Vascular endothelial cell injury: causes, molecular mechanisms, and treatments

Tian Xia , Jiachi Yu , Meng Du , Ximeng Chen , Chengbin Wang , Ruibing Li

MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70057

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (2) : e70057 DOI: 10.1002/mco2.70057
REVIEW

Vascular endothelial cell injury: causes, molecular mechanisms, and treatments

Author information +
History +
PDF

Abstract

Vascular endothelial cells form a single layer of flat cells that line the inner surface of blood vessels, extending from large vessels to the microvasculature of various organs. These cells are crucial metabolic and endocrine components of the body, playing vital roles in maintaining circulatory stability, regulating vascular tone, and preventing coagulation and thrombosis. Endothelial cell injury is regarded as a pivotal initiating factor in the pathogenesis of various diseases, triggered by multiple factors, including infection, inflammation, and hemodynamic changes, which significantly compromise vascular integrity and function. This review examines the causes, underlying molecular mechanisms, and potential therapeutic approaches for endothelial cell injury, focusing specifically on endothelial damage in cardiac ischemia/reperfusion (I/R) injury, sepsis, and diabetes. It delves into the intricate signaling pathways involved in endothelial cell injury, emphasizing the roles of oxidative stress, mitochondrial dysfunction, inflammatory mediators, and barrier damage. Current treatment strategies—ranging from pharmacological interventions to regenerative approaches and lifestyle modifications—face ongoing challenges and limitations. Overall, this review highlights the importance of understanding endothelial cell injury within the context of various diseases and the necessity for innovative therapeutic methods to improve patient outcomes.

Keywords

cardiac I/R injury / diabetic vascular injury / endothelial cell / sepsis

Cite this article

Download citation ▾
Tian Xia, Jiachi Yu, Meng Du, Ximeng Chen, Chengbin Wang, Ruibing Li. Vascular endothelial cell injury: causes, molecular mechanisms, and treatments. MedComm, 2025, 6(2): e70057 DOI:10.1002/mco2.70057

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Vestweber D. Relevance of endothelial junctions in leukocyte extravasation and vascular permeability. Ann N Y Acad Sci. 2012; 1257: 184-192.

[2]

Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006; 86(1): 279-367.

[3]

Schmithals C, Kakoschky B, Denk D, et al. Tumour-specific activation of a tumour-blood transport improves the diagnostic accuracy of blood tumour markers in mice. EBioMedicine. 2024; 105: 105178.

[4]

Rodenburg WS, van Buul JD. Rho GTPase signalling networks in cancer cell transendothelial migration. Vasc Biol. 2021; 3(1): R77-R95.

[5]

Vane JR, Anggård EE, Botting RM. Regulatory functions of the vascular endothelium. N Engl J Med. 1990; 323(1): 27-36.

[6]

Li YSJ, Haga JH, Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 2005; 38(10): 1949-1971.

[7]

Daiber A, Steven S, Weber A, et al. Targeting vascular (endothelial) dysfunction. Br J Pharmacol. 2017; 174(12): 1591-1619.

[8]

Zheng D, Liu J, Piao H, Zhu Z, Wei R, Liu K. ROS-triggered endothelial cell death mechanisms: focus on pyroptosis, parthanatos, and ferroptosis. Front Immunol. 2022; 13: 1039241.

[9]

Sun D, Wang J, Toan S, et al. Molecular mechanisms of coronary microvascular endothelial dysfunction in diabetes mellitus: focus on mitochondrial quality surveillance. Angiogenesis. 2022; 25(3): 307-329.

[10]

Wang W, Deng M, Liu X, Ai W, Tang Q, Hu J. TLR4 activation induces nontolerant inflammatory response in endothelial cells. Inflammation. 2011; 34(6): 509-518.

[11]

Ivanovski N, Wang H, Tran H, et al. L-citrulline attenuates lipopolysaccharide-induced inflammatory lung injury in neonatal rats. Pediatr Res. 2023; 94: 1684-1695. Published online June 22, 2023.

[12]

Xia W, Pan Z, Zhang H, Zhou Q, Liu Y. Inhibition of ERRα aggravates sepsis-induced acute lung injury in rats via provoking inflammation and oxidative stress. Oxid Med Cell Longev. 2020; 2020: 2048632.

[13]

Mera S, Tatulescu D, Cismaru C, et al. Multiplex cytokine profiling in patients with sepsis. APMIS. 2011; 119(2): 155-163.

[14]

Weinbaum S, Zhang X, Han Y, Vink H, Cowin SC. Mechanotransduction and flow across the endothelial glycocalyx. Proc Natl Acad Sci USA. 2003; 100(13): 7988-7995.

[15]

Jalali S, del Pozo MA, Chen K, et al. Integrin-mediated mechanotransduction requires its dynamic interaction with specific extracellular matrix (ECM) ligands. Proc Natl Acad Sci USA. 2001; 98(3): 1042-1046.

[16]

Liu Y, Chen BPC, Lu M, et al. Shear stress activation of SREBP1 in endothelial cells is mediated by integrins. Arterioscler Thromb Vasc Biol. 2002; 22(1): 76-81.

[17]

Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev. 2023; 103(2): 1247-1421.

[18]

Butler PJ, Tsou TC, Li JYS, Usami S, Chien S. Rate sensitivity of shear-induced changes in the lateral diffusion of endothelial cell membrane lipids: a role for membrane perturbation in shear-induced MAPK activation. FASEB J. 2002; 16(2): 216-218.

[19]

Nilius B, Droogmans G. Ion channels and their functional role in vascular endothelium. Physiol Rev. 2001; 81(4): 1415-1459.

[20]

Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med. 2009; 6(1): 16-26.

[21]

Tzima E, Irani-Tehrani M, Kiosses WB, et al. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature. 2005; 437(7057): 426-431.

[22]

Jacobsen JCB, Hornbech MS, Holstein-Rathlou NH. Significance of microvascular remodelling for the vascular flow reserve in hypertension. Interface Focus. 2011; 1(1): 117-131.

[23]

Rudström H, Bergqvist D, Björck M. Iatrogenic vascular injuries with lethal outcome. World J Surg. 2013; 37(8): 1981-1987.

[24]

Glaser JD, Kalapatapu VR. Endovascular therapy of vascular trauma-current options and review of the literature. Vasc Endovascular Surg. 2019; 53(6): 477-487.

[25]

Delaney G, Jacob S, Featherstone C, Barton M. The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer. 2005; 104(6): 1129-1137.

[26]

Flamant S, Tamarat R. Extracellular vesicles and vascular injury: new insights for radiation exposure. Radiat Res. 2016; 186(2): 203-218.

[27]

Chen F, Shen M, Zeng D, et al. Effect of radiation-induced endothelial cell injury on platelet regeneration by megakaryocytes. J Radiat Res. 2017; 58(4): 456-463.

[28]

Berwick ZC, Dick GM, Tune JD. Heart of the matter: coronary dysfunction in metabolic syndrome. J Mol Cell Cardiol. 2012; 52(4): 848-856.

[29]

Wu H, Liu M, Chi VTQ, et al. Handgrip strength is inversely associated with metabolic syndrome and its separate components in middle aged and older adults: a large-scale population-based study. Metabolism. 2019; 93: 61-67.

[30]

Pucci G, Alcidi R, Tap L, Battista F, Mattace-Raso F, Schillaci G. Sex-and gender-related prevalence, cardiovascular risk and therapeutic approach in metabolic syndrome: a review of the literature. Pharmacol Res. 2017; 120: 34-42.

[31]

Wijnen M, Olsson DS, van den Heuvel-Eibrink MM, et al. The metabolic syndrome and its components in 178 patients treated for craniopharyngioma after 16 years of follow-up. Eur J Endocrinol. 2018; 178(1): 11-22.

[32]

Dow CA, Lincenberg GM, Greiner JJ, Stauffer BL, DeSouza CA. Endothelial vasodilator function in normal-weight adults with metabolic syndrome. Appl Physiol Nutr Metab. 2016; 41(10): 1013-1017.

[33]

Xu Y. Transcriptional regulation of endothelial dysfunction in atherosclerosis: an epigenetic perspective. J Biomed Res. 2014; 28(1): 47-52.

[34]

Stern MP, Williams K, González-Villalpando C, Hunt KJ, Haffner SM. Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care. 2004; 27(11): 2676-2681. [published correction appears in Diabetes Care. 2005 Jan;28(1):238].

[35]

Yan LJ. Redox imbalance stress in diabetes mellitus: role of the polyol pathway. Animal Model Exp Med. 2018; 1(1): 7-13.

[36]

Tiwari AK, Kumar DA, Sweeya PS, et al. Vegetables’ juice influences polyol pathway by multiple mechanisms in favour of reducing development of oxidative stress and resultant diabetic complications. Pharmacogn Mag. 2014; 10(Suppl 2): S383-S391.

[37]

Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature. 2001; 414(6865): 813-820.

[38]

Luo X, Wu J, Jing S, Yan LJ. Hyperglycemic stress and carbon stress in diabetic glucotoxicity. Aging Dis. 2016; 7(1): 90-110. Published 2016 Jan 2.

