Connection between oral health and chronic diseases

Di Fu , Xingyue Shu , Ge Zhou , Mengzhen Ji , Ga Liao , Ling Zou

MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70052

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70052 DOI: 10.1002/mco2.70052
REVIEW

Connection between oral health and chronic diseases

Author information +
History +
PDF

Abstract

Chronic diseases have emerged as a paramount global health burden, accounting for 74% of global mortality and causing substantial economic losses. The oral cavity serves as a critical indicator of overall health and is inextricably linked to chronic disorders. Neglecting oral health can exacerbate localized pathologies and accelerate the progression of chronic conditions, whereas effective management has the potential to reduce their incidence and mortality. Nevertheless, limited resources and lack of awareness often impede timely dental intervention, delaying optimal therapeutic measures. This review provides a comprehensive analysis of the impact of prevalent chronic diseases—such as diabetes mellitus, rheumatoid arthritis, cardiovascular disorders, and chronic respiratory diseases—on oral health, along with an exploration of how changes in oral health affect these chronic conditions through both deterioration and intervention mechanisms. Additionally, novel insights into the underlying pathophysiological mechanisms governing these relationships are presented. By synthesizing these advancements, this review aims to illuminate the complex interrelationship between oral health and chronic diseases while emphasizing the urgent need for greater collaboration between dental practitioners and general healthcare providers to improve overall health outcomes.

Keywords

cardiovascular diseases / chronic diseases / chronic respiratory diseases / diabetes / oral health / rheumatoid arthritis

Cite this article

Download citation ▾
Di Fu, Xingyue Shu, Ge Zhou, Mengzhen Ji, Ga Liao, Ling Zou. Connection between oral health and chronic diseases. MedComm, 2025, 6(1): e70052 DOI:10.1002/mco2.70052

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Network GBoDC. Global Burden of Disease Study 2019 (GBD 2019) Results. Institute for Health Metrics and Evaluation – IHME; 2020.

[2]

Prevention CfDCa. Chronic Disease Prevention and Health Promotion. Chronic Disease Overview. Centers for Disease Control and Prevention; 2017.

[3]

Waters HGM, ed. The Costs of Chronic Disease in the U.S. 1st ed. Milken Institute; 2018.

[4]

Bloom DE, Cafiero E, Jané-Llopis E, et al. The Global Economic Burden of Noncommunicable Diseases. Program on the Global Demography of Aging; 2012.

[5]

Kane SF. The effects of oral health on systemic health. Gen Dent. 2017; 65(6): 30-34.

[6]

Wu CZ, Yuan YH, Liu HH, et al. Epidemiologic relationship between periodontitis and type 2 diabetes mellitus. BMC Oral Health. 2020; 20(1): 204.

[7]

Bahekar AA, Singh S, Saha S, et al. The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am Heart J. 2007; 154(5): 830-837.

[8]

Sanz M, Marco Del Castillo A, Jepsen S, et al. Periodontitis and cardiovascular diseases: consensus report. J Clin Periodontol. 2020; 47(3): 268-288.

[9]

Ferreira MKM, Ferreira RO, Castro MML, et al. Is there an association between asthma and periodontal disease among adults? Systematic review and meta-analysis. Life Sci. 2019; 223: 74-87.

[10]

Preshaw PM, Taylor JJ, Jaedicke KM, et al. Treatment of periodontitis reduces systemic inflammation in type 2 diabetes. J Clin Periodontol. 2020; 47(6): 737-746.

[11]

Sharma S, Sridhar S, McIntosh A, et al. Periodontal therapy and treatment of hypertension-alternative to the pharmacological approach. A systematic review and meta-analysis. Pharmacol Res. 2021; 166: 105511.

[12]

Apessos I, Voulgaris A, Agrafiotis M, et al. Effect of periodontal therapy on COPD outcomes: a systematic review. BMC Pulmon Med. 2021; 21(1): 92.

[13]

Jahanshir M, Nobahar M, Ghorbani R, et al. Effect of clove mouthwash on the incidence of ventilator-associated pneumonia in intensive care unit patients: a comparative randomized triple-blind clinical trial. Clin Oral Investig. 2023; 27(7): 3589-3600.

[14]

Sanchez P, Everett B, Salamonson Y, et al. Oral health and cardiovascular care: perceptions of people with cardiovascular disease. PLoS One. 2017; 12(7): e0181189.

[15]

Alqadi SF. Diabetes mellitus and its influence on oral health: review. Diabetes Metab Syndr Obes. 2024; 17: 107-120.

[16]

Grisi DC, Vieira IV, de Almeida Lima AK, et al. The complex interrelationship between diabetes mellitus, oral diseases and general health. Curr Diabetes Rev. 2022; 18(3): e220321192408.

[17]

Ahmad R, Haque M. Oral health messiers: diabetes mellitus relevance. Diabetes Metab Syndr Obes. 2021; 14: 3001-3015.

[18]

Borgnakke WS, Genco RJ, Eke PI, et al. Oral Health and Diabetes. National Institute of Diabetes and Digestive and Kidney Diseases (US); 2021.

[19]

Negrini TC, Carlos IZ, Duque C, et al. Interplay among the oral microbiome, oral cavity conditions, the host immune response, diabetes mellitus, and its associated-risk factors-An overview. Front Oral Health. 2021; 2: 697428.

[20]

Enteghad S, Shirban F, Nikbakht MH, et al. Relationship between diabetes mellitus and periodontal/peri-implant disease: a contemporaneous review. Int Dent J. 2024; 74(3): 426-445.

[21]

Mirnic J, Djuric M, Brkic S, et al. Pathogenic mechanisms that may link periodontal disease and type 2 diabetes mellitus—the role of oxidative stress. Int J Mol Sci. 2024; 25(18): 9806.

[22]

Vlachou S, Loumé A, Giannopoulou C, et al. Investigating the interplay: periodontal disease and type 1 diabetes mellitus—a comprehensive review of clinical studies. Int J Mol Sci. 2024; 25(13): 7299.

[23]

Păunică I, Giurgiu M, Dumitriu AS, et al. The bidirectional relationship between periodontal disease and diabetes mellitus—a review. Diagnostics. 2023; 13(4): 681.

[24]

Zhao M, Xie Y, Gao W, et al. Diabetes mellitus promotes susceptibility to periodontitis-novel insight into the molecular mechanisms. Front Endocrinol. 2023; 14: 1192625.

[25]

Nibali L, Gkranias N, Mainas G, et al. Periodontitis and implant complications in diabetes. Periodontol 2000. 2022; 90(1): 88-105.

[26]

Salhi L, Reners M. Update on the bidirectional link between diabetes and periodontitis. Adv Exp Med Biol. 2022; 1373: 231-240.

[27]

Genco RJ, Borgnakke WS. Diabetes as a potential risk for periodontitis: association studies. Periodontol 2000. 2020; 83(1): 40-45.

[28]

Genco RJ, Graziani F, Hasturk H. Effects of periodontal disease on glycemic control, complications, and incidence of diabetes mellitus. Periodontol 2000. 2020; 83(1): 59-65.

[29]

Graves DT, Ding Z, Yang Y. The impact of diabetes on periodontal diseases. Periodontol 2000. 2020; 82(1): 214-224.

[30]

Polak D, Sanui T, Nishimura F, et al. Diabetes as a risk factor for periodontal disease-plausible mechanisms. Periodontol 2000. 2020; 83(1): 46-58.

[31]

Costa R, Ríos-Carrasco B, Monteiro L, et al. Association between type 1 diabetes mellitus and periodontal diseases. J Clin Med. 2023; 12(3): 1147.

[32]

Maia MB, Souza JGS, Bertolini M, et al. Knowledge of bidirectional relationship between diabetes and periodontal disease among diabetes patients: a systematic review. Int J Dent Hyg. 2023; 21(1): 28-40.

[33]

Nguyen ATM, Akhter R, Garde S, et al. The association of periodontal disease with the complications of diabetes mellitus. A systematic review. Diabetes Res Clin Pract. 2020; 165: 108244.

[34]

Stöhr J, Barbaresko J, Neuenschwander M, et al. Bidirectional association between periodontal disease and diabetes mellitus: a systematic review and meta-analysis of cohort studies. Sci Rep. 2021; 11(1): 13686.

[35]

Baeza M, Morales A, Cisterna C, et al. Effect of periodontal treatment in patients with periodontitis and diabetes: systematic review and meta-analysis. J Appl Oral Sci. 2020; 28: e20190248.

[36]

Zhang Z, Ji C, Wang D, et al. The burden of diabetes on the soft tissue seal surrounding the dental implants. Front Physiol. 2023; 14: 1136973.

