CD25 downregulation by tumor exosomal microRNA-15a promotes interleukin-17-producing γδ-T-cells-mediated radioresistance in nasopharyngeal carcinoma

Xiwei Wang , Zheng Xiang , Yanmei Zhang , Chloe Ran Tu , Chunyu Huang , Yuet Chung , Wenyue Zhang , Manni Wang , Yinping Liu , Wenwei Tu

MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70078

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70078 DOI: 10.1002/mco2.70078
ORIGINAL ARTICLE

CD25 downregulation by tumor exosomal microRNA-15a promotes interleukin-17-producing γδ-T-cells-mediated radioresistance in nasopharyngeal carcinoma

Author information +
History +
PDF

Abstract

Interleukin (IL)-17-producing γδ-T cells (γδT-17) are a major source of IL-17 within the tumor microenvironment and have been shown to influence tumor development and therapy outcomes in various cancers. However, the role and presence of γδT-17 cells in nasopharyngeal carcinoma (NPC) remain poorly understood. It is also unclear how these cells might affect radiotherapy, the primary treatment for NPC patients. In this study, we discovered that NPC tumor tissues were rich in γδT-17 cells. Exosomes released from NPC cells (NPC-Exos) could direct γδ-T cells to differentiate into γδT-17 cells. These NPC-Exos-induced γδT-17 cells were found to enhance radioresistance in NPC, both in vitro and in vivo. Blocking IL-17 secreted by NPC-Exos-induced γδT-17 cells restored NPC cell sensitivity to radiation and elevated radiation-induced cell death. Mechanistic studies revealed that NPC-Exos not only increased the release of IL-17-promoting cytokines IL-1β, IL-6, and IL-23 from dendritic cells, but also suppressed CD25/IL-2 signaling in γδ-T cells, facilitating γδT-17 differentiation. The suppression of CD25/IL-2 signaling was driven by microRNA-15a (miR-15a) carried by NPC exosomes. Furthermore, miR-15a inhibitors were able to prevent γδT-17 induction by NPC-Exos. Our findings reveal a novel immunoregulatory role of NPC-Exos and offer potential strategies to combat NPC radioresistance.

Keywords

exosomes / interleukin-17-producing γδ-T cells / microRNA-15a / nasopharyngeal carcinoma / radioresistance

Cite this article

Download citation ▾
Xiwei Wang, Zheng Xiang, Yanmei Zhang, Chloe Ran Tu, Chunyu Huang, Yuet Chung, Wenyue Zhang, Manni Wang, Yinping Liu, Wenwei Tu. CD25 downregulation by tumor exosomal microRNA-15a promotes interleukin-17-producing γδ-T-cells-mediated radioresistance in nasopharyngeal carcinoma. MedComm, 2025, 6(2): e70078 DOI:10.1002/mco2.70078

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet. 2019; 394(10192): 64-80.

[2]

Lam WKJ, Chan JYK. Recent advances in the management of nasopharyngeal carcinoma. F1000Res. 2018; 7:eCollection.

[3]

Busato F, Khouzai BE, Mognato M. Biological mechanisms to reduce radioresistance and increase the efficacy of radiotherapy: state of the art. Int J Mol Sci. 2022; 23(18): 1-23.

[4]

Zhan Y, Fan S. Multiple mechanisms involving in radioresistance of nasopharyngeal carcinoma. J Cancer. 2020; 11(14): 4193-4204.

[5]

Wang Z, Zuo W, Zeng Q, et al. The homologous recombination repair pathway is associated with resistance to radiotherapy in nasopharyngeal carcinoma. Int J Biol Sci. 2020; 16(3): 408-419.

[6]

Ma R, Zhao LN, Yang H, et al. RNA binding motif protein 3 (RBM3) drives radioresistance in nasopharyngeal carcinoma by reducing apoptosis via the PI3K/AKT/Bcl-2 signaling pathway. Am J Transl Res. 2018; 10(12): 4130-4140.

