Airway stenosis: classification, pathogenesis, and clinical management

Pengwei Zhao , Zheng Jiang , Xuexin Li , Mailudan Ainiwaer , Leyu Li , Dejuan Wang , Lixiao Fan , Fei Chen , Jun Liu

MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70076

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70076 DOI: 10.1002/mco2.70076
REVIEW

Airway stenosis: classification, pathogenesis, and clinical management

Author information +
History +
PDF

Abstract

Airway stenosis (AS) is a fibroinflammatory disease characterized by abnormal activation of fibroblasts and excessive synthesis of extracellular matrix, which has puzzled many doctors despite its relatively low prevalence. Traditional treatment such as endoscopic surgery, open surgery, and adjuvant therapy have many disadvantages and are limited in the treatment of patients with recurrent AS. Therefore, it is urgent to reveal the pathogenesis of AS and accelerate its clinical transformation. Based on the discovered pathogenesis, including fibrosis, inflammation, epithelial–mesenchymal transition, metabolic reprogramming, microbiome, genetic susceptibility, and other mechanisms, researchers have developed a series of treatments, such as drug therapy, gene therapy, stem cell therapy, growth factor therapy, protein therapy, and photodynamic therapy. This review introduces the classification of AS, explores the existing pathogenesis and preclinical treatments developed based on the pathogenesis, and finally summarizes the current clinical management. In addition, the prospect of exploring the interaction between different types of cells and between microorganisms and cells to identify the intersection of multiple mechanisms based on single-cell RNA sequencing, 16S rRNA gene sequencing and shotgun metagenomic sequencing is worth looking forward to.

Keywords

airway stenosis / clinical management / laryngotracheal stenosis / pathogenesis / targeted therapy

Cite this article

Download citation ▾
Pengwei Zhao, Zheng Jiang, Xuexin Li, Mailudan Ainiwaer, Leyu Li, Dejuan Wang, Lixiao Fan, Fei Chen, Jun Liu. Airway stenosis: classification, pathogenesis, and clinical management. MedComm, 2025, 6(2): e70076 DOI:10.1002/mco2.70076

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agrawal A, Baird BJ, Madariaga MLL, Blair EA, Murgu S. Multi-disciplinary management of patients with benign airway strictures: a review. Respir Med. 2021; 187: 106582.

[2]

Chan RK, Ahrens B, MacEachern P, Bosch JD, Randall DR. Prevalence and incidence of idiopathic subglottic stenosis in southern and central Alberta: a retrospective cohort study. J Otolaryngol Head Neck Surg. 2021; 50(1): 64.

[3]

Pasick LJ, Anis MM, Rosow DE. An updated review of subglottic stenosis: etiology, evaluation, and management. Curr Pulmonol Rep. 2022; 11(2): 29-38.

[4]

Gelbard A, Francis DO, Sandulache VC, Simmons JC, Donovan DT, Ongkasuwan J. Causes and consequences of adult laryngotracheal stenosis. Laryngoscope. 2015; 125(5): 1137-1143.

[5]

Dorris ER, Russell J, Murphy M. Post-intubation subglottic stenosis: aetiology at the cellular and molecular level. Eur Respir Rev. 2021; 30(159): 200218.

[6]

Smith MM, Cotton RT. Diagnosis and management of laryngotracheal stenosis. Expert Rev Respir Med. 2018; 12(8): 709-717.

[7]

Perepelitsyn I, Shapshay SM. Endoscopic treatment of laryngeal and tracheal stenosis-has mitomycin C improved the outcome?. Otolaryngol Head Neck Surg. 2004; 131(1): 16-20.

[8]

Bertelsen C, Shoffel-Havakuk H, O’Dell K, Johns MM 3rd, Reder LS. Serial in-office intralesional steroid injections in airway stenosis. JAMA Otolaryngol Head Neck Surg. 2018; 144(3): 203-210.

[9]

Rosow DE, Ahmed J. Initial experience with low-dose methotrexate as an adjuvant treatment for rapidly recurrent nonvasculitic laryngotracheal stenosis. JAMA Otolaryngol Head Neck Surg. 2017; 143(2): 125-130.

[10]

Karagiannidis C, Velehorschi V, Obertrifter B, Macha HN, Linder A, Freitag L. High-level expression of matrix-associated transforming growth factor-beta1 in benign airway stenosis. Chest. 2006; 129(5): 1298-1304.

[11]

Sinner DI, Carey B, Zgherea D, et al. Complete tracheal ring deformity. A translational genomics approach to pathogenesis. Am J Respir Crit Care Med. 2019; 200(10): 1267-1281.

[12]

Lynch TJ, Anderson PJ, Xie W, et al. Wnt signaling regulates airway epithelial stem cells in adult murine submucosal glands. Stem Cells. 2016; 34(11): 2758-2771.

[13]

Bottasso-Arias N, Leesman L, Burra K, et al. BMP4 and Wnt signaling interact to promote mouse tracheal mesenchyme morphogenesis. Am J Physiol Lung Cell Mol Physiol. 2022; 322(2): L224-l242.

[14]

Lungova V, Verheyden JM, Sun X, Thibeault SL. β-Catenin signaling is essential for mammalian larynx recanalization and the establishment of vocal fold progenitor cells. Development. 2018; 145(4): dev157677.

[15]

Kim TH, Lee HS, Oh SJ, Hwang CW, Jung WK. Phlorotannins ameliorate extracellular matrix production in human vocal fold fibroblasts and prevent vocal fold fibrosis via aerosol inhalation in a laser-induced fibrosis model. J Tissue Eng Regen Med. 2020; 14(12): 1918-1928.

[16]

Lee HS, Jeong MS, Ko SC, et al. Fabrication and biological activity of polycaprolactone/phlorotannin endotracheal tube to prevent tracheal stenosis: an in vitro and in vivo study. J Biomed Mater Res B Appl Biomater. 2020; 108(3): 1046-1056.

[17]

Myer CM 3rd, O’Connor DM, Cotton RT. Proposed grading system for subglottic stenosis based on endotracheal tube sizes. Ann Otol Rhinol Laryngol. 1994; 103(4 Pt 1): 319-323.

[18]

McCaffrey TV. Classification of laryngotracheal stenosis. Laryngoscope. 1992; 102(12 Pt 1): 1335-1340.

[19]

Lano CF Jr, Duncavage JA, Reinisch L, Ossoff RH, Courey MS, Netterville JL. Laryngotracheal reconstruction in the adult: a ten year experience. Ann Otol Rhinol Laryngol. 1998; 107(2): 92-97.

[20]

Nouraei SA, Nouraei SM, Upile T, Howard DJ, Sandhu GS. A proposed system for documenting the functional outcome of adult laryngotracheal stenosis. Clin Otolaryngol. 2007; 32(5): 407-409.

[21]

Monnier P, Dikkers FG, Eckel H, et al. Preoperative assessment and classification of benign laryngotracheal stenosis: a consensus paper of the European Laryngological Society. Eur Arch Otorhinolaryngol. 2015; 272(10): 2885-2896.

[22]

Freitag L, Ernst A, Unger M, Kovitz K, Marquette CH. A proposed classification system of central airway stenosis. Eur Respir J. 2007; 30(1): 7-12.