[37]

Vijay R, Mendhi J, Prasad K, et al. Carbon nanomaterials modified biomimetic dental implants for diabetic patients. Nanomaterials. 2021; 11(11): 2977.

[38]

Bencze B, Cavalcante BGN, Romandini M, et al. Prediabetes and poorly controlled type-2 diabetes as risk indicators for peri-implant diseases: a systematic review and meta-analysis. J Dent. 2024; 146: 105094.

[39]

Al Ansari Y, Shahwan H, Chrcanovic BR. Diabetes mellitus and dental implants: a systematic review and meta-analysis. Materials. 2022; 15(9): 3227.

[40]

Andrade CAS, Paz JLC, de Melo GS, et al. Survival rate and peri-implant evaluation of immediately loaded dental implants in individuals with type 2 diabetes mellitus: a systematic review and meta-analysis. Clin Oral Investig. 2022; 26(2): 1797-1810.

[41]

Lv X, Zou L, Zhang X, et al. Effects of diabetes/hyperglycemia on peri-implant biomarkers and clinical and radiographic outcomes in patients with dental implant restorations: a systematic review and meta-analysis. Clin Oral Implants Res. 2022; 33(12): 1183-1198.

[42]

Shang R, Gao L. Impact of hyperglycemia on the rate of implant failure and peri-implant parameters in patients with type 2 diabetes mellitus: systematic review and meta-analysis. J Am Dent Assoc. 2021; 152(3): 189-201.e181.

[43]

Tibúrcio-Machado CD, Bello MC, Maier J, et al. Influence of diabetes in the development of apical periodontitis: a critical literature review of human studies. J Endod. 2017; 43(3): 370-376.

[44]

Pérez-Losada FL, Estrugo-Devesa A, Castellanos-Cosano L, et al. Apical periodontitis and diabetes mellitus type 2: a systematic review and meta-analysis. J Clin Med. 2020; 9(2): 540.

[45]

Liu X, He G, Qiu Z, et al. Diabetes mellitus increases the risk of apical periodontitis in endodontically-treated teeth: a meta-analysis from 15 studies. J Endod. 2023; 49(12): 1605-1616.

[46]

Wang X, Wang H, Zhang T, et al. Diabetes and its potential impact on head and neck oncogenesis. J Cancer. 2020; 11(3): 583-591.

[47]

Ramos-Garcia P, Roca-Rodriguez MDM, Aguilar-Diosdado M, et al. Diabetes mellitus and oral cancer/oral potentially malignant disorders: a systematic review and meta-analysis. Oral Dis. 2021; 27(3): 404-421.

[48]

Yan P, Wang Y, Yu X, et al. Type 2 diabetes mellitus and risk of head and neck cancer subtypes: a systematic review and meta-analysis of observational studies. Acta Diabetol. 2021; 58(5): 549-565.

[49]

Pérez-Ros P, Navarro-Flores E, Julián-Rochina I, et al. Changes in salivary amylase and glucose in diabetes: a scoping review. Diagnostics. 2021; 11(3) :453.

[50]

Zhou G, Shu X, Long Y, et al. Dental caries and salivary alterations in patients with type 2 diabetes: a systematic review and meta-analysis. J Dent. 2024; 150: 105321.

[51]

Weijdijk LPM, Van der Weijden GA, Slot DE. DMF scores in patients with diabetes mellitus: a systematic review and meta-analysis of observational studies. J Dent. 2023; 136: 104628.

[52]

Coelho AS, Amaro IF, Caramelo F, et al. Dental caries, diabetes mellitus, metabolic control and diabetes duration: a systematic review and meta-analysis. J Esthet Restor Dent. 2020; 32(3): 291-309.

[53]

de Lima AKA, Amorim Dos Santos J, Stefani CM, et al. Diabetes mellitus and poor glycemic control increase the occurrence of coronal and root caries: a systematic review and meta-analysis. Clin Oral Investig. 2020; 24(11): 3801-3812.

[54]

Roy M, Gastaldi G, Courvoisier DS, et al. Periodontal health in a cohort of subjects with type 1 diabetes mellitus. Clin Exp Dent Res. 2019; 5(3): 243-249.

[55]

Gogeneni H, Buduneli N, Ceyhan-Öztürk B, et al. Increased infection with key periodontal pathogens during gestational diabetes mellitus. J Clin Periodontol. 2015; 42(6): 506-512.

[56]

Chaparro A, Realini O, Hernández M, et al. Early pregnancy levels of gingival crevicular fluid matrix metalloproteinases-8 and -9 are associated with the severity of periodontitis and the development of gestational diabetes mellitus. J Periodontol. 2021; 92(2): 205-215.

[57]

Özçaka Ö, Ceyhan-Öztürk B, Gümüş P, et al. Clinical periodontal status and inflammatory cytokines in gestational diabetes mellitus. Arch Oral Biol. 2016; 72: 87-91.

[58]

Bunpeng N, Boriboonhirunsarn D, Boriboonhirunsarn C, et al. Association between gestational diabetes mellitus and periodontitis via the effect of reactive oxygen species in peripheral blood cells. J Periodontol. 2022; 93(5): 758-769.

[59]

Chaparro A, Zúñiga E, Varas-Godoy M, et al. Periodontitis and placental growth factor in oral fluids are early pregnancy predictors of gestational diabetes mellitus. J Periodontol. 2018; 89(9): 1052-1060.

[60]

Liu YK, Chen V, He JZ, et al. A salivary microbiome-based auxiliary diagnostic model for type 2 diabetes mellitus. Arch Oral Biol. 2021; 126: 105118.

[61]

Su N, Teeuw WJ, Loos BG, et al. Development and validation of a screening model for diabetes mellitus in patients with periodontitis in dental settings. Clin Oral Investig. 2020; 24(11): 4089-4100.

[62]

Vo TTT, Lee CW, Chiang YC, et al. Protective mechanisms of Taiwanese green propolis toward high glucose-induced inflammation via NLRP3 inflammasome signaling pathway in human gingival fibroblasts. J Periodontal Res. 2021; 56(4): 804-818.

[63]

Passoja A, Knuuttila M, Hiltunen L, et al. Serum interleukin-6 may modulate periodontal inflammation in type 1 diabetic subjects. J Clin Periodontol. 2011; 38(8): 687-693.

[64]

Matsuda Y, Kato T, Takahashi N, et al. Ligature-induced periodontitis in mice induces elevated levels of circulating interleukin-6 but shows only weak effects on adipose and liver tissues. J Periodontal Res. 2016; 51(5): 639-646.

[65]

Purnamasari D, Khumaedi AI, Soeroso Y, et al. The influence of diabetes and or periodontitis on inflammation and adiponectin level. Diabetes Metab Syndr. 2019; 13(3): 2176-2182.

[66]

Liu Y, Zhang Q. Periodontitis aggravated pancreatic β-cell dysfunction in diabetic mice through interleukin-12 regulation on Klotho. J Diabetes Investig. 2016; 7(3): 303-311.

[67]

Xiao E, Mattos M, Vieira GHA, et al. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity. Cell Host Microbe. 2017; 22(1): 120-128.e124.

[68]

Cintra LT, Samuel RO, Azuma MM, et al. Apical periodontitis and periodontal disease increase serum IL-17 levels in normoglycemic and diabetic rats. Clin Oral Investig. 2014; 18(9): 2123-2128.

[69]

Ferreira RC, Simons HZ, Thompson WS, et al. IL-21 production by CD4+ effector T cells and frequency of circulating follicular helper T cells are increased in type 1 diabetes patients. Diabetologia. 2015; 58(4): 781-790.

[70]

Singhal S, Pradeep AR, Kanoriya D, et al. Human soluble receptor for advanced glycation end products and tumor necrosis factor-α as gingival crevicular fluid and serum markers of inflammation in chronic periodontitis and type 2 diabetes. J Oral Sci. 2016; 58(4): 547-553.

[71]

Türer ÇC, Durmuş D, Balli U, et al. Effect of non-surgical periodontal treatment on gingival crevicular fluid and serum endocan, vascular endothelial growth factor-A, and tumor necrosis factor-alpha levels. J Periodontol. 2017; 88(5): 493-501.

[72]

Kim JH, Lee DE, Woo GH, et al. Osteocytic sclerostin expression in alveolar bone in rats with diabetes mellitus and ligature-induced periodontitis. J Periodontol. 2015; 86(8): 1005-1011.

[73]

Huang Y, Guo W, Zeng J, et al. Prediabetes enhances periodontal inflammation consistent with activation of toll-like receptor-mediated nuclear factor-κB pathway in rats. J Periodontol. 2016; 87(5): e64-e74.

