Therapeutic potential of nicotinamide and ABT263 in alcohol-associated liver disease through targeting cellular senescence

Naheemat Modupeola Gold , Qinchao Ding , Yang Yang , Shaoyan Pu , Wenjing Cao , Xinxuan Ge , Pengyun Yang , Michael Ngozi Okeke , Ayesha Nisar , Yongzhang Pan , Qiuni Luo , Xiayan Wang , Han Xu , Rui Tian , Meiting Zi , Xingjie Zhang , Songtao Li , Yonghan He

MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70086

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70086 DOI: 10.1002/mco2.70086
ORIGINAL ARTICLE

Therapeutic potential of nicotinamide and ABT263 in alcohol-associated liver disease through targeting cellular senescence

Author information +
History +
PDF

Abstract

Alcohol-associated liver disease (ALD) is a major cause of liver-related morbidity and mortality, yet clinically effective therapies for ALD remain lacking. Here, we demonstrate that alcohol intake and its metabolite, acetaldehyde (ACH), induce senescence in the liver and liver cells, respectively. To assess the therapeutic potential of targeting liver senescence in ALD, we treated ALD-affected mice with the senolytic compound ABT263 and the senomorphic NAD+ precursor, nicotinamide (NAM). The results show that ABT263 effectively clears senescent hepatocytes and stellate cells, and reduces liver triglyceride (TG), but increases plasma alanine aminotransferase and TG levels. Conversely, NAM efficiently suppresses senescence and the senescence-associated secretory phenotype (SASP), protecting the liver from alcohol-induced injury in ALD mice. RNA-sequencing analysis revealed that ABT263 treatment downregulated genes involved in adipogenesis while activating the complement pathway. In contrast, NAM upregulated metabolism-related genes, such as Sirt1, and downregulated DNA damage marker genes, including Rec8 and E2f1, in the liver. These findings suggest that cellular senescence plays a critical role in alcohol-induced liver injury. Compared with senescent cell clearance by ABT263, suppressing senescence and SASP by NAM may provide a safer and more effective therapeutic approach for ALD.

Keywords

acetaldehyde / alcohol-associated liver disease / cellular senescence / senolytic / senomorphic

Cite this article

Download citation ▾
Naheemat Modupeola Gold, Qinchao Ding, Yang Yang, Shaoyan Pu, Wenjing Cao, Xinxuan Ge, Pengyun Yang, Michael Ngozi Okeke, Ayesha Nisar, Yongzhang Pan, Qiuni Luo, Xiayan Wang, Han Xu, Rui Tian, Meiting Zi, Xingjie Zhang, Songtao Li, Yonghan He. Therapeutic potential of nicotinamide and ABT263 in alcohol-associated liver disease through targeting cellular senescence. MedComm, 2025, 6(2): e70086 DOI:10.1002/mco2.70086

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Singal AK, Bataller R, Ahn J, Kamath PS, Shah VH. ACG clinical guideline: alcoholic liver disease. Am J Gastroenterol. 2018; 113(2): 175-194.

[2]

Hirode G, Saab S, Wong RJ. Trends in the burden of chronic liver disease among hospitalized US adults. JAMA Netw Open. 2020; 3(4): e201997.

[3]

Thursz M, Lingford-Hughes A. Advances in the understanding and management of alcohol-related liver disease. BMJ. 2023; 383: e077090.

[4]

Thursz MR, Richardson P, Allison M, et al. Prednisolone or pentoxifylline for alcoholic hepatitis. N Engl J Med. 2015; 372(17): 1619-1628.

[5]

Louvet A, Thursz MR, Kim DJ, et al. Corticosteroids reduce risk of death within 28 days for patients with severe alcoholic hepatitis, compared with pentoxifylline or placebo-a meta-analysis of individual data from controlled trials. Gastroenterology. 2018; 155(2): 458-468.

[6]

Mathurin P, Moreno C, Samuel D, et al. Early liver transplantation for severe alcoholic hepatitis. N Engl J Med. 2011; 365(19): 1790-1800.

[7]

Musto J, Stanfield D, Ley D, Lucey MR, Eickhoff J, Rice JP. Recovery and outcomes of patients denied early liver transplantation for severe alcohol-associated hepatitis. Hepatology. 2022; 75(1): 104-114.

[8]

Dey A, Cederbaum AI. Alcohol and oxidative liver injury. Hepatology. 2006; 43(2): S63-S74. Suppl 1.

[9]

Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018; 28(6): 436-453.

[10]

Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest. 2018; 128(4): 1238-1246.

[11]

Campisi J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 2001; 11(11): S27-31.

[12]

Alimirah F, Pulido T, Valdovinos A, et al. Cellular senescence promotes skin carcinogenesis through p38MAPK and p44/42MAPK signaling. Cancer Res. 2020; 80(17): 3606-3619.