[23]

Ghorbani A, Dezfouli AA, Shadmehr MB, et al. A proposed grading system for post-intubation tracheal stenosis. Tanaffos. 2012; 11(3): 10-14.

[24]

Galluzzi F, Garavello W, Dalfino G, Castelnuovo P, Turri-Zanoni M. Congenital bony nasal cavity stenosis: a review of current trends in diagnosis and treatment. Int J Pediatr Otorhinolaryngol. 2021; 144: 110670.

[25]

Wang T, Chen D, Wang PH, Chen J, Deng J. Investigation on the nasal airflow characteristics of anterior nasal cavity stenosis. Braz J Med Biol Res. 2016; 49(9): e5182.

[26]

Lehmann WB, Pope TH Jr, Hudson WR. Nasopharyngeal stenosis. Laryngoscope. 1968; 78(3): 371-385.

[27]

Bennhoff DF. Current management of nasopharyngeal stenosis: indications for Z-plasty. Laryngoscope. 1979; 89(10 Pt 1): 1585-1592.

[28]

McLaughlin KE, Jacobs IN, Todd NW, Gussack GS, Carlson G. Management of nasopharyngeal and oropharyngeal stenosis in children. Laryngoscope. 1997; 107(10): 1322-1331.

[29]

McConnel FM, Duck SW, Hester TR. Hypopharyngeal stenosis. Laryngoscope. 1984; 94(9): 1162-1164.

[30]

Kaplan JN, Dobie RA, Cummings CW. The incidence of hypopharyngeal stenosis after surgery for laryngeal cancer. Otolaryngol Head Neck Surg. 1981; 89(6): 956-959.

[31]

Larrañaga JJ, Boccalatte LA, Picco PI, Cavadas D, Figari MF. Treatment for postchemoradiotherapy hypopharyngeal stenosis: pharyngoesophageal bypass using an anterolateral thigh flap—a case report. Microsurgery. 2019; 39(6): 543-547.

[32]

Henderson NC, Rieder F, Wynn TA. Fibrosis: from mechanisms to medicines. Nature. 2020; 587(7835): 555-566.

[33]

Distler JHW, Györfi AH, Ramanujam M, Whitfield ML, Königshoff M, Lafyatis R. Shared and distinct mechanisms of fibrosis. Nat Rev Rheumatol. 2019; 15(12): 705-730.

[34]

Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003; 113(6): 685-700.

[35]

Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003; 425(6958): 577-584.

[36]

Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer. 2022; 21(1): 104.

[37]

Massagué J. TGFβ signalling in context. Nat Rev Mol Cell Biol. 2012; 13(10): 616-630.

[38]

Dituri F, Cossu C, Mancarella S, Giannelli G. The interactivity between TGFβ and BMP signaling in organogenesis, fibrosis, and cancer. Cells. 2019; 8(10): 1130.

[39]

Miyazawa K, Miyazono K. Regulation of TGF-β family signaling by inhibitory Smads. Cold Spring Harb Perspect Biol. 2017; 9(3): a022095.

[40]

Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009; 19(1): 128-139.

[41]

Shi W, Fang Y, Jiang Y, et al. Plumbagin attenuates traumatic tracheal stenosis in rats and inhibits lung fibroblast proliferation and differentiation via TGF-β1/Smad and Akt/mTOR pathways. Bioengineered. 2021; 12(1): 4475-4488.

[42]

Xiao Y, Zhou L, Zhang T, et al. Anti-fibrosis activity of quercetin attenuates rabbit tracheal stenosis via the TGF-β/AKT/mTOR signaling pathway. Life Sci. 2020; 250: 117552.

[43]

Finnson KW, Almadani Y, Philip A. Non-canonical (non-SMAD2/3) TGF-β signaling in fibrosis: mechanisms and targets. Semin Cell Dev Biol. 2020; 101: 115-122.

[44]

Zhang YE. Non-Smad signaling pathways of the TGF-β family. Cold Spring Harb Perspect Biol. 2017; 9(2): a022129.

[45]

She Z, Chen H, Lin X, Li C, Su J. POSTN regulates fibroblast proliferation and migration in laryngotracheal stenosis through the TGF-β/RHOA pathway. Laryngoscope. 2024; 134(9): 4078-4087.

[46]

Liu J, Xiao Q, Xiao J, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022; 7(1): 3.

[47]

Li A, Gu L, Mu J, et al. GATA6 triggers fibroblast activation and tracheal fibrosis through the Wnt/β-catenin pathway. Cell Signal. 2023; 105: 110593.

[48]

Gu L, Li A, Lin J, et al. Knockdown of SOX9 alleviates tracheal fibrosis through the Wnt/β-catenin signaling pathway. J Mol Med (Berl). 2022; 100(11): 1659-1670.

[49]

Schunk SJ, Floege J, Fliser D, Speer T. WNT-β-catenin signalling—a versatile player in kidney injury and repair. Nat Rev Nephrol. 2021; 17(3): 172-184.

[50]

Bonnans C, Chou J, Werb Z. Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol. 2014; 15(12): 786-801.

[51]

Walraven M, Hinz B. Therapeutic approaches to control tissue repair and fibrosis: extracellular matrix as a game changer. Matrix Biol. 2018; 71-72: 205-224.

[52]

Liu G, Cooley MA, Nair PM, et al. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J Pathol. 2017; 243(4): 510-523.

[53]

Treviño-Villarreal JH, Reynolds JS, Langston PK, Thompson A, Mitchell JR. Down-regulation of a profibrotic transforming growth factor-β1/cellular communication network factor 2/matrix metalloprotease 9 axis by triamcinolone improves idiopathic subglottic stenosis. Am J Pathol. 2021; 191(8): 1412-1430.

[54]

Aldhahrani A, Powell J, Ladak S, et al. The potential role of bile acids in acquired laryngotracheal stenosis. Laryngoscope. 2018; 128(9): 2029-2033.

[55]

Leask A, Naik A, Stratton RJ. Back to the future: targeting the extracellular matrix to treat systemic sclerosis. Nat Rev Rheumatol. 2023; 19(11): 713-723.

[56]

Deng Z, Fear MW, Suk Choi Y, et al. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol. 2020; 126: 105802.

[57]

Motz KM, Yin LX, Samad I, et al. Quantification of inflammatory markers in laryngotracheal stenosis. Otolaryngol Head Neck Surg. 2017; 157(3): 466-472.

[58]

Liu MM, Motz KM, Murphy MK, et al. Laryngotracheal mucosal surface expression of candidate biomarkers in idiopathic subglottic stenosis. Laryngoscope. 2021; 131(2): 342-349.

[59]

Azwal N, Lokanathan Y, Azman M, Ng MH, Mohamed AS, Baki MM. Serum interleukin 1β in patients with acquired laryngotracheal stenosis. Acta Otorhinolaryngol Ital. 2022; 42(3): 250-256.

[60]

Ghosh A, Malaisrie N, Leahy KP, et al. Cellular adaptive inflammation mediates airway granulation in a murine model of subglottic stenosis. Otolaryngol Head Neck Surg. 2011; 144(6): 927-933.