[74]

Santamaria-Jr M, Bagne L, Zaniboni E, et al. Diabetes mellitus and periodontitis: inflammatory response in orthodontic tooth movement. Orthod Craniofac Res. 2020; 23(1): 27-34.

[75]

Grauballe MB, Østergaard JA, Schou S, et al. Effects of TNF-α blocking on experimental periodontitis and type 2 diabetes in obese diabetic Zucker rats. J Clin Periodontol. 2015; 42(9): 807-816.

[76]

Fang H, Yang K, Tang P, et al. Glycosylation end products mediate damage and apoptosis of periodontal ligament stem cells induced by the JNK-mitochondrial pathway. Aging. 2020; 12(13): 12850-12868.

[77]

Abdella NA, Mojiminiyi OA. Clinical applications of adiponectin measurements in type 2 diabetes mellitus: screening, diagnosis, and marker of diabetes control. Dis Markers. 2018; 2018: 5187940.

[78]

Qiu W, Wang Z, Chen Z, et al. The adiponectin receptor agonist AdipoAI attenuates periodontitis in diabetic rats by inhibiting gingival fibroblast-induced macrophage migration. Br J Pharmacol. 2023; 180(18): 2436-2451.

[79]

Wu Y, Chen L, Wei B, et al. Effect of non-surgical periodontal treatment on visfatin concentrations in serum and gingival crevicular fluid of patients with chronic periodontitis and type 2 diabetes mellitus. J Periodontol. 2015; 86(6): 795-800.

[80]

An Y, Zhang H, Wang C, et al. Activation of ROS/MAPKs/NF-κB/NLRP3 and inhibition of efferocytosis in osteoclast-mediated diabetic osteoporosis. Faseb J. 2019; 33(11): 12515-12527.

[81]

Zheng J, Chen S, Albiero ML, et al. Diabetes activates periodontal ligament fibroblasts via NF-κB in vivo. J Dent Res. 2018; 97(5): 580-588.

[82]

Li X, Sun X, Zhang X, et al. Enhanced oxidative damage and Nrf2 downregulation contribute to the aggravation of periodontitis by diabetes mellitus. Oxid Med Cell Longev. 2018; 2018: 9421019.

[83]

Bastos MF, Tucci MA, de Siqueira A, et al. Diabetes may affect the expression of matrix metalloproteinases and their inhibitors more than smoking in chronic periodontitis. J Periodontal Res. 2017; 52(2): 292-299.

[84]

Torrungruang K, Ongphiphadhanakul B, Jitpakdeebordin S, et al. Mediation analysis of systemic inflammation on the association between periodontitis and glycaemic status. J Clin Periodontol. 2018; 45(5): 548-556.

[85]

Zhou M, Xu X, Li J, et al. C-reactive protein perturbs alveolar bone homeostasis: an experimental study of periodontitis and diabetes in the rat. J Clin Periodontol. 2022; 49(10): 1052-1066.

[86]

Yilmaz D, Caglayan F, Buber E, et al. Gingival crevicular fluid levels of human beta-defensin-1 in type 2 diabetes mellitus and periodontitis. Clin Oral Investig. 2018; 22(5): 2135-2140.

[87]

Yilmaz D, Yilmaz N, Polat R, et al. Salivary levels of hBDs in children and adolescents with type 1 diabetes mellitus and gingivitis. Clin Oral Investig. 2022; 26(7): 4897-4904.

[88]

Wang Q, Nie L, Zhao P, et al. Diabetes fuels periodontal lesions via GLUT1-driven macrophage inflammaging. Int J Oral Sci. 2021; 13(1): 11.

[89]

Akram Z, Alqahtani F, Alqahtani M, et al. Levels of advanced glycation end products in gingival crevicular fluid of chronic periodontitis patients with and without type-2 diabetes mellitus. J Periodontol. 2020; 91(3): 396-402.

[90]

Mei YM, Li L, Wang XQ, et al. AGEs induces apoptosis and autophagy via reactive oxygen species in human periodontal ligament cells. J Cell Biochem. 2020; 121(8–9): 3764-3779.

[91]

Chiu HC, Fu MM, Yang TS, et al. Effect of high glucose, Porphyromonas gingivalis lipopolysaccharide and advanced glycation end-products on production of interleukin-6/-8 by gingival fibroblasts. J Periodontal Res. 2017; 52(2): 268-276.

[92]

Hiroshima Y, Sakamoto E, Yoshida K, et al. Advanced glycation end-products and Porphyromonas gingivalis lipopolysaccharide increase calprotectin expression in human gingival epithelial cells. J Cell Biochem. 2018; 119(2): 1591-1603.

[93]

Yi X, Zhang L, Lu W, et al. The effect of NLRP inflammasome on the regulation of AGEs-induced inflammatory response in human periodontal ligament cells. J Periodontal Res. 2019; 54(6): 681-689.

[94]

Pink C, Kocher T, Meisel P, et al. Longitudinal effects of systemic inflammation markers on periodontitis. J Clin Periodontol. 2015; 42(11): 988-997.

[95]

Fine N, Chadwick JW, Sun C, et al. Periodontal inflammation primes the systemic innate immune response. J Dent Res. 2021; 100(3): 318-325.

[96]

Graves DT, Alshabab A, Albiero ML, et al. Osteocytes play an important role in experimental periodontitis in healthy and diabetic mice through expression of RANKL. J Clin Periodontol. 2018; 45(3): 285-292.

[97]

Demmer RT, Breskin A, Rosenbaum M, et al. The subgingival microbiome, systemic inflammation and insulin resistance: the oral infections, glucose intolerance and insulin resistance study. J Clin Periodontol. 2017; 44(3): 255-265.

[98]

Matsha TE, Prince Y, Davids S, et al. Oral microbiome signatures in diabetes mellitus and periodontal disease. J Dent Res. 2020; 99(6): 658-665.

[99]

Shi B, Lux R, Klokkevold P, et al. The subgingival microbiome associated with periodontitis in type 2 diabetes mellitus. Isme J. 2020; 14(2): 519-530.

[100]

Li L, Bao J, Chang Y, et al. Gut microbiota may mediate the influence of periodontitis on prediabetes. J Dent Res. 2021; 100(12): 1387-1396.

[101]

Radović N, Nikolić Jakoba N, Petrović N, et al. MicroRNA-146a and microRNA-155 as novel crevicular fluid biomarkers for periodontitis in non-diabetic and type 2 diabetic patients. J Clin Periodontol. 2018; 45(6): 663-671.

[102]

Byun JS, Lee HY, Tian J, et al. Effect of salivary exosomal miR-25-3p on periodontitis with insulin resistance. Front Immunol. 2021; 12: 775046.

[103]

Li B, Xin Z, Gao S, et al. SIRT6-regulated macrophage efferocytosis epigenetically controls inflammation resolution of diabetic periodontitis. Theranostics. 2023; 13(1): 231-249.

[104]

Wu Y, Song LT, Li JS, et al. MicroRNA-126 regulates inflammatory cytokine secretion in human gingival fibroblasts under high glucose via targeting tumor necrosis factor receptor associated factor 6. J Periodontol. 2017; 88(11): e179-e187.

[105]

Ou L, Sun T, Cheng Y, et al. MicroRNA-214 contributes to regulation of necroptosis via targeting ATF4 in diabetes-associated periodontitis. J Cell Biochem. 2019; 120(9): 14791-14803.

[106]

He L, Liu C, Liu Y, et al. Circular RNA hsa_circ_0084054 promotes the progression of periodontitis with diabetes via the miR-508-3p/PTEN axis. J Periodontal Res. 2023; 58(4): 827-840.

[107]

Cirelli T, Nepomuceno R, Rios ACS, et al. Genetic polymorphisms in the Interleukins IL1B, IL4, and IL6 are associated with concomitant periodontitis and type 2 diabetes mellitus in Brazilian patients. J Periodontal Res. 2020; 55(6): 918-930.

[108]

Zhang P, Zhang W, Zhang D, et al. 25-Hydroxyvitamin D(3) - enhanced PTPN2 positively regulates periodontal inflammation through the JAK/STAT pathway in human oral keratinocytes and a mouse model of type 2 diabetes mellitus. J Periodontal Res. 2018; 53(3): 467-477.

[109]

von Wilmowsky C, Stockmann P, Harsch I, et al. Diabetes mellitus negatively affects peri-implant bone formation in the diabetic domestic pig. J Clin Periodontol. 2011; 38(8): 771-779.

[110]

Tang D, Wang E, Xu Y, et al. Is hyperglycemia the only risk factor for implant in type 2 diabetics during the healing period? Oral Dis. 2021; 27(6): 1551-1563.

[111]

Liu J, Wu Z, He H, et al. Gallium and silicon synergistically promote osseointegration of dental implant in patients with osteoporosis. Med Hypotheses. 2017; 103: 35-38.

