Endothelial monocarboxylate transporter 1 drives atherosclerosis via a lactate/NADH/CtBP-mediated transrepression pathway

Zou Li , Shuai Guo , Kaixiang Cao , Yuxi Duan , Yuan Zhao , Yuting Zhang , Shihui Yu , Zaixia Bai , Runfa Yu , Yixin Chen , Ziling Li , Shuqi Huang , Mingchuan Song , Cailing Wang , Wenzhong Hou , Jun He , Bin Yang , Yiming Xu

MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70089

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70089 DOI: 10.1002/mco2.70089
ORIGINAL ARTICLE

Endothelial monocarboxylate transporter 1 drives atherosclerosis via a lactate/NADH/CtBP-mediated transrepression pathway

Author information +
History +
PDF

Abstract

The accumulation of lactate in tissue microenvironments is associated with atherosclerosis, but its precise role in atherogenesis remains largely unknown. This study demonstrated that lactate accumulation in aortic tissues and blood is correlated with increased monocarboxylate transporter 1 (Mct1) expression in endothelial cells (ECs) within atherosclerotic plaques. Lactate uptake via Mct1 triggers an inflammatory response in ECs. The administration of endothelial-targeting nanoparticles containing siRNA against Mct1 reduces endothelial inflammation and atherogenesis in Apoe–/– mice. Mechanistic studies revealed that the conversion of lactate to pyruvate, along with NADH production and oligomerization of the NADH-sensitive transcriptional corepressor C-terminal binding protein 1 (CtBP1), is necessary for the proinflammatory effects of lactate. Monomeric CtBP1 interacts with the transcriptional repressor forkhead box P1 (FOXP1) to suppress endothelial adhesion molecule expression. However, NADH-induced oligomerization of CtBP1 prevents its binding to FOXP1, significantly reducing FOXP1-mediated transrepression of endothelial adhesion molecules. Moreover, silencing Foxp1 in ECs negates the atheroprotective effect of endothelial Mct1 knockdown in Apoe–/– mice. These findings suggest that lactate/MCT1-induced epigenetic reprogramming represents a potential therapeutic target in atherosclerosis.

Keywords

atherosclerosis / endothelial cell / FOXP1 / lactate / MCT1

Cite this article

Download citation ▾
Zou Li, Shuai Guo, Kaixiang Cao, Yuxi Duan, Yuan Zhao, Yuting Zhang, Shihui Yu, Zaixia Bai, Runfa Yu, Yixin Chen, Ziling Li, Shuqi Huang, Mingchuan Song, Cailing Wang, Wenzhong Hou, Jun He, Bin Yang, Yiming Xu. Endothelial monocarboxylate transporter 1 drives atherosclerosis via a lactate/NADH/CtBP-mediated transrepression pathway. MedComm, 2025, 6(2): e70089 DOI:10.1002/mco2.70089

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hetherington I, Totary-Jain H. Anti-atherosclerotic therapies: milestones, challenges, and emerging innovations. Mol Ther. 2022; 30(10): 3106-3117.

[2]

Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004; 109( Suppl 231): Iii27-32.

[3]

He L, Zhang CL, Chen Q, Wang L, Huang Y. Endothelial shear stress signal transduction and atherogenesis: from mechanisms to therapeutics. Pharmacol Ther. 2022; 235: 108152.

[4]

Wu W, Bao W, Chen X, et al. Endothelial Gata6 deletion reduces monocyte recruitment and proinflammatory macrophage formation and attenuates atherosclerosis through Cmpk2-Nlrp3 pathways. Redox Biol. 2023; 64: 102775.

[5]

Sitia S, Tomasoni L, Atzeni F, et al. From endothelial dysfunction to atherosclerosis. Autoimmun Rev. 2010; 9(12): 830-834.

[6]

Hui S, Ghergurovich JM, Morscher RJ, et al. Glucose feeds the TCA cycle via circulating lactate. Nature. 2017; 551(7678): 115-118.

[7]

Shantha GP, Wasserman B, Astor BC, et al. Association of blood lactate with carotid atherosclerosis: the Atherosclerosis Risk in Communities (ARIC) Carotid MRI Study. Atherosclerosis. 2013; 228(1): 249-255.