[39]

Ishibashi Y, Matsui T, Ueda S, Fukami K, Yamagishi S. Advanced glycation end products potentiate citrated plasma-evoked oxidative and inflammatory reactions in endothelial cells by up-regulating protease-activated receptor-1 expression. Cardiovasc Diabetol. 2014; 13: 60. Published 2014 Mar 13.

[40]

Veiraiah A. Hyperglycemia, lipoprotein glycation, and vascular disease. Angiology. 2005; 56(4): 431-438.

[41]

Chawla D, Bansal S, Banerjee BD, Madhu SV, Kalra OP, Tripathi AK. Role of advanced glycation end product (AGE)-induced receptor (RAGE) expression in diabetic vascular complications. Microvasc Res. 2014; 95: 1-6.

[42]

Li Y, Chang Y, Ye N, Chen Y, Zhang N, Sun Y. Advanced glycation end productsinduced mitochondrial energy metabolism dysfunction alters proliferation of human umbilical vein endothelial cells. Mol Med Rep. 2017; 15(5): 2673-2680.

[43]

Ding Y, Vaziri ND, Coulson R, Kamanna VS, Roh DD. Effects of simulated hyperglycemia, insulin, and glucagon on endothelial nitric oxide synthase expression. Am J Physiol Endocrinol Metab. 2000; 279(1): E11-E17.

[44]

Kizub IV, Klymenko KI. Soloviev AI. Protein kinase C in enhanced vascular tone in diabetes mellitus. Int J Cardiol. 2014; 174(2): 230-242.

[45]

Kanwar YS, Wada J, Sun L, et al. Diabetic nephropathy: mechanisms of renal disease progression. Exp Biol Med (Maywood). 2008; 233(1): 4-11.

[46]

Shao B, Bayraktutan U. Hyperglycaemia promotes human brain microvascular endothelial cell apoptosis via induction of protein kinase C-ßI and prooxidant enzyme NADPH oxidase. Redox Biol. 2014; 2: 694-701. Published 2014 May 28.

[47]

Talior I, Tennenbaum T, Kuroki T, Eldar-Finkelman H. PKC-delta-dependent activation of oxidative stress in adipocytes of obese and insulin-resistant mice: role for NADPH oxidase. Am J Physiol Endocrinol Metab. 2005; 288(2): E405-E411.

[48]

Adeshara KA, Diwan AG, Tupe RS. Diabetes and complications: cellular signaling pathways, current understanding and targeted therapies. Curr Drug Targets. 2016; 17(11): 1309-1328.

[49]

Dassanayaka S, Readnower RD, Salabei JK, et al. High glucose induces mitochondrial dysfunction independently of protein O-GlcNAcylation. Biochem J. 2015; 467(1): 115-126.

[50]

Qin CX, Sleaby R, Davidoff AJ, et al. Insights into the role of maladaptive hexosamine biosynthesis and O-GlcNAcylation in development of diabetic cardiac complications. Pharmacol Res. 2017; 116: 45-56.

[51]

Sassy-Prigent C, Heudes D, Mandet C, et al. Early glomerular macrophage recruitment in streptozotocin-induced diabetic rats. Diabetes. 2000; 49(3): 466-475.

[52]

Du XL, Edelstein D, Rossetti L, et al. Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation. Proc Natl Acad Sci USA. 2000; 97(22): 12222-12226.

[53]

Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998; 339(4): 229-234.

[54]

Emerging Risk Factors Collaboration, Sarwar N, Gao P, et al, Emerging Risk Factors Collaboration. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet. 2010; 375(9733): 2215-2222. [published correction appears in Lancet. 2010 Sep 18;376(9745):958. Hillage, H L [corrected to Hillege, H L]].

[55]

Frikke-Schmidt H, Roursgaard M, Lykkesfeldt J, Loft S, Nøjgaard JK, Møller P. Effect of vitamin C and iron chelation on diesel exhaust particle and carbon black induced oxidative damage and cell adhesion molecule expression in human endothelial cells. Toxicol Lett. 2011; 203(3): 181-189.

[56]

Shi J, Sun X, Lin Y, et al. Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways. Biomaterials. 2014; 35(24): 6657-6666.

[57]

Rodríguez-Yáñez Y, Bahena-Uribe D, Chávez-Munguía B, et al. Commercial single-walled carbon nanotubes effects in fibrinolysis of human umbilical vein endothelial cells. Toxicol In Vitro. 2015; 29(5): 1201-1214.

[58]

Korneeva NV, Sirotin BZ. Microcirculatory bed, microcirculation, and smoking-associated endothelial dysfunction in young adults. Bull Exp Biol Med. 2017; 162(6): 824-828.

[59]

Oberleithner H, Kusche-Vihrog K, Schillers H. Endothelial cells as vascular salt sensors. Kidney Int. 2010; 77(6): 490-494.

[60]

Mymrikov EV, Seit-Nebi AS, Gusev NB. Large potentials of small heat shock proteins. Physiol Rev. 2011; 91(4): 1123-1159.

[61]

Searles CD, Ide L, Davis ME, Cai H, Weber M. Actin cytoskeleton organization and posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res. 2004; 95(5): 488-495.

[62]

Rafiee P, Theriot ME, Nelson VM, et al. Human esophageal microvascular endothelial cells respond to acidic pH stress by PI3K/AKT and p38 MAPK-regulated induction of Hsp70 and Hsp27. Am J Physiol Cell Physiol. 2006; 291(5): C931-C945.

[63]

Becker L, Prado K, Foppa M, et al. Endothelial dysfunction assessed by brachial artery ultrasound in severe sepsis and septic shock. J Crit Care. 2012; 27(3): 316.e9-316.e3.16E14.

[64]

Bergholm R, Leirisalo-Repo M, Vehkavaara S, Mäkimattila S, Taskinen MR, Yki-Järvinen H. Impaired responsiveness to NO in newly diagnosed patients with rheumatoid arthritis. Arterioscler Thromb Vasc Biol. 2002; 22(10): 1637-1641.

[65]

Hänsel S, Lässig G, Pistrosch F, Passauer J. Endothelial dysfunction in young patients with long-term rheumatoid arthritis and low disease activity. Atherosclerosis. 2003; 170(1): 177-180.

[66]

Henry RM, Ferreira I, Kostense PJ, et al. Type 2 diabetes is associated with impaired endothelium-dependent, flow-mediated dilation, but impaired glucose metabolism is not; The Hoorn Study. Atherosclerosis. 2004; 174(1): 49-56.

[67]

Libby P. Inflammation in atherosclerosis. Nature. 2002; 420(6917): 868-874.

[68]

Wenzel P, Knorr M, Kossmann S, et al. Lysozyme M-positive monocytes mediate angiotensin II-induced arterial hypertension and vascular dysfunction. Circulation. 2011; 124(12): 1370-1381.

[69]

Winn RK, Harlan JM. The role of endothelial cell apoptosis in inflammatory and immune diseases. J Thromb Haemost. 2005; 3(8): 1815-1824.

[70]

Wang Z, Li J, Cho J, Malik AB. Prevention of vascular inflammation by nanoparticle targeting of adherent neutrophils. Nat Nanotechnol. 2014; 9(3): 204-210.

[71]

Ait-Oufella H, Maury E, Lehoux S, Guidet B, Offenstadt G. The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med. 2010; 36(8): 1286-1298.

[72]

Salvador B, Arranz A, Francisco S, et al. Modulation of endothelial function by Toll like receptors. Pharmacol Res. 2016; 108: 46-56.

[73]

Khakpour S, Wilhelmsen K, Hellman J. Vascular endothelial cell Toll-like receptor pathways in sepsis. Innate Immun. 2015; 21(8): 827-846.

[74]

Fu J, Wu H. Structural mechanisms of NLRP3 inflammasome assembly and activation. Annu Rev Immunol. 2023; 41: 301-316.

[75]

Toldo S, Mezzaroma E, Buckley LF, et al. Targeting the NLRP3 inflammasome in cardiovascular diseases. Pharmacol Ther. 2022; 236: 108053.

[76]

Shen Q, Wu MH, Yuan SY. Endothelial contractile cytoskeleton and microvascular permeability. Cell Health Cytoskelet. 2009; 2009(1): 43-50.

[77]

Li Q, Zhang Q, Wang M, et al. Interferon-gamma and tumor necrosis factor-alpha disrupt epithelial barrier function by altering lipid composition in membrane microdomains of tight junction. Clin Immunol. 2008; 126(1): 67-80.

[78]

Xiao H, Lu M, Lin TY, et al. Sterol regulatory element binding protein 2 activation of NLRP3 inflammasome in endothelium mediates hemodynamic-induced atherosclerosis susceptibility. Circulation. 2013; 128(6): 632-642.

[79]

Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol. 2006; 47(8 Suppl): C7-C12.

[80]

Alique M, Luna C, Carracedo J, Ramírez R. LDL biochemical modifications: a link between atherosclerosis and aging. Food Nutr Res. 2015; 59: 29240. Published 2015 Dec 3.

[81]

Hung CH, Chan SH, Chu PM, Tsai KL. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol Nutr Food Res. 2015; 59(10): 1905-1917.

[82]

Gimbrone MA Jr, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016; 118(4): 620-636.