[112]

Daubert DM, Weinstein BF, Bordin S, et al. Prevalence and predictive factors for peri-implant disease and implant failure: a cross-sectional analysis. J Periodontol. 2015; 86(3): 337-347.

[113]

Aguilar-Salvatierra A, Calvo-Guirado JL, González-Jaranay M, et al. Peri-implant evaluation of immediately loaded implants placed in esthetic zone in patients with diabetes mellitus type 2: a two-year study. Clin Oral Implants Res. 2016; 27(2): 156-161.

[114]

Al Amri MD, Abduljabbar TS. Comparison of clinical and radiographic status of platform-switched implants placed in patients with and without type 2 diabetes mellitus: a 24-month follow-up longitudinal study. Clin Oral Implants Res. 2017; 28(2): 226-230.

[115]

Dŏgan ŞB, Kurtiş MB, Tüter G, et al. Evaluation of clinical parameters and levels of proinflammatory cytokines in the crevicular fluid around dental implants in patients with type 2 diabetes mellitus. Int J Oral Maxillofac Implants. 2015; 30(5): 1119-1127.

[116]

Eskow CC, Oates TW. Dental implant survival and complication rate over 2 years for individuals with poorly controlled type 2 diabetes mellitus. Clin Implant Dent Relat Res. 2017; 19(3): 423-431.

[117]

Abduljabbar T, Javed F, Malignaggi VR, et al. Influence of implant location in patients with and without type 2 diabetes mellitus: 2-year follow-up. Int J Oral Maxillofac Surg. 2017; 46(9): 1188-1192.

[118]

Al Amri MD, Abduljabbar TS, Al-Johany SS, et al. Comparison of clinical and radiographic parameters around short (6 to 8 mm in length) and long (11 mm in length) dental implants placed in patients with and without type 2 diabetes mellitus: 3-year follow-up results. Clin Oral Implants Res. 2017; 28(10): 1182-1187.

[119]

Oliveira LM, Zanatta FB, Antoniazzi RP, et al. Does diabetes mellitus affect guided bone regeneration outcomes in individuals undergoing dental implants? A systematic review and meta-analysis. Front Dent Med. 2024; 5.

[120]

Jiang X, Zhu Y, Liu Z, et al. Association between diabetes and dental implant complications: a systematic review and meta-analysis. Acta Odontol Scand. 2021; 79(1): 9-18.

[121]

Retzepi M, Donos N. The effect of diabetes mellitus on osseous healing. Clin Oral Implants Res. 2010; 21(7): 673-681.

[122]

de Oliveira P, Bonfante EA, Bergamo ETP, et al. Obesity/metabolic syndrome and diabetes mellitus on peri-implantitis. Trends Endocrinol Metab. 2020; 31(8): 596-610.

[123]

Hu X-F, Wang L, Xiang G, et al. Angiogenesis impairment by the NADPH oxidase-triggered oxidative stress at the bone-implant interface: critical mechanisms and therapeutic targets for implant failure under hyperglycemic conditions in diabetes. Acta Biomater. 2018; 73: 470-487.

[124]

Zafar MS, Fareed MA, Riaz S, et al. Customized therapeutic surface coatings for dental implants. Coatings. 2020; 10(6): 568.

[125]

Yadav R, Agrawal KK, Rao J, et al. Crestal bone loss under delayed loading of full thickness versus flapless surgically placed dental implants in controlled type 2 diabetic patients: a parallel group randomized clinical trial. J Prosthodont. 2018; 27(7): 611-617.

[126]

Sánchez-Domínguez B, López-López J, Jané-Salas E, et al. Glycated hemoglobin levels and prevalence of apical periodontitis in type 2 diabetic patients. J Endod. 2015; 41(5): 601-606.

[127]

Smadi L. Apical periodontitis and endodontic treatment in patients with type II diabetes mellitus: comparative cross-sectional survey. J Contemp Dent Pract. 2017; 18(5): 358-362.

[128]

Yip N, Liu C, Wu D, et al. The association of apical periodontitis and type 2 diabetes mellitus: a large hospital network cross-sectional case-controlled study. J Am Dent Assoc. 2021; 152(6): 434-443.

[129]

Limeira FIR, Arantes DC, de Souza Oliveira C, et al. Root canal treatment and apical periodontitis in a Brazilian population with type 1 diabetes mellitus: a cross-sectional paired study. J Endod. 2020; 46(6): 756-762.

[130]

Davidović B, Krunić J, Mladenović I, et al. Effects of apical periodontitis treatment on hyperglycaemia in diabetes: a prospective cohort study. Int Endod J. 2024; 57(8): 1099-1109.

[131]

Wang S, Wang X, Bai F, et al. Effect of endodontic treatment on clinical outcome in type 2 diabetic patients with apical periodontitis. Heliyon. 2023; 9(3): e13914.

[132]

Arya S, Duhan J, Tewari S, et al. Healing of apical periodontitis after nonsurgical treatment in patients with type 2 diabetes. J Endod. 2017; 43(10): 1623-1627.

[133]

Prasetyo EP, Sampoerno G, Juniarti DE, et al. Effect of lipopolysaccharide-induced apical periodontitis in diabetes mellitus rats on periapical inflammation. Eur J Dent. 2023; 17(4): 1146-1152.

[134]

Prieto AKC, Gomes-Filho JE, Azuma MM, et al. Influence of apical periodontitis on stress oxidative parameters in diabetic rats. J Endod. 2017; 43(10): 1651-1656.

[135]

De la Torre-Luna R, Domínguez-Pérez RA, Guillén-Nepita AL, et al. Prevalence of Candida albicans in primary endodontic infections associated with a higher frequency of apical periodontitis in type two diabetes mellitus patients. Eur J Clin Microbiol Infect Dis. 2020; 39(1): 131-138.

[136]

Gadicherla S, Smriti K, Roy S, et al. Comparison of extraction socket healing in non-diabetic, prediabetic, and type 2 diabetic patients. Clin Cosmet Investig Dent. 2020; 12: 291-296.

[137]

Power DJ, Sambrook PJ, Goss AN. The healing of dental extraction sockets in insulin-dependent diabetic patients: a prospective controlled observational study. Aust Dent J. 2019; 64(1): 111-116.

[138]

Fernandes KS, Glick M, de Souza MS, et al. Association between immunologic parameters, glycemic control, and postextraction complications in patients with type 2 diabetes. J Am Dent Assoc. 2015; 146(8): 592-599.

[139]

Yang S, Li Y, Liu C, et al. Pathogenesis and treatment of wound healing in patients with diabetes after tooth extraction. Front Endocrinol. 2022; 13: 949535.

[140]

Gazal G. Management of an emergency tooth extraction in diabetic patients on the dental chair. Saudi Dent J. 2020; 32(1): 1-6.

[141]

Sykara M, Maniatakos P, Tentolouris A, et al. The necessity of administrating antibiotic prophylaxis to patients with diabetes mellitus prior to oral surgical procedures—a systematic review. Diabetes Metab Syndr. 2022; 16(10): 102621.

[142]

Zhang S, Song S, Wang S, et al. Type 2 diabetes affects postextraction socket healing and influences first-stage implant surgery: a study based on clinical and animal evidence. Clin Implant Dent Relat Res. 2019; 21(3): 436-445.

[143]

Maftei G-A, Martu M-A, Martu M-C, et al. Correlations between salivary immuno-biochemical markers and HbA1c in type 2 diabetes subjects before and after dental extraction. Antioxidants. 2021; 10(11): 1741.

[144]

Al Shehhi YI, Elemam NM, Alsaegh MA. The response of salivary proinflammatory biomarkers to tooth extraction in individuals with type II diabetes mellitus. BMC Oral Health. 2024; 24(1): 250.

[145]

Daraei P, Moore CE. Racial disparity among the head and neck cancer population. J Cancer Educ. 2015; 30(3): 546-551.

[146]

Liu S, Zhao Q, Zheng Z, et al. Status of treatment and prophylaxis for radiation-induced oral mucositis in patients with head and neck cancer. Front Oncol. 2021; 11: 642575.

[147]

Shavi GR, Thakur B, Bhambal A, et al. Oral health related quality of life in patients of head and neck cancer attending cancer hospital of Bhopal city, India. J Int Oral Health. 2015; 7(8): 21-27.

[148]

Ederaine SA, Dominguez JL, Harvey JA, et al. Survival and glycemic control in patients with co-existing squamous cell carcinoma and diabetes mellitus. Future Sci OA. 2021; 7(5): Fso683.

[149]

Hu X, Wu J, Xiong H, et al. Type 2 diabetes mellitus promotes the proliferation, metastasis, and suppresses the apoptosis in oral squamous cell carcinoma. J Oral Pathol Med. 2022; 51(5): 483-492.