[7]

Li H, Wang Z, Liang S, et al. Radiation induces epithelial to mesenchymal transition via upregulation of PD-L1 in nasopharyngeal carcinoma cell. Transl Cancer Res. 2021; 10(1): 372-381.

[8]

Gonda TA, Tu S, Wang TC. Chronic inflammation, the tumor microenvironment and carcinogenesis. Cell Cycle. 2009; 8(13): 2005-2013.

[9]

Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett. 2017; 387(0): 61-68.

[10]

Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010; 140(6): 883-899.

[11]

Gulubova M, Ananiev J, Ignatova M, Halacheva K. Pro-Tumor and anti-tumor functions of IL-17 and of TH17 cells in tumor microenvironment. Acta Medica Bulgarica. 2016; 43(2): 68-79.

[12]

Mu X, Xiang Z, Xu Y, et al. Glucose metabolism controls human gammadelta T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol Immunol. 2022; 19(8): 944-956.

[13]

Pei Y, Xiang Z, Wen K, et al. CD137 costimulation enhances the antitumor activity of Vgamma9Vdelta2-T cells in IL-10-mediated immunosuppressive tumor microenvironment. Front Immunol. 2022; 13(0): 872122.

[14]

Zhao Y, Niu C, Cui J. Gamma-delta (gammadelta) T cells: friend or foe in cancer development? J Transl Med. 2018; 16(1): 3-16.

[15]

Xiang Z, Liu Y, Zheng J, et al. Targeted activation of human Vgamma9Vdelta2-T cells controls epstein-barr virus-induced B cell lymphoproliferative disease. Cancer Cell. 2014; 26(4): 565-576.

[16]

Kim JS, Jordan MS. Diversity of IL-17-producing T lymphocytes. Cell Mol Life Sci. 2013; 70(13): 2271-2290.

[17]

Patil RS, Bhat SA, Dar AA, Chiplunkar SV. The jekyll and hyde story of IL17-producing gammadeltaT cells. Front Immunol. 2015; 6: 37.

[18]

Kim BM, Hong Y, Lee S, et al. Therapeutic implications for overcoming radiation resistance in cancer therapy. Int J Mol Sci. 2015; 16(11): 26880-26913.

[19]

Darragh LB, Oweida AJ, Karam SD. Overcoming resistance to combination radiation-immunotherapy: a focus on contributing pathways within the tumor microenvironment. Front Immunol. 2018; 9: 3154.

[20]

Thery C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011; 3: 15.

[21]

Martins VR, Dias MS, Hainaut P. Tumor-cell-derived microvesicles as carriers of molecular information in cancer. Curr Opin Oncol. 2013; 25(1): 66-75.

[22]

Klibi J, Niki T, Riedel A, et al. Blood diffusion and Th1-suppressive effects of galectin-9-containing exosomes released by Epstein-Barr virusinfected nasopharyngeal carcinoma cells. Blood. 2009; 113(9): 1957-1966.

[23]

Ye SB, Zhang H, Cai TT, et al. Exosomal miR-24-3p impedes T-cell function by targeting FGF11 and serves as a potential prognostic biomarker for nasopharyngeal carcinoma. J Pathol. 2016; 240(3): 329-340.

[24]

Wang X, Xiang Z, Tsao GS, Tu W. Exosomes derived from nasopharyngeal carcinoma cells induce IL-6 production from macrophages to promote tumorigenesis. Cell Mol Immunol. 2021; 18(2): 501-503.

[25]

Ma F, Vayalil J, Lee G, Wang Y, Peng G. Emerging role of tumor-derived extracellular vesicles in T cell suppression and dysfunction in the tumor microenvironment. J Immunother Cancer. 2021; 9(10): e003217.

[26]

Hara T, Omura-Minamisawa M, Chao C, Nakagami Y, Ito M, Inoue T. Bcl-2 inhibitors potentiate the cytotoxic effects of radiation in Bcl-2 overexpressing radioresistant tumor cells. Int J Radiat Oncol Biol Phys. 2005; 61(2): 517-528.

