RNA modifications in cancer

Han Wu , Shi Chen , Xiang Li , Yuyang Li , He Shi , Yiwen Qing , Bohe Shi , Yifei Tang , Zhuoyi Yan , Yang Hao , Dongxu Wang , Weiwei Liu

MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70042

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70042 DOI: 10.1002/mco2.70042
REVIEW

RNA modifications in cancer

Author information +
History +
PDF

Abstract

RNA modifications are emerging as critical cancer regulators that influence tumorigenesis and progression. Key modifications, such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), are implicated in various cellular processes. These modifications are regulated by proteins that write, erase, and read RNA and modulate RNA stability, splicing, translation, and degradation. Recent studies have highlighted their roles in metabolic reprogramming, signaling pathways, and cell cycle control, which are essential for tumor proliferation and survival. Despite these scientific advances, the precise mechanisms by which RNA modifications affect cancer remain inadequately understood. This review comprehensively examines the role RNA modifications play in cancer proliferation, metastasis, and programmed cell death, including apoptosis, autophagy, and ferroptosis. It explores their effects on epithelial–mesenchymal transition (EMT) and the immune microenvironment, particularly in cancer metastasis. Furthermore, RNA modifications’ potential in cancer therapies, including conventional treatments, immunotherapy, and targeted therapies, is discussed. By addressing these aspects, this review aims to bridge current research gaps and underscore the therapeutic potential of targeting RNA modifications to improve cancer treatment strategies and patient outcomes.

Keywords

cancer / immune microenvironment / immunotherapy / programmed cell death / RNA modifications

Cite this article

Download citation ▾
Han Wu, Shi Chen, Xiang Li, Yuyang Li, He Shi, Yiwen Qing, Bohe Shi, Yifei Tang, Zhuoyi Yan, Yang Hao, Dongxu Wang, Weiwei Liu. RNA modifications in cancer. MedComm, 2025, 6(1): e70042 DOI:10.1002/mco2.70042

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen S, Cao Z, Prettner K, et al. Estimates and projections of the global economic cost of 29 cancers in 204 countries and territories from 2020 to 2050. JAMA Oncol. 2023; 9(4): 465-472.

[2]

Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: gLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024; 74(3): 229-263.

[3]

Guida F, Kidman R, Ferlay J, et al. Global and regional estimates of orphans attributed to maternal cancer mortality in 2020. Nat Med. 2022; 28(12): 2563-2572.

[4]

Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021; 127(16): 3029-3030.

[5]

Zamecnik PC. Summary of symposium on transfer RNA and transfer RNA modification in differentiation and neoplasia. Cancer Res. 1971; 31(5): 716-721.

[6]

Orsolic I, Carrier A, Esteller M. Genetic and epigenetic defects of the RNA modification machinery in cancer. Trends Genet. 2023; 39(1): 74-88.

[7]

Cappannini A, Ray A, Purta E, et al. MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res. 2024; 52(D1): D239-D244.

[8]

Yao RW, Wang Y, Chen LL. Cellular functions of long noncoding RNAs. Nat Cell Biol. 2019; 21(5): 542-551.

[9]

Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019; 20(1): 21-37.

[10]

Wilkinson E, Cui YH, He YY. Roles of RNA modifications in diverse cellular functions. Front Cell Dev Biol. 2022; 10: 828683.

[11]

Kroemer G, Chan TA, Eggermont AMM, Galluzzi L. Immunosurveillance in clinical cancer management. CA Cancer J Clin. 2024; 74(2): 187-202.

[12]

Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022; 12(1): 31-46.

[13]

Deng X, Qing Y, Horne D, Huang H, Chen J. The roles and implications of RNA m(6)A modification in cancer. Nat Rev Clin Oncol. 2023; 20(8): 507-526.

[14]

Sun Y, Dai H, Dai X, et al. m(1)A in CAG repeat RNA binds to TDP-43 and induces neurodegeneration. Nature. 2023; 623(7987): 580-587.

[15]

Dai Q, Ye C, Irkliyenko I, et al. Ultrafast bisulfite sequencing detection of 5-methylcytosine in DNA and RNA. Nat Biotechnol. 2024; 42(10): 1559-1570.

[16]

Hu YX, Diao LT, Hou YR, et al. Pseudouridine synthase 1 promotes hepatocellular carcinoma through mRNA pseudouridylation to enhance the translation of oncogenic mRNAs. Hepatology. 2024; 80(5): 1058-1073.

[17]

Erdmann EA, Mahapatra A, Mukherjee P, Yang B, Hundley HA. To protect and modify double-stranded RNA—the critical roles of ADARs in development, immunity and oncogenesis. Crit Rev Biochem Mol Biol. 2021; 56(1): 54-87.

[18]

Li X, Ma S, Deng Y, Yi P, Yu J. Targeting the RNA m(6)A modification for cancer immunotherapy. Mol Cancer. 2022; 21(1): 76.

[19]

Han D, Xu MM. RNA modification in the immune system. Annu Rev Immunol. 2023; 41: 73-98.

[20]

Wan W, Ao X, Chen Q, et al. METTL3/IGF2BP3 axis inhibits tumor immune surveillance by upregulating N(6)-methyladenosine modification of PD-L1 mRNA in breast cancer. Mol Cancer. 2022; 21(1): 60.

[21]

Lu Z, Liu B, Kong D, Zhou X, Pei D, Liu D. NSUN6 regulates NM23-H1 expression in an m5C manner to affect epithelial-mesenchymal transition in lung cancer. Med Princ Pract. 2024; 33(1): 56-65.

[22]

Wang S, Gao S, Zeng Y, et al. N6-methyladenosine reader YTHDF1 promotes ARHGEF2 translation and RhoA signaling in colorectal cancer. Gastroenterology. 2022; 162(4): 1183-1196.

[23]

Ortiz-Barahona V, Soler M, Davalos V, et al. Epigenetic inactivation of the 5-methylcytosine RNA methyltransferase NSUN7 is associated with clinical outcome and therapeutic vulnerability in liver cancer. Mol Cancer. 2023; 22(1): 83.

[24]

Hu Y, Chen C, Tong X, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death Dis. 2021; 12(9): 842.

[25]

Su J, Wu G, Ye Y, et al. NSUN2-mediated RNA 5-methylcytosine promotes esophageal squamous cell carcinoma progression via LIN28B-dependent GRB2 mRNA stabilization. Oncogene. 2021; 40(39): 5814-5828.

[26]

Gao L, Chen R, Sugimoto M, Mizuta M, Kishimoto Y, Omori K. The impact of m1A methylation modification patterns on tumor immune microenvironment and prognosis in oral squamous cell carcinoma. International Journal of Molecular Sciences. 2021; 22(19): 10302.

[27]

Zhang Y, Chen XN, Zhang H, et al. CDK13 promotes lipid deposition and prostate cancer progression by stimulating NSUN5-mediated m5C modification of ACC1 mRNA. Cell Death Differ. 2023; 30(12): 2462-2476.

[28]

Wang JZ, Zhu W, Han J, et al. The role of the HIF-1α/ALYREF/PKM2 axis in glycolysis and tumorigenesis of bladder cancer. Cancer Commun (Lond). 2021; 41(7): 560-575.

[29]

Liu T, Wei Q, Jin J, et al. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation. Nucleic Acids Research. 2020; 48(7): 3816-3831.

[30]

Shen D, Ding L, Lu Z, et al. METTL14-mediated Lnc-LSG1 m6A modification inhibits clear cell renal cell carcinoma metastasis via regulating ESRP2 ubiquitination. Molecular Therapy—Nucleic Acids. 2022; 27: 547-561.

[31]

Li R, Zhao H, Huang X, et al. Super-enhancer RNA m(6)A promotes local chromatin accessibility and oncogene transcription in pancreatic ductal adenocarcinoma. Nat Genet. 2023; 55(12): 2224-2234.

[32]

Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci USA. 1974; 71(10): 3971-3975.

[33]

Dominissini D, Moshitch-Moshkovitz S, Schwartz S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012; 485(7397): 201-206.

[34]

Wang JY, Lu AQ. The biological function of m6A reader YTHDF2 and its role in human disease. Cancer Cell Int. 2021; 21(1): 109.

[35]

Huang H, Weng H, Chen J. m(6)A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 2020; 37(3): 270-288.

[36]

Oerum S, Meynier V, Catala M, Tisné C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 2021; 49(13): 7239-7255.

[37]

Zhou H, Yin K, Zhang Y, Tian J, Wang S. The RNA m6A writer METTL14 in cancers: roles, structures, and applications. Biochim Biophys Acta Rev Cancer. 2021; 1876(2): 188609.

[38]

Liu J, Yue Y, Han D, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014; 10(2): 93-95.

[39]

Wang X, Feng J, Xue Y, et al. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. 2016; 534(7608): 575-578.

[40]

Lin S, Choe J, Du P, Triboulet R, Gregory RI. The m(6)A methyltransferase METTL3 promotes translation in human cancer cells. Mol Cell. 2016; 62(3): 335-345.

[41]

Vu LP, Pickering BF, Cheng Y, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat Med. 2017; 23(11): 1369-1376.

[42]

Li F, Yi Y, Miao Y, et al. N(6)-methyladenosine modulates nonsense-mediated mRNA decay in human glioblastoma. Cancer Res. 2019; 79(22): 5785-5798.

[43]

Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011; 7(12): 885-887.

[44]

Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science. 2007; 316(5826): 889-894.

[45]

Wei J, Liu F, Lu Z, et al. Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018; 71(6): 973-985. e5.

[46]

Li X, Xie X, Gu Y, et al. Fat mass and obesity-associated protein regulates tumorigenesis of arecoline-promoted human oral carcinoma. Cancer Med. 2021; 10(18): 6402-6415.