[150]

Xu W, Chen Z, Zhang L. Impact of diabetes on the prognosis of patients with oral and oropharyngeal cancer: a meta-analysis. J Diabetes Investig. 2024; 15(8): 1140-1150.

[151]

Tseng CH. Pioglitazone and oral cancer risk in patients with type 2 diabetes. Oral Oncol. 2014; 50(2): 98-103.

[152]

Sung HL, Hung CY, Tung YC, et al. Comparison between sodium-glucose cotransporter 2 inhibitors and dipeptidyl peptidase 4 inhibitors on the risk of incident cancer in patients with diabetes mellitus: a real-world evidence study. Diabetes Metab Res Rev. 2024; 40(3): e3784.

[153]

Hu WS, Lin CL. Patients with diabetes with and without sodium-glucose cotransporter-2 inhibitors use with incident cancer risk. J Diabetes Complic. 2023; 37(5): 108468.

[154]

Koepsell H. The Na(+)-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther. 2017; 170: 148-165.

[155]

Gier B, Matveyenko AV, Kirakossian D, et al. Chronic GLP-1 receptor activation by exendin-4 induces expansion of pancreatic duct glands in rats and accelerates formation of dysplastic lesions and chronic pancreatitis in the Kras(G12D) mouse model. Diabetes. 2012; 61(5): 1250-1262.

[156]

Bjerre Knudsen L, Madsen LW, Andersen S, et al. Glucagon-like Peptide-1 receptor agonists activate rodent thyroid C-cells causing calcitonin release and C-cell proliferation. Endocrinology. 2010; 151(4): 1473-1486.

[157]

Cao C, Yang S, Zhou Z. GLP-1 receptor agonists and risk of cancer in type 2 diabetes: an updated meta-analysis of randomized controlled trials. Endocrine. 2019; 66(2): 157-165.

[158]

Liu Y, Zhang X, Chai S, et al. Risk of malignant neoplasia with glucagon-like peptide-1 receptor agonist treatment in patients with type 2 diabetes: a meta-analysis. J Diabetes Res. 2019; 2019: 1534365.

[159]

Gallagher EJ, LeRoith D. Diabetes, cancer, and metformin: connections of metabolism and cell proliferation. Ann N Y Acad Sci. 2011; 1243: 54-68.

[160]

Rohani B. Oral manifestations in patients with diabetes mellitus. World J Diabetes. 2019; 10(9): 485-489.

[161]

Lima DLF, Carneiro S, Barbosa FTS, et al. Salivary flow and xerostomia in older patients with type 2 diabetes mellitus. PLoS One. 2017; 12(8): e0180891.

[162]

Hoseini A, Mirzapour A, Bijani A, et al. Salivary flow rate and xerostomia in patients with type I and II diabetes mellitus. Electron Phys. 2017; 9(9): 5244-5249.

[163]

Visvanathan V, Nix P. Managing the patient presenting with xerostomia: a review. Int J Clin Pract. 2010; 64(3): 404-407.

[164]

Stewart CR, Obi N, Epane EC, et al. Effects of diabetes on salivary gland protein expression of tetrahydrobiopterin and nitric oxide synthesis and function. J Periodontol. 2016; 87(6): 735-741.

[165]

Chen SY, Wang Y, Zhang CL, et al. Decreased basal and stimulated salivary parameters by histopathological lesions and secretory dysfunction of parotid and submandibular glands in rats with type 2 diabetes. Exp Ther Med. 2020; 19(4): 2707-2719.

[166]

Monteiro MM, D’Epiro TT, Bernardi L, et al. Long-and short-term diabetes mellitus type 1 modify young and elder rat salivary glands morphology. Arch Oral Biol. 2017; 73: 40-47.

[167]

Huang Y, Mao QY, Shi XJ, et al. Disruption of tight junctions contributes to hyposalivation of salivary glands in a mouse model of type 2 diabetes. J Anat. 2020; 237(3): 556-567.

[168]

Sato T, Mito K, Ishii H. Relationship between impaired parasympathetic vasodilation and hyposalivation in parotid glands associated with type 2 diabetes mellitus. Am J Physiol Regul Integr Comp Physiol. 2020; 318(5): R940-R949.

[169]

Wu CB, Xue L, Zhou Q. Treatment strategy for chronic obstructive parotitis related to diabetes: a retrospective analysis of 12 cases. Front Pharmacol. 2022; 13: 869872.

[170]

Muhamed SA, Moussa EM, Aboasy NK, et al. Effect of 1% malic acid spray on diabetes mellitus-induced xerostomia: a randomized clinical trial. Oral Dis. 2024; 30(2): 631-638.

[171]

Zhang S, Li J, Nong X, et al. Artesunate combined with metformin ameliorate on diabetes-induced xerostomia by mitigating superior salivatory nucleus and salivary glands injury in type 2 diabetic rats via the PI3K/AKT pathway. Front Pharmacol. 2021; 12: 774674.

[172]

Shiferaw A, Alem G, Tsehay M, et al. Dental caries and associated factors among diabetic and nondiabetic adult patients attending Bichena Primary Hospital’s Outpatient Department. Front Oral Health. 2022; 3: 938405.

[173]

Schmolinsky J, Kocher T, Rathmann W, et al. Diabetes status affects long-term changes in coronal caries—the SHIP study. Sci Rep. 2019; 9(1): 15685.

[174]

Wang Y, Xing L, Yu H, et al. Prevalence of dental caries in children and adolescents with type 1 diabetes: a systematic review and meta-analysis. BMC Oral Health. 2019; 19(1): 213.

[175]

Ferizi L, Dragidella F, Spahiu L, et al. The influence of type 1 diabetes mellitus on dental caries and salivary composition. Int J Dent. 2018; 2018: 5780916.

[176]

Latti BR, Kalburge JV, Birajdar SB, et al. Evaluation of relationship between dental caries, diabetes mellitus and oral microbiota in diabetics. J Oral Maxillofac Pathol. 2018; 22(2): 282.

[177]

PradeepKumar AR, JothiLatha S, Durvasulu A, et al. Impact of type 2 diabetes mellitus on the occurrence of vertical root fracture: a case control study. J Endod. 2024; 50(4): 450-455.e451.

[178]

Saghiri MA, Nath D, Rahmani B, et al. The effect of diabetes on fracture resistance of teeth: an in vitro study. Aust Endod J. 2021; 47(3): 499-505.

[179]

Abbassy MA, Watari I, Bakry AS, et al. Diabetes detrimental effects on enamel and dentine formation. J Dent. 2015; 43(5): 589-596.

[180]

Saghiri MA, Vakhnovetsky J, Samadi E, et al. Effects of diabetes on elemental levels and nanostructure of root canal dentin. J Endod. 2023; 49(9): 1169-1175.

[181]

Cosgarea R, Tristiu R, Dumitru RB, et al. Effects of non-surgical periodontal therapy on periodontal laboratory and clinical data as well as on disease activity in patients with rheumatoid arthritis. Clin Oral Investig. 2019; 23(1): 141-151.

[182]

Juan CY, Hsu CW, Lu MC. Increased dental visits in patients with rheumatoid arthritis: a secondary cohort analysis of population based claims data. BMC Oral Health. 2022; 22(1): 609.

[183]

Mühlberg S, Jäger J, Krohn-Grimberghe B, et al. Oral health-related quality of life depending on oral health in patients with rheumatoid arthritis. Clin Oral Investig. 2017; 21(9): 2661-2670.

[184]

Manzano BR, da Silva Santos PS, Bariquelo MH, et al. A case-control study of oral diseases and quality of life in individuals with rheumatoid arthritis and systemic lupus erythematosus. Clin Oral Investig. 2021; 25(4): 2081-2092.

[185]

González-Febles J, Rodríguez-Lozano B, Sánchez-Piedra C, et al. Association between periodontitis and anti-citrullinated protein antibodies in rheumatoid arthritis patients: a cross-sectional study. Arthritis Res Ther. 2020; 22(1): 27.

[186]

Oliveira SR, de Arruda JAA, Schneider AH, et al. Are neutrophil extracellular traps the link for the cross-talk between periodontitis and rheumatoid arthritis physiopathology? Rheumatology (Oxford). 2021; 61(1): 174-184.

[187]

Inanc N, Mumcu G, Can M, et al. Elevated serum TREM-1 is associated with periodontitis and disease activity in rheumatoid arthritis. Sci Rep. 2021; 11(1): 2888.

[188]

Yilmaz D, Gönüllü E, Gürsoy M, et al. Salivary and serum concentrations of monocyte chemoattractant protein-1, macrophage inhibitory factor, and fractalkine in relation to rheumatoid arthritis and periodontitis. J Periodontol. 2021; 92(9): 1295-1305.

