleic Acids Res. 2016; 44(3): 1449-1470.

[211]

Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. 2016; 351(6271): 400-403.

[212]

Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science. 2016; 351(6271): 403-407.

[213]

Moretti A, Fonteyne L, Giesert F, et al. Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of duchenne muscular dystrophy. Nat Med. 2020; 26(2): 207-214.

[214]

Dastidar S, Ardui S, Singh K, et al. Efficient CRISPR/Cas9-mediated editing of trinucleotide repeat expansion in myotonic dystrophy patient-derived iPS and myogenic cells. Nucleic Acids Res. 2018; 46(16): 8275-8298.

[215]

Dastidar S, Majumdar D, Tipanee J, et al. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Mol Ther. 2022; 30(1): 75-91.

[216]

Kemaladewi DU, Maino E, Hyatt E, et al. Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat Med. 2017; 23(8): 984-989.

[217]

Amoasii L, Long C, Li H, et al. Single-cut genome editing restores dystrophin expression in a new mouse model of muscular dystrophy. Sci Transl Med. 2017; 9(418): eaan8081.

[218]

Amoasii L, Hildyard JCW, Li H, et al. Gene editing restores dystrophin expression in a canine model of duchenne muscular dystrophy. Science. 2018; 362(6410): 86-91.

[219]

Müthel S, Marg A, Ignak B, et al. Cas9-induced single cut enables highly efficient and template-free repair of a muscular dystrophy causing founder mutation. Molecular Therapy Nucleic Acids. 2023; 31: 494-511.

[220]

Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 2017; 8(1): 14454.

[221]

Rayner E, Durin MA, Thomas R, et al. CRISPR-Cas9 causes chromosomal instability and rearrangements in cancer cell lines, detectable by cytogenetic methods. The CRISPR Journal. 2019; 2(6): 406.

[222]

Nelson CE, Wu Y, Gemberling MP, et al. Long-term evaluation of AAV-CRISPR genome editing for duchenne muscular dystrophy. Nat Med. 2019; 25(3): 427.

[223]

Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019; 576(7785): 149-157.

[224]

Ryu SM, Koo T, Kim K, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. 2018; 36(6): 536-539.

[225]

Chemello F, Chai AC, Li H, et al. Precise correction of Duchenne muscular dystrophy exon deletion mutations by base and prime editing. Sci Adv. 2021; 7(18): eabg4910.

[226]

Luo M, Guan X, Luczak ED, et al. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest. 2013; 123(3): 1262-1274.

[227]

Simon L, Francesco C, Caravia XM, et al. Ablation of CaMKIIδ oxidation by CRISPR-Cas9 base editing as a therapy for cardiac disease. Science. 2023; 379(6628): 179-185.

[228]

Simon L, Caravia XM, Straub LG, et al. CRISPR-Cas9 base editing of pathogenic CaMKIIδ improves cardiac function in a humanized mouse model. J Clin Invest. 2023; 134(1).

[229]

Chai AC, Cui M, Chemello F, et al. Base editing correction of hypertrophic cardiomyopathy in human cardiomyocytes and humanized mice. Nat Med. 2023; 29(2): 401-411.

[230]

Xin H, Wan T, Ping Y. Off-targeting of base editors: BE3 but not ABE induces substantial off-target single nucleotide variants. Signal Transduction and Targeted Therapy. 2019; 4: 9.

[231]

Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. 2018; 19(12): 770.

[232]

Arbab M, Shen MW, Mok B, et al. Determinants of base editing outcomes from target library analysis and machine learning. Cell. 2020; 182(2): 463-480.e30.

[233]

Anzalone AV, Gao XD, Podracky CJ, et al. Programmable deletion, replacement, integration, and inversion of large DNA sequences with twin prime editing. Nat Biotechnol. 2021; 40(5): 731.

[234]

Hauerslev S, Sveen ML, Duno M, Angelini C, Vissing J, Krag TO. Calpain 3 is important for muscle regeneration: evidence from patients with limb girdle muscular dystrophies. BMC Musculoskeletal Disorders. 2012; 13: 43.