[8]

Tzoulaki I, Castagne R, Boulange CL, et al. Serum metabolic signatures of coronary and carotid atherosclerosis and subsequent cardiovascular disease. Eur Heart J. 2019; 40(34): 2883-2896.

[9]

Végran F, Boidot R, Michiels C, Sonveaux P, Feron O. Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res. 2011; 71(7): 2550-2560.

[10]

Fan M, Yang K, Wang X, et al. Lactate promotes endothelial-to-mesenchymal transition via Snail1 lactylation after myocardial infarction. Sci Adv. 2023; 9(5): eadc9465.

[11]

Cao K, Zhang T, Li Z, et al. Glycolysis and de novo fatty acid synthesis cooperatively regulate pathological vascular smooth muscle cell phenotypic switching and neointimal hyperplasia. J Pathol. 2023; 259(4): 388-401.

[12]

Yang L, Gao L, Nickel T, et al. Lactate promotes synthetic phenotype in vascular smooth muscle cells. Circ Res. 2017; 121(11): 1251-1262.

[13]

Yang K, Fan M, Wang X, et al. Lactate induces vascular permeability via disruption of VE-cadherin in endothelial cells during sepsis. Sci Adv. 2022; 8(17): eabm8965.

[14]

Chen PY, Qin L, Baeyens N, et al. Endothelial-to-mesenchymal transition drives atherosclerosis progression. J Clin Invest. 2015; 125(12): 4514-4528.

[15]

Dimmer KS, Friedrich B, Lang F, Deitmer JW, Broer S. The low-affinity monocarboxylate transporter MCT4 is adapted to the export of lactate in highly glycolytic cells. Biochem J. 2000; 350 Pt 1(Pt 1): 219-227.

[16]

Mlinar LB, Chung EJ, Wonder EA, Tirrell M. Active targeting of early and mid-stage atherosclerotic plaques using self-assembled peptide amphiphile micelles. Biomaterials. 2014; 35(30): 8678-8686.

[17]

Zhou Z, Yeh CF, Mellas M, et al. Targeted polyelectrolyte complex micelles treat vascular complications in vivo. Proc Natl Acad Sci USA. 2021; 118(50)

[18]

Hou YC, Zhang C, Zhang ZJ, et al. Aggregation-induced emission (AIE) and magnetic resonance imaging characteristics for targeted and image-guided siRNA therapy of hepatocellular carcinoma. Adv Healthc Mater. 2022; 11(17): e2200579.

[19]

Bergman LM, Blaydes JP. C-terminal binding proteins: emerging roles in cell survival and tumorigenesis. Apoptosis. 2006; 11(6): 879-888.

[20]

Shen Y, Kapfhamer D, Minnella AM, et al. Bioenergetic state regulates innate inflammatory responses through the transcriptional co-repressor CtBP. Nat Commun. 2017; 8(1): 624.

[21]

Kumar V, Carlson JE, Ohgi KA, et al. Transcription corepressor CtBP is an NAD(+)-regulated dehydrogenase. Mol Cell. 2002; 10(4): 857-869.

[22]

Katsanis N, Fisher EM. A novel C-terminal binding protein (CTBP2) is closely related to CTBP1, an adenovirus E1A-binding protein, and maps to human chromosome 21q21.3. Genomics. 1998; 47(2): 294-299.

[23]

Hildebrand JD, Soriano P. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol. 2002; 22(15): 5296-5307.

[24]

Jaiswal A, Singh R. CtBP: A global regulator of balancing acts and homeostases. Biochim Biophys Acta Rev Cancer. 2023; 1878(3): 188886.

[25]

Wang L, Guo S, Cao K, et al. Glycolysis promotes angiotensin II-induced aortic remodeling through regulating endothelial-to-mesenchymal transition via the corepressor C-terminal binding protein 1. Hypertension. 2023; 80(12): 2627-2640.

[26]

Jin W, Scotto KW, Hait WN, Yang JM. Involvement of CtBP1 in the transcriptional activation of the MDR1 gene in human multidrug resistant cancer cells. Biochem Pharmacol. 2007; 74(6): 851-859.