[61]

Hillel AT, Samad I, Ma G, et al. Dysregulated macrophages are present in bleomycin-induced murine laryngotracheal stenosis. Otolaryngol Head Neck Surg. 2015; 153(2): 244-250.

[62]

Nguyen HCB, Chao TN, Cohen NA, Mirza N. Persistent inflammation and nitric oxide dysregulation are transcriptomic blueprints of subglottic stenosis. Front Immunol. 2021; 12: 748533.

[63]

Zhou Y, Zhao X, Zhang M, Feng J. Gut microbiota dysbiosis exaggerates ammonia-induced tracheal injury Via TLR4 signaling pathway. Ecotoxicol Environ Saf. 2022; 246: 114206.

[64]

Puyo CA, Earhart A, Staten N, et al. Endotracheal intubation results in acute tracheal damage induced by mtDNA/TLR9/NF-κB activity. J Leukoc Biol. 2019; 105(3): 577-587.

[65]

Yin K, Sun X, Zheng Y, Zhang W, Lin H. Bisphenol A exacerbates selenium deficiency-induced pyroptosis via the NF-κB/NLRP3/Caspase-1 pathway in chicken trachea. Comp Biochem Physiol C Toxicol Pharmacol. 2023; 263: 109488.

[66]

Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther. 2020; 5(1): 209.

[67]

Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm. 2021; 2(4): 618-653.

[68]

Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017; 2: 17023.

[69]

Li A, Gu L, He C, et al. GATA6 promotes fibrotic repair of tracheal injury through NLRP3 inflammasome-mediated epithelial pyroptosis. Int Immunopharmacol. 2023; 123: 110657.

[70]

So RJ, Collins SL, Chan-Li Y, et al. A comprehensive flow cytometry panel for analysis of idiopathic subglottic stenosis. Otolaryngol Head Neck Surg. 2024; 171(3): 791-798.

[71]

Gelbard A, Wanjalla C, Wootten CT, et al. The proximal airway is a reservoir for adaptive immunologic memory in idiopathic subglottic stenosis. Laryngoscope. 2021; 131(3): 610-617.

[72]

Ospino R, Berges A, Mafla L, et al. Characterizing the macrophage population in patients with idiopathic subglottic stenosis. Laryngoscope. 2023; 133(9): 2308-2316.

[73]

Feng T, Chen Y, Wei J, Tan S, Guangnan L. Distribution and chemotactic mechanism of CD4(+) T cells in traumatic tracheal stenosis. Immun Inflamm Dis. 2023; 11(8): e916.

[74]

Hillel AT, Ding D, Samad I, Murphy MK, Motz K. T-helper 2 lymphocyte immunophenotype is associated with iatrogenic laryngotracheal stenosis. Laryngoscope. 2019; 129(1): 177-186.

[75]

Motz K, Samad I, Yin LX, et al. Interferon-γ treatment of human laryngotracheal stenosis-derived fibroblasts. JAMA Otolaryngol Head Neck Surg. 2017; 143(11): 1134-1140.

[76]

Collins SL, Chan-Li Y, Hallowell RW, Powell JD, Horton MR. Pulmonary vaccination as a novel treatment for lung fibrosis. PLoS One. 2012; 7(2): e31299.

[77]

Morrison RJ, Katsantonis NG, Motz KM, et al. Pathologic fibroblasts in idiopathic subglottic stenosis amplify local inflammatory signals. Otolaryngol Head Neck Surg. 2019; 160(1): 107-115.

[78]

Gelbard A, Katsantonis NG, Mizuta M, et al. Idiopathic subglottic stenosis is associated with activation of the inflammatory IL-17A/IL-23 axis. Laryngoscope. 2016; 126(11): E356-e361.

[79]

Motz KM, Lina IA, Samad I, et al. Sirolimus-eluting airway stent reduces profibrotic Th17 cells and inhibits laryngotracheal stenosis. JCI Insight. 2023; 8(11): e158456.

[80]

Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004; 4(8): 583-594.

[81]

Motz K, Lina I, Murphy MK, et al. M2 macrophages promote collagen expression and synthesis in laryngotracheal stenosis fibroblasts. Laryngoscope. 2021; 131(2): E346-e353.

[82]

Berges AJ, Ospino R, Lina IA, et al. Myeloid phenotypes in tracheostomy-associated granulation tissue. Laryngoscope. 2023; 133(9): 2346-2356.

[83]

King SN, Chen F, Jetté ME, Thibeault SL. Vocal fold fibroblasts immunoregulate activated macrophage phenotype. Cytokine. 2013; 61(1): 228-236.

[84]

Yin LX, Motz KM, Samad I, et al. Fibroblasts in hypoxic conditions mimic laryngotracheal stenosis. Otolaryngol Head Neck Surg. 2017; 156(5): 886-892.

[85]

Xiao R, Gu L, Li AM, et al. IL-11 drives the phenotypic transformation of tracheal epithelial cells and fibroblasts to enhance abnormal repair after tracheal injury. Biochim Biophys Acta Mol Cell Res. 2023; 1870(4): 119438.

[86]

Xu M, Hu B, Chen J, Zhao L, Wang J, Li X. CXCR7 promotes the migration of fibroblasts derived from patients with acquired laryngotracheal stenosis by NF-κB signaling. Transl Pediatr. 2023; 12(9): 1634-1645.

[87]

Davis RJ, Lina I, Ding D, et al. Increased expression of PD-1 and PD-L1 in patients with laryngotracheal stenosis. Laryngoscope. 2021; 131(5): 967-974.

[88]

Davis RJ, Lina I, Green B, et al. Quantitative assessment of the immune microenvironment in patients with iatrogenic laryngotracheal stenosis. Otolaryngol Head Neck Surg. 2021; 164(6): 1257-1264.

[89]

Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014; 15(3): 178-196.

[90]

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009; 119(6): 1420-1428.

[91]

McCann AJ, Samuels TL, Blumin JH, Johnston N. The role of pepsin in epithelia-mesenchymal transition in idiopathic subglottic stenosis. Laryngoscope. 2020; 130(1): 154-158.

[92]

Samuels TL, Blaine-Sauer S, Yan K, Johnston N. Amprenavir inhibits pepsin-mediated laryngeal epithelial disruption and E-cadherin cleavage in vitro. Laryngoscope Investig Otolaryngol. 2023; 8(4): 953-962.

[93]

Lina IA, Tsai HW, Berges AJ, et al. Phenotypic epithelial changes in laryngotracheal stenosis. Laryngoscope. 2022; 132(11): 2194-2201.

[94]

Berges AJ, Ospino R, Mafla L, et al. Dysfunctional epithelial barrier is characterized by reduced E-cadherin in idiopathic subglottic stenosis. Laryngoscope. 2024; 134(1): 374-381.

[95]

Wei J, Qin S, Li W, et al. Analysis of clinical characteristics of 617 patients with benign airway stenosis. Front Med (Lausanne). 2023; 10: 1202309.

[96]

Zhang C, Wang S, Casal Moura M, et al. RNA sequencing of idiopathic subglottic stenosis tissues uncovers putative profibrotic mechanisms and identifies a prognostic biomarker. Am J Pathol. 2022; 192(11): 1506-1530.

