Antimicrobial peptide DP7 alleviates dextran sulfate sodium (DSS)-induced colitis via modifying gut microbiota and regulating intestinal barrier function

Binyan Zhao , Hongyou Zhou , Ke Lin , Jie Xu , Bailing Zhou , Daoyuan Xie , Jing Ma , Lei Yang , Chunyan Su , Li Yang

MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70085

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70085 DOI: 10.1002/mco2.70085
ORIGINAL ARTICLE

Antimicrobial peptide DP7 alleviates dextran sulfate sodium (DSS)-induced colitis via modifying gut microbiota and regulating intestinal barrier function

Author information +
History +
PDF

Abstract

Inflammatory bowel diseases (IBDs), such as Crohn’s disease (CD) and ulcerative colitis (UC), represent a growing global health concern. Restoring the balance of the gut microbiota, a crucial factor in intestinal health, offers potential for treating IBD. DP7, a novel antimicrobial peptide with potent antibacterial activity, was investigated for its anti-inflammatory effects in a dextran sulfate sodium (DSS)-induced UC mouse model. DP7 significantly ameliorated key disease parameters, including disease activity index, weight loss, and shortened colon length, while preserving colonic epithelial integrity and reducing inflammatory infiltration. Further analysis revealed potential targets of DP7, highlighting the significant role of Muribaculaceae bacteria during inflammatory states. To further explore the role of the gut microbiota in DP7’s efficacy, fecal microbiota transplantation (FMT) was performed using feces from DP7-treated mice. FMT successfully ameliorated colitis in recipient mice, providing further evidence for the crucial role of the gut microbiome in IBD treatment and DP7’s ability to modulate the gut microbiota for therapeutic benefit. Moreover, our findings suggest that DP7’s modulation of the immune system is intricately linked to the complex microbial environment. Our findings demonstrate that DP7 effectively mitigates inflammation, attenuates barrier dysfunction, and shapes the gut microbiota, suggesting its potential as a therapeutic agent for UC.

Keywords

antimicrobial peptide / DP7 / Inflammatory bowel disease / intestinal microbiota

Cite this article

Download citation ▾
Binyan Zhao, Hongyou Zhou, Ke Lin, Jie Xu, Bailing Zhou, Daoyuan Xie, Jing Ma, Lei Yang, Chunyan Su, Li Yang. Antimicrobial peptide DP7 alleviates dextran sulfate sodium (DSS)-induced colitis via modifying gut microbiota and regulating intestinal barrier function. MedComm, 2025, 6(2): e70085 DOI:10.1002/mco2.70085

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kaplan GG. The global burden of IBD: from 2015 to 2025. Nat Rev Gastroenterol Hepatol. 2015; 12(12): 720-727.

[2]

Kaser A, Zeissig S, Blumberg RS. Inflammatory bowel disease. Annu Rev Immunol. 2010; 28: 573-621.

[3]

De Souza HSP, Fiocchi C, Iliopoulos D. The IBD interactome: an integrated view of aetiology, pathogenesis and therapy. Nat Rev Gastroenterol Hepatol. 2017; 14(12): 739-749.

[4]

Shen B, Kochhar GS, Rubin DT, et al. Treatment of pouchitis, Crohn’s disease, cuffitis, and other inflammatory disorders of the pouch: consensus guidelines from the International Ileal Pouch Consortium. Lancet Gastroenterol Hepatol. 2022; 7(1): 69-95.

[5]

Glassner KL, Abraham BP, Quigley EMM. The microbiome and inflammatory bowel disease. J Allergy Clin Immunol. 2020; 145(1): 16-27.

[6]

Ledder O, Turner D. Antibiotics in IBD: still a role in the biological era?. Inflamm Bowel Dis. 2018; 24(8): 1676-1688.

[7]

Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline in 2013. J Antibiot (Tokyo). 2013; 66(10): 571-591.

[8]

Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011; 24(4): 718.

[9]

Yoshimura T, McLean MH, Dzutsev AK, et al. The anti-microbial peptide CRAMP is essential for colon homeostasis by maintaining microbiota balance. J Immunol. 2018; 200(6): 2174.

[10]

Sun D, Bai R, Zhou W, et al. Angiogenin maintains gut microbe homeostasis by balancing α-proteobacteria and Lachnospiraceae. Gut. 2021; 70(4): 666-676.

[11]

Jia DJC, Wang QW, Hu YY, et al. Lactobacillus johnsonii alleviates colitis by TLR1/2-STAT3 mediated CD206+ macrophagesIL-10 activation. Gut Microbes. 2022; 14(1): 2145843.

[12]

Yin Q, Wu S, Wu L, et al. A novel in silico antimicrobial peptide DP7 combats MDR Pseudomonas aeruginosa and related biofilm infections. J Antimicrob Chemother. 2020; 75(11): 3248-3259.