[27]

Saul J, Hirose T, Horvitz HR. The transcriptional corepressor CTBP-1 acts with the SOX family transcription factor EGL-13 to maintain AIA interneuron cell identity in Caenorhabditis elegans. Elife. 2022; 11

[28]

Bhambhani C, Chang JL, Akey DL, Cadigan KM. The oligomeric state of CtBP determines its role as a transcriptional co-activator and co-repressor of Wingless targets. Embo j. 2011; 30(10): 2031-2043.

[29]

Zhuang T, Liu J, Chen X, et al. Endothelial Foxp1 suppresses atherosclerosis via modulation of Nlrp3 inflammasome activation. Circ Res. 2019; 125(6): 590-605.

[30]

Seheult J, Fitzpatrick G, Boran G. Lactic acidosis: an update. Clin Chem Lab Med. 2017; 55(3): 322-333.

[31]

Ahmed O, Robinson MW, O’Farrelly C. Inflammatory processes in the liver: divergent roles in homeostasis and pathology. Cell Mol Immunol. 2021; 18(6): 1375-1386.

[32]

Gaudio E, Nobili V, Franchitto A, Onori P, Carpino G. Nonalcoholic fatty liver disease and atherosclerosis. Intern Emerg Med. 2012; 7 Suppl 3:S297-305.

[33]

Aguilar EC, Fernandes-Braga W, Santos EA, et al. Gluten worsens non-alcoholic fatty liver disease by affecting lipogenesis and fatty acid oxidation in diet-induced obese apolipoprotein E-deficient mice. Mol Cell Biochem. 2023;; 479(6): 1335-1347.

[34]

Martínez-Clemente M, Ferré N, González-Périz A, et al. 5-lipoxygenase deficiency reduces hepatic inflammation and tumor necrosis factor alpha-induced hepatocyte damage in hyperlipidemia-prone ApoE-null mice. Hepatology. 2010; 51(3): 817-827.

[35]

Guo S, Li A, Fu X, et al. Gene-dosage effect of Pfkfb3 on monocyte/macrophage biology in atherosclerosis. Br J Pharmacol. 2022; 179(21): 4974-4991.

[36]

Haugen OP, Vallenari EM, Belhaj I, et al. Blood lactate dynamics in awake and anaesthetized mice after intraperitoneal and subcutaneous injections of lactate-sex matters. PeerJ. 2020; 8: e8328.

[37]

Doddaballapur A, Michalik KM, Manavski Y, et al. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol. 2015; 35(1): 137-145.

[38]

Xiao W, Oldham WM, Priolo C, Pandey AK, Loscalzo J. Immunometabolic endothelial phenotypes: integrating inflammation and glucose metabolism. Circ Res. 2021; 129(1): 9-29.

[39]

Li X, Yang Y, Zhang B, et al. Lactate metabolism in human health and disease. Signal Transduct Target Ther. 2022; 7(1): 305.

[40]

Pucino V, Certo M, Bulusu V, et al. Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 2019; 30(6): 1055-1074.e8.

[41]

Das UN. Is pyruvate an endogenous anti-inflammatory molecule? Nutrition. 2006; 22(9): 965-972.

[42]

Li M, Riddle S, Zhang H, et al. Metabolic reprogramming regulates the proliferative and inflammatory phenotype of adventitial fibroblasts in pulmonary hypertension through the transcriptional corepressor C-terminal binding protein-1. Circulation. 2016; 134(15): 1105-1121.

[43]

Luo Y, Li L, Chen X, Gou H, Yan K, Xu Y. Effects of lactate in immunosuppression and inflammation: progress and prospects. Int Rev Immunol. 2022; 41(1): 19-29.

[44]

Yang K, Fan M, Wang X, et al. Lactate promotes macrophage HMGB1 lactylation, acetylation, and exosomal release in polymicrobial sepsis. Cell Death Differ. 2022; 29(1): 133-146.

[45]

Xiao W, Wang RS, Handy DE, Loscalzo J. NAD(H) and NADP(H) redox couples and cellular energy metabolism. Antioxid Redox Signal. 2018; 28(3): 251-272.

[46]

He Z, He J, Xie K. KLF4 transcription factor in tumorigenesis. Cell Death Discov. 2023; 9(1): 118.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/