[97]

Duan H, Ma L, Liu H, et al. Tanshinone IIA attenuates epithelial-mesenchymal transition to inhibit the tracheal narrowing. J Surg Res. 2016; 206(1): 252-262.

[98]

Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression. Science. 2020; 368(6487): eaaw5473.

[99]

Ma G, Samad I, Motz K, et al. Metabolic variations in normal and fibrotic human laryngotracheal-derived fibroblasts: a Warburg-like effect. Laryngoscope. 2017; 127(3): E107-e113.

[100]

Murphy MK, Motz KM, Ding D, et al. Targeting metabolic abnormalities to reverse fibrosis in iatrogenic laryngotracheal stenosis. Laryngoscope. 2018; 128(2): E59-e67.

[101]

Tsai HW, Motz KM, Ding D, et al. Inhibition of glutaminase to reverse fibrosis in iatrogenic laryngotracheal stenosis. Laryngoscope. 2020; 130(12): E773-e781.

[102]

Tsai HW, Lina I, Motz KM, et al. Glutamine inhibition reduces iatrogenic laryngotracheal stenosis. Laryngoscope. 2021; 131(7): E2125-e2130.

[103]

Lina I, Tsai HW, Ding D, Davis R, Motz KM, Hillel AT. Characterization of fibroblasts in iatrogenic laryngotracheal stenosis and type II diabetes mellitus. Laryngoscope. 2021; 131(7): 1570-1577.

[104]

Fan Z, Zhang L, Wei L, Huang X, Yang M, Xing X. Tracheal microbiome and metabolome profiling in iatrogenic subglottic tracheal stenosis. BMC Pulm Med. 2023; 23(1): 361.

[105]

Pata YS, Akbaş Y, Unal M, et al. Prevention of laryngotracheal stenosis with carnitine after tracheotomy: an experimental study on rats. Int J Pediatr Otorhinolaryngol. 2003; 67(8): 881-888.

[106]

Guven M, Turan F, Eyibilen A, Akbaş A, Erkorkmaz Ü. A comparison of the efficacy of 5-fluorouracil/triamcinolone, carnitine and dexamethasone therapy on wound healing in tracheal injury: potential for preventing tracheal stenosis?. Eur Arch Otorhinolaryngol. 2012; 269(1): 201-206.

[107]

Lina IA, Berges A, Ospino R, et al. Identifying phenotypically distinct fibroblast subsets in type 2 diabetes-associated iatrogenic laryngotracheal stenosis. Otolaryngol Head Neck Surg. 2022; 166(4): 712-719.

[108]

Mazhar K, Gunawardana M, Webster P, et al. Bacterial biofilms and increased bacterial counts are associated with airway stenosis. Otolaryngol Head Neck Surg. 2014; 150(5): 834-840.

[109]

Yamada Y, Sugai M, Woo M, Nishida N, Sugimoto T. Acquired subglottic stenosis caused by methicillin resistant Staphylococcus aureus that produce epidermal cell differentiation inhibitor. Arch Dis Child Fetal Neonatal Ed. 2001; 84(1): F38-9.

[110]

Gelbard A, Katsantonis NG, Mizuta M, et al. Molecular analysis of idiopathic subglottic stenosis for Mycobacterium species. Laryngoscope. 2017; 127(1): 179-185.

[111]

Hillel AT, Tang SS, Carlos C, et al. Laryngotracheal microbiota in adult laryngotracheal stenosis. mSphere. 2019; 4(3): e00211-19.

[112]

Wang JC, Bergeron M, Andersen H, et al. Feasibility of shotgun metagenomics to assess microbial ecology of pediatric tracheostomy tubes. Laryngoscope. 2019; 129(2): 317-323.

[113]

Simoni P, Wiatrak BJ. Microbiology of stents in laryngotracheal reconstruction. Laryngoscope. 2004; 114(2): 364-367.

[114]

Davis RJ, Shilts MH, Strickland BA, et al. Mucosal microbiome disruption in acute laryngeal injury following intubation. Otolaryngol Head Neck Surg. 2024; 170(3): 977-980.

[115]

Gelbard A, Donovan DT, Ongkasuwan J, et al. Disease homogeneity and treatment heterogeneity in idiopathic subglottic stenosis. Laryngoscope. 2016; 126(6): 1390-1396.

[116]

Marchioni A, Tonelli R, Andreani A, et al. Molecular mechanisms and physiological changes behind benign tracheal and subglottic stenosis in adults. Int J Mol Sci. 2022; 23(5): 2421.

[117]

Drake VE, Gelbard A, Sobriera N, et al. Familial aggregation in idiopathic subglottic stenosis. Otolaryngol Head Neck Surg. 2020; 163(5): 1011-1017.

[118]

Sharif K, Tierney WS, Davis RJ, et al. Mapping genetic susceptibility to stenosis in the proximal airway. Laryngoscope. 2023; 133(11): 3049-3056.

[119]

Rovó L, Széll M, Bella Z, Korsós A, Kemény L, Jóri J. The -509 C/T genotype of TGFbeta1 might contribute to the pathogenesis of benign airway stenosis. Otolaryngol Head Neck Surg. 2010; 142(3): 441-443.

[120]

Anis MM, Zhao Z, Khurana J, Krynetskiy E, Soliman AM. Translational genomics of acquired laryngotracheal stenosis. Laryngoscope. 2014; 124(5): E175-9.

[121]

Anis MM, Krynetskaia N, Zhao Z, Krynetskiy E, Soliman AMS. Determining candidate single nucleotide polymorphisms in acquired laryngotracheal stenosis. Laryngoscope. 2018; 128(3): E111-e116.

[122]

Schoeff SS, Shi X, Young WG, et al. Proteomic and genomic methylation signatures of idiopathic subglottic stenosis. Laryngoscope. 2021; 131(2): E540-e546.

[123]

Li W, Wei J, Huang P, Wei Y, Chang L, Liu G. Differential expression of miRNAs revealed by small RNA sequencing in traumatic tracheal stenosis. Front Genet. 2023; 14: 1291488.

[124]

Li W, Huang P, Wei J, et al. Down-regulation of miR-21-5p by pirfenidone to inhibit fibroblast proliferation in the treatment of acquired tracheal stenosis. Clin Respir J. 2023; 18(1): e13727.

[125]

Gordin A, Chadha NK, Campisi P, Luginbuehl I, Taylor G, Forte V. An animal model for endotracheal tube-related laryngeal injury using hypoxic ventilation. Otolaryngol Head Neck Surg. 2011; 144(2): 247-251.

[126]

Cai Z, Li H, Zhang H, Han S, An R, Yan X. Novel insights into the role of hypoxia-inducible factor-1 in the pathogenesis of human post-intubation tracheal stenosis. Mol Med Rep. 2013; 8(3): 903-908.

[127]

Qin EY, Gan LM, Gan JH, et al. Expression and significance of autophagy in rabbit model of tracheal stenosis. Zhonghua Yi Xue Za Zhi. 2017; 97(48): 3816-3820.

[128]

Zhang G, Xue C, Zeng Y. β-elemene alleviates airway stenosis via the ILK/Akt pathway modulated by MIR143HG sponging miR-1275. Cell Mol Biol Lett. 2021; 26(1): 28.