[83]

Wadley AJ, Veldhuijzen van Zanten JJ, Aldred S. The interactions of oxidative stress and inflammation with vascular dysfunction in ageing: the vascular health triad. Age (Dordr). 2013; 35(3): 705-718.

[84]

Farber G, Parks MM, Lustgarten Guahmich N, et al. ADAM10 controls the differentiation of the coronary arterial endothelium. Angiogenesis. 2019; 22(2): 237-250.

[85]

Montoya-Zegarra JA, Russo E, Runge P, et al. AutoTube: a novel software for the automated morphometric analysis of vascular networks in tissues. Angiogenesis. 2019; 22(2): 223-236.

[86]

Rusnati M, Borsotti P, Moroni E, et al. The calcium-binding type III repeats domain of thrombospondin-2 binds to fibroblast growth factor 2 (FGF2). Angiogenesis. 2019; 22(1): 133-144.

[87]

de Breda CN S, Davanzo GG, Basso PJ, Saraiva Câmara NO, Moraes-Vieira PMM. Mitochondria as central hub of the immune system. Redox Biol. 2019; 26: 101255.

[88]

Mitchell T, Chacko B, Ballinger SW, Bailey SM, Zhang J, Darley-Usmar V. Convergent mechanisms for dysregulation of mitochondrial quality control in metabolic disease: implications for mitochondrial therapeutics. Biochem Soc Trans. 2013; 41(1): 127-133.

[89]

Zhou XL, Wu X, Xu QR, et al. Notch1 provides myocardial protection by improving mitochondrial quality control. J Cell Physiol. 2019; 234(7): 11835-11841.

[90]

Forini F, Nicolini G, Kusmic C, Iervasi G. Protective effects of euthyroidism restoration on mitochondria function and quality control in cardiac pathophysiology. Int J Mol Sci. 2019; 20(14): 3377.

[91]

Yellon DM, He Z, Khambata R, Ahluwalia A, Davidson SM. The GTN patch: a simple and effective new approach to cardioprotection? Basic Res Cardiol. 2018; 113(3): 20.

[92]

Zhang C, Shi Z, Zhang L, et al. Appoptosin interacts with mitochondrial outer-membrane fusion proteins and regulates mitochondrial morphology. J Cell Sci. 2016; 129(5): 994-1002.

[93]

Mughal W, Martens M, Field J, et al. Myocardin regulates mitochondrial calcium homeostasis and prevents permeability transition. Cell Death Differ. 2018; 25(10): 1732-1748.

[94]

Wider J, Undyala VVR, Whittaker P, Woods J, Chen X, Przyklenk K. Remote ischemic preconditioning fails to reduce infarct size in the Zucker fatty rat model of type-2 diabetes: role of defective humoral communication. Basic Res Cardiol. 2018; 113(3): 16.

[95]

Scarpelli PH, Tessarin-Almeida G, Viçoso KL, et al. Melatonin activates FIS1, DYN1, and DYN2 Plasmodium falciparum related-genes for mitochondria fission: mitoemerald-GFP as a tool to visualize mitochondria structure. J Pineal Res. 2019; 66(2): e12484.

[96]

Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology. 2017; 391: 42-53.

[97]

Park M, Sandner P, Krieg T. cGMP at the centre of attention: emerging strategies for activating the cardioprotective PKG pathway. Basic Res Cardiol. 2018; 113(4): 24.

[98]

Cohen MM, Tareste D. Recent insights into the structure and function of Mitofusins in mitochondrial fusion. F1000Res. 2018; 7: F1000. Faculty Rev-1983. Published 2018 Dec 28.

[99]

Morales PE, Arias-Durán C, Ávalos-Guajardo Y, et al. Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med. 2020; 71: 100822.

[100]

Cadete VJJ, Vasam G, Menzies KJ, Burelle Y. Mitochondrial quality control in the cardiac system: an integrative view. Biochim Biophys Acta Mol Basis Dis. 2019; 1865(4): 782-796.

[101]

Ma ZG, Dai J, Yuan YP, et al. T-bet deficiency attenuates cardiac remodelling in rats. Basic Res Cardiol. 2018; 113(3): 19.

[102]

Venugopal S, Kao C, Chandna R, et al. Angio-3, a 10-residue peptide derived from human plasminogen kringle 3, suppresses tumor growth in mice via impeding both angiogenesis and vascular permeability. Angiogenesis. 2018; 21(3): 653-665.

[103]

Lochner A, Marais E, Huisamen B. Melatonin and cardioprotection against ischaemia/reperfusion injury: what’s new? A review. J Pineal Res. 2018; 65(1): e12490.

[104]

Tatullo M, Makeeva I, Rengo S, Rengo C, Spagnuolo G, Codispoti B. Small molecule GSK-3 antagonists play a pivotal role in reducing the local inflammatory response, in promoting resident stem cell activation and in improving tissue repairing in regenerative dentistry. Histol Histopathol. 2019; 34(11): 1195-1203.

[105]

Skoda J, Borankova K, Jansson PJ, Huang MLH, Veselska R, Richardson DR. Pharmacological targeting of mitochondria in cancer stem cells: an ancient organelle at the crossroad of novel anti-cancer therapies. Pharmacol Res. 2019; 139: 298-313.

[106]

Tahrir FG, Langford D, Amini S, Mohseni Ahooyi T, Khalili K. Mitochondrial quality control in cardiac cells: mechanisms and role in cardiac cell injury and disease. J Cell Physiol. 2019; 234(6): 8122-8133.

[107]

Jin Q, Li R, Hu N, et al. DUSP1 alleviates cardiac ischemia/reperfusion injury by suppressing the Mff-required mitochondrial fission and Bnip3-related mitophagy via the JNK pathways. Redox Biol. 2018; 14: 576-587.

[108]

Lin Q, Li S, Jiang N, et al. PINK1-parkin pathway of mitophagy protects against contrast-induced acute kidney injury via decreasing mitochondrial ROS and NLRP3 inflammasome activation. Redox Biol. 2019; 26: 101254.

[109]

Wang J, Zhu P, Li R, Ren J, Zhou H. Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission. Redox Biol. 2020; 30: 101415.

[110]

Li R, Xin T, Li D, Wang C, Zhu H, Zhou H. Therapeutic effect of Sirtuin 3 on ameliorating nonalcoholic fatty liver disease: the role of the ERK-CREB pathway and Bnip3-mediated mitophagy. Redox Biol. 2018; 18: 229-243.

[111]

Liu L, Feng D, Chen G, et al. Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol. 2012; 14(2): 177-185. Published 2012 Jan 22.

[112]

Dorn GW 2nd, Vega RB, Kelly DP. Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev. 2015; 29(19): 1981-1991.

[113]

Hood DA, Irrcher I, Ljubicic V, Joseph AM. Coordination of metabolic plasticity in skeletal muscle. J Exp Biol. 2006; 209(Pt 12): 2265-2275.

[114]

Ali F, Ali NS, Bauer A, et al. PPARdelta and PGC1alpha act cooperatively to induce haem oxygenase-1 and enhance vascular endothelial cell resistance to stress. Cardiovasc Res. 2010; 85(4): 701-710.

[115]

Wang J, Zhu P, Li R, Ren J, Zhang Y, Zhou H. Bax inhibitor 1 preserves mitochondrial homeostasis in acute kidney injury through promoting mitochondrial retention of PHB2. Theranostics. 2020; 10(1): 384-397. Published 2020 Jan 1.

[116]

Wang J, Zhu P, Toan S, Li R, Ren J, Zhou H. Pum2-Mff axis fine-tunes mitochondrial quality control in acute ischemic kidney injury. Cell Biol Toxicol. 2020; 36(4): 365-378. [published correction appears in Cell Biol Toxicol. 2024 Jun 13;40(1):46. do i:10 .1007/s10565-024-09886-1].

[117]

Chapman J, Ng YS, Nicholls TJ. The maintenance of mitochondrial DNA integrity and dynamics by mitochondrial membranes. Life (Basel). 2020; 10(9): 164. Published 2020 Aug 26.

[118]

Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis. 2020; 23(3): 299-314.

[119]

Nedel W, Deutschendorf C, Portela LVC. Sepsis-induced mitochondrial dysfunction: a narrative review. World J Crit Care Med. 2023; 12(3): 139-152. Published 2023 Jun 9.

[120]

Emin MT, Lee MJ, Bhattacharya J, Hough RF. Mitochondria of lung venular capillaries mediate lung-liver cross talk in pneumonia. Am J Physiol Lung Cell Mol Physiol. 2023; 325(3): L277-L287.

[121]

Kumar S, Sun X, Noonepalle SK, et al. Hyper-activation of pp60Src limits nitric oxide signaling by increasing asymmetric dimethylarginine levels during acute lung injury. Free Radic Biol Med. 2017; 102: 217-228.

[122]

Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006; 113(13): 1708-1714.

[123]

Luo S, Lei H, Qin H, Xia Y. Molecular mechanisms of endothelial NO synthase uncoupling. Curr Pharm Des. 2014; 20(22): 3548-3553.