[47]

Hirayama M, Wei FY, Chujo T, et al. FTO demethylates cyclin D1 mRNA and controls cell-cycle progression. Cell Rep. 2020; 31(1): 107464.

[48]

Li X, Chen W, Gao Y, et al. Fat mass and obesity-associated protein regulates arecoline-exposed oral cancer immune response through programmed cell death-ligand 1. Cancer Sci. 2022; 113(9): 2962-2973.

[49]

Li N, Kang Y, Wang L, et al. ALKBH5 regulates anti-PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proc Natl Acad Sci USA. 2020; 117(33): 20159-20170.

[50]

Zhu F, Yang T, Yao M, Shen T, Fang C. HNRNPA2B1, as a m(6)A reader, promotes tumorigenesis and metastasis of oral squamous cell carcinoma. Front Oncol. 2021; 11: 716921.

[51]

Zhang C, Huang S, Zhuang H, et al. YTHDF2 promotes the liver cancer stem cell phenotype and cancer metastasis by regulating OCT4 expression via m6A RNA methylation. Oncogene. 2020; 39(23): 4507-4518.

[52]

Hou J, Zhang H, Liu J, et al. YTHDF2 reduction fuels inflammation and vascular abnormalization in hepatocellular carcinoma. Mol Cancer. 2019; 18(1): 163.

[53]

Chen M, Wei L, Law CT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2. Hepatology. 2018; 67(6): 2254-2270.

[54]

Zhong L, Liao D, Zhang M, et al. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett. 2019; 442: 252-261.

[55]

Fei Q, Zou Z, Roundtree IA, Sun HL, He C. YTHDF2 promotes mitotic entry and is regulated by cell cycle mediators. PLoS Biol. 2020; 18(4): e3000664.

[56]

Wang X, Lu Z, Gomez A, et al. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014; 505(7481): 117-120.

[57]

Amort T, Rieder D, Wille A, et al. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol. 2017; 18(1): 1.

[58]

Wei Z, Panneerdoss S, Timilsina S, et al. Topological characterization of human and mouse m(5)C epitranscriptome revealed by bisulfite sequencing. Int J Genomics. 2018; 2018: 1351964.

[59]

Zhang Q, Liu F, Chen W, et al. The role of RNA m(5)C modification in cancer metastasis. Int J Biol Sci. 2021; 17(13): 3369-3380.

[60]

Li M, Tao Z, Zhao Y, et al. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J Transl Med. 2022; 20(1): 214.

[61]

Chellamuthu A, Gray SG. The RNA methyltransferase NSUN2 and its potential roles in cancer. Cells. 2020; 9(8).

[62]

Govindaraju G, Jabeena CA, Sethumadhavan DV, Rajaram N, Rajavelu A. DNA methyltransferase homologue TRDMT1 in Plasmodium falciparum specifically methylates endogenous aspartic acid tRNA. Biochim Biophys Acta Gene Regul Mech. 2017; 1860(10): 1047-1057.

[63]

Selmi T, Hussain S, Dietmann S, et al. Sequence-and structure-specific cytosine-5 mRNA methylation by NSUN6. Nucleic Acids Res. 2021; 49(2): 1006-1022.

[64]

Tao Y, Felber JG, Zou Z, et al. Chemical proteomic discovery of isotype-selective covalent inhibitors of the RNA methyltransferase NSUN2. Angew Chem Int Ed Engl. 2023; 62(51): e202311924.

[65]

Chen T, Xu ZG, Luo J, et al. NSUN2 is a glucose sensor suppressing cGAS/STING to maintain tumorigenesis and immunotherapy resistance. Cell Metab. 2023; 35(10): 1782-1798. e8.

[66]

Chen B, Deng Y, Hong Y, et al. Metabolic recoding of NSUN2-mediated m(5)C modification promotes the progression of colorectal cancer via the NSUN2/YBX1/m(5)C-ENO1 positive feedback loop. Adv Sci (Weinh). 2024; 11(28): e2309840.

[67]

Song D, An K, Zhai W, et al. NSUN2-mediated mRNA m(5)C modification regulates the progression of hepatocellular carcinoma. Genomics Proteomics Bioinformatics. 2023; 21(4): 823-833.

[68]

Lio CJ, Yuita H, Rao A. Dysregulation of the TET family of epigenetic regulators in lymphoid and myeloid malignancies. Blood. 2019; 134(18): 1487-1497.

[69]

Wojciechowski M, Rafalski D, Kucharski R, et al. Insights into DNA hydroxymethylation in the honeybee from in-depth analyses of TET dioxygenase. Open Biol. 2014; 4(8): 140110.

[70]

Yang X, Yang Y, Sun BF, et al. 5-methylcytosine promotes mRNA export—NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 2017; 27(5): 606-625.

[71]

Chen X, Li A, Sun BF, et al. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat Cell Biol. 2019; 21(8): 978-990.

[72]

Jayavelu AK, Schnöder TM, Perner F, et al. Splicing factor YBX1 mediates persistence of JAK2-mutated neoplasms. Nature. 2020; 588(7836): 157-163.

[73]

He H, Wang Y, Zhang X, et al. Age-related noncanonical TRMT6-TRMT61A signaling impairs hematopoietic stem cells. Nat Aging. 2024; 4(2): 213-230.

[74]

Martín A, Epifano C, Vilaplana-Marti B, et al. Mitochondrial RNA methyltransferase TRMT61B is a new, potential biomarker and therapeutic target for highly aneuploid cancers. Cell Death Differ. 2023; 30(1): 37-53.

[75]

Jörg M, Plehn JE, Kristen M, et al. N1-methylation of adenosine (m(1)A) in ND5 mRNA leads to complex I dysfunction in Alzheimer’s disease. Mol Psychiatry. 2024; 29(5): 1427-1439.

[76]

Wiener D, Schwartz S. The epitranscriptome beyond m(6)A. Nat Rev Genet. 2021; 22(2): 119-131.

[77]

Liu Y, Zhang S, Gao X, Ru Y, Gu X, Hu X. Research progress of N1-methyladenosine RNA modification in cancer. Cell Commun Signal. 2024; 22(1): 79.

[78]

Gao Y, Wang H, Li H, et al. Integrated analyses of m(1)A regulator-mediated modification patterns in tumor microenvironment-infiltrating immune cells in colon cancer. Oncoimmunology. 2021; 10(1): 1936758.

[79]

Chen Z, Qi M, Shen B, et al. Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 2019; 47(5): 2533-2545.

[80]

Xu B, Liu D, Wang Z, Tian R, Zuo Y. Multi-substrate selectivity based on key loops and non-homologous domains: new insight into ALKBH family. Cell Mol Life Sci. 2021; 78(1): 129-141.

[81]

Chen W, Wang H, Mi S, Shao L, Xu Z, Xue M. ALKBH1-mediated m(1) A demethylation of METTL3 mRNA promotes the metastasis of colorectal cancer by downregulating SMAD7 expression. Mol Oncol. 2023; 17(2): 344-364.

[82]

Dai X, Wang T, Gonzalez G, Wang Y. Identification of YTH domain-containing proteins as the readers for N1-methyladenosine in RNA. Anal Chem. 2018; 90(11): 6380-6384.

[83]

Zhao M, Shen S, Xue C. A novel m1A-score model correlated with the immune microenvironment predicts prognosis in hepatocellular carcinoma. Front Immunol. 2022; 13: 805967.

[84]

Gao L, Chen R, Sugimoto M, Mizuta M, Kishimoto Y, Omori K. The impact of m1A methylation modification patterns on tumor immune microenvironment and prognosis in oral squamous cell carcinoma. Int J Mol Sci. 2021; 22(19): 10302.

[85]

Dominissini D, Nachtergaele S, Moshitch-Moshkovitz S, et al. The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature. 2016; 530(7591): 441-446.

[86]

Oerum S, Dégut C, Barraud P, Tisné C. m1A post-transcriptional modification in tRNAs. Biomolecules. 2017; 7(1): 20.

[87]

Zhang LS, Xiong QP, Peña Perez S, et al. ALKBH7-mediated demethylation regulates mitochondrial polycistronic RNA processing. Nat Cell Biol. 2021; 23(7): 684-691.

[88]

Chen Y, Lin H, Miao L, He J. Role of N7-methylguanosine (m(7)G) in cancer. Trends Cell Biol. 2022; 32(10): 819-824.

[89]

Kouzarides T, Pandolfini L, Barbieri I, Bannister AJ, Andrews B. Further evidence supporting N7-methylation of guanosine (m(7)G) in human microRNAs. Mol Cell. 2020; 79(2): 201-202.

[90]

Enroth C, Poulsen LD, Iversen S, Kirpekar F, Albrechtsen A, Vinther J. Detection of internal N7-methylguanosine (m7G) RNA modifications by mutational profiling sequencing. Nucleic Acids Res. 2019; 47(20): e126.

[91]

Katsara O, Schneider RJ. m(7)G tRNA modification reveals new secrets in the translational regulation of cancer development. Mol Cell. 2021; 81(16): 3243-3245.

[92]

Luo Y, Yao Y, Wu P, Zi X, Sun N, He J. The potential role of N(7)-methylguanosine (m7G) in cancer. J Hematol Oncol. 2022; 15(1): 63.

[93]

Ma J, Han H, Huang Y, et al. METTL1/WDR4-mediated m(7)G tRNA modifications and m(7)G codon usage promote mRNA translation and lung cancer progression. Mol Ther. 2021; 29(12): 3422-3435.

[94]

Androvic P, Kirdajova D, Tureckova J, et al. Decoding the transcriptional response to ischemic stroke in young and aged mouse brain. Cell Rep. 2020; 31(11): 107777.

[95]

Srinivasan K, Friedman BA, Etxeberria A, et al. Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep. 2020; 31(13): 107843.