[13]

Aravinthan A, Scarpini C, Tachtatzis P, et al. Hepatocyte senescence predicts progression in non-alcohol-related fatty liver disease. J Hepatol. 2013; 58(3): 549-556.

[14]

Maeso-Díaz R, Du K, Pan C, et al. Targeting senescent hepatocytes using the thrombomodulin-PAR1 inhibitor vorapaxar ameliorates NAFLD progression. Hepatology. 2023; 78(4): 1209-1222.

[15]

Ogrodnik M, Miwa S, Tchkonia T, et al. Cellular senescence drives age-dependent hepatic steatosis. Nat Commun. 2017; 8: 15691.

[16]

Aravinthan A, Pietrosi G, Hoare M, et al. Hepatocyte expression of the senescence marker p21 is linked to fibrosis and an adverse liver-related outcome in alcohol-related liver disease. PLoS One. 2013; 8(9): e72904.

[17]

Chang J, Wang Y, Shao L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016; 22(1): 78-83.

[18]

Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017; 21: 21-28.

[19]

He Y, Zhang X, Chang J, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun. 2020; 11(1): 1996.

[20]

Niedernhofer LJ, Robbins PD. Senotherapeutics for healthy ageing. Nat Rev Drug Discov. 2018; 17(5): 377.

[21]

Lee S, Yu Y, Trimpert J, et al. Virus-induced senescence is a driver and therapeutic target in COVID-19. Nature. 2021; 599(7884): 283-289.

[22]

Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature. 2018; 562(7728): 578-582.

[23]

Emiloju OE, Yin J, Koubek E, et al. Phase 1 trial of navitoclax and sorafenib in patients with relapsed or refractory solid tumors with hepatocellular carcinoma expansion cohort. Invest New Drugs. 2024; 42(1): 127-135.

[24]

Watanabe Y, Abe H, Kimura N, et al. Navitoclax improves acute-on-chronic liver failure by eliminating senescent cells in mice. Hepatol Res. 2023; 53(5): 460-472.

[25]

El-Kady RR, Ali AK, El Wakeel LM, Sabri NA, Shawki MA. Nicotinamide supplementation in diabetic nonalcoholic fatty liver disease patients: randomized controlled trial. Ther Adv Chronic Dis. 2022; 13: 20406223221077958.

[26]

Sanfeliu-Redondo D, Gibert-Ramos A, Gracia-Sancho J. Cell senescence in liver diseases: pathological mechanism and theranostic opportunity. Nat Rev Gastroenterol Hepatol. 2024; 21(7): 477-492.

[27]

Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009; 4(12): 1798-1806.

[28]

Hu L, Dong C, Wang Z, et al. A rationally designed fluorescence probe achieves highly specific and long-term detection of senescence in vitro and in vivo. Aging Cell. 2023; 22(8): e13896.

[29]

McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol. 2013; 5(4): a008656.

[30]

Ding Q, Pi A, Hao L, et al. Genistein protects against acetaldehyde-induced oxidative stress and hepatocyte injury in chronic alcohol-fed mice. J Agric Food Chem. 2023; 71(4): 1930-1943.

[31]

Wang H, Sun Y, Pi C, et al. Nicotinamide mononucleotide supplementation improves mitochondrial dysfunction and rescues cellular senescence by NAD+/Sirt3 pathway in mesenchymal stem cells. Int J Mol Sci. 2022; 23(23): 14739.

[32]

Freund A, Laberge RM, Demaria M, Campisi J. Lamin B1 loss is a senescence-associated biomarker. Mol Biol Cell. 2012; 23(11): 2066-2075.

[33]

Saul D, Kosinsky RL, Atkinson EJ, et al. A new gene set identifies senescent cells and predicts senescence-associated pathways across tissues. Nat Commun. 2022; 13(1): 4827.

[34]

Hasegawa S, Yamasaki M, Inage T, Takahashi N, Fukui T. Transcriptional regulation of ketone body-utilizing enzyme, acetoacetyl-CoA synthetase, by C/EBPalpha during adipocyte differentiation. Biochim Biophys Acta. 2008; 1779(6-7): 414-419.

[35]

Hall Z, Wilson CH, Burkhart DL, Ashmore T, Evan GI, Griffin JL. Myc linked to dysregulation of cholesterol transport and storage in nonsmall cell lung cancer. J Lipid Res. 2020; 61(11): 1390-1399.

[36]

Ide T, Shimano H, Yahagi N, et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol. 2004; 6(4): 351-357.

[37]

Thorgersen EB, Barratt-Due A, Haugaa H, et al. The role of complement in liver injury, regeneration, and transplantation. Hepatology. 2019; 70(2): 725-736.