[124]

Apostolova N, Garcia-Bou R, Hernandez-Mijares A, Herance R, Rocha M, Victor VM. Mitochondrial antioxidants alleviate oxidative and nitrosative stress in a cellular model of sepsis. Pharm Res. 2011; 28(11): 2910-2919.

[125]

Li X, Liang Y, Zhang X, Ma X. [Unfractionated heparin ameliorates lipopolysaccharide induced expressions of nitric oxide and reactive oxygen species in renal microvascular endothelial cells]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2018; 30(5): 405-408.

[126]

Gu ZY, Ling YL, Xu XH, Zhu TN, Cong B. [Endogenous peroxynitrite mediates lipopolysaccharide-induced injury in cultured pulmonary artery endothelial cells]. Sheng Li Xue Bao. 2003; 55(4): 475-480.

[127]

Tabassum R, Jeong NY. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. Int J Med Sci. 2019; 16(10): 1386-1396.

[128]

Song X, Li T. Ripk3 mediates cardiomyocyte necrosis through targeting mitochondria and the JNK-Bnip3 pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res. 2019; 39(4): 331-340.

[129]

Upadhyay KK, Jadeja RN, Vyas HS, et al. Carbon monoxide releasing molecule-A1 improves nonalcoholic steatohepatitis via Nrf2 activation mediated improvement in oxidative stress and mitochondrial function. Redox Biol. 2020; 28: 101314.

[130]

Damico R, Zulueta JJ, Hassoun PM. Pulmonary endothelial cell NOX. Am J Respir Cell Mol Biol. 2012; 47(2): 129-139.

[131]

Mai J, Virtue A, Shen J, Wang H, Yang XF. An evolving new paradigm: endothelial cells–conditional innate immune cells. J Hematol Oncol. 2013; 6: 61. Published 2013 Aug 22.

[132]

Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev. 2009; 229(1): 173-191.

[133]

Rodríguez-Iturbe B, Pons H, Quiroz Y, Lanaspa MA, Johnson RJ. Autoimmunity in the pathogenesis of hypertension. Nat Rev Nephrol. 2014; 10(1): 56-62.

[134]

Segel GB, Halterman MW, Lichtman MA. The paradox of the neutrophil’s role in tissue injury. J Leukoc Biol. 2011; 89(3): 359-372.

[135]

Liu D, Perkins JT, Petriello MC, Hennig B. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-κB subunit p65. Toxicol Appl Pharmacol. 2015; 289(3): 457-465.

[136]

Cai J, Wen J, Bauer E, Zhong H, Yuan H, Chen AF. The role of HMGB1 in cardiovascular biology: danger signals. Antioxid Redox Signal. 2015; 23(17): 1351-1369.

[137]

Bauer EM, Shapiro R, Billiar TR, Bauer PM. High mobility group Box 1 inhibits human pulmonary artery endothelial cell migration via a Toll-like receptor 4-and interferon response factor 3-dependent mechanism(s). J Biol Chem. 2013; 288(2): 1365-1373.

[138]

Schroder K, Tschopp J. The inflammasomes. Cell. 2010; 140(6): 821-832.

[139]

Tselios K, Sarantopoulos A, Gkougkourelas I, Boura P. T regulatory cells: a promising new target in atherosclerosis. Crit Rev Immunol. 2014; 34(5): 389-397.

[140]

Pastrana JL, Sha X, Virtue A, et al. Regulatory T cells and atherosclerosis. J Clin Exp Cardiolog. 2012; 2012(Suppl 12): 2.

[141]

Charreau B. Molecular regulation of endothelial cell activation: novel mechanisms and emerging targets. Curr Opin Organ Transplant. 2011; 16(2): 207-213.

[142]

Hirase T, Node K. Endothelial dysfunction as a cellular mechanism for vascular failure. Am J Physiol Heart Circ Physiol. 2012; 302(3): H499-H505.

[143]

Tarbell JM, Pahakis MY. Mechanotransduction and the glycocalyx. J Intern Med. 2006; 259(4): 339-350.

[144]

Koo A, Dewey CF Jr, García-Cardeña G. Hemodynamic shear stress characteristic of atherosclerosis-resistant regions promotes glycocalyx formation in cultured endothelial cells. Am J Physiol Cell Physiol. 2013; 304(2): C137-C146.

[145]

Gavard J. Endothelial permeability and VE-cadherin: a wacky comradeship. Cell Adh Migr. 2014; 8(2): 158-164.

[146]

Rho SS, Ando K, Fukuhara S. Dynamic regulation of vascular permeability by vascular endothelial cadherin-mediated endothelial cell-cell junctions. J Nippon Med Sch. 2017; 84(4): 148-159.

[147]

Rahbar E, Cardenas JC, Baimukanova G, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients. J Transl Med. 2015; 13: 117. Published 2015 Apr 12.

[148]

Annecke T, Fischer J, Hartmann H, et al. Shedding of the coronary endothelial glycocalyx: effects of hypoxia/reoxygenation vs ischaemia/reperfusion. Br J Anaesth. 2011; 107(5): 679-686.

[149]

Mulivor AW, Lipowsky HH. Inflammation-and ischemia-induced shedding of venular glycocalyx. Am J Physiol Heart Circ Physiol. 2004; 286(5): H1672-H1680.

[150]

Chappell D, Jacob M, Hofmann-Kiefer K, et al. Antithrombin reduces shedding of the endothelial glycocalyx following ischaemia/reperfusion. Cardiovasc Res. 2009; 83(2): 388-396.

[151]

Becker BF, Chappell D, Bruegger D, Annecke T, Jacob M. Therapeutic strategies targeting the endothelial glycocalyx: acute deficits, but great potential. Cardiovasc Res. 2010; 87(2): 300-310.

[152]

Goddard LM, Iruela-Arispe ML. Cellular and molecular regulation of vascular permeability. Thromb Haemost. 2013; 109(3): 407-415.

[153]

García-Ponce A, Citalán-Madrid AF, Velázquez-Avila M, Vargas-Robles H, Schnoor M. The role of actin-binding proteins in the control of endothelial barrier integrity. Thromb Haemost. 2015; 113(1): 20-36.

[154]

Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev. 2004; 84(3): 869-901.

[155]

Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal. 2020; 66: 109485.

[156]

Cong X, Zhang Y, He QH, et al. Endothelial tight junctions are opened in cholinergic-evoked salivation in vivo. J Dent Res. 2017; 96(5): 562-570.

[157]

Stamatovic SM, Keep RF, Wang MM, Jankovic I, Andjelkovic AV. Caveolae-mediated internalization of occludin and claudin-5 during CCL2-induced tight junction remodeling in brain endothelial cells. J Biol Chem. 2009; 284(28): 19053-19066.

[158]

Hartsock A, Nelson WJ. Adherens and tight junctions: structure, function and connections to the actin cytoskeleton. Biochim Biophys Acta. 2008; 1778(3): 660-669.

[159]

Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007; 357(11): 1121-1135.

[160]

Zhao J, Gao JL, Zhu JX, et al. The different response of cardiomyocytes and cardiac fibroblasts to mitochondria inhibition and the underlying role of STAT3. Basic Res Cardiol. 2019; 114(2): 12. Published 2019 Feb 14.

[161]

Zhou H, Ma Q, Zhu P, Ren J, Reiter RJ, Chen Y. Protective role of melatonin in cardiac ischemia-reperfusion injury: from pathogenesis to targeted therapy. J Pineal Res. 2018; 64(3).

[162]

Ren J, Zhang Y. Editorial: new therapetic approaches in the management of ischemia reperfusion injury and cardiometabolic diseases: opportunities and challenges. Curr Drug Targets. 2017; 18(15): 1687-1688.

[163]

Singhal AK, Symons JD, Boudina S, Jaishy B, Shiu YT. Role of endothelial cells in myocardial ischemia-reperfusion injury. Vasc Dis Prev. 2010; 7: 1-14.

[164]

Tsao PS, Aoki N, Lefer DJ, Johnson G 3rd, Lefer AM. Time course of endothelial dysfunction and myocardial injury during myocardial ischemia and reperfusion in the cat. Circulation. 1990; 82(4): 1402-1412.

[165]

Brutsaert DL. Cardiac endothelial-myocardial signaling: its role in cardiac growth, contractile performance, and rhythmicity. Physiol Rev. 2003; 83(1): 59-115.

[166]

Zhang HF, Wang YL, Tan YZ, Wang HJ, Tao P, Zhou P. Enhancement of cardiac lymphangiogenesis by transplantation of CD34+VEGFR-3+ endothelial progenitor cells and sustained release of VEGF-C. Basic Res Cardiol. 2019; 114(6): 43. Published 2019 Oct 6.

[167]

Brosh D, Assali AR, Mager A, et al. Effect of no-reflow during primary percutaneous coronary intervention for acute myocardial infarction on six-month mortality. Am J Cardiol. 2007; 99(4): 442-445.

[168]

Gabr MA, Jing L, Helbling AR, et al. Interleukin-17 synergizes with IFNγ or TNFα to promote inflammatory mediator release and intercellular adhesion molecule-1 (ICAM-1) expression in human intervertebral disc cells. J Orthop Res. 2011; 29(1): 1-7.