[235]

Roudaut C, Le Roy F, Suel L, et al. Restriction of calpain3 expression to the skeletal muscle prevents cardiac toxicity and corrects pathology in a murine model of limb-girdle muscular dystrophy. Circulation. 2013; 128(10): 1094-1104.

[236]

Selvaraj S, Dhoke NR, Kiley J, et al. Gene correction of LGMD2A patient-specific iPSCs for the development of targeted autologous cell therapy. Mol Ther. 2019; 27(12): 2147-2157.

[237]

Mavrommatis L, Zaben A, Kindler U, et al. CRISPR/Cas9 genome editing in LGMD2A/R1 patient-derived induced pluripotent stem and skeletal muscle progenitor cells. Stem Cells International. 2023; 2023: 9246825.

[238]

Marchiano S, Nakamura K, Reinecke H, et al. Gene editing to prevent ventricular arrhythmias associated with cardiomyocyte cell therapy. Cell Stem Cell. 2023; 30(4): 396-414.e9.

[239]

Kubat GB, Bouhamida E, Ulger O, et al. Mitochondrial dysfunction and skeletal muscle atrophy: causes, mechanisms, and treatment strategies. Mitochondrion. 2023; 72: 33-58.

[240]

Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005; 6(5): 389-402.

[241]

Cho SI, Lee S, Mok YG, et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell. 2022; 185(10): 1764-1776.e12.

[242]

Gammage PA, Moraes CT, Minczuk M. Mitochondrial genome engineering: the revolution may not be CRISPR-Ized. Trends Genet. 2018; 34(2): 101-110.

[243]

Mok BY, De Moraes MH, Zeng J, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020; 583(7817): 631-637.

[244]

Yi Z, Zhang X, Tang W, et al. Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat Biotechnol. 2024; 42(3): 498-509.

[245]

Otten ABC, Sallevelt SCEH, Carling PJ, et al. Mutation-specific effects in germline transmission of pathogenic mtDNA variants. Hum Reprod. 2018; 33(7): 1331-1341.

[246]

Lei Z, Meng H, Liu L, et al. Mitochondrial base editor induces substantial nuclear off-target mutations. Nature. 2022; 606(7915): 804-811.

[247]

Doisy M, Vacca O, Fergus C, et al. Networking to optimize dmd exon 53 skipping in the brain of mdx52 mouse model. Biomedicines. 2023; 11(12): 3243.

[248]

Saoudi A, Fergus C, Gileadi T, et al. Investigating the impact of delivery routes for exon skipping therapies in the CNS of DMD mouse models. Cells. 2023; 12(6): 908.

[249]

Hasegawa J, Nagata T, Ihara K, et al. Heteroduplex oligonucleotide technology boosts oligonucleotide splice switching activity of morpholino oligomers in a duchenne muscular dystrophy mouse model. Nat Commun. 2024; 15(1): 7530.

[250]

Hindi SM, Petrany MJ, Greenfeld E, et al. Enveloped viruses pseudotyped with mammalian myogenic cell fusogens target skeletal muscle for gene delivery. Cell. 2023; 186(10): 2062-2077.e17.

[251]

El Andari J, Renaud-Gabardos E, Tulalamba W, et al. Semirational bioengineering of AAV vectors with increased potency and specificity for systemic gene therapy of muscle disorders. Sci Adv. 2022; 8(38): eabn4704.

[252]

Kenjo E, Hozumi H, Makita Y, et al. Low immunogenicity of LNP allows repeated administrations of CRISPR-Cas9 mRNA into skeletal muscle in mice. Nat Commun. 2021; 12(1): 7101.

[253]

Poukalov KK, Valero MC, Muscato DR, et al. Myospreader improves gene editing in skeletal muscle by myonuclear propagation. P Natl Acad Sci USA. 2024; 121(19): e2321438121.

[254]

Malcher J, Heidt L, Goyenvalle A, et al. Exon skipping in a Dysf-missense mutant mouse model. Molecular Therapy - Nucleic Acids. 2018; 13: 198-207.

