The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities

Zehua Wang , Chen Chen , Jiaoyu Ai , Yaping Gao , Lei Wang , Shurui Xia , Yongxu Jia , Yanru Qin

MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70048

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70048 DOI: 10.1002/mco2.70048
REVIEW

The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities

Author information +
History +
PDF

Abstract

Cellular senescence is characterized by a stable cell cycle arrest and a hypersecretory, proinflammatory phenotype in response to various stress stimuli. Traditionally, this state has been viewed as a tumor-suppressing mechanism that prevents the proliferation of damaged cells while activating the immune response for their clearance. However, senescence is increasingly recognized as a contributing factor to tumor progression. This dual role necessitates a careful evaluation of the beneficial and detrimental aspects of senescence within the tumor microenvironment (TME). Specifically, senescent cells display a unique senescence-associated secretory phenotype that releases a diverse array of soluble factors affecting the TME. Furthermore, the impact of senescence on tumor–immune interaction is complex and often underappreciated. Senescent immune cells create an immunosuppressive TME favoring tumor progression. In contrast, senescent tumor cells could promote a transition from immune evasion to clearance. Given these intricate dynamics, therapies targeting senescence hold promise for advancing antitumor strategies. This review aims to summarize the dual effects of senescence on tumor progression, explore its influence on tumor–immune interactions, and discuss potential therapeutic strategies, alongside challenges and future directions. Understanding how senescence regulates antitumor immunity, along with new therapeutic interventions, is essential for managing tumor cell senescence and remodeling the immune microenvironment.

Keywords

cancer treatment / cellular senescence / immunity / SASP / tumor microenvironment / tumor progression

Cite this article

Download citation ▾
Zehua Wang, Chen Chen, Jiaoyu Ai, Yaping Gao, Lei Wang, Shurui Xia, Yongxu Jia, Yanru Qin. The crosstalk between senescence, tumor, and immunity: molecular mechanism and therapeutic opportunities. MedComm, 2025, 6(1): e70048 DOI:10.1002/mco2.70048

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol. 2018; 28(6): 436-453.

[2]

Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res. 1961; 25: 585-621.

[3]

Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013; 75: 685-705.

[4]

Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014; 31(6): 722-733.

[5]

Jun JI, Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010; 12(7): 676-685.

[6]

Storer M, Mas A, Robert-Moreno A, et al. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013; 155(5): 1119-1130.

[7]

Deng Y, Chang S. Role of telomeres and telomerase in genomic instability, senescence and cancer. Lab Invest. 2007; 87(11): 1071-1076.

[8]

Ewald JA, Desotelle JA, Wilding G, Jarrard DF. Therapy-induced senescence in cancer. J Natl Cancer Inst. 2010; 102(20): 1536-1546.

[9]

Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward. Cell. 2019; 179(4): 813-827.

[10]

Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev. 2010; 24(22): 2463-2479.

[11]

Hanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022; 12(1): 31-46.

[12]

Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol. 2007; 8(9): 729-740.

[13]

Tomaselli D, Steegborn C, Mai A, Rotili D. Sirt4: A Multifaceted Enzyme at the Crossroads of Mitochondrial Metabolism and Cancer. Front Oncol. 2020; 10: 474.

[14]

Basisty N, Kale A, Jeon OH, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020; 18(1): e3000599.

[15]

Coppé JP, Patil CK, Rodier F, et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008; 6(12): 2853-2868.

[16]

Xie Y, Xie F, Zhang L, et al. Targeted anti-tumor immunotherapy using tumor infiltrating cells. Advanced science (Weinheim, Baden-Wurttemberg, Germany). 2021; 8(22): e2101672.

[17]

Yang Y, Fan D, Zheng BH, Zhou ST. [Latest findings on the function of immune metabolism in tumor immunity]. Sichuan da xue xue bao Yi xue ban = Journal of Sichuan University Medical science edition. 2023; 54(3): 497-504.

[18]

Walford RL. The immunologic theory of aging. Gerontologist. 1964; 4: 195-197.

[19]

Pawelec G. Immunosenescence comes of age. Symposium on aging research in immunology: the impact of genomics. EMBO Rep. 2007; 8(3): 220-223.

[20]

Pawelec G. Age and immunity: What is “immunosenescence”? Exp Gerontol. 2018; 105: 4-9.

[21]

Hanna A, Balko JM. No rest for the wicked: Tumor cell senescence reshapes the immune microenvironment. Cancer Cell. 2023; 41(5): 831-833.

[22]

Kudlova N, De Sanctis JB, Hajduch M. Cellular senescence: molecular targets, biomarkers, and senolytic drugs. Int J Mol Sci. 2022; 23(8): 4168.

[23]

Schmitt CA, Wang B, Demaria M. Senescence and cancer - role and therapeutic opportunities. Nat Rev Clin Oncol. 2022; 19(10): 619-636.

[24]

Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol. 2024; 25(12): 958-978.

[25]

von Zglinicki T, Wan T, Miwa S. Senescence in post-mitotic cells: a driver of aging? Antioxid Redox Signaling. 2021; 34(4): 308-323.

[26]

Sanokawa-Akakura R, Akakura S, Ostrakhovitch EA, Tabibzadeh S. Replicative senescence is distinguishable from DNA damage-induced senescence by increased methylation of promoter of rDNA and reduced expression of rRNA. Mech Ageing Dev. 2019; 183: 111149.

[27]

Pizzul P, Rinaldi C, Bonetti D. The multistep path to replicative senescence onset: zooming on triggering and inhibitory events at telomeric DNA. Front Cell Dev Biol. 2023; 11: 1250264.

[28]

Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Nat Acad Sci USA. 1996; 93(24): 13742-13747.