[169]

Park SJ, Lee YC. Interleukin-17 regulation: an attractive therapeutic approach for asthma. Respir Res. 2010; 11(1): 78. Published 2010 Jun 16.

[170]

Wang J, Chen Y, Yang Y, et al. Endothelial progenitor cells and neural progenitor cells synergistically protect cerebral endothelial cells from hypoxia/reoxygenation-induced injury via activating the PI3K/Akt pathway. Mol Brain. 2016; 9: 12. Published 2016 Feb 3.

[171]

Lu S, Zhang Y, Zhong S, et al. N-n-butyl haloperidol iodide protects against hypoxia/reoxygenation injury in cardiac microvascular endothelial cells by regulating the ROS/MAPK/Egr-1 pathway. Front Pharmacol. 2017; 7: 520. Published 2017 Jan 5.

[172]

Jaffe R, Dick A, Strauss BH. Prevention and treatment of microvascular obstruction-related myocardial injury and coronary no-reflow following percutaneous coronary intervention: a systematic approach. JACC Cardiovasc Interv. 2010; 3(7): 695-704.

[173]

Tousoulis D, Charakida M, Stefanadis C. Endothelial function and inflammation in coronary artery disease. Postgrad Med J. 2008; 84(993): 368-371.

[174]

Han Y, Liao X, Gao Z, et al. Cardiac troponin I exacerbates myocardial ischaemia/reperfusion injury by inducing the adhesion of monocytes to vascular endothelial cells via a TLR4/NF-κB-dependent pathway. Clin Sci (Lond). 2016; 130(24): 2279-2293.

[175]

Qiao S, Zhang W, Yin Y, et al. Extracellular vesicles derived from Krüppel-Like Factor 2-overexpressing endothelial cells attenuate myocardial ischemia-reperfusion injury by preventing Ly6Chigh monocyte recruitment. Theranostics. 2020; 10(25): 11562-11579. Published 2020 Sep 18.

[176]

Li WZ, Yang Y, Liu K, et al. FGL2 prothrombinase contributes to the early stage of coronary microvascular obstruction through a fibrin-dependent pathway. Int J Cardiol. 2019; 274: 27-34.

[177]

Liu S, Ai Q, Feng K, Li Y, Liu X. The cardioprotective effect of dihydromyricetin prevents ischemia-reperfusion-induced apoptosis in vivo and in vitro via the PI3K/Akt and HIF-1α signaling pathways. Apoptosis. 2016; 21(12): 1366-1385.

[178]

Huang S, Chen M, Yu H, Lin K, Guo Y, Zhu P. Coexpression of tissue kallikrein 1 and tissue inhibitor of matrix metalloproteinase 1 improves myocardial ischemiareperfusion injury by promoting angiogenesis and inhibiting oxidative stress. Mol Med Rep. 2021; 23(2): 166.

[179]

Zou R, Shi W, Qiu J, et al. Empagliflozin attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial homeostasis. Cardiovasc Diabetol. 2022; 21(1): 106.

[180]

Wang J, Toan S, Zhou H. Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury: new insights into the mechanisms and therapeutic potentials. Pharmacol Res. 2020; 156: 104771.

[181]

Li W, Chen H, Zhu X, Lin M. LncRNA-TUG1: implications in the myocardial and endothelial cell oxidative stress injury caused by hemorrhagic shock and fluid resuscitation. Front Biosci (Landmark Ed). 2024; 29(11): 376.

[182]

Zhang X, Gao YP, Dong WS, et al. FNDC4 alleviates cardiac ischemia/reperfusion injury through facilitating HIF1α-dependent cardiomyocyte survival and angiogenesis in male mice. Nat Commun. 2024; 15(1): 9667.

[183]

Duan Y, Li Q, Wu J, et al. A detrimental role of endothelial S1PR2 in cardiac ischemia-reperfusion injury via modulating mitochondrial dysfunction, NLRP3 inflammasome activation, and pyroptosis. Redox Biol. 2024; 75: 103244.

[184]

Lei D, Li B, Isa Z, Ma X, Zhang B. Hypoxia-elicited cardiac microvascular endothelial cell-derived exosomal miR-210-3p alleviate hypoxia/reoxygenation-induced myocardial cell injury through inhibiting transferrin receptor 1-mediated ferroptosis. Tissue Cell. 2022; 79: 101956.

[185]

Zhang B, Liu G, Huang B, et al. KDM3A attenuates myocardial ischemic and reperfusion injury by ameliorating cardiac microvascular endothelial cell pyroptosis. Oxid Med Cell Longev. 2022; 2022: 4622520.

[186]

Lelubre C, Vincent JL. Mechanisms and treatment of organ failure in sepsis. Nat Rev Nephrol. 2018; 14(7): 417-427.

[187]

Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute critical illness—a unifying pathophysiologic mechanism. Crit Care. 2017; 21(1): 25. [published correction appears in Crit Care. 2017 Jul 13;21(1):187. d oi:1 0.1186/s13054-017-1756-4]. Published 2017 Feb 9.

[188]

Whitney JE, Zhang B, Koterba N, et al. Systemic endothelial activation is associated with early acute respiratory distress syndrome in children with extrapulmonary sepsis. Crit Care Med. 2020; 48(3): 344-352.

[189]

Whitney JE, Feng R, Koterba N, et al. Endothelial biomarkers are associated with indirect lung injury in sepsis-associated pediatric acute respiratory distress syndrome. Crit Care Explor. 2020; 2(12): e0295.

[190]

Holowaychuk MK, Birkenheuer AJ, Li J, Marr H, Boll A, Nordone SK. Hypocalcemia and hypovitaminosis D in dogs with induced endotoxemia. J Vet Intern Med. 2012; 26(2): 244-251.

[191]

di Filippo L, Allora A, Locatelli M, et al. Hypocalcemia in COVID-19 is associated with low vitamin D levels and impaired compensatory PTH response. Endocrine. 2021; 74(2): 219-225.

[192]

Fang Y, Li C, Shao R, Yu H, Zhang Q. The role of biomarkers of endothelial activation in predicting morbidity and mortality in patients with severe sepsis and septic shock in intensive care: a prospective observational study. Thromb Res. 2018; 171: 149-154.

[193]

Kolářová H, Ambrůzová B, Svihálková Šindlerová L, Klinke A, Kubala L. Modulation of endothelial glycocalyx structure under inflammatory conditions. Mediators Inflamm. 2014; 2014: 694312.

[194]

Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med. 2012; 18(8): 1217-1223.

[195]

Chappell D, Jacob M, Rehm M, et al. Heparinase selectively sheds heparan sulphate from the endothelial glycocalyx. Biol Chem. 2008; 389(1): 79-82.

[196]

Garsen M, Rops AL, Rabelink TJ, Berden JH, van der Vlag J. The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrol Dial Transplant. 2014; 29(1): 49-55.

[197]

Lipowsky HH. The endothelial glycocalyx as a barrier to leukocyte adhesion and its mediation by extracellular proteases. Ann Biomed Eng. 2012; 40(4): 840-848.

[198]

Fitzgerald ML, Wang Z, Park PW, Murphy G, Bernfield M. Shedding of syndecan-1 and -4 ectodomains is regulated by multiple signaling pathways and mediated by a TIMP-3-sensitive metalloproteinase. J Cell Biol. 2000; 148(4): 811-824.

[199]

Zeng Y, Adamson RH, Curry FRE, Tarbell JM. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol. 2014; 306(3): H363-H372.

[200]

Cui N, Wang H, Long Y, Su L, Liu D. Dexamethasone suppressed LPS-induced matrix metalloproteinase and its effect on endothelial glycocalyx shedding. Mediators Inflamm. 2015; 2015: 912726.

[201]

Potter DR, Jiang J, Damiano ER. The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro. Circ Res. 2009; 104(11): 1318-1325.

[202]

Verdant CL, De Backer D, Bruhn A, et al. Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med. 2009; 37(11): 2875-2881.

[203]

Sakr Y, Dubois MJ, De Backer D, Creteur J, Vincent JL. Persistent microcirculatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med. 2004; 32(9): 1825-1831.

[204]

Petitjean SJL, Chen W, Koehler M, et al. Multivalent 9-O-Acetylated-sialic acid glycoclusters as potent inhibitors for SARS-CoV-2 infection. Nat Commun. 2022; 13(1): 2564.

[205]

Gras E, Vu TTT, Nguyen NTQ, et al. Development and validation of a rabbit model of Pseudomonas aeruginosa non-ventilated pneumonia for preclinical drug development. Front Cell Infect Microbiol. 2023; 13: 1297281.

[206]

Chengye Z, Daixing Z, Qiang Z, Shusheng L. PGC-1-related coactivator (PRC) negatively regulates endothelial adhesion of monocytes via inhibition of NF κB activity. Biochem Biophys Res Commun. 2013; 439(1): 121-125.

[207]

Amalakuhan B, Habib SA, Mangat M, et al. Endothelial adhesion molecules and multiple organ failure in patients with severe sepsis. Cytokine. 2016; 88: 267-273.

[208]

Brown KA, Brain SD, Pearson JD, Edgeworth JD, Lewis SM, Treacher DF. Neutrophils in development of multiple organ failure in sepsis. Lancet. 2006; 368(9530): 157-169.