[255]

Liang Q, Catalano F, Vlaar EC, et al. IGF2-tagging of GAA promotes full correction of murine Pompe disease at a clinically relevant dosage of lentiviral gene therapy. Molecular Therapy Methods & Clinical Development. 2022; 27: 109-130.

[256]

Liang Q, Vlaar EC, Pijnenburg JM, et al. Lentiviral gene therapy with IGF2-tagged GAA normalizes the skeletal muscle proteome in murine Pompe disease. J Proteomics. 2024; 291: 105037.

[257]

Zettler J, Schütz V, Mootz HD. The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. 2009; 583(5): 909-914.

[258]

Levy JM, Yeh WH, Pendse N, et al. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng. 2020; 4(1): 97-110.

[259]

Garcia-Blanco MA. Messenger RNA reprogramming by spliceosome-mediated RNA trans-splicing. J Clin Invest. 2003; 112(4): 474-480.

[260]

Yang Y, Walsh CE. Spliceosome-mediated RNA trans-splicing. Mol Ther. 2005; 12(6): 1006-1012.

[261]

Azibani F, Brull A, Arandel L, et al. Gene therapy via trans-splicing for LMNA-related congenital muscular dystrophy. Molecular Therapy - Nucleic Acids. 2018; 10: 376-386.

[262]

Kishimoto TK, Samulski RJ. Addressing high dose AAV toxicity -“one and done” or “slower and lower”? Expert Opin Biol Ther. 2022; 22(9): 1067-1071.

[263]

Ayuso E, Blouin V, Lock M, et al. Manufacturing and characterization of a recombinant adeno-associated virus type 8 reference standard material. Hum Gene Ther. 2014; 25(11): 977.

[264]

Louis Jeune V, Joergensen JA, Hajjar RJ, Weber T. Pre-existing anti–adeno-associated virus antibodies as a challenge in AAV gene therapy. Human Gene Therapy Methods. 2013; 24(2): 59-67.

[265]

Mingozzi F, Chen Y, Edmonson SC, et al. Prevalence and pharmacological modulation of humoral immunity to AAV vectors in gene transfer to synovial tissue. Gene Ther. 2012; 20(4): 417.

[266]

Boutin S, Monteilhet V, Veron P, et al. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: Implications for gene therapy using AAV vectors. Hum Gene Ther. 2010; 21(6): 704-712.

[267]

Harbison CE, Weichert WS, Gurda BL, Chiorini JA, Agbandje-McKenna M, Parrish CR. Examining the cross-reactivity and neutralization mechanisms of a panel of mAbs against adeno-associated virus serotypes 1 and 5. J Gen Virol. 2012; 93(Pt 2): 347.

[268]

Samelson-Jones BJ, Finn JD, Favaro P, Wright JF, Arruda VR. Timing of intensive immunosuppression impacts risk of transgene antibodies after AAV gene therapy in nonhuman primates. Mol Ther Methods Clin Dev. 2020; 17: 1129-1138.

[269]

Corti M, Elder ME, Falk DJ, et al. B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study. Molecular Therapy Methods & Clinical Development. 2014; 1: 14033.

[270]

Meliani A, Boisgerault F, Hardet R, et al. Antigen-selective modulation of AAV immunogenicity with tolerogenic rapamycin nanoparticles enables successful vector re-administration. Nat Commun. 2018; 9: 4098.

[271]

Velazquez VM, Meadows AS, Pineda RJ, Camboni M, McCarty DM, Fu H. Effective depletion of pre-existing anti-AAV antibodies requires broad immune targeting. Molecular Therapy Methods & Clinical Development. 2017; 4: 159.

[272]

Biswas M, Palaschak B, Kumar SRP, Rana J, Markusic DM. B cell depletion eliminates FVIII memory B cells and enhances AAV8-coF8 immune tolerance induction when combined with rapamycin. Front Immunol. 2020; 11: 1293.