[29]

Herr LM, Schaffer ED, Fuchs KF, Datta A, Brosh RM, Jr. Replication stress as a driver of cellular senescence and aging. Commun Biol. 2024; 7(1): 616.

[30]

Zhou S, Cui J, Shi Y. Serine metabolism regulates the replicative senescence of human dental pulp cells through histone methylation. Curr Issues Mol Biol. 2024; 46(4): 2856-2870.

[31]

Wu F, Zhang L, Lai C, et al. Dynamic alteration profile and new role of RNA m6A methylation in replicative and H(2)O(2)-induced premature senescence of human embryonic lung fibroblasts. Int J Mol Sci. 2022; 23(16): 9271.

[32]

Cao L, Lee SG, Park SH, Kim HR. Sargahydroquinoic acid (SHQA) suppresses cellular senescence through Akt/mTOR signaling pathway. Exp Gerontol. 2021; 151: 111406.

[33]

Dasi D, Nallabelli N, Devalaraju R, et al. Curcumin attenuates replicative senescence in human dental follicle cells and restores their osteogenic differentiation. Journal of oral biosciences. 2023; 65(4): 371-378.

[34]

Braig M, Lee S, Loddenkemper C, et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature. 2005; 436(7051): 660-665.

[35]

Muñoz-Espín D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014; 15(7): 482-496.

[36]

Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence. Nat Rev Cancer. 2015; 15(7): 397-408.

[37]

Chen Z, Trotman LC, Shaffer D, et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature. 2005; 436(7051): 725-730.

[38]

Lazzerini Denchi E, Attwooll C, Pasini D, Helin K. Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol. 2005; 25(7): 2660-2672.

[39]

Michaloglou C, Vredeveld LC, Soengas MS, et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature. 2005; 436(7051): 720-724.

[40]

Vickridge E, Faraco CCF, Tehrani PS, et al. The DNA repair function of BCL11A suppresses senescence and promotes continued proliferation of triple-negative breast cancer cells. NAR cancer. 2022; 4(4): zcac028.

[41]

Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006; 25(38): 5220-5227.

[42]

Paez-Ribes M, González-Gualda E, Doherty GJ, Muñoz-Espín D. Targeting senescent cells in translational medicine. EMBO Mol Med. 2019; 11(12): e10234.

[43]

Di Micco R, Fumagalli M, Cicalese A, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature. 2006; 444(7119): 638-642.

[44]

Prasanna PG, Citrin DE, Hildesheim J, et al. Therapy-induced senescence: opportunities to improve anticancer therapy. J Natl Cancer Inst. 2021; 113(10): 1285-1298.

[45]

Özdemir A, Şimay Demir YD, Yeşilyurt ZE, Ark M. Senescent cells and SASP in cancer microenvironment: new approaches in cancer therapy. Advances in protein chemistry and structural biology. 2023; 133: 115-158.

[46]

Murray D, Mirzayans R. Cellular responses to platinum-based anticancer drugs and UVC: role of p53 and implications for cancer therapy. Int J Mol Sci. 2020; 21(16): 5766.

[47]

Bousset L, Gil J. Targeting senescence as an anticancer therapy. Molecular oncology. 2022; 16(21): 3855-3880.

[48]

Go S, Kang M, Kwon SP, Jung M, Jeon OH, Kim BS. The senolytic drug JQ1 removes senescent cells via ferroptosis. Tissue engineering and regenerative medicine. 2021; 18(5): 841-850.

[49]

Ouvrier B, Ismael S, Bix GJ. Senescence and SASP are potential therapeutic targets for ischemic stroke. Pharmaceuticals (Basel, Switzerland). 2024; 17(3): 312.

[50]

Özcan S, Alessio N, Acar MB, et al. Unbiased analysis of senescence associated secretory phenotype (SASP) to identify common components following different genotoxic stresses. Aging. 2016; 8(7): 1316-1329.

[51]

Acosta JC, Banito A, Wuestefeld T, et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat Cell Biol. 2013; 15(8): 978-990.

[52]

Laberge RM, Sun Y, Orjalo AV, et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol. 2015; 17(8): 1049-1061.

[53]

Ritschka B, Storer M, Mas A, et al. The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 2017; 31(2): 172-183.

[54]

Eggert T, Wolter K, Ji J, et al. Distinct functions of senescence-associated immune responses in liver tumor surveillance and tumor progression. Cancer Cell. 2016; 30(4): 533-547.

[55]

Kang TW, Yevsa T, Woller N, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature. 2011; 479(7374): 547-551.

[56]

Lasry A, Ben-Neriah Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 2015; 36(4): 217-228.

[57]

Kansara M, Leong HS, Lin DM, et al. Immune response to RB1-regulated senescence limits radiation-induced osteosarcoma formation. J Clin Invest. 2013; 123(12): 5351-5560.

[58]

Vilgelm AE, Johnson CA, Prasad N, et al. Connecting the dots: therapy-induced senescence and a tumor-suppressive immune microenvironment. J Natl Cancer Inst. 2016; 108(6): djv406.

[59]

Loo TM, Kamachi F, Watanabe Y, et al. Gut microbiota promotes obesity-associated liver cancer through PGE(2)-mediated suppression of antitumor immunity. Cancer Discov. 2017; 7(5): 522-538.

[60]

Liu D, Hornsby PJ. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 2007; 67(7): 3117-3126.

[61]

Di Mitri D, Toso A, Chen JJ, et al. Tumour-infiltrating Gr-1+ myeloid cells antagonize senescence in cancer. Nature. 2014; 515(7525): 134-137.