[209]

Bardoel BW, Kenny EF, Sollberger G, Zychlinsky A. The balancing act of neutrophils. Cell Host Microbe. 2014; 15(5): 526-536.

[210]

Galluzzi L, Vitale I, Aaronson SA, et al. Molecular mechanisms of cell death: recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 2018; 25(3): 486-541.

[211]

Wang S, H, Wang L, et al. [ALDH2 attenuates LPS-induced increase of brain microvascular endothelial cell permeability by promoting fusion and inhibiting fission of the mitochondria]. Nan Fang Yi Ke Da Xue Xue Bao. 2022; 42(12): 1882-1888.

[212]

She H, Hu Y, Zhou Y, et al. Protective effects of dexmedetomidine on sepsis-induced vascular leakage by alleviating ferroptosis via regulating metabolic reprogramming. J Inflamm Res. 2021; 14: 6765-6782.

[213]

She H, Zhu Y, Deng H, et al. Protective effects of dexmedetomidine on the vascular endothelial barrier function by inhibiting mitochondrial fission via ER/mitochondria contact. Front Cell Dev Biol. 2021; 9: 636327.

[214]

Luo X, Cai S, Li Y, et al. Drp-1 as potential therapeutic target for lipopolysaccharide-induced vascular hyperpermeability. Oxid Med Cell Longev. 2020; 2020: 5820245.

[215]

Kong X, Lin D, Lu L, Lin L, Zhang H, Zhang H. Apelin-13-Mediated AMPK ameliorates endothelial barrier dysfunction in acute lung injury mice via improvement of mitochondrial function and autophagy. Int Immunopharmacol. 2021; 101(Pt B):108230.

[216]

Guan H, Fang J. BMP10 knockdown modulates endothelial cell immunoreactivity by inhibiting the hif-1α pathway in the sepsis-induced myocardial injury. J Cell Mol Med. 2024; 28(22): e70232.

[217]

Jakobs P, Rafflenbeul A, Post WB, et al. The adhesion GPCR ADGRL2/LPHN2 can protect against cellular and organismal dysfunction. Cells. 2024; 13(22): 1826.

[218]

Yan C, Lin X, Guan J, et al. SIRT3 deficiency promotes lung endothelial pyroptosis through impairing mitophagy to activate NLRP3 inflammasome during sepsis-induced acute lung injury. Mol Cell Biol. 2024; 18: 1-16. Published online November.

[219]

Zhang M, Ning J, Lu Y. Apelin alleviates sepsis-induced acute lung injury in part by modulating the SIRT1/NLRP3 pathway to inhibit endothelial cell pyroptosis. Tissue Cell. 2023; 85: 102251.

[220]

Gong T, Wang QD, Loughran PA, et al. Mechanism of lactic acidemia-promoted pulmonary endothelial cells death in sepsis: role for CIRP-ZBP1-PANoptosis pathway. Mil Med Res. 2024; 11(1): 71.

[221]

Jacob M, Chappell D, Becker BF. Regulation of blood flow and volume exchange across the microcirculation. Crit Care. 2016; 20(1): 319. Published 2016 Oct 21.

[222]

Freeman K, Tao W, Sun H, Soonpaa MH, Rubart M. In situ three-dimensional reconstruction of mouse heart sympathetic innervation by two-photon excitation fluorescence imaging. J Neurosci Methods. 2014; 221: 48-61.

[223]

Polovina M, Lund LH, Đikić D, et al. Type 2 diabetes increases the long-term risk of heart failure and mortality in patients with atrial fibrillation. Eur J Heart Fail. 2020; 22(1): 113-125.

[224]

Li Y, Liu Y, Liu S, et al. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023; 8(1): 152. Published 2023 Apr 10.

[225]

Kaabi YA. Potential roles of anti-inflammatory plant-derived bioactive compounds targeting inflammation in microvascular complications of diabetes. Molecules. 2022; 27(21): 7352. Published 2022 Oct 29.

[226]

Zhang X, Duan Y, Zhang X, et al. Adipsin alleviates cardiac microvascular injury in diabetic cardiomyopathy through Csk-dependent signaling mechanism. BMC Med. 2023; 21(1): 197. Published 2023 May 26.

[227]

Kozakova M, Morizzo C, Fraser AG, Palombo C. Impact of glycemic control on aortic stiffness, left ventricular mass and diastolic longitudinal function in type 2 diabetes mellitus. Cardiovasc Diabetol. 2017; 16(1): 78. Published 2017 Jun 17.

[228]

Liu Y, Liao WJ, Zhu Z, et al. Effect of procyanidine on VEGFR-2 expression and transduction pathway in rat endothelial progenitor cells under high glucose conditions. Genet Mol Res. 2016; 15(1). Published 2016 Mar 31.

[229]

Jia G, Whaley-Connell A, Sowers JR. Diabetic cardiomyopathy: a hyperglycaemia-and insulin-resistance-induced heart disease. Diabetologia. 2018; 61(1): 21-28.

[230]

Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016; 12(3): 144-153.

[231]

Lin KH, Ali A, Kuo CH, et al. Carboxyl terminus of HSP70-interacting protein attenuates advanced glycation end products-induced cardiac injuries by promoting NFκB proteasomal degradation. J Cell Physiol. 2022; 237(3): 1888-1901.

[232]

Su SC, Hung YJ, Huang CL, et al. Cilostazol inhibits hyperglucose-induced vascular smooth muscle cell dysfunction by modulating the RAGE/ERK/NF-κB signaling pathways. J Biomed Sci. 2019; 26(1): 68.

[233]

Jl E, Id G, Ba M, Gm G. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003; 52(1): 1-8.

[234]

Pangare M, Makino A. Mitochondrial function in vascular endothelial cell in diabetes. J Smooth Muscle Res. 2012; 48(1): 1-26.

[235]

Shenouda SM, Widlansky ME, Chen K, et al. Altered mitochondrial dynamics contributes to endothelial dysfunction in diabetes mellitus. Circulation. 2011; 124(4): 444-453.

[236]

Bakuy V, Unal O, Gursoy M, et al. Electron microscopic evaluation of internal thoracic artery endothelial morphology in diabetic coronary bypass patients. Ann Thorac Surg. 2014; 97(3): 851-857.

[237]

Wang W, Wang Y, Long J, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells. Cell Metab. 2012; 15(2): 186-200.

[238]

Qin R, Lin D, Zhang L, Xiao F, Guo L. Mst1 deletion reduces hyperglycemia-mediated vascular dysfunction via attenuating mitochondrial fission and modulating the JNK signaling pathway. J Cell Physiol. 2020; 235(1): 294-303.

[239]

Xi J, Rong Y, Zhao Z, et al. Scutellarin ameliorates high glucose-induced vascular endothelial cells injury by activating PINK1/Parkin-mediated mitophagy. J Ethnopharmacol. 2021; 271: 113855.

[240]

Santos JM, Kowluru RA. Role of mitochondria biogenesis in the metabolic memory associated with the continued progression of diabetic retinopathy and its regulation by lipoic acid. Invest Ophthalmol Vis Sci. 2011; 52(12): 8791-8798. Published 2011 Nov 11.

[241]

Min L, Chen Y, Liu R, et al. Targeting KLF2 as a novel therapy for glomerular endothelial cell injury in diabetic kidney disease. J Am Soc Nephrol. 2024. Published online October 9, 2024.

[242]

Zhou L, Sun H, Chen G, et al. Indoxyl sulfate induces retinal microvascular injury via COX-2/PGE2 activation in diabetic retinopathy. J Transl Med. 2024; 22(1): 870.

[243]

Wu Q, Xie T, Fu C, et al. ZIPK collaborates with STAT5A in p53-mediated ROS accumulation in hyperglycemia-induced vascular injury. Acta Biochim Biophys Sin (Shanghai). 2024. Published online July 19, 2024.

[244]

Zhou Q, Tian M, Cao Y, et al. YTHDC1 aggravates high glucose-induced retinal vascular endothelial cell injury via m6A modification of CDK6. Biol Direct. 2024; 19(1): 54.

[245]

Zhang J, Li X, Cui W, et al. 1, 8-cineole ameliorates experimental diabetic angiopathy by inhibiting NLRP3 inflammasome-mediated pyroptosis in HUVECs via SIRT2. Biomed Pharmacother. 2024; 177: 117085.

[246]

Libby P, Everett BM. Novel antiatherosclerotic therapies. Arterioscler Thromb Vasc Biol. 2019; 39(4): 538-545.

[247]

Bjelakovic G, Nikolova D, Gluud C. Antioxidant supplements to prevent mortality. JAMA. 2013; 310(11): 1178-1179.

[248]

Bjelakovic G, Nikolova D, Gluud C. Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS One. 2013; 8(9): e74558. Published 2013 Sep 6.

[249]

Manson JE, Cook NR, Lee IM, et al. Vitamin D supplements and prevention of cancer and cardiovascular disease. N Engl J Med. 2019; 380(1): 33-44.

[250]

Moss JWE, Williams JO, Ramji DP. Nutraceuticals as therapeutic agents for atherosclerosis. Biochim Biophys Acta Mol Basis Dis. 2018; 1864(5 Pt A): 1562-1572.