[273]

von Pawel-Rammingen U, Björck L. IdeS and SpeB: Immunoglobulin-degrading cysteine proteinases of streptococcus pyogenes. Curr Opin Microbiol. 2003; 6(1): 50-55.

[274]

Jordan SC, Lorant T, Choi J, et al. IgG endopeptidase in highly sensitized patients undergoing transplantation. N Engl J Med. 2017; 377(5): 442-453.

[275]

Leborgne C, Barbon E, Alexander JM, et al. IgG-cleaving endopeptidase enables in vivo gene therapy in the presence of anti-AAV neutralizing antibodies. Nat Med. 2020; 26(7): 1096-1101.

[276]

Elmore ZC, Oh DK, Simon KE, Fanous MM, Asokan A. Rescuing AAV gene transfer from neutralizing antibodies with an IgG-degrading enzyme. JCI Insight. 2020; 5(19): e139881.

[277]

Monteilhet V, Saheb S, Boutin S, et al. A 10 patient case report on the impact of plasmapheresis upon neutralizing factors against adeno-associated virus (AAV) types 1, 2, 6, and 8. Mol Ther. 2011; 19(11): 2084.

[278]

Chicoine LG, Montgomery CL, Bremer WG, et al. Plasmapheresis eliminates the negative impact of AAV antibodies on microdystrophin gene expression following vascular delivery. Mol Ther. 2013; 22(2): 338.

[279]

Orlowski A, Katz MG, Gubara SM, Fargnoli AS, Fish KM, Weber T. Successful transduction with AAV vectors after selective depletion of anti-AAV antibodies by immunoadsorption. Molecular Therapy Methods & Clinical Development. 2020; 16: 192.

[280]

Barnes C, Scheideler O, Schaffer D. Engineering the AAV capsid to evade immune responses. Curr Opin Biotechnol. 2019; 60: 99.

[281]

Burg M, Rosebrough C, Drouin LM, et al. Atomic structure of a rationally engineered gene delivery vector, AAV2.5. J Struct Biol. 2018; 203(3): 236.

[282]

Bowles DE, McPhee SW, Li C, et al. Phase 1 gene therapy for duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther. 2011; 20(2): 443.

[283]

Maheshri N, Koerber JT, Kaspar BK, Schaffer DV. Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol. 2006; 24(2): 198-204.

[284]

Varadi K, Michelfelder S, Korff T, et al. Novel random peptide libraries displayed on AAV serotype 9 for selection of endothelial cell-directed gene transfer vectors. Gene Ther. 2012; 19(8): 800-809.

[285]

Kienle E, Senís E, Börner K, et al. Engineering and evolution of synthetic adeno-associated virus (AAV) gene therapy vectors via DNA family shuffling. J Vis Exp. 2012;(62): 3819.

[286]

Qian R, Xiao B, Li J, Xiao X. Directed evolution of AAV serotype 5 for increased hepatocyte transduction and retained low humoral seroreactivity. Molecular Therapy Methods & Clinical Development. 2020; 20: 122.

[287]

Walker LM, Burton DR. Passive immunotherapy of viral infections: “super-antibodies” enter the fray. Nat Rev Immunol. 2018; 18(5): 297.

[288]

Lee J, Boutz DR, Chromikova V, et al. Molecular-level analysis of the serum antibody repertoire in young adults before and after seasonal influenza vaccination. Nat Med. 2016; 22(12): 1456.

[289]

Xu GJ, Kula T, Xu Q, et al. Comprehensive serological profiling of human populations using a synthetic human virome. Science. 2015; 348(6239): aaa0698.

[290]

Marques AD, Kummer M, Kondratov O, Banerjee A, Moskalenko O, Zolotukhin S. Applying machine learning to predict viral assembly for adeno-associated virus capsid libraries. Molecular Therapy Methods & Clinical Development. 2020; 20: 276.

[291]

Eid FE, Chen AT, Chan KY, et al. Systematic multi-trait AAV capsid engineering for efficient gene delivery. Nat Commun. 2024; 15: 6602.