[189]

Schulz S, Zimmer P, Pütz N, et al. rs2476601 in PTPN22 gene in rheumatoid arthritis and periodontitis-a possible interface? J Transl Med. 2020; 18(1): 389.

[190]

Svärd A, Renvert S, Sanmartin Berglund J, et al. Antibodies to citrullinated peptides in serum and saliva in patients with rheumatoid arthritis and their association to periodontitis. Clin Exp Rheumatol. 2020; 38(4): 699-704.

[191]

Kaneko C, Kobayashi T, Ito S, et al. Association among periodontitis severity, anti-agalactosyl immunoglobulin G titer, and the disease activity of rheumatoid arthritis. J Periodontal Res. 2021; 56(4): 702-709.

[192]

Reichert S, Jurianz E, Natalie P, et al. Is periodontitis a prognostic factor in order to indicate antibodies against citrullinated peptides in patients with rheumatoid arthritis? Clin Exp Rheumatol. 2020; 38(2): 227-238.

[193]

Massarenti L, Enevold C, Damgaard D, et al. Peptidylarginine deiminase 2 gene polymorphisms in subjects with periodontitis predispose to rheumatoid arthritis. Int J Mol Sci. 2022; 23(17): 9536.

[194]

Lee JA, Mikuls TR, Sayles HR, et al. Associations between periodontitis and serum anti-malondialdehyde-acetaldehyde antibody concentrations in rheumatoid arthritis: a case-control study. J Periodontol. 2024; 95: 929-941.

[195]

El-Wakeel NM, Shalaby ZF, Abdulmaguid RF, et al. Local gingival crevicular fluid, synovial fluid, and circulating levels of prolactin hormone in patients with moderately active rheumatoid arthritis and stage III and IV periodontitis before and after non-surgical periodontal treatment—a controlled trial. Clin Oral Investig. 2023; 27(6): 2813-2821.

[196]

Li RN, Ou TT, Lin CH, et al. NLRP3 gene polymorphisms in rheumatoid arthritis and primary Sjogren’s syndrome patients. Diagnostics. 2023; 13(2): 206.

[197]

Jung ES, Choi YY, Lee KH. Relationship between rheumatoid arthritis and periodontal disease in Korean adults: data from the Sixth Korea National Health and Nutrition Examination Survey, 2013 to 2015. J Periodontol. 2019; 90(4): 350-357.

[198]

Lee KH, Choi YY. Rheumatoid arthritis and periodontitis in adults: using the Korean National Health Insurance Service-National Sample Cohort. J Periodontol. 2020; 91(9): 1186-1193.

[199]

Karapetsa D, Consensi A, Castagnoli G, et al. Periodontitis in Italian patients with established rheumatoid arthritis: a cross-sectional study. Oral Dis. 2022; 28(6): 1715-1722.

[200]

Bolstad AI, Fevang BS, Lie SA. Increased risk of periodontitis in patients with rheumatoid arthritis: a nationwide register study in Norway. J Clin Periodontol. 2023; 50(8): 1022-1032.

[201]

Ziebolz D, Rupprecht A, Schmickler J, et al. Association of different immunosuppressive medications with periodontal condition in patients with rheumatoid arthritis: results from a cross-sectional study. J Periodontol. 2018; 89(11): 1310-1317.

[202]

Coat J, Demoersman J, Beuzit S, et al. Anti-B lymphocyte immunotherapy is associated with improvement of periodontal status in subjects with rheumatoid arthritis. J Clin Periodontol. 2015; 42(9): 817-823.

[203]

Moura MF, Cota LOM, Silva TA, et al. Clinical and microbiological effects of non-surgical periodontal treatment in individuals with rheumatoid arthritis: a controlled clinical trial. Odontology. 2021; 109(2): 484-493.

[204]

Nguyen VB, Nguyen TT, Huynh NC, et al. Effects of non-surgical periodontal treatment in rheumatoid arthritis patients: a randomized clinical trial. Dent Med Probl. 2021; 58(1): 97-105.

[205]

Schmickler J, Rupprecht A, Patschan S, et al. Cross-sectional evaluation of periodontal status and microbiologic and rheumatoid parameters in a large cohort of patients with rheumatoid arthritis. J Periodontol. 2017; 88(4): 368-379.

[206]

Manoil D, Bostanci N, Mumcu G, et al. Novel and known periodontal pathogens residing in gingival crevicular fluid are associated with rheumatoid arthritis. J Periodontol. 2021; 92(3): 359-370.

[207]

Lehenaff R, Tamashiro R, Nascimento MM, et al. Subgingival microbiome of deep and shallow periodontal sites in patients with rheumatoid arthritis: a pilot study. BMC Oral Health. 2021; 21(1): 248.

[208]

Laugisch O, Wong A, Sroka A, et al. Citrullination in the periodontium—a possible link between periodontitis and rheumatoid arthritis. Clin Oral Investig. 2016; 20(4): 675-683.

[209]

Bello-Gualtero JM, Lafaurie GI, Hoyos LX, et al. Periodontal disease in individuals with a genetic risk of developing arthritis and early rheumatoid arthritis: a cross-sectional study. J Periodontol. 2016; 87(4): 346-356.

[210]

Kirchner A, Jäger J, Krohn-Grimberghe B, et al. Active matrix metalloproteinase-8 and periodontal bacteria depending on periodontal status in patients with rheumatoid arthritis. J Periodontal Res. 2017; 52(4): 745-754.

[211]

Kurgan Ş, Fentoğlu Ö, Önder C, et al. The effects of periodontal therapy on gingival crevicular fluid matrix metalloproteinase-8, interleukin-6 and prostaglandin E2 levels in patients with rheumatoid arthritis. J Periodontal Res. 2016; 51(5): 586-595.

[212]

Kim D, Lee G, Huh YH, et al. NAMPT is an essential regulator of RA-mediated periodontal inflammation. J Dent Res. 2017; 96(6): 703-711.

[213]

Pan W, Yin W, Yang L, et al. Inhibition of Ctsk alleviates periodontitis and comorbid rheumatoid arthritis via downregulation of the TLR9 signalling pathway. J Clin Periodontol. 2019; 46(3): 286-296.

[214]

Domínguez-Pérez RA, Loyola-Rodriguez JP, Abud-Mendoza C, et al. Association of cytokines polymorphisms with chronic peridontitis and rheumatoid arthritis in a Mexican population. Acta Odontol Scand. 2017; 75(4): 243-248.

[215]

Loutan L, Alpizar-Rodriguez D, Courvoisier DS, et al. Periodontal status correlates with anti-citrullinated protein antibodies in first-degree relatives of individuals with rheumatoid arthritis. J Clin Periodontol. 2019; 46(7): 690-698.

[216]

Moccia S, Nucci L, Spagnuolo C, et al. Polyphenols as potential agents in the management of temporomandibular disorders. Appl Sci. 2020; 10(15): 5305.

[217]

Lin CY, Chung CH, Chu HY, et al. Prevalence of temporomandibular disorders in rheumatoid arthritis and associated risk factors: a nationwide study in Taiwan. J Oral Facial Pain Headache. 2017; 31(4): e29-e36.

[218]

Ahmed N, Petersson A, Catrina AI, et al. Tumor necrosis factor mediates temporomandibular joint bone tissue resorption in rheumatoid arthritis. Acta Odontol Scand. 2015; 73(3): 232-240.

[219]

El Qashty RMN, Mohamed NN, Radwan LRS, et al. Effect of bone marrow mesenchymal stem cells on healing of temporomandibular joints in rats with induced rheumatoid arthritis. Eur J Oral Sci. 2018; 126(4): 272-281.

[220]

Silvestre-Rangil J, Bagán L, Silvestre FJ, et al. Oral manifestations of rheumatoid arthritis. A cross-sectional study of 73 patients. Clin Oral Investig. 2016; 20(9): 2575-2580.

[221]

Sorgato CC, Lins ESM, Leão JC, et al. EBV and CMV viral load in rheumatoid arthritis and their role in associated Sjögren’s syndrome. J Oral Pathol Med. 2020; 49(7): 693-700.

[222]

Martinez-Martinez RE, Domínguez-Pérez RA, Sancho-Mata J, et al. The frequency and severity of dental caries, and counts of cariogenic bacteria in rheumatoid arthritis patients. Dent Med Probl. 2019; 56(2): 137-142.

[223]

Karataş E, Kul A, Tepecik E. Association between rheumatoid arthritis and apical periodontitis: a cross-sectional study. Eur Endod J. 2020; 5(2): 155-158.

[224]

Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392(10159): 1736-1788.