[251]

Myasoedova VA, Kirichenko TV, Melnichenko AA, et al. Anti-atherosclerotic effects of a phytoestrogen-rich herbal preparation in postmenopausal women. Int J Mol Sci. 2016; 17(8): 1318. Published 2016 Aug 11.

[252]

Kaptoge S, Seshasai SR, Gao P, et al. Inflammatory cytokines and risk of coronary heart disease: new prospective study and updated meta-analysis. Eur Heart J. 2014; 35(9): 578-589.

[253]

Steven S, Münzel T, Daiber A. Exploiting the pleiotropic antioxidant effects of established drugs in cardiovascular disease. Int J Mol Sci. 2015; 16(8): 18185-18223. Published 2015 Aug 5.

[254]

Warnholtz A, Münzel T. Why do antioxidants fail to provide clinical benefit? Curr Control Trials Cardiovasc Med. 2000; 1(1): 38-40.

[255]

Gori T, Münzel T. Oxidative stress and endothelial dysfunction: therapeutic implications. Ann Med. 2011; 43(4): 259-272.

[256]

Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008; 88(3): 1009-1086.

[257]

Everett BM, Pradhan AD, Solomon DH, et al. Rationale and design of the cardiovascular inflammation reduction trial: a test of the inflammatory hypothesis of atherothrombosis. Am Heart J. 2013; 166(2): 199-207.e15.

[258]

Moreira DM, Lueneberg ME, da Silva RL, Fattah T, Mascia Gottschall CA. Rationale and design of the TETHYS trial: the effects of methotrexate therapy on myocardial infarction with ST-segment elevation. Cardiology. 2013; 126(3): 167-170.

[259]

Ridker PM, Thuren T, Zalewski A, Libby P. Interleukin-1β inhibition and the prevention of recurrent cardiovascular events: rationale and design of the Canakinumab Anti-inflammatory Thrombosis Outcomes Study (CANTOS). Am Heart J. 2011; 162(4): 597-605.

[260]

Meuwese MC, Mooij HL, Nieuwdorp M, et al. Partial recovery of the endothelial glycocalyx upon rosuvastatin therapy in patients with heterozygous familial hypercholesterolemia. J Lipid Res. 2009; 50(1): 148-153.

[261]

Drake-Holland AJ, Noble MI. Update on the important new drug target in cardiovascular medicine—the vascular glycocalyx. Cardiovasc Hematol Disord Drug Targets. 2012; 12(1): 76-81.

[262]

Tarbell JM, Cancel LM. The glycocalyx and its significance in human medicine. J Intern Med. 2016; 280(1): 97-113.

[263]

Karaaslan Y, Simsek I. A randomized trial of colchicine for acute pericarditis. N Engl J Med. 2014; 370(8): 780-781. [published correction appears in N Engl J Med. 2014 Apr 24;370(17):1668].

[264]

Kleschyov AL, Oelze M, Daiber A, et al. Does nitric oxide mediate the vasodilator activity of nitroglycerin? Circ Res. 2003; 93(9): e104-e112.

[265]

Dragoni S, Gori T, Lisi M, et al. Pentaerythrityl tetranitrate and nitroglycerin, but not isosorbide mononitrate, prevent endothelial dysfunction induced by ischemia and reperfusion. Arterioscler Thromb Vasc Biol. 2007; 27(9): 1955-1959.

[266]

Pechánová O, Varga ZV, Cebová M, Giricz Z, Pacher P, Ferdinandy P. Cardiac NO signalling in the metabolic syndrome. Br J Pharmacol. 2015; 172(6): 1415-1433.

[267]

Wenzel P, Mollnau H, Oelze M, et al. First evidence for a crosstalk between mitochondrial and NADPH oxidase-derived reactive oxygen species in nitroglycerin-triggered vascular dysfunction. Antioxid Redox Signal. 2008; 10(8): 1435-1447.

[268]

Gori T, Burstein JM, Ahmed S, et al. Folic acid prevents nitroglycerin-induced nitric oxide synthase dysfunction and nitrate tolerance: a human in vivo study. Circulation. 2001; 104(10): 1119-1123.

[269]

Gori T, Mak SS, Kelly S, Parker JD. Evidence supporting abnormalities in nitric oxide synthase function induced by nitroglycerin in humans. J Am Coll Cardiol. 2001; 38(4): 1096-1101.

[270]

Parker JO, Parker JD, Caldwell RW, Farrell B, Kaesemeyer WH. The effect of supplemental L-arginine on tolerance development during continuous transdermal nitroglycerin therapy. J Am Coll Cardiol. 2002; 39(7): 1199-1203.

[271]

Broekhuizen LN, Lemkes BA, Mooij HL, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia. 2010; 53(12): 2646-2655.

[272]

Hayashida K, Parks WC, Park PW. Syndecan-1 shedding facilitates the resolution of neutrophilic inflammation by removing sequestered CXC chemokines. Blood. 2009; 114(14): 3033-3043.

[273]

Jacob M, Paul O, Mehringer L, et al. Albumin augmentation improves condition of guinea pig hearts after 4 hr of cold ischemia. Transplantation. 2009; 87(7): 956-965.

[274]

Laughlin MH, Newcomer SC, Bender SB. Importance of hemodynamic forces as signals for exercise-induced changes in endothelial cell phenotype. J Appl Physiol (1985). 2008; 104(3): 588-600.

[275]

Cavalcante SL, Lopes S, Bohn L, et al. Effects of exercise on endothelial progenitor cells in patients with cardiovascular disease: a systematic review and meta-analysis of randomized controlled trials. Rev Port Cardiol (Engl Ed). 2019; 38(11): 817-827.

[276]

DeMarco VG, Habibi J, Jia G, et al. Low-dose mineralocorticoid receptor blockade prevents western diet-induced arterial stiffening in female mice. Hypertension. 2015; 66(1): 99-107.

[277]

Sasaki S, Higashi Y, Nakagawa K, et al. A low-calorie diet improves endothelium-dependent vasodilation in obese patients with essential hypertension. Am J Hypertens. 2002; 15(4 Pt 1): 302-309.

[278]

Woo KS, Chook P, Yu CW, et al. Effects of diet and exercise on obesity-related vascular dysfunction in children. Circulation. 2004; 109(16): 1981-1986.

[279]

Thun MJ, Carter BD, Feskanich D, et al. 50-year trends in smoking-related mortality in the United States. N Engl J Med. 2013; 368(4): 351-364.

[280]

van Domburg RT, Meeter K, van Berkel DF, Veldkamp RF, van Herwerden LA, Bogers AJ. Smoking cessation reduces mortality after coronary artery bypass surgery: a 20-year follow-up study. J Am Coll Cardiol. 2000; 36(3): 878-883.

[281]

King CC, Piper ME, Gepner AD, Fiore MC, Baker TB, Stein JH. Longitudinal impact of smoking and smoking cessation on inflammatory markers of cardiovascular disease risk. Arterioscler Thromb Vasc Biol. 2017; 37(2): 374-379.

[282]

Johnson HM, Gossett LK, Piper ME, et al. Effects of smoking and smoking cessation on endothelial function: 1-year outcomes from a randomized clinical trial. J Am Coll Cardiol. 2010; 55(18): 1988-1995.

[283]

Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2007–an update. J Gene Med. 2007; 9(10): 833-842.

[284]

Yatera Y, Shibata K, Furuno Y, et al. Severe dyslipidaemia, atherosclerosis, and sudden cardiac death in mice lacking all NO synthases fed a high-fat diet. Cardiovasc Res. 2010; 87(4): 675-682.

[285]

Kim GH, Ryan JJ, Archer SL. The role of redox signaling in epigenetics and cardiovascular disease. Antioxid Redox Signal. 2013; 18(15): 1920-1936.

[286]

Mikhed Y, Görlach A, Knaus UG, Daiber A. Redox regulation of genome stability by effects on gene expression, epigenetic pathways and DNA damage/repair. Redox Biol. 2015; 5: 275-289.

[287]

Vasa-Nicotera M, Chen H, Tucci P, et al. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis. 2011; 217(2): 326-330.

[288]

Magenta A, Cencioni C, Fasanaro P, et al. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. 2011; 18(10): 1628-1639.

[289]

Kumar A, Kumar S, Vikram A, et al. Histone and DNA methylation-mediated epigenetic downregulation of endothelial Kruppel-like factor 2 by low-density lipoprotein cholesterol. Arterioscler Thromb Vasc Biol. 2013; 33(8): 1936-1942.

[290]

Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA. 2000; 97(7): 3422-3427.

[291]

Qiao J, Qi K, Chu P, et al. Infusion of endothelial progenitor cells ameliorates liver injury in mice after haematopoietic stem cell transplantation. Liver Int. 2015; 35(12): 2611-2620.

[292]

Zhao Q, Liu Z, Wang Z, Yang C, Liu J, Lu J. Effect of prepro-calcitonin gene-related peptide-expressing endothelial progenitor cells on pulmonary hypertension. Ann Thorac Surg. 2007; 84(2): 544-552.