[27]

Condon LT, Ashman JN, Ell SR, Stafford ND, Greenman J, Cawkwell L. Overexpression of Bcl-2 in squamous cell carcinoma of the larynx: a marker of radioresistance. Int J Cancer. 2002; 100(4): 472-475.

[28]

Chien YH, Zeng X, Prinz I. The natural and the inducible: interleukin (IL)-17-producing gammadelta T cells. Trends Immunol. 2013; 34(4): 151-154.

[29]

Mills KH. Induction, function and regulation of IL-17-producing T cells. Eur J Immunol. 2008; 38(10): 2636-2649.

[30]

O’Brien RL, Roark CL, Born WK. IL-17-producing gammadelta T cells. Eur J Immunol. 2009; 39(3): 662-666.

[31]

Okoye IS, Coomes SM, Pelly VS, et al. MicroRNA-containing T-regulatory-cell-derived exosomes suppress pathogenic T helper 1 cells. Immunity. 2014; 41(1): 89-103.

[32]

Liao W, Lin JX, Wang L, Li P, Leonard WJ. Modulation of cytokine receptors by IL-2 broadly regulates differentiation into helper T cell lineages. Nat Immunol. 2011; 12(6): 551-559.

[33]

Fujimura K, Oyamada A, Iwamoto Y, Yoshikai Y, Yamada H. CD4 T cell-intrinsic IL-2 signaling differentially affects Th1 and Th17 development. J Leukoc Biol. 2013; 94(2): 271-279.

[34]

Xiang Z, Tu W. Dual face of Vgamma9Vdelta2-T cells in tumor immunology: anti-versus pro-tumoral activities. Front Immunol. 2017; 8: 1041.

[35]

Li J, Sun L, Chen Y, et al. Gastric cancer-derived exosomal miR-135b-5p impairs the function of Vgamma9Vdelta2 T cells by targeting specificity protein 1. Cancer Immunol Immunother. 2022; 71(2): 311-325.

[36]

Ni C, Fang QQ, Chen WZ, et al. Breast cancer-derived exosomes transmit lncRNA SNHG16 to induce CD73+gammadelta1 Treg cells. Signal Transduct Target Ther. 2020; 5(1): 41.

[37]

Li L, Cao B, Liang X, et al. Microenvironmental oxygen pressure orchestrates an anti-and pro-tumoral gammadelta T cell equilibrium via tumorderived exosomes. Oncogene. 2019; 38(15): 2830-2843.

[38]

Patil RS, Shah SU, Shrikhande SV, Goel M, Dikshit RP, Chiplunkar SV. IL17 producing gammadeltaT cells induce angiogenesis and are associated with poor survival in gallbladder cancer patients. Int J Cancer. 2016; 139(4): 869-881.

[39]

Coffelt SB, Kersten K, Doornebal CW, et al. IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature. 2015; 522(7556): 345-348.

[40]

Amatya N, Garg AV, Gaffen SL. IL-17 signaling: the Yin and the Yang. Trends Immunol. 2017; 38(5): 310-322.

[41]

Yang B, Kang H, Fung A, Zhao H, Wang T, Ma D. The role of interleukin 17 in tumour proliferation, angiogenesis, and metastasis. Mediators Inflamm. 2014; 2014: 623759.

[42]

Wang L, Ma R, Kang Z, et al. Effect of IL-17A on the migration and invasion of NPC cells and related mechanisms. PLoS One. 2014; 9(9): e108060.

[43]

Cai K, Wang B, Dou H, Luan R, Bao X, Chu J. IL-17A promotes the proliferation of human nasopharyngeal carcinoma cells through p300-mediated Akt1 acetylation. Oncol Lett. 2017; 13(6): 4238-4244.