[96]

Orellana EA, Liu Q, Yankova E, et al. METTL1-mediated m(7)G modification of Arg-TCT tRNA drives oncogenic transformation. Mol Cell. 2021; 81(16): 3323-3338. e14.

[97]

Chen Z, Zhu W, Zhu S, et al. METTL1 promotes hepatocarcinogenesis via m(7) G tRNA modification-dependent translation control. Clin Transl Med. 2021; 11(12): e661.

[98]

Galloway A, Kaskar A, Ditsova D, et al. Upregulation of RNA cap methyltransferase RNMT drives ribosome biogenesis during T cell activation. Nucleic Acids Res. 2021; 49(12): 6722-6738.

[99]

Malbec L, Zhang T, Chen YS, et al. Dynamic methylome of internal mRNA N(7)-methylguanosine and its regulatory role in translation. Cell Res. 2019; 29(11): 927-941.

[100]

Pober BR. Williams-Beuren syndrome. N Engl J Med. 2010; 362(3): 239-252.

[101]

Leetsi L, Õunap K, Abroi A, Kurg R. The common partner of several methyltransferases TRMT112 regulates the expression of N6AMT1 isoforms in mammalian cells. Biomolecules. 2019; 9(9): 422.

[102]

Khan AA, Huang H, Zhao Y, et al. WBSCR22 and TRMT112 synergistically suppress cell proliferation, invasion and tumorigenesis in pancreatic cancer via transcriptional regulation of ISG15. Int J Oncol. 2022; 60(3): 24.

[103]

Chi Y, Liang Z, Guo Y, et al. WBSCR22 confers cell survival and predicts poor prognosis in glioma. Brain Res Bull. 2020; 161: 1-12.

[104]

Mars JC, Ghram M, Culjkovic-Kraljacic B, Borden KLB. The cap-binding complex CBC and the eukaryotic translation factor eIF4E: co-conspirators in cap-dependent RNA maturation and translation. Cancers (Basel). 2021; 13(24): 6185.

[105]

Ying X, Liu B, Yuan Z, et al. METTL1-m(7) G-EGFR/EFEMP1 axis promotes the bladder cancer development. Clin Transl Med. 2021; 11(12): e675.

[106]

Xia P, Zhang H, Xu K, et al. MYC-targeted WDR4 promotes proliferation, metastasis, and sorafenib resistance by inducing CCNB1 translation in hepatocellular carcinoma. Cell Death Dis. 2021; 12(7): 691.

[107]

Deng Y, Zhou Z, Ji W, Lin S, Wang M. METTL1-mediated m(7)G methylation maintains pluripotency in human stem cells and limits mesoderm differentiation and vascular development. Stem Cell Res Ther. 2020; 11(1): 306.

[108]

Cohn WE, Volkin E. Nucleoside-5’-phosphates from ribonucleic acid. Nature. 1951; 167(4247): 483-484.

[109]

Burrows CJ, Fleming AM. Bisulfite and nanopore sequencing for pseudouridine in RNA. Acc Chem Res. 2023; 56(19): 2740-2751.

[110]

Zhao BS, He C. Pseudouridine in a new era of RNA modifications. Cell Res. 2015; 25(2): 153-154.

[111]

Martinez NM, Su A, Burns MC, et al. Pseudouridine synthases modify human pre-mRNA co-transcriptionally and affect pre-mRNA processing. Mol Cell. 2022; 82(3): 645-659. e9.

[112]

Herridge RP, Dolata J, Migliori V, et al. Pseudouridine guides germline small RNA transport and epigenetic inheritance. bioRxiv. 2023.

[113]

Liu S, Huang J, Zhou J, et al. NAP-seq reveals multiple classes of structured noncoding RNAs with regulatory functions. Nat Commun. 2024; 15(1): 2425.

[114]

Purchal MK, Eyler DE, Tardu M, et al. Pseudouridine synthase 7 is an opportunistic enzyme that binds and modifies substrates with diverse sequences and structures. Proc Natl Acad Sci USA. 2022; 119(4): e2109708119.

[115]

Wang Y, Zhang Z, He H, et al. Aging-induced pseudouridine synthase 10 impairs hematopoietic stem cells. Haematologica. 2023; 108(10): 2677-2689.

[116]

Jia Z, Meng F, Chen H, et al. Human TRUB1 is a highly conserved pseudouridine synthase responsible for the formation of Ψ55 in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro. Nucleic Acids Res. 2022; 50(16): 9368-9381.

[117]

Grünberg S, Doyle LA, Wolf EJ, et al. The structural basis of mRNA recognition and binding by yeast pseudouridine synthase PUS1. PLoS One. 2023; 18(11): e0291267.

[118]

Li X, Ma S, Yi C. Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr Opin Chem Biol. 2016; 33: 108-116.

[119]

Gu BW, Ge J, Fan JM, Bessler M, Mason PJ. Slow growth and unstable ribosomal RNA lacking pseudouridine in mouse embryonic fibroblast cells expressing catalytically inactive dyskerin. FEBS Lett. 2013; 587(14): 2112-2117.

[120]

Lovejoy AF, Riordan DP, Brown PO. Transcriptome-wide mapping of pseudouridines: pseudouridine synthases modify specific mRNAs in S. cerevisiae. PLoS One. 2014; 9(10): e110799.

[121]

Spenkuch F, Motorin Y, Helm M. Pseudouridine: still mysterious, but never a fake (uridine)! RNA Biol. 2014; 11(12): 1540-1554.

[122]

Shi D, Wang B, Li H, et al. Pseudouridine synthase 1 regulates erythropoiesis via transfer RNAs pseudouridylation and cytoplasmic translation. iScience. 2024; 27(3): 109265.

[123]

Penzo M, Montanaro L. Turning uridines around: role of rRNA pseudouridylation in ribosome biogenesis and ribosomal function. Biomolecules. 2018; 8(2): 38.

[124]

Garus A, Autexier C. Dyskerin: an essential pseudouridine synthase with multifaceted roles in ribosome biogenesis, splicing, and telomere maintenance. Rna. 2021; 27(12): 1441-1458.

[125]

Pederiva C, Trevisan DM, Peirasmaki D, et al. Control of protein synthesis through mRNA pseudouridylation by dyskerin. Sci Adv. 2023; 9(30): eadg1805.

[126]

Eyler DE, Franco MK, Batool Z, et al. Pseudouridinylation of mRNA coding sequences alters translation. Proc Natl Acad Sci USA. 2019; 116(46): 23068-23074.

[127]

Karikó K, Muramatsu H, Welsh FA, et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol Ther. 2008; 16(11): 1833-1840.

[128]

Xu C, Bian Z, Wang X, et al. SNORA56-mediated pseudouridylation of 28 S rRNA inhibits ferroptosis and promotes colorectal cancer proliferation by enhancing GCLC translation. J Exp Clin Cancer Res. 2023; 42(1): 331.

[129]

Chen S, Li QH, Chen X, et al. SNORA70E promotes the occurrence and development of ovarian cancer through pseudouridylation modification of RAP1B and alternative splicing of PARPBP. J Cell Mol Med. 2022; 26(20): 5150-5164.

[130]

Barozzi C, Zacchini F, Corradini AG, et al. Alterations of ribosomal RNA pseudouridylation in human breast cancer. NAR Cancer. 2023; 5(2): zcad026.

[131]

Chen SH, Habib G, Yang CY, et al. Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science. 1987; 238(4825): 363-366.

[132]

Powell LM, Wallis SC, Pease RJ, Edwards YH, Knott TJ, Scott J. A novel form of tissue-specific RNA processing produces apolipoprotein-B48 in intestine. Cell. 1987; 50(6): 831-840.

[133]

Baker AR, Slack FJ. ADAR1 and its implications in cancer development and treatment. Trends Genet. 2022; 38(8): 821-830.

[134]

Keegan LP, Hajji K, O’Connell MA. Adenosine deaminase acting on RNA (ADAR) enzymes: a journey from weird to wondrous. Acc Chem Res. 2023; 56(22): 3165-3174.

[135]

Mendoza HG, Beal PA. Chemical Modifications in RNA: elucidating the chemistry of dsRNA-specific adenosine deaminases (ADARs). Acc Chem Res. 2023; 56(18): 2489-2499.

[136]

Raghava Kurup R, Oakes EK, Manning AC, Mukherjee P, Vadlamani P, Hundley HA. RNA binding by ADAR3 inhibits adenosine-to-inosine editing and promotes expression of immune response protein MAVS. J Biol Chem. 2022; 298(9): 102267.

[137]

Patterson JB, Samuel CE. Expression and regulation by interferon of a double-stranded-RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol. 1995; 15(10): 5376-5388.

[138]

Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A. Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA. Science. 1999; 284(5421): 1841-1845.

[139]

Teoh PJ, Koh MY, Chng WJ. ADARs, RNA editing and more in hematological malignancies. Leukemia. 2021; 35(2): 346-359.

[140]

Weng S, Yang X, Yu N, Wang PC, Xiong S, Ruan H. Harnessing ADAR-mediated site-specific RNA editing in immune-related disease: prediction and therapeutic implications. Int J Mol Sci. 2023; 25(1): 351.

[141]

Datta R, Adamska JZ, Bhate A, Li JB. A-to-I RNA editing by ADAR and its therapeutic applications: from viral infections to cancer immunotherapy. Wiley Interdiscip Rev RNA. 2023:e1817.

[142]

Vlachogiannis NI, Tual-Chalot S, Zormpas E, et al. Adenosine-to-inosine RNA editing contributes to type I interferon responses in systemic sclerosis. J Autoimmun. 2021; 125: 102755.

[143]

Stellos K, Gatsiou A, Stamatelopoulos K, et al. Adenosine-to-inosine RNA editing controls cathepsin S expression in atherosclerosis by enabling HuR-mediated post-transcriptional regulation. Nat Med. 2016; 22(10): 1140-1150.