[129]

Heo SY, Jeong MS, Lee HS, et al. Dieckol induces cell cycle arrest by down-regulating CDK2/cyclin E in response to p21/p53 activation in human tracheal fibroblasts. Cell Biochem Funct. 2022; 40(1): 71-78.

[130]

Simpson CB, White S, McGuff HS. Anti-transforming growth factor beta as a treatment for laryngotracheal stenosis in a canine model. Laryngoscope. 2008; 118(3): 546-551.

[131]

Antón-Pacheco JL, Usategui A, Martínez I, et al. TGF-β antagonist attenuates fibrosis but not luminal narrowing in experimental tracheal stenosis. Laryngoscope. 2017; 127(3): 561-567.

[132]

Ali Akbari Ghavimi S, Aronson MR, Ghaderi DD, et al. Modulated fibrosis and mechanosensing of fibroblasts by SB525334 in pediatric subglottic stenosis. Laryngoscope. 2024; 134(1): 287-296.

[133]

Fan Y, Li X, Fang X, et al. Antifibrotic role of nintedanib in tracheal stenosis after a tracheal wound. Laryngoscope. 2021; 131(9): E2496-e2505.

[134]

Liao J, Gan Y, Peng M, et al. GDF15 alleviates the progression of benign tracheobronchial stenosis by inhibiting epithelial-mesenchymal transition and inactivating fibroblasts. Exp Cell Res. 2022; 421(2): 113410.

[135]

Heo SY, Jeong MS, Lee HS, Kim YJ, Park SH, Jung WK. Phlorofucofuroeckol A from Ecklonia cava ameliorates TGF-β1-induced fibrotic response of human tracheal fibroblasts via the downregulation of MAPKs and SMAD 2/3 pathways inactivated TGF-β receptor. Biochem Biophys Res Commun. 2020; 522(3): 626-632.

[136]

He C, Gu L, Li A, et al. Recombinant Slit2 attenuates tracheal fibroblast activation in benign central airway obstruction by inhibiting the TGF-β1/Smad3 signaling pathway. Mol Cell Probes. 2024; 73: 101947.

[137]

Kodama H, Kumai Y, Nishimoto K, et al. Potential treatment for vocal fold scar with pirfenidone. Laryngoscope. 2018; 128(5): E171-e177.

[138]

Nakamura H, Zhou Y, Sakamoto Y, et al. N-butyldeoxynojirimycin (miglustat) ameliorates pulmonary fibrosis through inhibition of nuclear translocation of Smad2/3. Biomed Pharmacother. 2023; 160: 114405.

[139]

Lin S, Yu L, Ni Y, et al. Fibroblast growth factor 21 attenuates diabetes-induced renal fibrosis by negatively regulating TGF-β-p53-Smad2/3-mediated epithelial-to-mesenchymal transition via activation of AKT. Diabetes Metab J. 2020; 44(1): 158-172.

[140]

Zhang Y, Huang Q, Chen Y, et al. Parthenolide, an NF-κB inhibitor, alleviates peritoneal fibrosis by suppressing the TGF-β/Smad pathway. Int Immunopharmacol. 2020; 78: 106064.

[141]

Simonsson M, Kanduri M, Grönroos E, Heldin CH, Ericsson J. The DNA binding activities of Smad2 and Smad3 are regulated by coactivator-mediated acetylation. J Biol Chem. 2006; 281(52): 39870-39880.

[142]

Inoue Y, Itoh Y, Abe K, et al. Smad3 is acetylated by p300/CBP to regulate its transactivation activity. Oncogene. 2007; 26(4): 500-508.

[143]

Gao XY, Lai YY, Luo XS, et al. Acetyltransferase p300 regulates atrial fibroblast senescence and age-related atrial fibrosis through p53/Smad3 axis. Aging Cell. 2023; 22(1): e13743.

[144]

Chen Y, Yang S, Yao W, et al. Prostacyclin analogue beraprost inhibits cardiac fibroblast proliferation depending on prostacyclin receptor activation through a TGF β-Smad signal pathway. PLoS One. 2014; 9(5): e98483.

[145]

Li J, Qu X, Ricardo SD, Bertram JF, Nikolic-Paterson DJ. Resveratrol inhibits renal fibrosis in the obstructed kidney: potential role in deacetylation of Smad3. Am J Pathol. 2010; 177(3): 1065-1071.

[146]

Yang S, Yang G, Wang X, Xiang J, Kang L, Liang Z. SIRT2 alleviated renal fibrosis by deacetylating SMAD2 and SMAD3 in renal tubular epithelial cells. Cell Death Dis. 2023; 14(9): 646.

[147]

Kim SM, Hur WH, Kang BY, et al. Death-associated protein 6 (Daxx) alleviates liver fibrosis by modulating Smad2 acetylation. Cells. 2021; 10(7): 1742.

[148]

Tang M, Bian W, Cheng L, et al. Ginsenoside Rg3 inhibits keloid fibroblast proliferation, angiogenesis and collagen synthesis in vitro via the TGF-β/Smad and ERK signaling pathways. Int J Mol Med. 2018; 41(3): 1487-1499.

[149]

Wu W, Huang XR, You Y, et al. Latent TGF-β1 protects against diabetic kidney disease via Arkadia/Smad7 signaling. Int J Biol Sci. 2021; 17(13): 3583-3594.

[150]

Humeres C, Shinde AV, Hanna A, et al. Smad7 effects on TGF-β and ErbB2 restrain myofibroblast activation and protect from postinfarction heart failure. J Clin Invest. 2022; 132(3): e146926.

[151]

Su DN, Wu SP, Xu SZ. Mesenchymal stem cell-based Smad7 gene therapy for experimental liver cirrhosis. Stem Cell Res Ther. 2020; 11(1): 395.

[152]

Woodcock HV, Eley JD, Guillotin D, et al. The mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis. Nat Commun. 2019; 10(1): 6.

[153]

Namba DR, Ma G, Samad I, et al. Rapamycin inhibits human laryngotracheal stenosis-derived fibroblast proliferation, metabolism, and function in vitro. Otolaryngol Head Neck Surg. 2015; 152(5): 881-888.

[154]

Liu Y, Zhang J, Long J, Qiu X, Wang T, Wang J. The effects of rapamycin on the proliferation, migration, and apoptosis of human tracheal fibroblasts (HTrF) and human tracheal epithelial cells (HTEpiC). J Clin Med. 2022; 11(3): 608.

[155]

Kimura A, Araki K, Satoh Y, et al. Inhibition of extracellular signal-regulated kinase pathway suppresses tracheal stenosis in a novel mouse model. PLoS One. 2021; 16(9): e0256127.

[156]

Zhou Y, Ng DYE, Richards AM, Wang P. microRNA-221 inhibits latent TGF-β1 activation through targeting thrombospondin-1 to attenuate kidney failure-induced cardiac fibrosis. Mol Ther Nucleic Acids. 2020; 22: 803-814.

[157]

Julovi SM, Sanganeria B, Minhas N, Ghimire K, Nankivell B, Rogers NM. Blocking thrombospondin-1 signaling via CD47 mitigates renal interstitial fibrosis. Lab Invest. 2020; 100(9): 1184-1196.