[13]

Zhang R, Jiang X, Qiao J, et al. Letter: Antimicrobial peptide DP7 with potential activity against SARS coronavirus infections. Signal Transduct Target Ther. 2021; 6(1): 140.

[14]

Jiang SJ, Xiao X, Zheng J, et al. Antibacterial and antibiofilm activities of novel antimicrobial peptide DP7 against the periodontal pathogen Porphyromonas gingivalis. J Appl Microbiol. 2022; 133(2): 1052-1062.

[15]

Wu X, Li Z, Li X, et al. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des Dev Ther. 2017; 11: 939-946.

[16]

Zhang R, Wang Z, Tian Y, et al. Efficacy of antimicrobial peptide DP7, designed by machine-learning method, against methicillin-resistant Staphylococcus aureus. Front Microbiol. 2019; 10: 1175.

[17]

Neurath MF, Travis SPL. Mucosal healing in inflammatory bowel diseases: a systematic review. Gut. 2012; 61(11): 1619-1635.

[18]

Weaver CT, Elson CO, Fouser LA, Kolls JK. The Th17 pathway and inflammatory diseases of the intestines, lungs, and skin. Annu Rev Pathol: Mech Dis. 2013; 8: 477-512.

[19]

Welz L, Aden K. Fibrosis and inflammation in inflammatory bowel disease—more than 2 sides of the same coin? Gastroenterology. 2023; 164(1): 19-21.

[20]

Gao C, Zhou Y, Chen Z, et al. Turmeric-derived nanovesicles as novel nanobiologics for targeted therapy of ulcerative colitis. Theranostics. 2022; 12(12): 5596.

[21]

Wang Z, Li S, Cao Y, et al. Oxidative stress and carbonyl lesions in ulcerative colitis and associated colorectal cancer. Oxid Med Cell Longev. 2016; 2016: 9875298.

[22]

Hernández-Chirlaque C, Aranda CJ, Ocón B, et al. Germ-free and antibiotic-treated mice are highly susceptible to epithelial injury in DSS colitis. J Crohns Colitis. 2016; 10(11): 1324-1335.

[23]

Breton J, Kastl A, Hoffmann N, et al. Efficacy of combination antibiotic therapy for refractory pediatric inflammatory bowel disease. Inflamm Bowel Dis. 2019; 25(9): 1586-1593.

[24]

Turner D, Levine A, Kolho KL, Shaoul R, Ledder O. Combination of oral antibiotics may be effective in severe pediatric ulcerative colitis: a preliminary report. J Crohns Colitis. 2014; 8(11): 1464-1470.

[25]

Lamb CA, Kennedy NA, Raine T, et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut. 2019; 68(suppl 3): s1.

[26]

Maccaferri S, Vitali B, Klinder A, et al. Rifaximin modulates the colonic microbiota of patients with Crohn’s disease: an in vitro approach using a continuous culture colonic model system. J Antimicrob Chemother. 2010; 65(12): 2556-2565.

[27]

Thia KT, Mahadevan U, Feagan BG, et al. Ciprofloxacin or metronidazole for the treatment of perianal fistulas in patients with Crohn’s disease: a randomized, double-blind, placebo-controlled pilot study. Inflamm Bowel Dis. 2009; 15(1): 17-24.

[28]

Rutgeerts P, Hiele M, Geboes K, et al. Controlled trial of metronidazole treatment for prevention of crohn’s recurrence after ileal resection. Gastroenterology. 1995; 108(6): 1617-1621.

[29]

Sarna JR, Furtado S, Brownell AKW. Neurologic complications of metronidazole. Can J Neurol Sci. 2013; 40(6): 768-776.

[30]

Li Q, Sun X, Yu K, et al. Enterobacter ludwigii protects DSS-induced colitis through choline-mediated immune tolerance. Cell Rep. 2022; 40(9): 111308.

[31]

Wirtz S, Popp V, Kindermann M, et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat Protoc. 2017; 12(7): 1295-1309.

[32]

Osaka T, Moriyama E, Arai S, et al. Meta-analysis of fecal microbiota and metabolites in experimental colitic mice during the inflammatory and healing phases. Nutrients. 2017; 9(12): 1329.

[33]

Schwab C, Berry D, Rauch I, et al. Longitudinal study of murine microbiota activity and interactions with the host during acute inflammation and recovery. ISME J. 2014; 8(5): 1101-1114.

[34]

Nagalingam NA, Kao JY, Young VB. Microbial ecology of the murine gut associated with the development of dextran sodium sulfate-induced colitis. Inflamm Bowel Dis. 2011; 17(4): 917-926.

[35]

Berry D, Schwab C, Milinovich G, et al. Phylotype-level 16S rRNA analysis reveals new bacterial indicators of health state in acute murine colitis. ISME J. 2012; 6(11): 2091-2106.