[292]

Guo ZY, Tang Y, Cheng YC. Exosomes as targeted delivery drug system: advances in exosome loading, surface functionalization and potential for clinical application. Curr Drug Deliv. 2024; 21(4): 473-487.

[293]

Negishi Y, Nomizu M. Laminin-derived peptides: Applications in drug delivery systems for targeting. Pharmacol Ther. 2019; 202: 91-97.

[294]

Ita K. Polyplexes for gene and nucleic acid delivery: Progress and bottlenecks. Eur J Pharm Sci. 2020; 150: 105358.

[295]

Sheikholeslami B, Lam NW, Dua K, Haghi M. Exploring the impact of physicochemical properties of liposomal formulations on their in vivo fate. Life Sci. 2022; 300: 120574.

[296]

Tao Y, Yi K, Hu H, Shao D, Li M. Coassembly of nucleus-targeting gold nanoclusters with CRISPR/Cas9 for simultaneous bioimaging and therapeutic genome editing. J Mater Chem B. 2021; 9(1): 94-100.

[297]

Zhang T, Tian T, Zhou R, et al. Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nat Protoc. 2020; 15(8): 2728-2757.

[298]

Zhou J, Rossi JJ. Cell-specific aptamer-mediated targeted drug delivery. Oligonucleotides. 2011; 21(1): 1-10.

[299]

Philippou S, Mastroyiannopoulos NP, Makrides N, Lederer CW, Kleanthous M, Phylactou LA. Selection and identification of skeletal-muscle-targeted RNA aptamers. Molecular Therapy - Nucleic Acids. 2018; 10: 199-214.

[300]

Aartsma-Rus A, Fokkema I, Verschuuren J, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat. 2009; 30(3): 293-299.

[301]

Betts CA, Saleh AF, Carr CA, et al. Prevention of exercised induced cardiomyopathy following pip-PMO treatment in dystrophic mdx mice. Sci Rep. 2015; 5: 8986.

[302]

Desjardins CA, Yao M, Hall J, et al. Enhanced exon skipping and prolonged dystrophin restoration achieved by TfR1-targeted delivery of antisense oligonucleotide using FORCE conjugation in mdx mice. Nucleic Acids Res. 2022; 50(20): 11401.

[303]

Kandasamy P, McClorey G, Shimizu M, et al. Control of backbone chemistry and chirality boost oligonucleotide splice switching activity. Nucleic Acids Res. 2022; 50(10): 5443.

[304]

van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018; 19(4): 213-228.

[305]

Saleh AF, Lázaro-Ibáñez E, Forsgard MAM, et al. Extracellular vesicles induce minimal hepatotoxicity and immunogenicity. Nanoscale. 2019; 11(14): 6990-7001.

[306]

Chen R, Yuan W, Zheng Y, et al. Delivery of engineered extracellular vesicles with miR-29b editing system for muscle atrophy therapy. J Nanobiotechnology. 2022; 20(1): 304.

[307]

Li S, Song Z, Liu C, Chen XL, Han H. Biomimetic mineralization-based CRISPR/Cas9 ribonucleoprotein nanoparticles for gene editing. ACS Appl Mater Interfaces. 2019; 11(51): 47762-47770.

[308]

Li S, Du M, Deng J, et al. Gene editing of Duchenne muscular dystrophy using biomineralization-based spCas9 variant nanoparticles. Acta Biomater. 2022; 154: 597-607.

[309]

György B, Sage C, Indzhykulian AA, et al. Rescue of hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol Ther. 2017; 25(2): 379.

[310]

Katrekar D, Moreno AM, Chen G, Worlikar A, Mali P. Oligonucleotide conjugated multi-functional adeno-associated viruses. Sci Rep. 2018; 8: 3589.

[311]

Mochizuki S, Kanegae N, Nishina K, et al. The role of the helper lipid dioleoylphosphatidylethanolamine (DOPE) for DNA transfection cooperating with a cationic lipid bearing ethylenediamine. Biochim Biophys Acta. 2013; 1828(2): 412-418.

[312]

Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv Drug Deliv Rev. 2015; 99(Pt A): 28.