[158]

Jiang N, Zhang Z, Shao X, et al. Blockade of thrombospondin-1 ameliorates high glucose-induced peritoneal fibrosis through downregulation of TGF-β1/Smad3 signaling pathway. J Cell Physiol. 2020; 235(1): 364-379.

[159]

Song X, Shi J, Liu J, et al. Recombinant truncated latency-associated peptide alleviates liver fibrosis in vitro and in vivo via inhibition of TGF-β/Smad pathway. Mol Med. 2022; 28(1): 80.

[160]

Zhang X, Sharma P, Maschmeyer P, et al. GARP on hepatic stellate cells is essential for the development of liver fibrosis. J Hepatol. 2023; 79(5): 1214-1225.

[161]

Reed NI, Jo H, Chen C, et al. The αvβ1 integrin plays a critical in vivo role in tissue fibrosis. Sci Transl Med. 2015; 7(288): 288ra79.

[162]

John AE, Graves RH, Pun KT, et al. Translational pharmacology of an inhaled small molecule αvβ6 integrin inhibitor for idiopathic pulmonary fibrosis. Nat Commun. 2020; 11(1): 4659.

[163]

Shihan MH, Novo SG, Wang Y, et al. αVβ8 integrin targeting to prevent posterior capsular opacification. JCI Insight. 2021; 6(21): e145715.

[164]

Hong L, Zeng Y, Yang D. Inhibitory effect of β-Elemene on human airway granulation tissue in vivo and in vitro. Respiration. 2016; 92(5): 329-338.

[165]

Xue C, Hong LL, Lin JS, et al. β-Elemene inhibits the proliferation of primary human airway granulation fibroblasts by down-regulating canonical Wnt/β-catenin pathway. Biosci Rep. 2018; 38(2): BSR20171386.

[166]

Huang Z, Wei P, Gan L, et al. Protective effects of different anti-inflammatory drugs on tracheal stenosis following injury and potential mechanisms. Mol Med Rep. 2021; 23(5): 314.

[167]

Enyuan Q, Mingpeng X, Luoman G, et al. Erythromycin combined with corticosteroid reduced inflammation and modified trauma-induced tracheal stenosis in a rabbit model. Ther Adv Respir Dis. 2018; 12: 1753466618773707.

[168]

Huang Z, Wei P, Gan L, et al. Expression of histone deacetylase 2 in tracheal stenosis models and its relationship with tracheal granulation tissue proliferation. Exp Ther Med. 2021; 21(5): 444.

[169]

Barnes PJ. Role of HDAC2 in the pathophysiology of COPD. Annu Rev Physiol. 2009; 71: 451-464.

[170]

Choi JS, Kim JM, Kim JW, Kim YM, Park IS, Yang SG. Prevention of tracheal inflammation and fibrosis using nitinol stent coated with doxycycline. Laryngoscope. 2018; 128(7): 1558-1563.

[171]

Coll RC, Robertson AA, Chae JJ, et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med. 2015; 21(3): 248-255.

[172]

He H, Jiang H, Chen Y, et al. Oridonin is a covalent NLRP3 inhibitor with strong anti-inflammasome activity. Nat Commun. 2018; 9(1): 2550.

[173]

Huang Y, Jiang H, Chen Y, et al. Tranilast directly targets NLRP3 to treat inflammasome-driven diseases. EMBO Mol Med. 2018; 10(4): e8689.

[174]

Nicolli EA, Ghosh A, Haft S, et al. IL-1 receptor antagonist inhibits early granulation formation. Ann Otol Rhinol Laryngol. 2016; 125(4): 284-289.

[175]

He C, Li A, Gu L, et al. Repression of Smad3 by silencing Robo1 attenuates epithelial-mesenchymal transition in tracheobronchial stenosis. Chin Med J (Engl). 2023; 136(17): 2125-2127.

[176]

Jakobsen KK, Grønhøj C, Jensen DH, Fischer-Nielsen A, Hjuler T, von Buchwald C. Mesenchymal stem cell therapy for laryngotracheal stenosis: a systematic review of preclinical studies. PLoS One. 2017; 12(9): e0185283.

[177]

Prockop DJ. Inflammation, fibrosis, and modulation of the process by mesenchymal stem/stromal cells. Matrix Biol. 2016; 51: 7-13.

[178]

Oh S, Kim DY, Baek MK, Byun K, Woo JH. The effect of human adipose tissue-derived mesenchymal stem cells in rat’s subglottic stenosis model. Ann Otol Rhinol Laryngol. 2018; 127(1): 5-12.

[179]

Iravani K, Sobhanmanesh A, Ashraf MJ, Hashemi SB, Mehrabani D, Zare S. The healing effect of conditioned media and bone marrow-derived stem cells in laryngotracheal stenosis: a comparison in experimental dog model. World J Plast Surg. 2017; 6(2): 190-197.

[180]

Ye YS, Chen DF, Liu M, et al. Autologous airway basal cell transplantation alleviates airway epithelium defect in recurrent benign tracheal stenosis. Stem Cells Transl Med. 2023; 12(12): 838-848.

[181]

Mammana M, Bonis A, Verzeletti V, Dell’Amore A, Rea F. Tracheal tissue engineering: principles and state of the art. Bioengineering (Basel). 2024; 11(2): 198.

[182]

Batioglu-Karaaltin A, Karaaltin MV, Ovali E, et al. In vivo tissue-engineered allogenic trachea transplantation in rabbits: a preliminary report. Stem Cell Rev Rep. 2015; 11(2): 347-356.

[183]

Shin YS, Choi JW, Park JK, et al. Tissue-engineered tracheal reconstruction using mesenchymal stem cells seeded on a porcine cartilage powder scaffold. Ann Biomed Eng. 2015; 43(4): 1003-1013.

[184]

Elliott MJ, De Coppi P, Speggiorin S, et al. Stem-cell-based, tissue engineered tracheal replacement in a child: a 2-year follow-up study. Lancet. 2012; 380(9846): 994-1000.

[185]

Aronson MR, Ali Akbari Ghavimi S, Gehret PM, Jacobs IN, Gottardi R. Drug-eluting endotracheal tubes for preventing bacterial inflammation in subglottic stenosis. Laryngoscope. 2022; 132(7): 1356-1363.

[186]

Aronson MR, Mehta A, Friedman RM, et al. Amelioration of subglottic stenosis by antimicrobial peptide eluting endotracheal tubes. Cell Mol Bioeng. 2023; 16(4): 369-381.

[187]

Gu J, Mao X, Li C, Ao H, Yang X. A novel therapy for laryngotracheal stenosis: treatment with ethosomes containing 5-fluorouracil. Ann Otol Rhinol Laryngol. 2015; 124(7): 561-566.

[188]

Mao X, Cheng X, Zhang Z, Wang Z, Wang Z. The therapy with ethosomes containing 5-fluorouracil for laryngotracheal stenosis in rabbit models. Eur Arch Otorhinolaryngol. 2017; 274(4): 1919-1924.