[38]

DeSantis DA, Ko CW, Liu Y, et al. Alcohol-induced liver injury is modulated by Nlrp3 and Nlrc4 inflammasomes in mice. Mediators Inflamm. 2013; 2013: 751374.

[39]

Zhang G, Wang J, Zhao Z, et al. Regulated necrosis, a proinflammatory cell death, potentially counteracts pathogenic infections. Cell Death Dis. 2022; 13(7): 1-14.

[40]

Aravinthan AD, Alexander GJM. Senescence in chronic liver disease: is the future in aging?. J Hepatol. 2016; 65(4): 825-834.

[41]

Ge T, Shao Y, Bao X, Xu W, Lu C. Cellular senescence in liver diseases: from mechanisms to therapies. Int Immunopharmacol. 2023; 121: 110522.

[42]

Wang W, Wang C, Xu H, Gao Y. Aldehyde dehydrogenase, liver disease and cancer. Int J Biol Sci. 2020; 16(6): 921-934.

[43]

Jeon S, Carr R. Alcohol effects on hepatic lipid metabolism. J Lipid Res. 2020; 61(4): 470-479.

[44]

Ramirez T, Li YM, Yin S, et al. Aging aggravates alcoholic liver injury and fibrosis in mice by downregulating sirtuin 1 expression. J Hepatol. 2017; 66(3): 601-609.

[45]

Wu R, Wang X, Shao Y, Jiang Y, Zhou Y, Lu C. NFATc4 mediates ethanol-triggered hepatocyte senescence. Toxicol Lett. 2021; 350: 10-21.

[46]

Cheng N, Kim KH, Lau LF. Senescent hepatic stellate cells promote liver regeneration through IL-6 and ligands of CXCR2. JCI Insight. 2022; 7(14): e158207.

[47]

Leverson JD, Phillips DC, Mitten MJ, et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci Transl Med. 2015; 7(279): 279ra40.

[48]

Ren C, Hu C, Wu Y, et al. Nicotinamide mononucleotide ameliorates cellular senescence and inflammation caused by sodium iodate in RPE. Oxid Med Cell Longev. 2022; 2022: 5961123.

[49]

Song TY, Yeh SL, Hu ML, Chen MY, Yang NC. A Nampt inhibitor FK866 mimics vitamin B3 deficiency by causing senescence of human fibroblastic Hs68 cells via attenuation of NAD(+)-SIRT1 signaling. Biogerontology. 2015; 16(6): 789-800.

[50]

Wiley CD, Campisi J. The metabolic roots of senescence: mechanisms and opportunities for intervention. Nat Metab. 2021; 3(10): 1290-1301.

[51]

Horsman MR, Høyer M, Honess DJ, Dennis IF, Overgaard J. Nicotinamide pharmacokinetics in humans and mice: a comparative assessment and the implications for radiotherapy. Radiother Oncol. 1993; 27(2): 131-139.

[52]

Li D, Tian YJ, Guo J, et al. Nicotinamide supplementation induces detrimental metabolic and epigenetic changes in developing rats. Br J Nutr. 2013; 110(12): 2156-2164.

[53]

Greenbaum CJ, Kahn SE, Palmer JP. Nicotinamide’s effects on glucose metabolism in subjects at risk for IDDM. Diabetes. 1996; 45(11): 1631-1634.

[54]

Hwang ES, Song SB. Possible adverse effects of high-dose nicotinamide: mechanisms and safety assessment. Biomolecules. 2020; 10(5): 687.

[55]

Chen M, Wu G, Lu Y, et al. A p21-ATD mouse model for monitoring and eliminating senescent cells and its application in liver regeneration post injury. Mol Ther. 2024; S1525-0016(24): 00218-00211.

[56]

Ritschka B, Knauer-Meyer T, Gonçalves DS, et al. The senotherapeutic drug ABT-737 disrupts aberrant p21 expression to restore liver regeneration in adult mice. Genes Dev. 2020; 34(7-8): 489-494.

[57]

Weiskirchen R, Weimer J, Meurer SK, et al. Genetic characteristics of the human hepatic stellate cell line LX-2. PLoS One. 2013; 8(10): e75692.

[58]

Sefried S, Häring HU, Weigert C, Eckstein SS. Suitability of hepatocyte cell lines HepG2, AML12 and THLE-2 for investigation of insulin signalling and hepatokine gene expression. Open Biol. 2018; 8(10): 180147.

[59]

Chen C, Pan Y, Yang X, et al. Liver-targeting chimeras as a potential modality for the treatment of liver diseases. J Control Release. 2024; 374: 627-638.

[60]

Kaplan NO, Goldin A, Humphreys SR, Ciotti MM, Stolzenbach FE. Pyridine nucleotide synthesis in the mouse. J Biol Chem. 1956; 219(1): 287-298.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/