[62]

Kim YH, Choi YW, Lee J, Soh EY, Kim JH, Park TJ. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat Commun. 2017; 8: 15208.

[63]

Reddy HK, Graña X, Dhanasekaran DN, Litvin J, Reddy EP. Requirement of Cdk4 for v-Ha-ras-induced breast tumorigenesis and activation of the v-ras-induced senescence program by the R24C mutation. Genes Cancer. 2010; 1(1): 69-80.

[64]

Kim YH, Park TJ. Cellular senescence in cancer. BMB reports. 2019; 52(1): 42-46.

[65]

Acosta JC, O’Loghlen A, Banito A, et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell. 2008; 133(6): 1006-1018.

[66]

Kuilman T, Michaloglou C, Vredeveld LC, et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell. 2008; 133(6): 1019-1031.

[67]

Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature. 2017; 548(7668): 471-475.

[68]

Ruscetti M, Morris JPt, Mezzadra R, et al. Senescence-Induced Vascular Remodeling Creates Therapeutic Vulnerabilities in Pancreas Cancer. Cell. 2020; 181(2): 424-441.e21.

[69]

Kim JJ, Lee SB, Park JK, Yoo YD. TNF-alpha-induced ROS production triggering apoptosis is directly linked to Romo1 and Bcl-X(L). Cell Death Differ. 2010; 17(9): 1420-1434.

[70]

Regis G, Icardi L, Conti L, et al. IL-6, but not IFN-gamma, triggers apoptosis and inhibits in vivo growth of human malignant T cells on STAT3 silencing. Leukemia. 2009; 23(11): 2102-2108.

[71]

Tasdemir N, Banito A, Roe JS, et al. BRD4 connects enhancer remodeling to senescence immune surveillance. Cancer Discov. 2016; 6(6): 612-629.

[72]

Ventura A, Kirsch DG, McLaughlin ME, et al. Restoration of p53 function leads to tumour regression in vivo. Nature. 2007; 445(7128): 661-665.

[73]

Xue W, Zender L, Miething C, et al. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature. 2007; 445(7128): 656-660.

[74]

Chiang DY, Villanueva A, Hoshida Y, et al. Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Res. 2008; 68(16): 6779-6788.

[75]

Llovet JM, Kelley RK, Villanueva A, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021; 7(1): 6.

[76]

Reimann M, Lee S, Loddenkemper C, et al. Tumor stroma-derived TGF-beta limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell. 2010; 17(3): 262-272.

[77]

Lujambio A, Akkari L, Simon J, et al. Non-cell-autonomous tumor suppression by p53. Cell. 2013; 153(2): 449-460.

[78]

Sturmlechner I, Zhang C, Sine CC, et al. p21 produces a bioactive secretome that places stressed cells under immunosurveillance. Science. 2021; 374(6567): eabb3420.

[79]

Ruscetti M, Leibold J, Bott MJ, et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science. 2018; 362(6421): 1416-1422.

[80]

Heckler M, Ali LR, Clancy-Thompson E, et al. Inhibition of CDK4/6 promotes CD8 T-cell memory formation. Cancer Discov. 2021; 11(10): 2564-2581.

[81]

McHugh D, Gil J. Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol. 2018; 217(1): 65-77.

[82]

Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: aging, cancer, and injury. Physiol Rev. 2019; 99(2): 1047-1078.

[83]

Donnini S, Monti M, Castagnini C, et al. Pyrazolo-pyrimidine-derived c-Src inhibitor reduces angiogenesis and survival of squamous carcinoma cells by suppressing vascular endothelial growth factor production and signaling. Int J Cancer. 2007; 120(5): 995-1004.

[84]

Khalilgharibi N, Mao Y. To form and function: on the role of basement membrane mechanics in tissue development, homeostasis and disease. Open biology. 2021; 11(2): 200360.

[85]

Guccini I, Revandkar A, D’Ambrosio M, et al. Senescence reprogramming by TIMP1 deficiency promotes prostate cancer metastasis. Cancer Cell. 2021; 39(1): 68-82.e9.

[86]

Waugh DJ, Wilson C. The interleukin-8 pathway in cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008; 14(21): 6735-6741.

[87]

Wang L, Tang C, Cao H, et al. Activation of IL-8 via PI3K/Akt-dependent pathway is involved in leptin-mediated epithelial-mesenchymal transition in human breast cancer cells. Cancer Biol Ther. 2015; 16(8): 1220-1230.

[88]

Watanabe S, Kawamoto S, Ohtani N, Hara E. Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci. 2017; 108(4): 563-569.

[89]

Pereira BI, Devine OP, Vukmanovic-Stejic M, et al. Senescent cells evade immune clearance via HLA-E-mediated NK and CD8(+) T cell inhibition. Nat Commun. 2019; 10(1): 2387.

[90]

Milanovic M, Fan DNY, Belenki D, et al. Senescence-associated reprogramming promotes cancer stemness. Nature. 2018; 553(7686): 96-100.

[91]

Lee S, Schmitt CA. The dynamic nature of senescence in cancer. Nat Cell Biol. 2019; 21(1): 94-101.

[92]

Patel PL, Suram A, Mirani N, Bischof O, Herbig U. Derepression of hTERT gene expression promotes escape from oncogene-induced cellular senescence. Proc Nat Acad Sci USA. 2016; 113(34): E5024-E5033.

[93]

Benítez S, Cordero A, Santamaría PG, et al. RANK links senescence to stemness in the mammary epithelia, delaying tumor onset but increasing tumor aggressiveness. Dev Cell. 2021; 56(12): 1727-1741.e7.

[94]

Galanos P, Vougas K, Walter D, et al. Chronic p53-independent p21 expression causes genomic instability by deregulating replication licensing. Nat Cell Biol. 2016; 18(7): 777-789.