[313]

Gillies AR, Lieber RL. Structure and function of the skeletal muscle extracellular matrix. Muscle Nerve. 2011; 44(3): 318.

[314]

Barteau B, Chèvre R, Letrou-Bonneval E, Labas R, Lambert O, Pitard B. Physicochemical parameters of non-viral vectors that govern transfection efficiency. Curr Gene Ther. 2008; 8(5): 313-323.

[315]

Büning H, Morgan M, Schambach A. Skeletal muscle-directed gene therapy: hijacking the fusogenic properties of muscle cells. Signal Transduction and Targeted Therapy. 2023; 8(1): 340.

[316]

Sun W, Davis PB. Reducible DNA nanoparticles enhance in vitro gene transfer via an extracellular mechanism. J Control Release. 2010; 146(1): 118-127.

[317]

Chew WL, Tabebordbar M, Cheng JKW, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. 2016; 13(10): 868-874.

[318]

Li A, Tanner MR, Lee CM, et al. AAV-CRISPR Gene Editing Is Negated by Pre-existing Immunity to Cas9. Mol Ther. 2020; 28(6): 1432-1441.

[319]

Hakim CH, Kumar SRP, Pérez-López DO, et al. Cas9-specific immune responses compromise local and systemic AAV CRISPR therapy in multiple dystrophic canine models. Nat Commun. 2021; 12: 6769.

[320]

Wagner DL, Amini L, Wendering DJ, et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat Med. 2019; 25(2): 242-248.

[321]

Ferdosi SR, Ewaisha R, Moghadam F, et al. Multifunctional CRISPR-Cas9 with engineered immunosilenced human T cell epitopes. Nat Commun. 2019; 10(1): 1842.

[322]

Li A, Lee CM, Hurley AE, et al. A self-deleting AAV-CRISPR system for in vivo genome editing. Molecular Therapy Methods & Clinical Development. 2019; 12: 111-122.

[323]

Mendell JR, Campbell K, Rodino-Klapac L, et al. Dystrophin immunity in duchenne’s muscular dystrophy. N Engl J Med. 2010; 363(15): 1429.

[324]

Bönnemann CG, Belluscio BA, Braun S, Morris C, Singh T, Muntoni F. Dystrophin immunity after gene therapy for duchenne’s muscular dystrophy. N Engl J Med. 2023; 388(24): 2294-2296.

[325]

Tinsley JM, Blake DJ, Roche A, et al. Primary structure of dystrophin-related protein. Nature. 1992; 360(6404): 591-593.

[326]

Song Y, Morales L, Malik AS, et al. Non-immunogenic utrophin gene therapy for the treatment of muscular dystrophy animal models. Nat Med. 2019; 25(10): 1505.

[327]

Avinoam O, Fridman K, Valansi C, et al. Conserved eukaryotic fusogens can fuse viral envelopes to cells. Science. 2011; 332(6029): 589-592.

[328]

Bi P, Ramirez-Martinez A, Li H, et al. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017; 356(6335): 323-327.

[329]

Tabebordbar M, Lagerborg KA, Stanton A, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell. 2021; 184(19): 4919-4938.e22.

[330]

Morgan J, Muntoni F. Changes in myonuclear number during postnatal growth – implications for AAV gene therapy for muscular dystrophy. Journal of Neuromuscular Diseases. 2021; 8(Suppl 2): S317.

[331]

Buckingham M, Bajard L, Chang T, et al. The formation of skeletal muscle: from somite to limb. J Anat. 2003; 202(1): 59.

[332]

Kwon JB, Ettyreddy AR, Vankara A, et al. In vivo gene editing of muscle stem cells with adeno-associated viral vectors in a mouse model of duchenne muscular dystrophy. Molecular Therapy Methods & Clinical Development. 2020; 19: 320-329.

[333]

Pinto BS, Saxena T, Oliveira R, et al. Impeding transcription of expanded microsatellite repeats by deactivated Cas9. Mol Cell. 2017; 68(3): 479-490.e5.