[225]

GBD 2017 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 359 diseases and injuries and healthy life expectancy (HALE) for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392(10159): 1859-1922.

[226]

Di Cesare M, Perel P, Taylor S, et al. The heart of the world. Glob Heart. 2024; 19(1): 11.

[227]

Reynolds HR, Craig RG. Atherosclerotic vascular disease and periodontal disease. In: Craig R, Kamer A, eds. A Clinician’s Guide to Systemic Effects of Periodontal Diseases. Springer; 2016: 39-51.

[228]

Dietrich T, Webb I, Stenhouse L, et al. Evidence summary: the relationship between oral and cardiovascular disease. Br Dent J. 2017; 222(5): 381-385.

[229]

Gomes-Filho IS, Coelho JMF, Miranda SS, et al. Severe and moderate periodontitis are associated with acute myocardial infarction. J Periodontol. 2020; 91(11): 1444-1452.

[230]

Cho HJ, Shin MS, Song Y, et al. Severe periodontal disease increases acute myocardial infarction and stroke: a 10-year retrospective follow-up study. J Dent Res. 2021; 100(7): 706-713.

[231]

Behle JH, Papapanou PN. Periodontal infections and atherosclerotic vascular disease: an update. Int Dent J. 2006; 56(suppl 41): 256-262.

[232]

Curia MC, Pignatelli P, D’Antonio DL, et al. Oral Porphyromonas gingivalis and Fusobacterium nucleatum abundance in subjects in primary and secondary cardiovascular prevention, with or without heterozygous familial hypercholesterolemia. Biomedicines. 2022; 10(9): 2144.

[233]

Wu Y, Wang Y, Du L, et al. The link between different infection forms of Porphyromonas gingivalis and acute myocardial infarction: a cross-sectional study. BMC Oral Health. 2023; 23(1): 63.

[234]

Farrugia C, Stafford GP, Potempa J, et al. Mechanisms of vascular damage by systemic dissemination of the oral pathogen Porphyromonas gingivalis. FEBS J. 2021; 288(5): 1479-1495.

[235]

Gimbrone MA, Jr., García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016; 118(4): 620-636.

[236]

Leishman SJ, Ford PJ, Do HL, et al. Periodontal pathogen load and increased antibody response to heat shock protein 60 in patients with cardiovascular disease. J Clin Periodontol. 2012; 39(10): 923-930.

[237]

Craig RG, Kamer AR. A Clinician’s Guide to Systemic Effects of Periodontal Diseases. Springer; 2016.

[238]

Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: the task force for the management of arterial hypertension of the European Society of Cardiology and the European Society of Hypertension. J Hypertens. 2018; 36(10): 1953-2041.

[239]

Wang YR, Alexander GC, Stafford RS. Outpatient hypertension treatment, treatment intensification, and control in Western Europe and the United States. Arch Intern Med. 2007; 167(2): 141-147.

[240]

Cutler JA, Sorlie PD, Wolz M, et al. Trends in hypertension prevalence, awareness, treatment, and control rates in United States adults between 1988–1994 and 1999–2004. Hypertension. 2008; 52(5): 818-827.

[241]

Surma S, Romańczyk M, Witalińska-Łabuzek J, et al. Periodontitis, blood pressure, and the risk and control of arterial hypertension: epidemiological, clinical, and pathophysiological aspects—review of the literature and clinical trials. Curr Hypertens Rep. 2021; 23(5): 27.

[242]

Del Pinto R, Pietropaoli D, Munoz-Aguilera E, et al. Periodontitis and hypertension: is the association causal? High Blood Press Cardiovasc Prev. 2020; 27(4): 281-289.

[243]

Franek E, Napora M, Blach A, et al. Blood pressure and left ventricular mass in subjects with type 2 diabetes and gingivitis or chronic periodontitis. J Clin Periodontol. 2010; 37(10): 875-880.

[244]

Muñoz Aguilera E, Suvan J, Buti J, et al. Periodontitis is associated with hypertension: a systematic review and meta-analysis. Cardiovasc Res. 2020; 116(1): 28-39.

[245]

Hwang SY, Oh H, Rhee MY, et al. Association of periodontitis, missing teeth, and oral hygiene behaviors with the incidence of hypertension in middle-aged and older adults in Korea: a 10-year follow-up study. J Periodontol. 2022; 93(9): 1283-1293.

[246]

Rodrigues JVS, Cláudio MM, Franciscon JPS, et al. The effect of non-surgical periodontal treatment on patients with combined refractory arterial hypertension and stage III, grade B periodontitis: a preliminary prospective clinical study. J Clin Med. 2023; 12(13): 4277.

[247]

Lanau N, Mareque-Bueno J, Zabalza MJ. Impact of nonsurgical periodontal treatment on blood pressure: a prospective cohort study. Eur J Dent. 2024; 18(02): 517-525.

[248]

Ozmeric N, Elgun S, Kalfaoglu D, et al. Interaction between hypertension and periodontitis. Oral Dis. 2024; 30(3): 1622-1631.

[249]

Czesnikiewicz-Guzik M, Osmenda G, Siedlinski M, et al. Causal association between periodontitis and hypertension: evidence from Mendelian randomization and a randomized controlled trial of non-surgical periodontal therapy. Eur Heart J. 2019; 40(42): 3459-3470.

[250]

Dutzan N, Kajikawa T, Abusleme L, et al. A dysbiotic microbiome triggers T(H)17 cells to mediate oral mucosal immunopathology in mice and humans. Sci Transl Med. 2018; 10(463): eaat0797.

[251]

Dutzan N, Abusleme L. T helper 17 cells as pathogenic drivers of periodontitis. Adv Exp Med Biol. 2019; 1197: 107-117.

[252]

Gordon JH, LaMonte MJ, Genco RJ, et al. Is the oral microbiome associated with blood pressure in older women? High Blood Press Cardiovasc Prev. 2019; 26(3): 217-225.

[253]

Pietropaoli D, Del Pinto R, Ferri C, et al. Definition of hypertension-associated oral pathogens in NHANES. J Periodontol. 2019; 90(8): 866-876.

[254]

LaMonte MJ, Gordon JH, Diaz-Moreno P, et al. Oral microbiome is associated with incident hypertension among postmenopausal women. J Am Heart Assoc. 2022; 11(6): e021930.

[255]

Rodriguez NM, Loren P, Paez I, et al. MicroRNAs: the missing link between hypertension and periodontitis? Int J Mol Sci. 2024; 25(4): 1992.

[256]

Ghanbari Z, Moradi Y, Samiee N, et al. Dental caries prevalence in relation to the cardiovascular diseases: cross-sectional findings from the Iranian Kurdish population. BMC Oral Health. 2024; 24(1): 509.

[257]

Wiener RC, Sambamoorthi U. Cross-sectional association between the number of missing teeth and cardiovascular disease among adults aged 50 or older: BRFSS 2010. Int J Vasc Med. 2014; 2014: 421567.

[258]

Liljestrand JM, Havulinna AS, Paju S, et al. Missing teeth predict incident cardiovascular events, diabetes, and death. J Dent Res. 2015; 94(8): 1055-1062.

[259]

Peng J, Song J, Han J, et al. The relationship between tooth loss and mortality from all causes, cardiovascular diseases, and coronary heart disease in the general population: systematic review and dose-response meta-analysis of prospective cohort studies. Biosci Rep. 2019; 39(1): BSR20181773.

[260]

Momtazmanesh S, Moghaddam SS, Ghamari S-H, et al. Global burden of chronic respiratory diseases and risk factors, 1990–2019: an update from the Global Burden of Disease Study 2019. eClinicalMedicine. 2023; 59: 101936.

[261]

Dong J, Li W, Wang Q, et al. Relationships between oral microecosystem and respiratory diseases. Front Mol Biosci. 2022; 8: 718222.

[262]

Charlson ES, Bittinger K, Haas AR, et al. Topographical continuity of bacterial populations in the healthy human respiratory tract. Am J Respir Crit Care Med. 2011; 184(8): 957-963.

[263]

Gupta A, Saleena LM, Kannan P, et al. The impact of oral diseases on respiratory health and the influence of respiratory infections on the oral microbiome. J Dent. 2024; 148: 105213.

[264]

Kim S-H, Gu S, Kim J-A, et al. Association between oral health and airflow limitation: analysis using a nationwide survey in Korea. J Korean Med Sci. 2023; 38(31): e241.

[265]

Li S, Ning W, Wang W, et al. Oral health-related quality of life in patients with chronic respiratory diseases—results of a systematic review. Front Med. 2021; 8: 757739.

[266]

Ciardo A, Simon MM, Eberhardt R, et al. Severe chronic obstructive pulmonary disease is associated with reduced oral health conditions. Oral Dis. 2024; 30(5): 3400-3412.