[95]

George AJ, Ritter MA. Thymic involution with ageing: obsolescence or good housekeeping? Immunol Today. 1996; 17(6): 267-272.

[96]

Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci. 2000; 908: 244-254.

[97]

Fulop T, Larbi A, Dupuis G, et al. Immunosenescence and Inflamm-Aging As Two Sides of the Same Coin: Friends or Foes? Front Immunol. 2017; 8: 1960.

[98]

Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature. 2019; 571(7764): 183-192.

[99]

Palmer S, Albergante L, Blackburn CC, Newman TJ. Thymic involution and rising disease incidence with age. Proc Nat Acad Sci USA. 2018; 115(8): 1883-1888.

[100]

Liu X, Hoft DF, Peng G. Senescent T cells within suppressive tumor microenvironments: emerging target for tumor immunotherapy. J Clin Invest. 2020; 130(3): 1073-1083.

[101]

Vang T, Torgersen KM, Sundvold V, et al. Activation of the COOH-terminal Src kinase (Csk) by cAMP-dependent protein kinase inhibits signaling through the T cell receptor. J Exp Med. 2001; 193(4): 497-507.

[102]

Sitkovsky MV, Kjaergaard J, Lukashev D, Ohta A. Hypoxia-adenosinergic immunosuppression: tumor protection by T regulatory cells and cancerous tissue hypoxia. Clinical cancer research : an official journal of the American Association for Cancer Research. 2008; 14(19): 5947-5952.

[103]

Ye J, Huang X, Hsueh EC, et al. Human regulatory T cells induce T-lymphocyte senescence. Blood. 2012; 120(10): 2021-2031.

[104]

Liu X, Mo W, Ye J, et al. Regulatory T cells trigger effector T cell DNA damage and senescence caused by metabolic competition. Nat Commun. 2018; 9(1): 249.

[105]

Lanna A, Henson SM, Escors D, Akbar AN. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells. Nat Immunol. 2014; 15(10): 965-972.

[106]

Das R, Ponnappan S, Ponnappan U. Redox regulation of the proteasome in T lymphocytes during aging. Free Radical Biol Med. 2007; 42(4): 541-551.

[107]

Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev. 2020; 57: 100998.

[108]

Maggiorani D, Le O, Lisi V, et al. Senescence drives immunotherapy resistance by inducing an immunosuppressive tumor microenvironment. Nat Commun. 2024; 15(1): 2435.

[109]

Nikolich-Žugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2018; 19(1): 10-19.

[110]

Chinn IK, Blackburn CC, Manley NR, Sempowski GD. Changes in primary lymphoid organs with aging. Semin Immunol. 2012; 24(5): 309-320.

[111]

Palmer DB. The effect of age on thymic function. Front Immunol. 2013; 4: 316.

[112]

Goronzy JJ, Weyand CM. Successful and maladaptive T cell aging. Immunity. 2017; 46(3): 364-378.

[113]

Pawelec G. Immunosenescence and cancer. Biogerontology. 2017; 18(4): 717-721.

[114]

Fukushima Y, Minato N, Hattori M. The impact of senescence-associated T cells on immunosenescence and age-related disorders. Inflammation and regeneration. 2018; 38: 24.

[115]

Kurachi M, Barnitz RA, Yosef N, et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat Immunol. 2014; 15(4): 373-383.

[116]

Pereira BI, De Maeyer RPH, Covre LP, et al. Sestrins induce natural killer function in senescent-like CD8(+) T cells. Nat Immunol. 2020; 21(6): 684-694.

[117]

Björkström NK, Béziat V, Cichocki F, et al. CD8 T cells express randomly selected KIRs with distinct specificities compared with NK cells. Blood. 2012; 120(17): 3455-3465.

[118]

Britanova OV, Putintseva EV, Shugay M, et al. Age-related decrease in TCR repertoire diversity measured with deep and normalized sequence profiling. Journal of immunology (Baltimore, Md : 1950). 2014; 192(6): 2689-2698.

[119]

Yang OO, Lin H, Dagarag M, Ng HL, Effros RB, Uittenbogaart CH. Decreased perforin and granzyme B expression in senescent HIV-1-specific cytotoxic T lymphocytes. Virology. 2005; 332(1): 16-19.

[120]

Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc. 2009; 4(12): 1798-1806.

[121]

Martínez-Zamudio RI, Dewald HK, Vasilopoulos T, Gittens-Williams L, Fitzgerald-Bocarsly P, Herbig U. Senescence-associated β-galactosidase reveals the abundance of senescent CD8+ T cells in aging humans. Aging Cell. 2021; 20(5): e13344.

[122]

Wang B, Han J, Elisseeff JH, Demaria M. The senescence-associated secretory phenotype and its physiological and pathological implications. Nat Rev Mol Cell Biol. 2024;25(12):958-978.

[123]

Parish ST, Wu JE, Effros RB. Modulation of T lymphocyte replicative senescence via TNF-{alpha} inhibition: role of caspase-3. Journal of immunology (Baltimore, Md : 1950). 2009; 182(7): 4237-4243.

[124]

Herranz N, Gil J. Mechanisms and functions of cellular senescence. J Clin Invest. 2018; 128(4): 1238-1246.

[125]

Henson SM, Lanna A, Riddell NE, et al. p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells. J Clin Invest. 2014; 124(9): 4004-4016.

[126]

Henson SM, Macaulay R, Riddell NE, Nunn CJ, Akbar AN. Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8(+) T-cell proliferation by distinct pathways. Eur J Immunol. 2015; 45(5): 1441-1451.