[144]

Marceca GP, Tomasello L, Distefano R, Acunzo M, Croce CM, Nigita G. Detecting and characterizing A-To-I microRNA editing in cancer. Cancers (Basel). 2021; 13(7): 1699.

[145]

Magnaye KM, Naughton KA, Huffman J, et al. A-to-I editing of miR-200b-3p in airway cells is associated with moderate-to-severe asthma. Eur Respir J. 2021; 58(1): 2003862.

[146]

Kokot KE, Kneuer JM, John D, et al. Reduction of A-to-I RNA editing in the failing human heart regulates formation of circular RNAs. Basic Res Cardiol. 2022; 117(1): 32.

[147]

Shen H, An O, Ren X, et al. ADARs act as potent regulators of circular transcriptome in cancer. Nat Commun. 2022; 13(1): 1508.

[148]

Vlachogiannis NI, Sachse M, Georgiopoulos G, et al. Adenosine-to-inosine Alu RNA editing controls the stability of the pro-inflammatory long noncoding RNA NEAT1 in atherosclerotic cardiovascular disease. J Mol Cell Cardiol. 2021; 160: 111-120.

[149]

Halma MTJ, Tuszynski JA, Marik PE. Cancer metabolism as a therapeutic target and review of interventions. Nutrients. 2023; 15(19): 4245.

[150]

Yue SW, Liu HL, Su HF, et al. m6A-regulated tumor glycolysis: new advances in epigenetics and metabolism. Mol Cancer. 2023; 22(1): 137.

[151]

He X, Zhong X, Fang Y, et al. AF9 sustains glycolysis in colorectal cancer via H3K9ac-mediated PCK2 and FBP1 transcription. Clin Transl Med. 2023; 13(8): e1352.

[152]

Zhang H, Zhai X, Liu Y, et al. NOP2-mediated m5C modification of c-Myc in an EIF3A-dependent manner to reprogram glucose metabolism and promote hepatocellular carcinoma progression. Research (Wash D C). 2023; 6: 0184.

[153]

Huang J, Sun W, Wang Z, et al. FTO suppresses glycolysis and growth of papillary thyroid cancer via decreasing stability of APOE mRNA in an N6-methyladenosine-dependent manner. J Exp Clin Cancer Res. 2022; 41(1): 42.

[154]

Chen H, Gao S, Liu W, et al. RNA N(6)-Methyladenosine methyltransferase METTL3 facilitates colorectal cancer by activating the m(6)A-GLUT1-mTORC1 axis and is a therapeutic target. Gastroenterology. 2021; 160(4): 1284-1300. e16.

[155]

Hu Y, Tang J, Xu F, et al. A reciprocal feedback between N6-methyladenosine reader YTHDF3 and lncRNA DICER1-AS1 promotes glycolysis of pancreatic cancer through inhibiting maturation of miR-5586-5p. J Exp Clin Cancer Res. 2022; 41(1): 69.

[156]

Ma L, Xue X, Zhang X, et al. The essential roles of m(6)A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. J Exp Clin Cancer Res. 2022; 41(1): 36.

[157]

Lin JX, Lian NZ, Gao YX, et al. m6A methylation mediates LHPP acetylation as a tumour aerobic glycolysis suppressor to improve the prognosis of gastric cancer. Cell Death Dis. 2022; 13(5): 463.

[158]

Bodineau C, Tomé M, Murdoch PDS, Durán RV. Glutamine, MTOR and autophagy: a multiconnection relationship. Autophagy. 2022; 18(11): 2749-2750.

[159]

Park SJ, Yoo HC, Ahn E, et al. Enhanced glutaminolysis drives hypoxia-induced chemoresistance in pancreatic cancer. Cancer Res. 2023; 83(5): 735-752.

[160]

Fang L, Huang H, Lv J, et al. m5C-methylated lncRNA NR_033928 promotes gastric cancer proliferation by stabilizing GLS mRNA to promote glutamine metabolism reprogramming. Cell Death Dis. 2023; 14(8): 520.

[161]

Han L, Dong L, Leung K, et al. METTL16 drives leukemogenesis and leukemia stem cell self-renewal by reprogramming BCAA metabolism. Cell Stem Cell. 2023; 30(1): 52-68. e13.

[162]

Weng H, Huang F, Yu Z, et al. The m(6)A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell. 2022; 40(12): 1566-1582. e10.

[163]

Martin-Perez M, Urdiroz-Urricelqui U, Bigas C, Benitah SA. The role of lipids in cancer progression and metastasis. Cell Metab. 2022; 34(11): 1675-1699.

[164]

Wang Y, Wang J, Li X, et al. N(1)-methyladenosine methylation in tRNA drives liver tumourigenesis by regulating cholesterol metabolism. Nat Commun. 2021; 12(1): 6314.

[165]

Yang N, Wang T, Li Q, et al. HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α. J Cell Physiol. 2021; 236(5): 3863-3880.

[166]

Duan X, Yang L, Wang L, et al. m6A demethylase FTO promotes tumor progression via regulation of lipid metabolism in esophageal cancer. Cell Biosci. 2022; 12(1): 60.

[167]

Liu P, Fan B, Othmane B, et al. m(6)A-induced lncDBET promotes the malignant progression of bladder cancer through FABP5-mediated lipid metabolism. Theranostics. 2022; 12(14): 6291-6307.

[168]

Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome biogenesis: a central player in cancer metastasis and therapeutic resistance. Cancer Res. 2022; 82(13): 2344-2353.

[169]

Mullen NJ, Singh PK. Nucleotide metabolism: a pan-cancer metabolic dependency. Nat Rev Cancer. 2023; 23(5): 275-294.

[170]

Liu T, Hu X, Lin C, et al. 5-methylcytosine RNA methylation regulators affect prognosis and tumor microenvironment in lung adenocarcinoma. Ann Transl Med. 2022; 10(5): 259.

[171]

Liao H, Gaur A, McConie H, et al. Human NOP2/NSUN1 regulates ribosome biogenesis through non-catalytic complex formation with box C/D snoRNPs. Nucleic Acids Res. 2022; 50(18): 10695-10716.

[172]

Su R, Dong L, Li Y, et al. METTL16 exerts an m(6)A-independent function to facilitate translation and tumorigenesis. Nat Cell Biol. 2022; 24(2): 205-216.

[173]

Peng H, Chen B, Wei W, et al. N(6)-methyladenosine (m(6)A) in 18S rRNA promotes fatty acid metabolism and oncogenic transformation. Nat Metab. 2022; 4(8): 1041-1054.

[174]

Wei X, Huo Y, Pi J, et al. METTL3 preferentially enhances non-m(6)A translation of epigenetic factors and promotes tumourigenesis. Nat Cell Biol. 2022; 24(8): 1278-1290.

[175]

Tassinari V, Cesarini V, Tomaselli S, et al. ADAR1 is a new target of METTL3 and plays a pro-oncogenic role in glioblastoma by an editing-independent mechanism. Genome Biol. 2021; 22(1): 51.

[176]

Li X, Sun G, Wu L, et al. Upregulation of ADAR promotes breast cancer progression and serves as a potential therapeutic target. J Oncol. 2021; 2021: 2012903.

[177]

Kung CP, Cottrell KA, Ryu S, et al. Evaluating the therapeutic potential of ADAR1 inhibition for triple-negative breast cancer. Oncogene. 2021; 40(1): 189-202.

[178]

Morales F, Pérez P, Tapia JC, et al. Increase in ADAR1p110 activates the canonical Wnt signaling pathway associated with aggressive phenotype in triple negative breast cancer cells. Gene. 2022; 819: 146246.

[179]

Glaviano A, Foo ASC, Lam HY, et al. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol Cancer. 2023; 22(1): 138.

[180]

Lin K, Zhou E, Shi T, et al. m6A eraser FTO impairs gemcitabine resistance in pancreatic cancer through influencing NEDD4 mRNA stability by regulating the PTEN/PI3K/AKT pathway. J Exp Clin Cancer Res. 2023; 42(1): 217.

[181]

Zhu J, Tong H, Sun Y, Li T, Yang G, He W. YTHDF1 promotes bladder cancer cell proliferation via the METTL3/YTHDF1-RPN2-PI3K/AKT/mTOR Axis. Int J Mol Sci. 2023; 24(8): 6905.

[182]

Chen X, Lu T, Ding M, et al. Targeting YTHDF2 inhibits tumorigenesis of diffuse large B-cell lymphoma through ACER2-mediated ceramide catabolism. J Adv Res. 2024; 63: 17-33.

[183]

Liu Y, Shi M, He X, et al. LncRNA-PACERR induces pro-tumour macrophages via interacting with miR-671-3p and m6A-reader IGF2BP2 in pancreatic ductal adenocarcinoma. J Hematol Oncol. 2022; 15(1): 52.

[184]

Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nat Rev Mol Cell Biol. 2022; 23(1): 74-88.

[185]

Liu J, Peng Y, Wei W. Cell cycle on the crossroad of tumorigenesis and cancer therapy. Trends Cell Biol. 2022; 32(1): 30-44.

[186]

Qiao Z, Li Y, Cheng Y, Li S, Liu S. SHMT2 regulates esophageal cancer cell progression and immune Escape by mediating m6A modification of c-myc. Cell Biosci. 2023; 13(1): 203.

[187]

Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene—the grand orchestrator of cancer growth and immune evasion. Nat Rev Clin Oncol. 2022; 19(1): 23-36.

[188]

Yang Q, Al-Hendy A. The functional role and regulatory mechanism of FTO m6A RNA demethylase in human uterine leiomyosarcoma. International Journal of Molecular Sciences. 2023; 24(9): 7957.