[267]

Hayes C, Sparrow D, Cohen M, et al. The association between alveolar bone loss and pulmonary function: the VA Dental Longitudinal Study. Ann Periodontol. 1998; 3(1): 257-261.

[268]

Scannapieco FA, Ho AW. Potential associations between chronic respiratory disease and periodontal disease: analysis of National Health and Nutrition Examination Survey III. J Periodontol. 2001; 72(1): 50-56.

[269]

Gaeckle NT, Heyman B, Criner AJ, et al. Markers of dental health correlate with daily respiratory symptoms in COPD. Chronic Obstr Pulm Dis. 2018; 5(2): 97-105.

[270]

Zhou X, Han J, Liu Z, et al. Effects of periodontal treatment on lung function and exacerbation frequency in patients with chronic obstructive pulmonary disease and chronic periodontitis: a 2-year pilot randomized controlled trial. J Clin Periodontol. 2014; 41(6): 564-572.

[271]

Xiong K, Ao K, Wei W, et al. Periodontitis aggravates COPD through the activation of γδ T cell and M2 macrophage. mSystems. 2024; 9(2): e00572-e00523.

[272]

Li W, Liu W, Yang H, et al. Oral infection with periodontal pathogens induced chronic obstructive pulmonary disease-like lung changes in mice. BMC Oral Health. 2024; 24(1): 850.

[273]

Xiong K, Yang P, Wei W, et al. Periodontitis contributes to COPD progression via affecting ferroptosis. BMC Oral Health. 2023; 23(1): 664.

[274]

Bairappan S, Puranik MP, Sowmya KR. Impact of asthma and its medication on salivary characteristics and oral health in adolescents: a cross-sectional comparative study. Spec Care Dentist. 2020; 40(3): 227-237.

[275]

Moreira LV, Galvão EL, Mourão PS, et al. Association between asthma and oral conditions in children and adolescents: a systematic review with meta-analysis. Clin Oral Investig. 2023; 27(1): 45-67.

[276]

Jan BM, Khayat MA, Bushnag AI, et al. The association between long-term corticosteroids use and dental caries: a systematic review. Cureus. 2023; 15(9): e44600.

[277]

Sag C, Ozden FO, Acikgoz G, et al. The effects of combination treatment with a long-acting beta2-agonist and a corticosteroid on salivary flow rate, secretory immunoglobulin A, and oral health in children and adolescents with moderate asthma: a 1-month, single-blind clinical study. Clin Ther. 2007; 29(10): 2236-2242.

[278]

Lee SW, Lim HJ, Lee E. Association between asthma and periodontitis: results from the Korean National Health and Nutrition Examination Survey. J Periodontol. 2017; 88(6): 575-581.

[279]

Moraschini V, Calasans-Maia JA, Calasans-Maia MD. Association between asthma and periodontal disease: a systematic review and meta-analysis. J Periodontol. 2018; 89(4): 440-455.

[280]

Brasil-Oliveira R, Cruz ÁA, Souza-Machado A, et al. Oral health-related quality of life in individuals with severe asthma. J Bras Pneumol. 2020; 47(1): e20200117.

[281]

Lopes MP, Cruz ÁA, Xavier MT, et al. Prevotella intermedia and periodontitis are associated with severe asthma. J Periodontol. 2020; 91(1): 46-54.

[282]

Hendrix AY, Kheradmand F. The role of matrix metalloproteinases in development, repair, and destruction of the lungs. Prog Mol Biol Transl Sci. 2017; 148: 1-29.

[283]

Gueders MM, Foidart JM, Noel A, et al. Matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs in the respiratory tract: potential implications in asthma and other lung diseases. Eur J Pharmacol. 2006; 533(1–3): 133-144.

[284]

Irie K, Azuma T, Tomofuji T, et al. Exploring the role of IL-17A in oral dysbiosis-associated periodontitis and its correlation with systemic inflammatory disease. Dent J. 2023; 11(8): 194.

[285]

Son M, Jo S, Lee JS, et al. Association between oral health and incidence of pneumonia: a population-based cohort study from Korea. Sci Rep. 2020; 10(1): 9576.

[286]

Ory J, Mourgues C, Raybaud E, et al. Cost assessment of a new oral care program in the intensive care unit to prevent ventilator-associated pneumonia. Clin Oral Investig. 2018; 22(5): 1945-1951.

[287]

Prasad R, Daly B, Manley G. The impact of 0.2% chlorhexidine gel on oral health and the incidence of pneumonia amongst adults with profound complex neurodisability. Spec Care Dentist. 2019; 39(5): 524-532.

[288]

Kurasawa Y, Maruoka Y, Sekiya H, et al. Pneumonia prevention effects of perioperative oral management in approximately 25, 000 patients following cancer surgery. Clin Exp Dent Res. 2020; 6(2): 165-173.

[289]

Ozaki K, Teranaka S, Tohara H, et al. Oral management by a full-time resident dentist in the hospital ward reduces the incidence of pneumonia in patients with acute stroke. Int J Dent. 2022; 2022: 6193818.

[290]

Iinuma T, Arai Y, Abe Y, et al. Denture wearing during sleep doubles the risk of pneumonia in the very elderly. J Dent Res. 2015; 94(suppl3): 28s-36s.

[291]

Cao Y, Liu C, Lin J, et al. Oral care measures for preventing nursing home-acquired pneumonia. Cochrane Database Syst Rev. 2022; 11(11): Cd012416.

[292]

de Melo Neto JP, Melo M, dos Santos-Pereira SA, et al. Periodontal infections and community-acquired pneumonia: a case-control study. Eur J Clin Microbiol Infect Dis. 2013; 32(1): 27-32.

[293]

Kim S-J, Kim K, Choi S, et al. Chronic periodontitis and community-acquired pneumonia: a population-based cohort study. BMC Pulmon Med. 2019; 19(1): 268.

[294]

Sumi Y, Miura H, Michiwaki Y, et al. Colonization of dental plaque by respiratory pathogens in dependent elderly. Arch Gerontol Geriatr. 2007; 44(2): 119-124.

[295]

Yamasaki K, Kawanami T, Yatera K, et al. Significance of anaerobes and oral bacteria in community-acquired pneumonia. PLoS One. 2013; 8(5): e63103.

[296]

Kikutani T, Tamura F, Tashiro H, et al. Relationship between oral bacteria count and pneumonia onset in elderly nursing home residents. Geriatr Gerontol Int. 2015; 15(4): 417-421.

[297]

Nishizawa T, Niikura Y, Akasaka K, et al. Pilot study for risk assessment of aspiration pneumonia based on oral bacteria levels and serum biomarkers. BMC Infect Dis. 2019; 19(1): 761.

[298]

Okuda K, Kimizuka R, Abe S, et al. Involvement of periodontopathic anaerobes in aspiration pneumonia. J Periodontol. 2005; 76( suppl11): 2154-2160.

[299]

Tian H, Zhang Z, Wang X, et al. Role of experimental periodontitis in inducing pulmonary inflammation in mice. Oral Dis. 2022; 28(8): 2294-2303.

[300]

Hayashi M, Mori M, Itsumi M, et al. Severity of acute lung injury in aspiration pneumonia model mice transplanted with human oral microflora. Oral Sci Int. 2024; 21(1): 121-130.

[301]

Darbanian N, Nobahar M, Ghorbani R. Effect of propolis mouthwash on the incidence of ventilator-associated pneumonia in intensive care unit patients: a comparative randomized triple-blind clinical trial. BMC Oral Health. 2024; 24(1): 636.

[302]

Zhao M, Xie Y, Gao W, et al. Diabetes mellitus promotes susceptibility to periodontitis—novel insight into the molecular mechanisms. Front Endocrinol. 2023; 14: 1192625.

[303]

Luong A, Tawfik AN, Islamoglu H, et al. Periodontitis and diabetes mellitus co-morbidity: a molecular dialogue. J Oral Biosci. 2021; 63(4): 360-369.

[304]

Kunath B, Hickl O, Queirós P, et al. Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi-omic analyses. Microbiome. 2022; 10(1): 243.

[305]

Li J, Yuan P, Hu X, et al. A tongue features fusion approach to predicting prediabetes and diabetes with machine learning. J Biomed Inform. 2021; 115: 103693.

[306]

Taba M, Grant MM. Editorial: Salivary biomarkers for oral and systemic diseases. Front Dent Med. 2024; 5: 1429305.

[307]

Antony A. Flexible and wearable biosensors: revolutionizing health monitoring. In: Mathew R, Ajayan J, eds. Biosensors: Developments, Challenges and Perspectives. Springer Nature Singapore; 2024: 237-258.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

157

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/