[189]

Wang T, Zhang J, Wang J, Pei YH, Qiu XJ, Wang YL. Paclitaxel drug-eluting tracheal stent could reduce granulation tissue formation in a canine model. Chin Med J (Engl). 2016; 129(22): 2708-2713.

[190]

Xu H, Wang Q, Fan GK. The antiproliferative and antifibrotic effects of cisplatin on primary human vocal fold fibroblasts. ORL J Otorhinolaryngol Relat Spec. 2020; 82(4): 188-200.

[191]

Huang R, Chen S, Song X, Zheng H. Inhalation of carboxymethyl chitosan alleviates posttraumatic tracheal fibrosis. Ann Otol Rhinol Laryngol. 2024; 133(1): 50-57.

[192]

Nakagishi Y, Morimoto Y, Fujita M, et al. Photodynamic therapy for airway stenosis in rabbit models. Chest. 2008; 133(1): 123-130.

[193]

Mizokami D, Araki K, Tanaka N, et al. Gene therapy of c-myc suppressor FUSE-binding protein-interacting repressor by Sendai virus delivery prevents tracheal stenosis. PLoS One. 2015; 10(1): e0116279.

[194]

Chen X, Wang W, Ye Y, et al. The wound healing of autologous regenerative factor on recurrent benign airway stenosis: a canine experimental and pilot study. Respiration. 2024; 103(3): 111-123.

[195]

Rosow DE, Barbarite E. Review of adult laryngotracheal stenosis: pathogenesis, management, and outcomes. Curr Opin Otolaryngol Head Neck Surg. 2016; 24(6): 489-493.

[196]

Ntouniadakis E, Sundh J, Magnuson A, von Beckerath M. Balloon dilatation is superior to CO(2) laser excision in the treatment of subglottic stenosis. Eur Arch Otorhinolaryngol. 2023; 280(7): 3303-3311.

[197]

Ming W, Zuo J, Han J, Chen J. The efficiency of endoscopic versus open surgical interventions in adult benign laryngotracheal stenosis: a meta-analysis. Eur Arch Otorhinolaryngol. 2023; 280(5): 2421-2433.

[198]

Ekbom DC, Bayan SL, Goates AJ, Kasperbauer JL. Endoscopic wedge excisions with CO2 laser for subglottic stenosis. Laryngoscope. 2021; 131(4): E1062-e1066.

[199]

Ferney A, Ferney T, Giraud L, et al. Endoscopic management of adult subglottic stenosis: an alternative to open surgery. Eur Arch Otorhinolaryngol. 2023; 280(4): 1865-1873.

[200]

Bowen AJ, Xie KZ, O’Byrne TJ, et al. Recurrence following endoscopic laser wedge excision and triple medical therapy for idiopathic subglottic stenosis. Otolaryngol Head Neck Surg. 2022; 167(3): 524-530.

[201]

Mehta AC, Lee FY, Cordasco EM, Kirby T, Eliachar I, De Boer G. Concentric tracheal and subglottic stenosis. Management using the Nd-YAG laser for mucosal sparing followed by gentle dilatation. Chest. 1993; 104(3): 673-677.

[202]

Balouch B, Garabet R, Maxwell PJ, et al. The safety and efficacy of the 445-nm blue laser for operative management of benign nonvascular laryngeal lesions. J Voice. 2023.

[203]

Liang KY, Miller KM, Syed F, et al. Laser versus cold steel for endoscopic management of subglottic stenosis. Otolaryngol Head Neck Surg. 2024; 171(2): 471-477.

[204]

Bo L, Li C, Chen M, Mu D, Jin F. Application of electrocautery needle knife combined with balloon dilatation versus balloon dilatation in the treatment of tracheal fibrotic scar stenosis. Respiration. 2018; 95(3): 182-187.

[205]

Mulry E, Ibrahim O, Lafreniere D. Treatment of laryngeal and tracheal stenosis: cooperative treatment with our pulmonary interventionalist colleagues. J Voice. 2024.

[206]

Virk RS, Bansal S, Nayak G, Lokesh P. Plasma ablation-assisted endoscopic management of postintubation laryngotracheal stenosis: an alternate tool for management. Otolaryngol Head Neck Surg. 2019; 161(6): 993-995.

[207]

Matt BH, Cottee LA. Reducing risk of fire in the operating room using coblation technology. Otolaryngol Head Neck Surg. 2010; 143(3): 454-455.

[208]

Bhora FY, Ayub A, Forleiter CM, et al. Treatment of benign tracheal stenosis using endoluminal spray cryotherapy. JAMA Otolaryngol Head Neck Surg. 2016; 142(11): 1082-1087.

[209]

Fernando HC, Dekeratry D, Downie G, et al. Feasibility of spray cryotherapy and balloon dilation for non-malignant strictures of the airway. Eur J Cardiothorac Surg. 2011; 40(5): 1177-1180.

[210]

Krimsky WS, Rodrigues MP, Malayaman N, Sarkar S. Spray cryotherapy for the treatment of glottic and subglottic stenosis. Laryngoscope. 2010; 120(3): 473-477.

[211]

Chan CL, Frauenfelder CA, Foreman A, Athanasiadis T, Ooi E, Carney AS. Surgical management of airway stenosis by radiofrequency coblation. J Laryngol Otol. 2015; 129(1): S21-6.

[212]

Fastenberg JH, Roy S, Smith LP. Coblation-assisted management of pediatric airway stenosis. Int J Pediatr Otorhinolaryngol. 2016; 87: 213-218.

[213]

Freitas C, Martins N, Novais-Bastos H, Morais A, Fernandes G, Magalhães A. The role of interventional bronchoscopy in the management of post-intubation tracheal stenosis: a 20-year experience. Pulmonology. 2021; 27(4): 296-304.

[214]

Di Felice C, Alraiyes AH, Gillespie C, et al. Short-term endoscopic outcomes of balloon and rigid bronchoplasty in the management of benign subglottic and tracheal stenosis. J Bronchology Interv Pulmonol. 2023; 30(1): 54-59.

[215]

Glikson E, Abbass A, Carmel E, Primov-Fever A, Alon EE, Wolf M. Endoscopic management of benign laryngo-tracheal stenosis: balloon vs. rigid dilatation. Isr Med Assoc J. 2021; 23(5): 297-301.

[216]

Romero Manteola EJ, Patiño González C, Ravetta P, Defago V, Tessi C. Dilation with rigid dilators as primary treatment of subglottic stenosis in pediatrics. Pulmonology. 2022; 28(5): 345-349.

[217]

Yafit D, Cavel O, Ungar OJ, et al. Rigid dilatation of pediatric laryngotracheal stenosis as an adequate alternative to balloon dilatation. Eur Arch Otorhinolaryngol. 2018; 275(10): 2529-2533.

[218]

Chung FT, Lin SM, Chen HC, et al. Factors leading to tracheobronchial self-expandable metallic stent fracture. J Thorac Cardiovasc Surg. 2008; 136(5): 1328-1335.

[219]

Wu FJ, Yao YW, Chen EG, et al. Efficacy and safety profile of montgomery T-tube implantation in patients with tracheal stenosis. Can Respir J. 2020; 2020: 2379814.