[189]

Takahashi H, Hase H, Yoshida T, et al. Discovery of two novel ALKBH5 selective inhibitors that exhibit uncompetitive or competitive type and suppress the growth activity of glioblastoma multiforme. Chem Biol Drug Des. 2022; 100(1): 1-12.

[190]

Fang Z, Mu B, Liu Y, et al. Discovery of a potent, selective and cell active inhibitor of m(6)A demethylase ALKBH5. Eur J Med Chem. 2022; 238: 114446.

[191]

Liu Y, Guo Q, Yang H, et al. Allosteric regulation of IGF2BP1 as a novel strategy for the activation of tumor immune microenvironment. ACS Cent Sci. 2022; 8(8): 1102-1115.

[192]

Huang Y, Hong W, Wei X. The molecular mechanisms and therapeutic strategies of EMT in tumor progression and metastasis. J Hematol Oncol. 2022; 15(1): 129.

[193]

Xu P, Hu K, Zhang P, Sun ZG, Zhang N. Hypoxia-mediated YTHDF2 overexpression promotes lung squamous cell carcinoma progression by activation of the mTOR/AKT axis. Cancer Cell Int. 2022; 22(1): 13.

[194]

Shen P, Yang T, Chen Q, et al. CircNEIL3 regulatory loop promotes pancreatic ductal adenocarcinoma progression via miRNA sponging and A-to-I RNA-editing. Mol Cancer. 2021; 20(1): 51.

[195]

Chen B, Jiang W, Huang Y, et al. N(7)-methylguanosine tRNA modification promotes tumorigenesis and chemoresistance through WNT/β-catenin pathway in nasopharyngeal carcinoma. Oncogene. 2022; 41(15): 2239-2253.

[196]

Zhu S, Wu Y, Zhang X, et al. Targeting N7-methylguanosine tRNA modification blocks hepatocellular carcinoma metastasis after insufficient radiofrequency ablation. Molecular Therapy. 2023; 31(6): 1596-1614.

[197]

Liu L, Gu M, Ma J, et al. CircGPR137B/miR-4739/FTO feedback loop suppresses tumorigenesis and metastasis of hepatocellular carcinoma. Mol Cancer. 2022; 21(1): 149.

[198]

Liu H, Li D, Sun L, et al. Interaction of lncRNA MIR100HG with hnRNPA2B1 facilitates m(6)A-dependent stabilization of TCF7L2 mRNA and colorectal cancer progression. Mol Cancer. 2022; 21(1): 74.

[199]

Liu T, Wang H, Fu Z, et al. Methyltransferase-like 14 suppresses growth and metastasis of renal cell carcinoma by decreasing long noncoding RNA NEAT1. Cancer Sci. 2022; 113(2): 446-458.

[200]

Cao X, Geng Q, Fan D, et al. m(6)A methylation: a process reshaping the tumour immune microenvironment and regulating immune evasion. Mol Cancer. 2023; 22(1): 42.

[201]

Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer. 2024; 23(1): 130.

[202]

Li D, Li K, Zhang W, et al. The m6A/m5C/m1A regulated gene signature predicts the prognosis and correlates with the immune status of hepatocellular carcinoma. Front Immunol. 2022; 13: 918140.

[203]

Dong L, Chen C, Zhang Y, et al. The loss of RNA N(6)-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8(+) T cell dysfunction and tumor growth. Cancer Cell. 2021; 39(7): 945-957. e10.

[204]

Liu Y, Liang G, Xu H, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021; 33(6): 1221-1233. e11.

[205]

Chen H, Pan Y, Zhou Q, et al. METTL3 inhibits antitumor immunity by targeting m(6)A-BHLHE41-CXCL1/CXCR2 axis to promote colorectal cancer. Gastroenterology. 2022; 163(4): 891-907.

[206]

Li Y, He X, Lu X, et al. METTL3 acetylation impedes cancer metastasis via fine-tuning its nuclear and cytosolic functions. Nat Commun. 2022; 13(1): 6350.

[207]

Wei C, Wang B, Peng D, et al. Pan-cancer analysis shows that ALKBH5 is a potential prognostic and immunotherapeutic biomarker for multiple cancer types including gliomas. Front Immunol. 2022; 13: 849592.

[208]

Dong K, Gu D, Shi J, et al. Identification and verification of m(7)G modification patterns and characterization of tumor microenvironment infiltration via multi-omics analysis in clear cell renal cell carcinoma. Front Immunol. 2022; 13: 874792.

[209]

Gao Z, Xu J, Zhang Z, et al. A comprehensive analysis of METTL1 to immunity and stemness in pan-cancer. Front Immunol. 2022; 13: 795240.

[210]

Wang Z, Zhong Z, Jiang Z, Chen Z, Chen Y, Xu Y. A novel prognostic 7-methylguanosine signature reflects immune microenvironment and alternative splicing in glioma based on multi-omics analysis. Front Cell Dev Biol. 2022; 10: 902394.

[211]

Wei Y, Zhang H, Feng Q, et al. A novel mechanism for A-to-I RNA-edited AZIN1 in promoting tumor angiogenesis in colorectal cancer. Cell Death Dis. 2022; 13(4): 294.

[212]

Guo C, Zhou N, Lu Y, et al. FGF19/FGFR4 signaling contributes to hepatocellular carcinoma survival and immune escape by regulating IGF2BP1-mediated expression of PD-L1. Biomed Pharmacother. 2024; 170: 115955.

[213]

Zhang L, Luo X, Qiao S. METTL14-mediated N6-methyladenosine modification of Pten mRNA inhibits tumour progression in clear-cell renal cell carcinoma. Br J Cancer. 2022; 127(1): 30-42.

[214]

Huff S, Kummetha IR, Zhang L, et al. Rational design and optimization of m(6)A-RNA demethylase FTO inhibitors as anticancer agents. J Med Chem. 2022; 65(16): 10920-10937.

[215]

Liu X, He H, Zhang F, et al. m6A methylated EphA2 and VEGFA through IGF2BP2/3 regulation promotes vasculogenic mimicry in colorectal cancer via PI3K/AKT and ERK1/2 signaling. Cell Death Dis. 2022; 13(5): 483.

[216]

You Y, Wen D, Zeng L, et al. ALKBH5/MAP3K8 axis regulates PD-L1+ macrophage infiltration and promotes hepatocellular carcinoma progression. Int J Biol Sci. 2022; 18(13): 5001-5018.

[217]

Yin H, Zhang X, Yang P, et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat Commun. 2021; 12(1): 1394.

[218]

Zhou Y, Guo S, Li Y, et al. METTL3 is associated with the malignancy of esophageal squamous cell carcinoma and serves as a potential immunotherapy biomarker. Front Oncol. 2022; 12: 824190.

[219]

Wang J, Yu H, Dong W, et al. N6-methyladenosine-mediated up-regulation of FZD10 regulates liver cancer stem cells’ properties and lenvatinib resistance through WNT/β-catenin and Hippo signaling pathways. Gastroenterology. 2023; 164(6): 990-1005.

[220]

Xu A, Zhang J, Zuo L, et al. FTO promotes multiple myeloma progression by posttranscriptional activation of HSF1 in an m(6)A-YTHDF2-dependent manner. Mol Ther. 2022; 30(3): 1104-1118.

[221]

Xu X, Zhang P, Huang Y, et al. METTL3-mediated m6A mRNA contributes to the resistance of carbon-ion radiotherapy in non-small-cell lung cancer. Cancer Sci. 2023; 114(1): 105-114.

[222]

Lyu Y, Zhang Y, Wang Y, et al. HIF-1α regulated WTAP overexpression promoting the warburg effect of ovarian cancer by m6A-dependent manner. J Immunol Res. 2022; 2022: 6130806.

[223]

Dai YZ, Liu YD, Li J, et al. METTL16 promotes hepatocellular carcinoma progression through downregulating RAB11B-AS1 in an m(6)A-dependent manner. Cell Mol Biol Lett. 2022; 27(1): 41.

[224]

Yao X, Li W, Li L, et al. YTHDF1 upregulation mediates hypoxia-dependent breast cancer growth and metastasis through regulating PKM2 to affect glycolysis. Cell Death Dis. 2022; 13(3): 258.

[225]

Yang Y, Cai J, Yang X, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 2022; 30(6): 2342-2353.

[226]

Tong X, Xiang Y, Hu Y, et al. NSUN2 promotes tumor progression and regulates immune infiltration in nasopharyngeal carcinoma. Front Oncol. 2022; 12: 788801.

[227]

Wu Y, Chen Z, Xie G, et al. RNA m(1)A methylation regulates glycolysis of cancer cells through modulating ATP5D. Proc Natl Acad Sci USA. 2022; 119(28): e2119038119.

[228]

Xue C, Gu X, Zheng Q, et al. ALYREF mediates RNA m(5)C modification to promote hepatocellular carcinoma progression. Signal Transduct Target Ther 2023; 8(1): 130.

[229]

Xie G, Wu XN, Ling Y, et al. A novel inhibitor of N (6)-methyladenosine demethylase FTO induces mRNA methylation and shows anti-cancer activities. Acta Pharm Sin B. 2022; 12(2): 853-866.

[230]

Xiao P, Duan Z, Liu Z, et al. Rational design of RNA demethylase FTO inhibitors with enhanced antileukemia drug-like properties. Journal of Medicinal Chemistry. 2023; 66(14): 9731-9752.

[231]

Yin R, Chang J, Li Y, et al. Differential m(6)A RNA landscapes across hematopoiesis reveal a role for IGF2BP2 in preserving hematopoietic stem cell function. Cell Stem Cell. 2022; 29(1): 149-159. e7.

[232]

Xiao Q, Lei L, Ren J, et al. Mutant NPM1-regulated FTO-mediated m(6)A demethylation promotes leukemic cell survival via PDGFRB/ERK signaling axis. Front Oncol. 2022; 12: 817584.