[36]

Miranda PM, De Palma G, Serkis V, et al. High salt diet exacerbates colitis in mice by decreasing Lactobacillus levels and butyrate production. Microbiome. 2018; 6(1): 57.

[37]

Lee M, Chang EB. Inflammatory bowel diseases and the microbiome: searching the crime scene for clues. Gastroenterology. 2021; 160(2): 524.

[38]

Graham DB, Xavier RJ. Pathway paradigms revealed from the genetics of inflammatory bowel disease. Nature. 2020; 578(7796): 527-539.

[39]

Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos GK, Lytras T, Bonovas S. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses. Gastroenterology. 2019; 157(3): 647-659.e4.

[40]

Littmann ER, Lee JJ, Denny JE, et al. Host immunity modulates the efficacy of microbiota transplantation for treatment of Clostridioides difficile infection. Nat Commun. 2021; 12(1): 755.

[41]

Zhang P, Liu J, Xiong B, et al. Microbiota from alginate oligosaccharide-dosed mice successfully mitigated small intestinal mucositis. Microbiome. 2020; 8(1): 112.

[42]

Hans W, Schölmerich J, Gross V, Falk W. The role of the resident intestinal flora in acute and chronic dextran sulfate sodium-induced colitis in mice. Eur J Gastroenterol Hepatol. 2000; 12(3): 267-273.

[43]

Rath HC, Schultz M, Freitag R, et al. Different subsets of enteric bacteria induce and perpetuate experimental colitis in rats and mice. Infect Immun. 2001; 69(4): 2277-2285.

[44]

Lupp C, Robertson ML, Wickham ME, et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of enterobacteriaceae. Cell Host Microbe. 2007; 2(2): 119-129.

[45]

Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci USA. 2007; 104(34): 13780.

[46]

Gevers D, Kugathasan S, Denson LA, et al. The treatment-naïve microbiome in new-onset Crohn’s disease. Cell Host Microbe. 2014; 15(3): 382.

[47]

Hoentjen F, Harmsen HJM, Braat H, et al. Antibiotics with a selective aerobic or anaerobic spectrum have different therapeutic activities in various regions of the colon in interleukin 10 gene deficient mice. Gut. 2003; 52(12): 1721.

[48]

Choo JM, Kanno T, Zain NMM, et al. Divergent relationships between fecal microbiota and metabolome following distinct antibiotic-induced disruptions. mSphere. 2017; 2(1): e00005-17.

[49]

Pereira FC, Wasmund K, Cobankovic I, et al. Rational design of a microbial consortium of mucosal sugar utilizers reduces Clostridiodes difficile colonization. Nat Commun. 2020; 11(1): 5104.

[50]

Qi C, Li Y, Yu RQ, et al. Composition and immuno-stimulatory properties of extracellular DNA from mouse gut flora. World J Gastroenterol. 2017; 23(44): 7830.

[51]

Mazmanian SK, Round JL, Kasper DL. A microbial symbiosis factor prevents intestinal inflammatory disease. Nature. 2008; 453(7195): 620-625.

[52]

Shen Y, Torchia MLG, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK. Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe. 2012; 12(4): 509.

[53]

Round JL, Lee SM, Li J, et al. The Toll-like receptor pathway establishes commensal gut colonization. Science. 2011; 332(6032): 974.

[54]

Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA. 2010; 107(27): 12204-12209.

[55]

Schaubeck M, Clavel T, Calasan J, et al. Dysbiotic gut microbiota causes transmissible Crohn’s disease-like ileitis independent of failure in antimicrobial defence. Gut. 2016; 65(2): 225-237.

[56]

Garrett WS, Lord GM, Punit S, et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007; 131(1): 33-45.

[57]

Busquets D, Mas-de-Xaxars T, López-Siles M, et al. Anti-tumour necrosis factor treatment with adalimumab induces changes in the microbiota of Crohn’s disease. J Crohns Colitis. 2015; 9(10): 899-906.

[58]

Magnusson MK, Strid H, Sapnara M, et al. Anti-TNF therapy response in patients with ulcerative colitis is associated with colonic antimicrobial peptide expression and microbiota composition. J Crohns Colitis. 2016; 10(8): 943-952.

[59]

Bajic D, Niemann A, Hillmer AK, et al. Gut microbiota-derived propionate regulates the expression of Reg3 mucosal lectins and ameliorates experimental colitis in mice. J Crohns Colitis. 2020; 14(10): 1462-1472.

[60]

Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018; 359(6371): 91-97.

[61]

Yu C, Zhou B, Xia X, et al. Prevotella copri is associated with carboplatin-induced gut toxicity. Cell Death Dis. 2019; 10(10): 1-15.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/