[127]

Callender LA, Carroll EC, Beal RWJ, et al. Human CD8(+) EMRA T cells display a senescence-associated secretory phenotype regulated by p38 MAPK. Aging Cell. 2018; 17(1): e12675.

[128]

Aldinucci D, Borghese C, Casagrande N. The CCL5/CCR5 axis in cancer progression. Cancers. 2020; 12(7): 1765.

[129]

Ruhland MK, Loza AJ, Capietto AH, et al. Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun. 2016; 7: 11762.

[130]

Nakamura K, Kassem S, Cleynen A, et al. Dysregulated IL-18 is a key driver of immunosuppression and a possible therapeutic target in the multiple myeloma microenvironment. Cancer Cell. 2018; 33(4): 634-648.e5.

[131]

Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-gamma at the crossroads of tumor immune surveillance or evasion. Front Immunol. 2018; 9: 847.

[132]

Sharma S, Dominguez AL, Lustgarten J. High accumulation of T regulatory cells prevents the activation of immune responses in aged animals. Journal of immunology (Baltimore, Md : 1950). 2006; 177(12): 8348-8355.

[133]

Thomas DC, Mellanby RJ, Phillips JM, Cooke A. An early age-related increase in the frequency of CD4+ Foxp3+ cells in BDC2.5NOD mice. Immunology. 2007; 121(4): 565-576.

[134]

Mittelbrunn M, Kroemer G. Hallmarks of T cell aging. Nat Immunol. 2021; 22(6): 687-698.

[135]

Stranks AJ, Hansen AL, Panse I, et al. Autophagy controls acquisition of aging features in macrophages. Journal of innate immunity. 2015; 7(4): 375-391.

[136]

Wong CK, Smith CA, Sakamoto K, Kaminski N, Koff JL, Goldstein DR. Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice. Journal of immunology (Baltimore, Md : 1950). 2017; 199(3): 1060-1068.

[137]

Lumeng CN, Liu J, Geletka L, et al. Aging is associated with an increase in T cells and inflammatory macrophages in visceral adipose tissue. Journal of immunology (Baltimore, Md : 1950). 2011; 187(12): 6208-6216.

[138]

Fontana L, Zhao E, Amir M, Dong H, Tanaka K, Czaja MJ. Aging promotes the development of diet-induced murine steatohepatitis but not steatosis. Hepatology (Baltimore, Md). 2013; 57(3): 995-1004.

[139]

Jackaman C, Radley-Crabb HG, Soffe Z, Shavlakadze T, Grounds MD, Nelson DJ. Targeting macrophages rescues age-related immune deficiencies in C57BL/6J geriatric mice. Aging Cell. 2013; 12(3): 345-357.

[140]

Gon Y, Hashimoto S, Hayashi S, Koura T, Matsumoto K, Horie T. Lower serum concentrations of cytokines in elderly patients with pneumonia and the impaired production of cytokines by peripheral blood monocytes in the elderly. Clin Exp Immunol. 1996; 106(1): 120-126.

[141]

Plowden J, Renshaw-Hoelscher M, Gangappa S, Engleman C, Katz JM, Sambhara S. Impaired antigen-induced CD8+ T cell clonal expansion in aging is due to defects in antigen presenting cell function. Cell Immunol. 2004; 229(2): 86-92.

[142]

van Duin D, Allore HG, Mohanty S, et al. Prevaccine determination of the expression of costimulatory B7 molecules in activated monocytes predicts influenza vaccine responses in young and older adults. J Infect Dis. 2007; 195(11): 1590-1597.

[143]

Minhas PS, Latif-Hernandez A, McReynolds MR, et al. Restoring metabolism of myeloid cells reverses cognitive decline in ageing. Nature. 2021; 590(7844): 122-128.

[144]

Gomez CR, Nomellini V, Faunce DE, Kovacs EJ. Innate immunity and aging. Exp Gerontol. 2008; 43(8): 718-728.

[145]

Li X, Li C, Zhang W, Wang Y, Qian P, Huang H. Inflammation and aging: signaling pathways and intervention therapies. Signal transduction and targeted therapy. 2023; 8(1): 239.

[146]

Niwa Y, Kasama T, Miyachi Y, Kanoh T. Neutrophil chemotaxis, phagocytosis and parameters of reactive oxygen species in human aging: cross-sectional and longitudinal studies. Life Sci. 1989; 44(22): 1655-1664.

[147]

Liles WC, Kiener PA, Ledbetter JA, Aruffo A, Klebanoff SJ. Differential expression of Fas (CD95) and Fas ligand on normal human phagocytes: implications for the regulation of apoptosis in neutrophils. J Exp Med. 1996; 184(2): 429-440.

[148]

Butcher S, Chahel H, Lord JM. Review article: ageing and the neutrophil: no appetite for killing? Immunology. 2000; 100(4): 411-416.

[149]

Hazeldine J, Harris P, Chapple IL, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell. 2014; 13(4): 690-698.

[150]

Qian F, Guo X, Wang X, et al. Reduced bioenergetics and toll-like receptor 1 function in human polymorphonuclear leukocytes in aging. Aging. 2014; 6(2): 131-139.

[151]

Dubey M, Nagarkoti S, Awasthi D, et al. Nitric oxide-mediated apoptosis of neutrophils through caspase-8 and caspase-3-dependent mechanism. Cell Death Dis. 2016; 7(9): e2348.

[152]

Grecian R, Whyte MKB, Walmsley SR. The role of neutrophils in cancer. Br Med Bull. 2018; 128(1): 5-14.

[153]

Xue R, Zhang Q, Cao Q, et al. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022; 612(7938): 141-147.