[233]

Wei J, Yu X, Yang L, et al. FTO mediates LINE1 m(6)A demethylation and chromatin regulation in mESCs and mouse development. Science. 2022; 376(6596): 968-973.

[234]

Feng P, Chen D, Wang X, et al. Inhibition of the m(6)A reader IGF2BP2 as a strategy against T-cell acute lymphoblastic leukemia. Leukemia. 2022; 36(9): 2180-2188.

[235]

Zhang T, Yin C, Fedorov A, et al. ADAR1 masks the cancer immunotherapeutic promise of ZBP1-driven necroptosis. Nature. 2022; 606(7914): 594-602.

[236]

Cheng L, Li H, Zhan H, et al. Alterations of m6A RNA methylation regulators contribute to autophagy and immune infiltration in primary Sjögren’s syndrome. Front Immunol. 2022; 13: 949206.

[237]

Sun Y, Shen W, Hu S, et al. METTL3 promotes chemoresistance in small cell lung cancer by inducing mitophagy. J Exp Clin Cancer Res. 2023; 42(1): 65.

[238]

Peng Z, Gong Y, Wang X, et al. METTL3-m(6)A-Rubicon axis inhibits autophagy in nonalcoholic fatty liver disease. Mol Ther. 2022; 30(2): 932-946.

[239]

Wu S, Li T, Liu W, Huang Y. Ferroptosis and cancer: complex relationship and potential application of exosomes. Front Cell Dev Biol. 2021; 9: 733751.

[240]

Huang W-M, Li Z-X, Wu Y-H, et al. m6A demethylase FTO renders radioresistance of nasopharyngeal carcinoma via promoting OTUB1-mediated anti-ferroptosis. Translational Oncology. 2023; 27: 101576.

[241]

Ji FH, Fu XH, Li GQ, He Q, Qiu XG. FTO prevents thyroid cancer progression by SLC7A11 m6A methylation in a ferroptosis-dependent manner. Front Endocrinol (Lausanne). 2022; 13: 857765.

[242]

Xu Y, Lv D, Yan C, et al. METTL3 promotes lung adenocarcinoma tumor growth and inhibits ferroptosis by stabilizing SLC7A11 m(6)A modification. Cancer Cell Int. 2022; 22(1): 11.

[243]

Liu L, He J, Sun G, et al. The N6-methyladenosine modification enhances ferroptosis resistance through inhibiting SLC7A11 mRNA deadenylation in hepatoblastoma. Clin Transl Med. 2022; 12(5): e778.

[244]

Sun S, Gao T, Pang B, et al. RNA binding protein NKAP protects glioblastoma cells from ferroptosis by promoting SLC7A11 mRNA splicing in an m(6)A-dependent manner. Cell Death Dis. 2022; 13(1): 73.

[245]

Yang H, Hu Y, Weng M, et al. Hypoxia inducible lncRNA-CBSLR modulates ferroptosis through m6A-YTHDF2-dependent modulation of CBS in gastric cancer. J Adv Res. 2022; 37: 91-106.

[246]

Liao P, Wang W, Wang W, et al. CD8(+) T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell. 2022; 40(4): 365-378. e6.

[247]

Wang Y, Wang C, Guan X, et al. PRMT3-mediated arginine methylation of METTL14 promotes malignant progression and treatment resistance in endometrial carcinoma. Adv Sci (Weinh). 2023; 10(36): e2303812.

[248]

Wang Y, Jin P, Wang X. N(6)-methyladenosine regulator YTHDF1 represses the CD8 + T cell-mediated antitumor immunity and ferroptosis in prostate cancer via m(6)A/PD-L1 manner. Apoptosis. 2024; 29(1-2): 142-153.

[249]

Zeng X, Liao G, Li S, et al. Eliminating METTL1-mediated accumulation of PMN-MDSCs prevents hepatocellular carcinoma recurrence after radiofrequency ablation. Hepatology. 2023; 77(4): 1122-1138.

[250]

Ma S, Sun B, Duan S, et al. YTHDF2 orchestrates tumor-associated macrophage reprogramming and controls antitumor immunity through CD8(+) T cells. Nat Immunol. 2023; 24(2): 255-266.

[251]

Chen G, Ren D, Wang Y, Wang H, Zhang J, Yang S. YTHDF2 negatively correlates with tumor immune infiltration in small cell lung cancer. J Mol Histol. 2023; 54(4): 365-377.

[252]

Ge J, Liu SL, Zheng JX, et al. RNA demethylase ALKBH5 suppresses tumorigenesis via inhibiting proliferation and invasion and promoting CD8(+) T cell infiltration in colorectal cancer. Transl Oncol. 2023; 34: 101683.

[253]

Hu Z, Chen G, Zhao Y, et al. Exosome-derived circCCAR1 promotes CD8 + T-cell dysfunction and anti-PD1 resistance in hepatocellular carcinoma. Mol Cancer. 2023; 22(1): 55.

[254]

Wang L, Zhu L, Liang C, et al. Targeting N6-methyladenosine reader YTHDF1 with siRNA boosts antitumor immunity in NASH-HCC by inhibiting EZH2-IL-6 axis. J Hepatol. 2023; 79(5): 1185-1200.

[255]

Li T, Tan YT, Chen YX, et al. Methionine deficiency facilitates antitumour immunity by altering m(6)A methylation of immune checkpoint transcripts. Gut. 2023; 72(3): 501-511.

[256]

Peng Y, Zhang Z, Yang G, et al. N6-methyladenosine reader protein IGF2BP1 suppresses CD8 + T cells-mediated tumor cytotoxicity and apoptosis in colon cancer. Apoptosis. 2024; 29(3-4): 331-343.

[257]

Jin S, Li M, Chang H, et al. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKϵ/TBK1/IRF3 pathway in head and neck squamous cell carcinoma. Mol Cancer. 2022; 21(1): 97.

[258]

Kang JH, Zappasodi R. Modulating Treg stability to improve cancer immunotherapy. Trends Cancer. 2023; 9(11): 911-927.

[259]

Kumagai S, Koyama S, Itahashi K, et al. Lactic acid promotes PD-1 expression in regulatory T cells in highly glycolytic tumor microenvironments. Cancer Cell. 2022; 40(2): 201-218. e9.

[260]

Zhang L, Dou X, Zheng Z, et al. YTHDF2/m(6) A/NF-κB axis controls anti-tumor immunity by regulating intratumoral Tregs. Embo j. 2023; 42(15): e113126.

[261]

Huang H, Zhang G, Ruan GX, et al. Mettl14-mediated m6A modification is essential for germinal center B cell response. J Immunol. 2022; 208(8): 1924-1936.

[262]

Xiong J, He J, Zhu J, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022; 82(9): 1660-1677. e10.

[263]

Wu Y, Jiang D, Zhang H, et al. N1-methyladenosine (m1A) regulation associated with the pathogenesis of abdominal aortic aneurysm through YTHDF3 modulating macrophage polarization. Front Cardiovasc Med. 2022; 9: 883155.

[264]

Liu J, Li Z, Cheang I, Li J, Zhou C. RNA-binding protein IGF2BP1 associated with prognosis and immunotherapy response in lung adenocarcinoma. Front Genet. 2022; 13: 777399.

[265]

Tian L, Wang Y, Tian J, Song W, Li L, Che G. Prognostic value and genome signature of m6A/m5C regulated genes in early-stage lung adenocarcinoma. Int J Mol Sci. 2023; 24(7): 6520.

[266]

Wang R, Guo Y, Ma P, et al. Comprehensive analysis of 5-methylcytosine (m(5)C) regulators and the immune microenvironment in pancreatic adenocarcinoma to aid immunotherapy. Front Oncol. 2022; 12: 851766.

[267]

Liu T, Zhang J, Lin C, et al. Molecular characterization clinical and immunotherapeutic characteristics of m5C regulator NOP2 across 33 cancer types. Front Cell Dev Biol. 2022; 10: 839136.

[268]

Wei W, Liu C, Wang M, Jiang W, Wang C, Zhang S. Prognostic signature and tumor immune landscape of N7-methylguanosine-related lncRNAs in hepatocellular carcinoma. Front Genet. 2022; 13: 906496.

[269]

Liu L, Wu Y, Chen W, et al. The m7G-related long noncoding RNA signature predicts prognosis and indicates tumour immune infiltration in colon cancer. Front Genet. 2022; 13: 892589.

[270]

Xin S, Deng Y, Mao J, et al. Characterization of 7-methylguanosine identified biochemical recurrence and tumor immune microenvironment in prostate cancer. Front Oncol. 2022; 12: 900203.

[271]

Margolis N, Moalem H, Meirson T, et al. Adenosine-deaminase-acting-on-RNA-1 facilitates T-cell migration toward human melanoma cells. Cancer Immunol Res. 2022; 10(9): 1127-1140.

[272]

Huang C, Ren S, Chen Y, et al. PD-L1 methylation restricts PD-L1/PD-1 interactions to control cancer immune surveillance. Sci Adv. 2023; 9(21): eade4186.

[273]

Stanciu S, Ionita-Radu F, Stefani C, et al. Targeting PI3K/AKT/mTOR signaling pathway in pancreatic cancer: from molecular to clinical aspects. Int J Mol Sci. 2022; 23(17): 10132.

[274]

Zheng H, Zheng WJ, Wang ZG, et al. Decreased expression of programmed death ligand-L1 by seven in absentia homolog 2 in cholangiocarcinoma enhances T-cell-mediated antitumor activity. Front Immunol. 2022; 13: 845193.