[293]

Yuan Q, Hu CP, Gong ZC, et al. Accelerated onset of senescence of endothelial progenitor cells in patients with type 2 diabetes mellitus: role of dimethylarginine dimethylaminohydrolase 2 and asymmetric dimethylarginine. Biochem Biophys Res Commun. 2015; 458(4): 869-876.

[294]

Huang M, Vitharana SN, Peek LJ, Coop T, Berkland C. Polyelectrolyte complexes stabilize and controllably release vascular endothelial growth factor. Biomacromolecules. 2007; 8(5): 1607-1614.

[295]

Golub JS, Kim YT, Duvall CL, et al. Sustained VEGF delivery via PLGA nanoparticles promotes vascular growth. Am J Physiol Heart Circ Physiol. 2010; 298(6): H1959-H1965.

[296]

Zhang J, Postovit LM, Wang D, et al. In situ loading of basic fibroblast growth factor within porous silica nanoparticles for a prolonged release. Nanoscale Res Lett. 2009; 4(11): 1297-1302. Published 2009 Jul 25.

[297]

Constans J, Conri C. Circulating markers of endothelial function in cardiovascular disease. Clin Chim Acta. 2006; 368(1-2): 33-47.

[298]

Skibsted S, Jones AE, Puskarich MA, et al. Biomarkers of endothelial cell activation in early sepsis. Shock. 2013; 39(5): 427-432.

[299]

Hsiao SY, Kung CT, Tsai NW, et al. Concentration and value of endocan on outcome in adult patients after severe sepsis. Clin Chim Acta. 2018; 483: 275-280.

[300]

Meigs JB, Hu FB, Rifai N, Manson JE. Biomarkers of endothelial dysfunction and risk of type 2 diabetes mellitus. JAMA. 2004; 291(16): 1978-1986.

[301]

Chen J, Hamm LL, Mohler ER, et al. Interrelationship of multiple endothelial dysfunction biomarkers with chronic kidney disease. PLoS One. 2015; 10(7): e0132047. Published 2015 Jul 1.

[302]

Chong AY, Blann AD, Patel J, Freestone B, Hughes E, Lip GY. Endothelial dysfunction and damage in congestive heart failure: relation of flow-mediated dilation to circulating endothelial cells, plasma indexes of endothelial damage, and brain natriuretic peptide. Circulation. 2004; 110(13): 1794-1798.

[303]

Nozaki T, Sugiyama S, Koga H, et al. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardiol. 2009; 54(7): 601-608.

[304]

Blann AD. A reliable marker of vascular function: does it exist? Trends Cardiovasc Med. 2015; 25(7): 588-591.

[305]

Alexandru N, Badila E, Weiss E, Cochior D, Stępień E, Georgescu A. Vascular complications in diabetes: microparticles and microparticle associated microRNAs as active players. Biochem Biophys Res Commun. 2016; 472(1): 1-10.

[306]

Santilli F, Marchisio M, Lanuti P, Boccatonda A, Miscia S, Davì G. Microparticles as new markers of cardiovascular risk in diabetes and beyond. Thromb Haemost. 2016; 116(2): 220-234.

[307]

Esposito K, Ciotola M, Schisano B, et al. Endothelial microparticles correlate with endothelial dysfunction in obese women. J Clin Endocrinol Metab. 2006; 91(9): 3676-3679.

[308]

Yong PJ, Koh CH, Shim WS. Endothelial microparticles: missing link in endothelial dysfunction? Eur J Prev Cardiol. 2013; 20(3): 496-512.

[309]

Amabile N, Heiss C, Real WM, et al. Circulating endothelial microparticle levels predict hemodynamic severity of pulmonary hypertension. Am J Respir Crit Care Med. 2008; 177(11): 1268-1275.

[310]

Nozaki T, Sugiyama S, Sugamura K, et al. Prognostic value of endothelial microparticles in patients with heart failure. Eur J Heart Fail. 2010; 12(11): 1223-1228.

[311]

Brogan PA, Shah V, Brachet C, et al. Endothelial and platelet microparticles in vasculitis of the young. Arthritis Rheum. 2004; 50(3): 927-936.

[312]

Bernard S, Loffroy R, Sérusclat A, et al. Increased levels of endothelial microparticles CD144 (VE-Cadherin) positives in type 2 diabetic patients with coronary noncalcified plaques evaluated by multidetector computed tomography (MDCT). Atherosclerosis. 2009; 203(2): 429-435.

[313]

Jung KH, Chu K, Lee ST, et al. Risk of macrovascular complications in type 2 diabetes mellitus: endothelial microparticle profiles. Cerebrovasc Dis. 2011; 31(5): 485-493.

[314]

Elayat G, Punev I, Selim A. An overview of angiogenesis in bladder cancer. Curr Oncol Rep. 2023; 25(7): 709-728.

[315]

Blaha V, Rathouska JU, Langrova H, et al. Soluble endoglin as a biomarker of successful rheopheresis treatment in patients with age-related macular degeneration. Sci Rep. 2024; 14(1): 28902.

[316]

Zhang SM, Zuo L, Zhou Q, et al. Expression and distribution of endocan in human tissues. Biotech Histochem. 2012; 87(3): 172-178.

[317]

Sarrazin S, Adam E, Lyon M, et al. Endocan or endothelial cell specific molecule-1 (ESM-1): a potential novel endothelial cell marker and a new target for cancer therapy. Biochim Biophys Acta. 2006; 1765(1): 25-37.

[318]

Balta I, Balta S, Demirkol S, et al. Elevated serum levels of endocan in patients with psoriasis vulgaris: correlations with cardiovascular risk and activity of disease. Br J Dermatol. 2013; 169(5): 1066-1070.

[319]

Bălănescu P, Lădaru A, Bălănescu E, Voiosu T, Băicuş C, Dan GA. Endocan, novel potential biomarker for systemic sclerosis: results of a pilot study. J Clin Lab Anal. 2016; 30(5): 368-373.

[320]

Icli A, Cure E, Cure MC, et al. Endocan levels and subclinical atherosclerosis in patients with systemic lupus erythematosus. Angiology. 2016; 67(8): 749-755.

[321]

Mihajlovic DM, Lendak DF, Brkic SV, et al. Endocan is useful biomarker of survival and severity in sepsis. Microvasc Res. 2014; 93: 92-97. [published correction appears in Microvasc Res. 2020 May;129:103992. d oi:1 0.1016/j.mvr.2020.103992].

[322]

De Freitas Caires N, Gaudet A, Portier L, Tsicopoulos A, Mathieu D, Lassalle P. Endocan, sepsis, pneumonia, and acute respiratory distress syndrome. Crit Care. 2018; 22(1): 280. Published 2018 Oct 26.

[323]

van Leeuwen MAH, van der Hoeven NW, Janssens GN, et al. Evaluation of microvascular injury in revascularized patients with ST-segment-elevation myocardial infarction treated with ticagrelor versus prasugrel. Circulation. 2019; 139(5): 636-646.

[324]

Xu J, Lo S, Mussap CJ, et al. Impact of ticagrelor versus clopidogrel on coronary microvascular function after non-st-segment-elevation acute coronary syndrome. Circ Cardiovasc Interv. 2022; 15(4): e011419.

[325]

Solberg OG, Stavem K, Ragnarsson A, et al. Index of microvascular resistance to assess the effect of rosuvastatin on microvascular function in women with chest pain and no obstructive coronary artery disease: a double-blind randomized study. Catheter Cardiovasc Interv. 2019; 94(5): 660-668.

[326]

Pedralli ML, Marschner RA, Kollet DP, et al. Publisher correction: different exercise training modalities produce similar endothelial function improvements in individuals with prehypertension or hypertension: a randomized clinical trial. Sci Rep. 2020; 10(1): 10564. Published 2020 Jun 24.

[327]

von Stebut E, Reich K, Thaçi D, et al. Impact of secukinumab on endothelial dysfunction and other cardiovascular disease parameters in psoriasis patients over 52 weeks. J Invest Dermatol. 2019; 139(5): 1054-1062.

[328]

Craighead DH, Heinbockel TC, Freeberg KA, et al. Time-efficient inspiratory muscle strength training lowers blood pressure and improves endothelial function, no bioavailability, and oxidative stress in midlife/older adults with above-normal blood pressure. J Am Heart Assoc. 2021; 10(13): e020980.

[329]

Schoenenberger AW, Urbanek N, Bergner M, Toggweiler S, Resink TJ, Erne P. Associations of reactive hyperemia index and intravascular ultrasound-assessed coronary plaque morphology in patients with coronary artery disease. Am J Cardiol. 2012; 109(12): 1711-1716.

[330]

Matsuzawa Y, Kwon TG, Lennon RJ, Lerman LO, Lerman A. Prognostic value of flow-mediated vasodilation in brachial artery and fingertip artery for cardiovascular events: a systematic review and meta-analysis. J Am Heart Assoc. 2015; 4(11): e002270.

[331]

Lee CR, Bass A, Ellis K, et al. Relation between digital peripheral arterial tonometry and brachial artery ultrasound measures of vascular function in patients with coronary artery disease and in healthy volunteers. Am J Cardiol. 2012; 109(5): 651-657.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

288

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/