[154]

Fridlender ZG, Albelda SM. Tumor-associated neutrophils: friend or foe? Carcinogenesis. 2012; 33(5): 949-955.

[155]

Wang Y, Ding Y, Guo N, Wang S. MDSCs: Key criminals of tumor pre-metastatic niche formation. Front Immunol. 2019; 10: 172.

[156]

Lian J, Yue Y, Yu W, Zhang Y. Immunosenescence: a key player in cancer development. J Hematol Oncol. 2020; 13(1): 151.

[157]

Enioutina EY, Bareyan D, Daynes RA. A role for immature myeloid cells in immune senescence. Journal of immunology (Baltimore, Md : 1950). 2011; 186(2): 697-707.

[158]

Hurez V, Daniel BJ, Sun L, et al. Mitigating age-related immune dysfunction heightens the efficacy of tumor immunotherapy in aged mice. Cancer Res. 2012; 72(8): 2089-2099.

[159]

Okuma A, Hanyu A, Watanabe S, Hara E. p16(Ink4a) and p21(Cip1/Waf1) promote tumour growth by enhancing myeloid-derived suppressor cells chemotaxis. Nat Commun. 2017; 8(1): 2050.

[160]

Wu SY, Fu T, Jiang YZ, Shao ZM. Natural killer cells in cancer biology and therapy. Mol Cancer. 2020; 19(1): 120.

[161]

Sansoni P, Cossarizza A, Brianti V, et al. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood. 1993; 82(9): 2767-2773.

[162]

Campos C, López N, Pera A, et al. Expression of NKp30, NKp46 and DNAM-1 activating receptors on resting and IL-2 activated NK cells from healthy donors according to CMV-serostatus and age. Biogerontology. 2015; 16(5): 671-683.

[163]

Martín-Fontecha A, Thomsen LL, Brett S, et al. Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol. 2004; 5(12): 1260-1265.

[164]

Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat Rev Immunol. 2023; 23(2): 90-105.

[165]

Di Micco R, Krizhanovsky V, Baker D, d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021; 22(2): 75-95.

[166]

Chen HA, Ho YJ, Mezzadra R, et al. Senescence rewires microenvironment sensing to facilitate antitumor immunity. Cancer Discov. 2023; 13(2): 432-453.

[167]

Marin I, Boix O, Garcia-Garijo A, et al. Cellular senescence is immunogenic and promotes antitumor immunity. Cancer Discov. 2023; 13(2): 410-431.

[168]

Prieto LI, Sturmlechner I, Goronzy JJ, Baker DJ. Senescent cells as thermostats of antitumor immunity. Sci Transl Med. 2023; 15(699): eadg7291.

[169]

Shahbandi A, Chiu FY, Ungerleider NA, et al. Breast cancer cells survive chemotherapy by activating targetable immune-modulatory programs characterized by PD-L1 or CD80. Nature cancer. 2022; 3(12): 1513-1533.

[170]

Wang TW, Johmura Y, Suzuki N, et al. Blocking PD-L1-PD-1 improves senescence surveillance and ageing phenotypes. Nature. 2022; 611(7935): 358-364.

[171]

Wang L, Lankhorst L, Bernards R. Exploiting senescence for the treatment of cancer. Nat Rev Cancer. 2022; 22(6): 340-355.

[172]

Chang J, Wang Y, Shao L, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2016; 22(1): 78-83.

[173]

Adams JM, Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 2018; 25(1): 27-36.

[174]

Mylonas KJ, O’Sullivan ED, Humphries D, et al. Cellular senescence inhibits renal regeneration after injury in mice, with senolytic treatment promoting repair. Sci Transl Med. 2021; 13(594): eabb0203.

[175]

Fung AS, Wu L, Tannock IF. Concurrent and sequential administration of chemotherapy and the mammalian target of rapamycin inhibitor temsirolimus in human cancer cells and xenografts. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009; 15(17): 5389-5395.

[176]

Kucheryavenko O, Nelson G, von Zglinicki T, Korolchuk VI, Carroll B. The mTORC1-autophagy pathway is a target for senescent cell elimination. Biogerontology. 2019; 20(3): 331-335.

[177]

Wang C, Vegna S, Jin H, et al. Inducing and exploiting vulnerabilities for the treatment of liver cancer. Nature. 2019; 574(7777): 268-272.

[178]

Baar MP, Brandt RMC, Putavet DA, et al. Targeted apoptosis of senescent cells restores tissue homeostasis in response to chemotoxicity and aging. Cell. 2017; 169(1): 132-147.e16.

[179]

Jeon OH, Kim C, Laberge RM, et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat Med. 2017; 23(6): 775-781.

[180]

Lu J, Qian Y, Altieri M, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol. 2015; 22(6): 755-763.

[181]

Wakita M, Takahashi A, Sano O, et al. A BET family protein degrader provokes senolysis by targeting NHEJ and autophagy in senescent cells. Nat Commun. 2020; 11(1): 1935.

[182]

Guerrero A, Herranz N, Sun B, et al. Cardiac glycosides are broad-spectrum senolytics. Nature metabolism. 2019; 1(11): 1074-1088.

[183]

Triana-Martínez F, Picallos-Rabina P, Da Silva-Álvarez S, et al. Identification and characterization of Cardiac Glycosides as senolytic compounds. Nat Commun. 2019; 10(1): 4731.

[184]

Amor C, Feucht J, Leibold J, et al. Senolytic CAR T cells reverse senescence-associated pathologies. Nature. 2020; 583(7814): 127-132.

[185]

Arora S, Thompson PJ, Wang Y, et al. Invariant natural killer T cells coordinate removal of senescent cells. Med (New York, NY). 2021; 2(8): 938-950.