[275]

Yu R, Wei Y, He C, et al. Integrative analyses of m6A regulators identify that METTL3 is associated with HPV status and immunosuppressive microenvironment in HPV-related cancers. Int J Biol Sci. 2022; 18(9): 3874-3887.

[276]

Kong J, Lu S, Zhang L, et al. m6A methylation regulators as predictors for treatment of advanced urothelial carcinoma with anti-PDL1 agent. Front Immunol. 2022; 13: 1014861.

[277]

Cui J, Zhu Y, Liu X, et al. Comprehensive analysis of N(6)-methyladenosine regulators with the tumor immune landscape and correlation between the insulin-like growth factor 2 mRNA-binding protein 3 and programmed death ligand 1 in bladder cancer. Cancer Cell Int. 2022; 22(1): 72.

[278]

Ni Z, Sun P, Zheng J, et al. JNK signaling promotes bladder cancer immune escape by regulating METTL3-mediated m6A modification of PD-L1 mRNA. Cancer Res. 2022; 82(9): 1789-1802.

[279]

Peng L, Pan B, Zhang X, et al. Lipopolysaccharide facilitates immune escape of hepatocellular carcinoma cells via m6A modification of lncRNA MIR155HG to upregulate PD-L1 expression. Cell Biol Toxicol. 2022; 38(6): 1159-1173.

[280]

Liu H, Zeng X, Ren X, et al. Targeting tumour-intrinsic N(7)-methylguanosine tRNA modification inhibits MDSC recruitment and improves anti-PD-1 efficacy. Gut. 2023; 72(8): 1555-1567.

[281]

Tang W, Xu N, Zhou J, et al. ALKBH5 promotes PD-L1-mediated immune escape through m6A modification of ZDHHC3 in glioma. Cell Death Discov. 2022; 8(1): 497.

[282]

Wang Z, Li B, Li S, et al. Metabolic control of CD47 expression through LAT2-mediated amino acid uptake promotes tumor immune evasion. Nat Commun. 2022; 13(1): 6308.

[283]

Bai X, Wong CC, Pan Y, et al. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J Immunother Cancer. 2022; 10(2): e003663.

[284]

Du A, Li S, Zhou Y, et al. M6A-mediated upregulation of circMDK promotes tumorigenesis and acts as a nanotherapeutic target in hepatocellular carcinoma. Mol Cancer. 2022; 21(1): 109.

[285]

Sun Y, Dong D, Xia Y, Hao L, Wang W, Zhao C. YTHDF1 promotes breast cancer cell growth, DNA damage repair and chemoresistance. Cell Death Dis. 2022; 13(3): 230.

[286]

Lin X, Wang F, Chen J, et al. N(6)-methyladenosine modification of CENPK mRNA by ZC3H13 promotes cervical cancer stemness and chemoresistance. Mil Med Res. 2022; 9(1): 19.

[287]

Zhang K, Zhang T, Yang Y, et al. N(6)-methyladenosine-mediated LDHA induction potentiates chemoresistance of colorectal cancer cells through metabolic reprogramming. Theranostics. 2022; 12(10): 4802-4817.

[288]

Pan S, Deng Y, Fu J, Zhang Y, Zhang Z, Qin X. N6-methyladenosine upregulates miR-181d-5p in exosomes derived from cancer-associated fibroblasts to inhibit 5-FU sensitivity by targeting NCALD in colorectal cancer. Int J Oncol. 2022; 60(2): 14.

[289]

Liu X, Su K, Sun X, et al. Sec62 promotes stemness and chemoresistance of human colorectal cancer through activating Wnt/β-catenin pathway. J Exp Clin Cancer Res. 2021; 40(1): 132.

[290]

Li J, Zhu Z, Zhu Y, Li J, Li K, Zhong W. METTL3-mediated m6A methylation of C1qA regulates the Rituximab resistance of diffuse large B-cell lymphoma cells. Cell Death Discov. 2023; 9(1): 405.

[291]

Chen Y, Lu Z, Qi C, et al. N(6)-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma. Mol Cancer. 2022; 21(1): 111.

[292]

Li ZX, Zheng ZQ, Yang PY, et al. WTAP-mediated m(6)A modification of lncRNA DIAPH1-AS1 enhances its stability to facilitate nasopharyngeal carcinoma growth and metastasis. Cell Death Differ. 2022; 29(6): 1137-1151.

[293]

Jimeno S, Prados-Carvajal R, Fernández-Ávila MJ, et al. ADAR-mediated RNA editing of DNA:rNA hybrids is required for DNA double strand break repair. Nat Commun. 2021; 12(1): 5512.

[294]

Polizzi A, Santonocito S, Distefano A, et al. Analysis of oral lichen planus severity on micro-RNA linked with malignant transformation risks. Oral Dis. 2024; 30(5): 2918-2928.

[295]

Polizzi A, Santonocito S, Lo Giudice A, Alibrandi A, De Pasquale R, Isola G. Analysis of the response to two pharmacological protocols in patients with oral lichen planus: a randomized clinical trial. Oral Dis. 2023; 29(2): 755-763.

[296]

Huang Y, Zhou Z, Zhang J, et al. lncRNA MALAT1 participates in metformin inhibiting the proliferation of breast cancer cell. J Cell Mol Med. 2021; 25(15): 7135-7145.

[297]

Wang L, Dou X, Chen S, et al. YTHDF2 inhibition potentiates radiotherapy antitumor efficacy. Cancer Cell. 2023; 41(7): 1294-1308. e8.

[298]

Zhao Y, Wen S, Li H, et al. Enhancer RNA promotes resistance to radiotherapy in bone-metastatic prostate cancer by m(6)A modification. Theranostics. 2023; 13(2): 596-610.

[299]

Liao J, Yi Y, Yue X, et al. Methyltransferase 1 is required for nonhomologous end-joining repair and renders hepatocellular carcinoma resistant to radiotherapy. Hepatology. 2023; 77(6): 1896-1910.

[300]

Wang A, Sun Y, Wang X, et al. m(6)A methyltransferase METTL16 mediates immune evasion of colorectal cancer cells via epigenetically regulating PD-L1 expression. Aging (Albany NY). 2023; 15(16): 8444-8457.

[301]

Zhai J, Chen H, Wong CC, et al. ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 2023; 165(2): 445-462.

[302]

Ning J, Hou X, Hao J, et al. METTL3 inhibition induced by M2 macrophage-derived extracellular vesicles drives anti-PD-1 therapy resistance via M6A-CD70-mediated immune suppression in thyroid cancer. Cell Death Differ. 2023; 30(10): 2265-2279.

[303]

Zhan L, Zhang J, Zhang JH, et al. METTL3 facilitates immunosurveillance by inhibiting YTHDF2-mediated NLRC5 mRNA degradation in endometrial cancer. Biomark Res. 2023; 11(1): 43.

[304]

Huang X, Zhu B, Qian C, Feng Y. The prognostic index of m(7)G-related genes in CRC correlates with immune infiltration. Sci Rep. 2022; 12(1): 21282.

[305]

Xie H, Shi M, Liu Y, et al. Identification of m6A-and ferroptosis-related lncRNA signature for predicting immune efficacy in hepatocellular carcinoma. Front Immunol. 2022; 13: 914977.

[306]

Guan H, Tian K, Luo W, Li M. m(6)A-modified circRNA MYO1C participates in the tumor immune surveillance of pancreatic ductal adenocarcinoma through m(6)A/PD-L1 manner. Cell Death Dis. 2023; 14(2): 120.

[307]

Liang W, Liu H, Zeng Z, et al. KRT17 promotes T-lymphocyte infiltration through the YTHDF2-CXCL10 axis in colorectal cancer. Cancer Immunol Res. 2023; 11(7): 875-894.

[308]

Wu R, Sun C, Chen X, et al. NSUN5/TET2-directed chromatin-associated RNA modification of 5-methylcytosine to 5-hydroxymethylcytosine governs glioma immune evasion. Proc Natl Acad Sci USA. 2024; 121(14): e2321611121.

[309]

Zhang W, Li S, Li C, Li T, Huang Y. Remodeling tumor microenvironment with natural products to overcome drug resistance. Front Immunol. 2022; 13: 1051998.

[310]

Tang Y, Cui G, Liu H, et al. Converting “cold” to “hot”: epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond). 2024; 44(6): 601-636.

[311]

Cheng Y, Li L, Wei X, et al. HNRNPC suppresses tumor immune microenvironment by activating Treg cells promoting the progression of prostate cancer. Cancer Science. 2023; 114(5): 1830-1845.

[312]

Li N, Liu Q, Han Y, et al. ARID1A loss induces polymorphonuclear myeloid-derived suppressor cell chemotaxis and promotes prostate cancer progression. Nat Commun. 2022; 13(1): 7281.

[313]

Lin W, Chen L, Zhang H, et al. Tumor-intrinsic YTHDF1 drives immune evasion and resistance to immune checkpoint inhibitors via promoting MHC-I degradation. Nat Commun. 2023; 14(1): 265.

[314]

Xiao Z, Li T, Zheng X, et al. Nanodrug enhances post-ablation immunotherapy of hepatocellular carcinoma via promoting dendritic cell maturation and antigen presentation. Bioact Mater. 2023; 21: 57-68.

[315]

Chen Q, Ao L, Zhao Q, et al. WTAP/YTHDF1-mediated m(6)A modification amplifies IFN-γ-induced immunosuppressive properties of human MSCs. J Adv Res. 2024.

[316]

García-Vílchez R, Añazco-Guenkova AM, López J, et al. N7-methylguanosine methylation of tRNAs regulates survival to stress in cancer. Oncogene. 2023; 42(43): 3169-3181.

[317]

García-Vílchez R, Añazco-Guenkova AM, Dietmann S, et al. METTL1 promotes tumorigenesis through tRNA-derived fragment biogenesis in prostate cancer. Mol Cancer. 2023; 22(1): 119.