[334]

Maga JA, Zhou J, Kambampati R, et al. Glycosylation-independent lysosomal targeting of acid α-glucosidase enhances muscle glycogen clearance in pompe mice. J Biol Chem. 2013; 288(3): 1428-1438.

[335]

Skopenkova VV, Egorova TV, Bardina MV. Muscle-specific promoters for gene therapy. Acta Naturae. 2021; 13(1): 47-58.

[336]

Dietz J, Jacobsen F, Zhuge H, et al. Muscle specific promotors for gene therapy – a comparative study in proliferating and differentiated cells. Journal of Neuromuscular Diseases. 2023; 10(4): 575-592.

[337]

Piekarowicz K, Bertrand AT, Azibani F, et al. A muscle hybrid promoter as a novel tool for gene therapy. Mol Ther Methods Clin Dev. 2019; 15: 157-169.

[338]

Sarcar S, Tulalamba W, Rincon MY, et al. Next-generation muscle-directed gene therapy by in silico vector design. Nat Commun. 2019; 10(1): 492.

[339]

Hordeaux J, Dubreil L, Robveille C, et al. Long-term neurologic and cardiac correction by intrathecal gene therapy in pompe disease. Acta Neuropathologica Communications. 2017; 5: 66.

[340]

Olson EN. Toward the correction of muscular dystrophy by gene editing. Proc Natl Acad Sci USA. 2021; 118(22): e2004840117.

[341]

Kim S, Kim D, Cho SW, Kim J, Kim JS. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 2014; 24(6): 1012.

[342]

Sherkatghanad Z, Abdar M, Charlier J, Makarenkov V. Using traditional machine learning and deep learning methods for on-and off-target prediction in CRISPR/Cas9: A review. Briefings Bioinf. 2023; 24(3): bbad131.

[343]

Doench JG, Fusi N, Sullender M, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016; 34(2): 184.

[344]

Liu X, Yang Y, Qiu Y, Reyad-Ul-Ferdous M, Ding Q, Wang Y. SeqCor: Correct the effect of guide RNA sequences in clustered regularly interspaced short palindromic repeats/Cas9 screening by machine learning algorithm. J Genet Genomics. 2020; 47(11): 672-680.

[345]

Chuai G, Ma H, Yan J, et al. DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. 2018; 19(1): 80.

[346]

Vora DS, Verma Y, Sundar D. A machine learning approach to identify the importance of novel features for CRISPR/Cas9 activity prediction. Biomolecules. 2022; 12(8): 1123.

[347]

Zhang Y, Long Y, Yin R, Kwoh CK. DL-CRISPR: A deep learning method for off-target activity prediction in CRISPR/Cas9 with data augmentation. IEEE Access. 2020; 8: 76610-76617.

[348]

Zhang G, Zeng T, Dai Z, Dai X. Prediction of CRISPR/Cas9 single guide RNA cleavage efficiency and specificity by attention-based convolutional neural networks. Comput Struct Biotechnol J. 2021; 19: 1445.

[349]

Thürkauf M, Lin S, Oliveri F, Grimm D, Platt RJ, Rüegg MA. Fast, multiplexable and efficient somatic gene deletions in adult mouse skeletal muscle fibers using AAV-CRISPR/Cas9. Nat Commun. 2023; 14(1): 6116.

[350]

Shahriyari M, Islam MR, Sakib SM, et al. Engineered skeletal muscle recapitulates human muscle development, regeneration and dystrophy. Journal of Cachexia, Sarcopenia and Muscle. 2022; 13(6): 3106-3121.

[351]

Wang J, Zhou CJ, Khodabukus A, et al. Three-dimensional tissue-engineered human skeletal muscle model of Pompe disease. Commun Biol. 2021; 4(1): 524.

[352]

Kindler U, Zaehres H, Mavrommatis L. Generation of skeletal muscle organoids from human pluripotent stem cells. Bio-Protocol. 2024; 14(1344).

[353]

Long C, Li H, Tiburcy M, et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing. Sci Adv. 2018; 4(1): eaap9004.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

266

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/