[186]

Mendelsohn AR, Larrick JW. Antiaging vaccines targeting senescent cells. Rejuvenation Res. 2022; 25(1): 39-45.

[187]

Moiseeva O, Deschênes-Simard X, St-Germain E, et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-κB activation. Aging Cell. 2013; 12(3): 489-498.

[188]

Herranz N, Gallage S, Mellone M, et al. mTOR regulates MAPKAPK2 translation to control the senescence-associated secretory phenotype. Nat Cell Biol. 2015; 17(9): 1205-1217.

[189]

Xu M, Tchkonia T, Ding H, et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc Nat Acad Sci USA. 2015; 112(46): E6301-E6310.

[190]

Chen R, Chen B. Siltuximab (CNTO 328): a promising option for human malignancies. Drug Des Dev Ther. 2015; 9: 3455-3458.

[191]

Schenk KM, Reuss JE, Choquette K, Spira AI. A review of canakinumab and its therapeutic potential for non-small cell lung cancer. Anticancer Drugs. 2019; 30(9): 879-885.

[192]

Toillon RA, Magné N, Laïos I, et al. Estrogens decrease gamma-ray-induced senescence and maintain cell cycle progression in breast cancer cells independently of p53. International journal of radiation oncology, biology, physics. 2007; 67(4): 1187-1200.

[193]

Poulsen RC, Watts AC, Murphy RJ, Snelling SJ, Carr AJ, Hulley PA. Glucocorticoids induce senescence in primary human tenocytes by inhibition of sirtuin 1 and activation of the p53/p21 pathway: in vivo and in vitro evidence. Ann Rheum Dis. 2014; 73(7): 1405-1413.

[194]

Rais M, Wilson RM, Urbanski HF, Messaoudi I. Androgen supplementation improves some but not all aspects of immune senescence in aged male macaques. GeroScience. 2017; 39(4): 373-384.

[195]

Yu S, Wang X, Geng P, et al. Melatonin regulates PARP1 to control the senescence-associated secretory phenotype (SASP) in human fetal lung fibroblast cells. J Pineal Res. 2017; 63(1).

[196]

Ye J, Ma C, Hsueh EC, et al. Tumor-derived γδ regulatory T cells suppress innate and adaptive immunity through the induction of immunosenescence. Journal of immunology (Baltimore, Md : 1950). 2013; 190(5): 2403-2414.

[197]

Ye J, Ma C, Hsueh EC, et al. TLR8 signaling enhances tumor immunity by preventing tumor-induced T-cell senescence. EMBO Mol Med. 2014; 6(10): 1294-1311.

[198]

Alizadeh D, Wong RA, Yang X, et al. IL15 enhances CAR-T cell antitumor activity by reducing mTORC1 activity and preserving their stem cell memory phenotype. Cancer Immunol Res. 2019; 7(5): 759-772.

[199]

Bharath LP, Agrawal M, McCambridge G, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation. Cell Metab. 2020; 32(1): 44-55.e6.

[200]

Hachmo Y, Hadanny A, Abu Hamed R, et al. Hyperbaric oxygen therapy increases telomere length and decreases immunosenescence in isolated blood cells: a prospective trial. Aging. 2020; 12(22): 22445-22456.

[201]

Boni A, Cogdill AP, Dang P, et al. Selective BRAFV600E inhibition enhances T-cell recognition of melanoma without affecting lymphocyte function. Cancer Res. 2010; 70(13): 5213-5219.

[202]

Frederick DT, Piris A, Cogdill AP, et al. BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma. Clinical cancer research : an official journal of the American Association for Cancer Research. 2013; 19(5): 1225-1231.

[203]

Manic G, Obrist F, Sistigu A, Vitale I. Trial watch: targeting ATM-CHK2 and ATR-CHK1 pathways for anticancer therapy. Molecular & cellular oncology. 2015; 2(4): e1012976.

[204]

Demaria M, O’Leary MN, Chang J, et al. Cellular senescence promotes adverse effects of chemotherapy and cancer relapse. Cancer Discov. 2017; 7(2): 165-176.

[205]

Liu Y, Lomeli I, Kron SJ. Therapy-induced cellular senescence: potentiating tumor elimination or driving cancer resistance and recurrence? Cells. 2024; 13(15)

[206]

Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical potential of senolytic drugs. J Am Geriatr Soc. 2017; 65(10): 2297-2301.

[207]

Yosef R, Pilpel N, Tokarsky-Amiel R, et al. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun. 2016; 7: 11190.

[208]

Zhu Y, Tchkonia T, Fuhrmann-Stroissnigg H, et al. Identification of a novel senolytic agent, navitoclax, targeting the Bcl-2 family of anti-apoptotic factors. Aging Cell. 2016; 15(3): 428-435.

[209]

Fleury H, Malaquin N, Tu V, et al. Exploiting interconnected synthetic lethal interactions between PARP inhibition and cancer cell reversible senescence. Nat Commun. 2019; 10(1): 2556.

[210]

Saleh T, Carpenter VJ, Tyutyunyk-Massey L, et al. Clearance of therapy-induced senescent tumor cells by the senolytic ABT-263 via interference with BCL-X(L) -BAX interaction. Molecular oncology. 2020; 14(10): 2504-2519.

[211]

Kipps TJ, Eradat H, Grosicki S, et al. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2015; 56(10): 2826-2833.

[212]

Kaefer A, Yang J, Noertersheuser P, et al. Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of navitoclax (ABT-263) induced thrombocytopenia. Cancer Chemother Pharmacol. 2014; 74(3): 593-602.