[318]

Ma L, Jiang J, Si Q, Chen C, Duan Z. IGF2BP3 enhances the growth of hepatocellular carcinoma tumors by regulating the properties of macrophages and CD8(+) T cells in the tumor microenvironment. J Clin Transl Hepatol. 2023; 11(6): 1308-1320.

[319]

Yan D, Xie Y, Huang L, et al. RNA m5C methylation orchestrates BLCA progression via macrophage reprogramming. J Cell Mol Med. 2023; 27(16): 2398-2411.

[320]

Chen X, Lu T, Cai Y, et al. KIAA1429-mediated m6A modification of CHST11 promotes progression of diffuse large B-cell lymphoma by regulating Hippo-YAP pathway. Cell Mol Biol Lett. 2023; 28(1): 32.

[321]

Yankova E, Blackaby W, Albertella M, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021; 593(7860): 597-601.

[322]

Song H, Liu D, Wang L, et al. Methyltransferase like 7B is a potential therapeutic target for reversing EGFR-TKIs resistance in lung adenocarcinoma. Mol Cancer. 2022; 21(1): 43.

[323]

Chen S, He Y, Huang X, et al. Photosensitive and dual-targeted chromium nanoparticle delivering small interfering RNA YTHDF1 for molecular-targeted immunotherapy in liver cancer. J Nanobiotechnology. 2024; 22(1): 348.

[324]

Xie G, Lu Y, He J, et al. Small molecule-inducible and photoactivatable cellular RNA N1-methyladenosine editing. Angew Chem Int Ed Engl. 2024; 63(26): e202320029.

[325]

Cai J, Chen Z, Zhang Y, et al. CircRHBDD1 augments metabolic rewiring and restricts immunotherapy efficacy via m(6)A modification in hepatocellular carcinoma. Mol Ther Oncolytics. 2022; 24: 755-771.

[326]

Akhmetkaliyev A, Alibrahim N, Shafiee D, Tulchinsky E. EMT/MET plasticity in cancer and go-or-grow decisions in quiescence: the two sides of the same coin? Mol Cancer. 2023; 22(1): 90.

[327]

Khosravi GR, Mostafavi S, Bastan S, Ebrahimi N, Gharibvand RS, Eskandari N. Immunologic tumor microenvironment modulators for turning cold tumors hot. Cancer Commun (Lond). 2024; 44(5): 521-553.

[328]

Su Z, Monshaugen I, Wilson B, et al. TRMT6/61A-dependent base methylation of tRNA-derived fragments regulates gene-silencing activity and the unfolded protein response in bladder cancer. Nat Commun. 2022; 13(1): 2165.

[329]

Zhao K, Li W, Yang Y, et al. Comprehensive analysis of m(6)A/m(5)C/m(1)A-related gene expression, immune infiltration, and sensitivity of antineoplastic drugs in glioma. Front Immunol. 2022; 13: 955848.

[330]

Mao M, Chu Q, Lou Y, Lv P, Wang LJ. RNA N1-methyladenosine regulator-mediated methylation modification patterns and heterogeneous signatures in glioma. Front Immunol. 2022; 13: 948630.

[331]

He Y, Yu X, Li J, Zhang Q, Zheng Q, Guo W. Role of m(5)C-related regulatory genes in the diagnosis and prognosis of hepatocellular carcinoma. Am J Transl Res. 2020; 12(3): 912-922.

[332]

Sun Z, Xue S, Zhang M, et al. Aberrant NSUN2-mediated m(5)C modification of H19 lncRNA is associated with poor differentiation of hepatocellular carcinoma. Oncogene. 2020; 39(45): 6906-6919.

[333]

Mei L, Shen C, Miao R, et al. RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57(Kip2) by an m(5)C-dependent manner. Cell Death Dis. 2020; 11(4): 270.

[334]

Geng Q, Wei Q, Shen Z, et al. Comprehensive analysis of the prognostic value and immune infiltrates of the three-m5C signature in colon carcinoma. Cancer Manag Res. 2021; 13: 7989-8002.

[335]

Yang R, Liang X, Wang H, et al. The RNA methyltransferase NSUN6 suppresses pancreatic cancer development by regulating cell proliferation. EBioMedicine. 2021; 63: 103195.

[336]

Janin M, Ortiz-Barahona V, de Moura MC, et al. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol. 2019; 138(6): 1053-1074.

[337]

Pan J, Huang Z, Xu Y. m5C RNA methylation regulators predict prognosis and regulate the immune microenvironment in lung squamous cell carcinoma. Front Oncol. 2021; 11: 657466.

[338]

Wang Q, Guo X, Li L, et al. N(6)-methyladenosine METTL3 promotes cervical cancer tumorigenesis and Warburg effect through YTHDF1/HK2 modification. Cell Death Dis. 2020; 11(10): 911.

[339]

Wen H, Tang J, Cui Y, Hou M, Zhou J. m6A modification-mediated BATF2 suppresses metastasis and angiogenesis of tongue squamous cell carcinoma through inhibiting VEGFA. Cell Cycle. 2023; 22(1): 100-116.

[340]

Zou Y, Zheng S, Xie X, et al. N6-methyladenosine regulated FGFR4 attenuates ferroptotic cell death in recalcitrant HER2-positive breast cancer. Nat Commun. 2022; 13(1): 2672.

[341]

Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer. Mol Cancer. 2020; 19(1): 106.

[342]

Jin D, Guo J, Wu Y, et al. m(6)A demethylase ALKBH5 inhibits tumor growth and metastasis by reducing YTHDFs-mediated YAP expression and inhibiting miR-107/LATS2-mediated YAP activity in NSCLC. Mol Cancer. 2020; 19(1): 40.

[343]

Feng M, Xie X, Han G, et al. YBX1 is required for maintaining myeloid leukemia cell survival by regulating BCL2 stability in an m6A-dependent manner. Blood. 2021; 138(1): 71-85.

[344]

Hou Y, Zhang Q, Pang W, et al. YTHDC1-mediated augmentation of miR-30d in repressing pancreatic tumorigenesis via attenuation of RUNX1-induced transcriptional activation of Warburg effect. Cell Death Differ. 2021; 28(11): 3105-3124.

[345]

Chen J, Li K, Chen J, et al. Aberrant translation regulated by METTL1/WDR4-mediated tRNA N7-methylguanosine modification drives head and neck squamous cell carcinoma progression. Cancer Commun (Lond). 2022; 42(3): 223-244.

[346]

Dai Z, Liu H, Liao J, et al. N7-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Molecular Cell. 2021; 81(16): 3339-3355. e8.

[347]

Han H, Yang C, Ma J, et al. N(7)-methylguanosine tRNA modification promotes esophageal squamous cell carcinoma tumorigenesis via the RPTOR/ULK1/autophagy axis. Nat Commun. 2022; 13(1): 1478.

[348]

Wang YT, Chen J, Chang CW, et al. Ubiquitination of tumor suppressor PML regulates prometastatic and immunosuppressive tumor microenvironment. J Clin Invest. 2017; 127(8): 2982-2997.

[349]

Kan G, Wang Z, Sheng C, et al. Dual inhibition of DKC1 and MEK1/2 synergistically restrains the growth of colorectal cancer cells. Adv Sci (Weinh). 2021; 8(10): 2004344.

[350]

Hou P, Shi P, Jiang T, et al. DKC1 enhances angiogenesis by promoting HIF-1α transcription and facilitates metastasis in colorectal cancer. Br J Cancer. 2020; 122(5): 668-679.

[351]

Liu B, Zhang J, Huang C, Liu H. Dyskerin overexpression in human hepatocellular carcinoma is associated with advanced clinical stage and poor patient prognosis. PLoS One. 2012; 7(8): e43147.

[352]

Ji P, Ding D, Qin N, et al. Systematic analyses of genetic variants in chromatin interaction regions identified four novel lung cancer susceptibility loci. J Cancer. 2020; 11(5): 1075-1081.

[353]

Cui Q, Yin K, Zhang X, et al. Targeting PUS7 suppresses tRNA pseudouridylation and glioblastoma tumorigenesis. Nat Cancer. 2021; 2(9): 932-949.

[354]

Li H, Chen L, Han Y, et al. The identification of RNA modification gene PUS7 as a potential biomarker of ovarian cancer. Biology (Basel). 2021; 10(11): 1130.

[355]

Ma C, Wang X, Yang F, et al. Circular RNA hsa_circ_0004872 inhibits gastric cancer progression via the miR-224/Smad4/ADAR1 successive regulatory circuit. Mol Cancer. 2020; 19(1): 157.

[356]

Ramírez-Moya J, Miliotis C, Baker AR, Gregory RI, Slack FJ, Santisteban P. An ADAR1-dependent RNA editing event in the cyclin-dependent kinase CDK13 promotes thyroid cancer hallmarks. Mol Cancer. 2021; 20(1): 115.

[357]

Wu Z, Zhou J, Zhang X, et al. Reprogramming of the esophageal squamous carcinoma epigenome by SOX2 promotes ADAR1 dependence. Nat Genet. 2021; 53(6): 881-894.

[358]

Li X, Zhu R, Yuan Y, et al. Double-stranded RNA-specific adenosine deaminase-knockdown inhibits the proliferation and induces apoptosis of DU145 and PC3 cells by promoting the phosphorylation of H2A.X variant histone. Oncol Lett. 2021; 22(5): 764.

[359]

Nemlich Y, Besser MJ, Schachter J, Markel G. ADAR1 regulates melanoma cell invasiveness by controlling beta3-integrin via microRNA-30 family members. Am J Cancer Res. 2020; 10(8): 2677-2686.

[360]

Velazquez-Torres G, Shoshan E, Ivan C, et al. A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nat Commun. 2018; 9(1): 461.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

154

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/