[220]

Bourinet V, Raguin T, Fortin M, et al. Experience with transcordal silicone stents in adult laryngotracheal stenosis: a bicentric retrospective study. Respiration. 2018; 95(6): 441-448.

[221]

Davis RJ, Lina I, Motz K, et al. Endoscopic resection and mucosal reconstitution with epidermal grafting: a pilot study in idiopathic subglottic stenosis. Otolaryngol Head Neck Surg. 2022; 166(5): 917-926.

[222]

Xiong XF, Xu L, Fan LL, Cheng DY, Zheng BX. Long-term follow-up of self-expandable metallic stents in benign tracheobronchial stenosis: a retrospective study. BMC Pulm Med. 2019; 19(1): 33.

[223]

Rehman SC, Xie DX, Bekeny JR, Gelbard A, Wootten CT. Laryngotracheal reconstruction in adults aged 60 years and older. Otolaryngol Head Neck Surg. 2019; 160(6): 1065-1070.

[224]

Redmann AJ, Rutter MJ, de Alarcon A, et al. Cervical slide tracheoplasty in adults with laryngotracheal stenosis. Laryngoscope. 2019; 129(4): 818-822.

[225]

Schweiger T, Roesner I, de Faria Soares Rodrigues I, et al. Functional outcome after single-stage laryngotracheal reconstruction with rib cartilage grafting. J Thorac Cardiovasc Surg. 2022; 163(1): 313-322.e3.

[226]

Carta F, Piras N, Mariani C, et al. The surgical treatment of acquired subglottic stenosis in children with double-stage laryngotracheal reconstruction. Int J Pediatr Otorhinolaryngol. 2022; 158: 111164.

[227]

Hentze M, Schytte S, Pilegaard H, Klug TE. Single-stage tracheal and cricotracheal segmental resection with end-to-end anastomosis: outcome, complications, and risk factors. Auris Nasus Larynx. 2019; 46(1): 122-128.

[228]

Fiz I, Filauro M, Sampieri C, et al. Analysis of complications in (crico-) tracheal resection anastomosis in adults: a multicenter study. Laryngoscope. 2023; 133(11): 2910-2919.

[229]

Fiz I, Monnier P, Koelmel JC, et al. Multicentric study applying the european laryngological society classification of benign laryngotracheal stenosis in adults treated by tracheal or cricotracheal resection and anastomosis. Laryngoscope. 2020; 130(7): 1640-1645.

[230]

Piazza C, Lancini D, Filauro M, et al. Post-COVID-19 airway stenosis treated by tracheal resection and anastomosis: a bicentric experience. Acta Otorhinolaryngol Ital. 2022; 42(2): 99-105.

[231]

Nauta A, Mitilian D, Hanna A, et al. Long-term results and functional outcomes after surgical repair of benign laryngotracheal stenosis. Ann Thorac Surg. 2021; 111(6): 1834-1841.

[232]

Jethwa AR, Hasan W, Palme CE, et al. Cricotracheal resection for adult subglottic stenosis: factors predicting treatment failure. Laryngoscope. 2020; 130(7): 1634-1639.

[233]

Shimojima N, Shimotakahara A, Tomita H, et al. Outcomes of slide tracheoplasty for congenital tracheal stenosis in 80 children: a 22-year single-center experience. J Pediatr Surg. 2022; 57(7): 1205-1209.

[234]

Nakatani T, Morita K, Yokoi A, Hatakeyama T. Long-term outcomes of congenital tracheal stenosis after slide tracheoplasty. Pediatr Surg Int. 2024; 40(1): 84.

[235]

Woliansky J, Phyland D, Paddle P. Systemic safety of serial intralesional steroid injection for subglottic stenosis. Laryngoscope. 2019; 129(7): 1634-1639.

[236]

Hoffman MR, Coughlin AR, Dailey SH. Serial office-based steroid injections for treatment of idiopathic subglottic stenosis. Laryngoscope. 2017; 127(11): 2475-2481.

[237]

Naunheim MR, Puka E, Choksawad K, Franco RA. Voice-related quality of life in idiopathic subglottic stenosis: effect of serial intralesional steroid injections. Laryngoscope. 2021; 131(2): 366-369.

[238]

Yokoi A, Nakao M, Bitoh Y, Arai H, Oshima Y, Nishijima E. Treatment of postoperative tracheal granulation tissue with inhaled budesonide in congenital tracheal stenosis. J Pediatr Surg. 2014; 49(2): 293-295. discussion 295.

[239]

Alrabiah A, Alsayed A, Aljasser A, et al. Effect of inhaled fluticasone propionate on laryngotracheal stenosis after balloon dilation: a randomized controlled trial. Eur Arch Otorhinolaryngol. 2021; 278(5): 1505-1513.

[240]

Shadmehr MB, Abbasidezfouli A, Farzanegan R, et al. The role of systemic steroids in postintubation tracheal stenosis: a randomized clinical trial. Ann Thorac Surg. 2017; 103(1): 246-253.

[241]

Reichert LK, Zhao AS, Galati LT, Shapshay SM. The efficacy of mitomycin C in the treatment of laryngotracheal stenosis: results and experiences with a difficult disease entity. ORL J Otorhinolaryngol Relat Spec. 2015; 77(6): 351-358.

[242]

Tiran B, Perluk T, Kleinhendler E, Man A, Fomin I, Schwarz Y. Fiberoptic bronchoscopic submucosal injection of mitomycin C for recurrent bening tracheal stenosis: a case series. Isr Med Assoc J. 2020; 22(12): 757-760.

[243]

Yung KC, Chang J, Courey MS. A randomized controlled trial of adjuvant mitomycin-c in endoscopic surgery for laryngotracheal stenosis. Laryngoscope. 2020; 130(3): 706-711.

[244]

Awadallah AS, Bowen AJ, Ali HM, et al. Methotrexate and rituximab use in highly recurrent idiopathic subglottic stenosis. Laryngoscope. 2024; 135(1): 168-175.

[245]

Zhou ZQ, Zhong CH, Su ZQ, et al. Breathing hydrogen-oxygen mixture decreases inspiratory effort in patients with tracheal stenosis. Respiration. 2019; 97(1): 42-51.

[246]

Del Puppo M, Meister L, Médale M, Allary C, Nicollas R, Moreddu E. Heliox simulations for initial management of congenital laryngotracheal stenosis. Pediatr Pulmonol. 2023; 58(1): 230-238.

[247]

Razmjoo S, Shahbazian H, Hosseini SM, Feli M, Mohammadian F, Bagheri A. Therapeutic and prophylactic effects of radiation therapy in the management of recurrent granulation tissue induced tracheal stenosis: a review on the role of endobronchial brachytherapy and external beam radiation therapy. Brachytherapy. 2023; 22(3): 389-399.

[248]

Vincent AG, Barker JL Jr, Ducic Y. Pilot study of external beam radiotherapy for recurrent unremitting tracheal stenosis. Ann Otol Rhinol Laryngol. 2021; 130(10): 1112-1115.

[249]

Yang D, Chen X, Wang J, et al. Dysregulated lung commensal bacteria drive interleukin-17B production to promote pulmonary fibrosis through their outer membrane vesicles. Immunity. 2019; 50(3): 692-706.e7.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

270

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/