[213]

González-Gualda E, Pàez-Ribes M, Lozano-Torres B, et al. Galacto-conjugation of Navitoclax as an efficient strategy to increase senolytic specificity and reduce platelet toxicity. Aging Cell. 2020; 19(4): e13142.

[214]

Galiana I, Lozano-Torres B, Sancho M, et al. Preclinical antitumor efficacy of senescence-inducing chemotherapy combined with a nanoSenolytic. Journal of controlled release : official journal of the Controlled Release Society. 2020; 323: 624-634.

[215]

Estepa-Fernández A, Alfonso M, Morellá-Aucejo Á, et al. Senolysis reduces senescence in veins and cancer cell migration. Advanced Therapeutics. 2021; 4(10): 2100149.

[216]

He Y, Zhang X, Chang J, et al. Using proteolysis-targeting chimera technology to reduce navitoclax platelet toxicity and improve its senolytic activity. Nat Commun. 2020; 11(1): 1996.

[217]

Martin JC, Sims JR, Gupta A, et al. CDC7 kinase (DDK) inhibition disrupts DNA replication leading to mitotic catastrophe in Ewing sarcoma. Cell death discovery. 2022; 8(1): 85.

[218]

Efeyan A, Serrano M. p53: guardian of the genome and policeman of the oncogenes. Cell cycle (Georgetown, Tex). 2007; 6(9): 1006-1010.

[219]

Levine AJ, Oren M. The first 30 years of p53: growing ever more complex. Nat Rev Cancer. 2009; 9(10): 749-758.

[220]

Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006; 314(5796): 126-129.

[221]

Gorgoulis VG, Pratsinis H, Zacharatos P, et al. p53-dependent ICAM-1 overexpression in senescent human cells identified in atherosclerotic lesions. Lab Invest. 2005; 85(4): 502-511.

[222]

Cui H, Kong Y, Xu M, Zhang H. Notch3 functions as a tumor suppressor by controlling cellular senescence. Cancer Res. 2013; 73(11): 3451-3459.

[223]

Althubiti M, Lezina L, Carrera S, et al. Characterization of novel markers of senescence and their prognostic potential in cancer. Cell Death Dis. 2014; 5(11): e1528.

[224]

Hoare M, Ito Y, Kang TW, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016; 18(9): 979-992.

[225]

Sagiv A, Burton DG, Moshayev Z, et al. NKG2D ligands mediate immunosurveillance of senescent cells. Aging. 2016; 8(2): 328-344.

[226]

Kim KM, Noh JH, Bodogai M, et al. Identification of senescent cell surface targetable protein DPP4. Genes Dev. 2017; 31(15): 1529-1534.

[227]

Harrison CN, Mesa RA, Kiladjian JJ, et al. Health-related quality of life and symptoms in patients with myelofibrosis treated with ruxolitinib versus best available therapy. Br J Haematol. 2013; 162(2): 229-239.

[228]

Callender LA, Carroll EC, Bober EA, Henson SM. Divergent mechanisms of metabolic dysfunction drive fibroblast and T-cell senescence. Ageing Res Rev. 2018; 47: 24-30.

[229]

Zhang Y, Ertl HC. Aging: T cell metabolism within tumors. Aging. 2016; 8(6): 1163-1164.

[230]

Liu X, Hartman CL, Li L, et al. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor immunotherapy. Sci Transl Med. 2021; 13(587): eaaz6314.

[231]

Liu Z, Liang Q, Ren Y, et al. Immunosenescence: molecular mechanisms and diseases. Signal transduction and targeted therapy. 2023; 8(1): 200.

[232]

Ye J, Peng G. Controlling T cell senescence in the tumor microenvironment for tumor immunotherapy. Oncoimmunology. 2015; 4(3): e994398.

[233]

Veyrat M, Durand S, Classe M, et al. Stimulation of the toll-like receptor 3 promotes metabolic reprogramming in head and neck carcinoma cells. Oncotarget. 2016; 7(50): 82580-82593.

[234]

Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cellular & molecular immunology. 2018; 15(5): 428-437.

[235]

Davis T, Bagley MC, Dix MC, et al. Synthesis and in vivo activity of MK2 and MK2 substrate-selective p38alpha(MAPK) inhibitors in Werner syndrome cells. Bioorg Med Chem Lett. 2007; 17(24): 6832-6835.

[236]

Wright WE, Pereira-Smith OM, Shay JW. Reversible cellular senescence: implications for immortalization of normal human diploid fibroblasts. Mol Cell Biol. 1989; 9(7): 3088-3092.

[237]

Akbar AN, Henson SM. Are senescence and exhaustion intertwined or unrelated processes that compromise immunity? Nat Rev Immunol. 2011; 11(4): 289-295.

[238]

Nardella C, Clohessy JG, Alimonti A, Pandolfi PP. Pro-senescence therapy for cancer treatment. Nat Rev Cancer. 2011; 11(7): 503-511.

[239]

Reiser J, Banerjee A. Effector, memory, and dysfunctional CD8(+) T cell fates in the antitumor immune response. J Immunol Res. 2016; 2016: 8941260.

[240]

Ono K, Han J. The p38 signal transduction pathway: activation and function. Cell Signal. 2000; 12(1): 1-13.

[241]

Bang YJ, Im SA, Lee KW, et al. Randomized, double-blind phase II trial with prospective classification by ATM protein level to evaluate the efficacy and tolerability of olaparib plus paclitaxel in patients with recurrent or metastatic gastric cancer. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2015; 33(33): 3858-3865.

[242]

Lanna A, Gomes DC, Muller-Durovic B, et al. A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol. 2017; 18(3): 354-363.

[243]

Wiley CD, Sharma R, Davis SS, et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metab. 2021; 33(6): 1124-1136.e5.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

357

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/