[44]

Li Q, Xu X, Zhong W, Du Q, Yu B, Xiong H. IL-17 induces radiation resistance of B lymphoma cells by suppressing p53 expression and thereby inhibiting irradiation-triggered apoptosis. Cell Mol Immunol. 2015; 12(3): 366-372.

[45]

da Costa VR, Araldi RP, Vigerelli H, et al. Exosomes in the tumor microenvironment: from biology to clinical applications. Cells. 2021; 10(10): 2617-2644.

[46]

Malla RR, Shailender G, Kamal MA. Exosomes: critical mediators of tumour microenvironment reprogramming. Curr Med Chem. 2021; 28(39): 8182-8202.

[47]

Cohen AC, Nadeau KC, Tu W, et al. Cutting edge: decreased accumulation and regulatory function of CD4+ CD25(high) T cells in human STAT5b deficiency. J Immunol. 2006; 177(5): 2770-2774.

[48]

Laurence A, Tato CM, Davidson TS, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007; 26(3): 371-381.

[49]

Kim HS, Jang SW, Lee W, et al. PTEN drives Th17 cell differentiation by preventing IL-2 production. J Exp Med. 2017; 214(11): 3381-3398.

[50]

Kryczek I, Wei S, Zou L, et al. Cutting edge: Th17 and regulatory T cell dynamics and the regulation by IL-2 in the tumor microenvironment. J Immunol. 2007; 178(11): 6730-6733.

[51]

Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011; 39(16): 7223-7233.

[52]

Dilsiz N. Role of exosomes and exosomal microRNAs in cancer. Future Sci OA. 2020; 6(4): 465-482.

[53]

Cui Y, Yang Y, Ren L, et al. miR-15a-3p suppresses prostate cancer cell proliferation and invasion by targeting SLC39A7 via downregulating Wnt/beta-Catenin signaling pathway. Cancer Biother Radiopharm. 2019; 34(7): 472-479.

[54]

Deng J, Wang H, Liang Y, et al. miR-15a-5p enhances the malignant phenotypes of colorectal cancer cells through the STAT3/TWIST1 and PTEN/AKT signaling pathways by targeting SIRT4. Cell Signal. 2022; 101: 110517.

[55]

Bollaert E, Claus M, Vandewalle V, et al. MiR-15a-5p confers chemoresistance in acute myeloid leukemia by inhibiting autophagy induced by daunorubicin. Int J Mol Sci. 2021; 22(10): 5153-5172.

[56]

Liu T, Xu Z, Ou D, Liu J, Zhang J. The miR-15a/16 gene cluster in human cancer: a systematic review. J Cell Physiol. 2019; 234(5): 5496-5506.

[57]

Wang X, Zhang Y, Mu X, et al. Exosomes derived from gammadelta-T cells synergize with radiotherapy and preserve antitumor activities against nasopharyngeal carcinoma in immunosuppressive microenvironment. J Immunother Cancer. 2022; 10(2): e003832.

[58]

Wang X, Xiang Z, Liu Y, et al. Exosomes derived from Vdelta2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity. Sci Transl Med. 2020; 12(563): eaaz3426.

[59]

Lin W, Yip YL, Jia L, et al. Establishment and characterization of new tumor xenografts and cancer cell lines from EBV-positive nasopharyngeal carcinoma. Nat Commun. 2018; 9(1): 4663-4680.

[60]

Xue Z, Lui VWY, Li Y, et al. Therapeutic evaluation of palbociclib and its compatibility with other chemotherapies for primary and recurrent nasopharyngeal carcinoma. J Exp Clin Cancer Res. 2020; 39(1): 262-286.

[61]

Mao H, Yang W, Latour S, et al. RASGRP1 mutation in autoimmune lymphoproliferative syndrome-like disease. J Allergy Clin Immunol. 2018; 142(2): 595-604.

[62]

Zheng J, Liu Y, Qin G, et al. Generation of human Th1-like regulatory CD4+ T cells by an intrinsic IFN-gamma-and T-bet-dependent pathway. Eur J Immunol. 2011; 41(1): 128-139.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/