Osteoarthritis synovium as a nidus for monosodium urate crystal deposition inducing severe gout studied by label-free stimulated Raman scattering combined with synovial organoids

Ziyi Chen , Wenjuan Wang , Yaxin Chen , Minbiao Ji , Yinghui Hua

MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70040

PDF
MedComm ›› 2025, Vol. 6 ›› Issue (1) : e70040 DOI: 10.1002/mco2.70040
ORIGINAL ARTICLE

Osteoarthritis synovium as a nidus for monosodium urate crystal deposition inducing severe gout studied by label-free stimulated Raman scattering combined with synovial organoids

Author information +
History +
PDF

Abstract

Gout, a common chronic disease, is characterized by the formation and deposition of monosodium urate (MSU) crystal deposition in articular and nonarticular structures. Osteoarthritis (OA), the most prevalent type of arthritis, is a progressive degenerative joint disease. Previous clinical studies have reported that gout frequently affects OA joints; however, the underlying mechanism remains unidentified. Recently, OA synovium has been proposed as a favorable vehicle for MSU crystal deposition. Therefore, this study aimed to investigate whether OA synovium acts as a nidus for MSU crystal deposition inducing severe gout flares, using label-free, highly-specific stimulated Raman scattering (SRS) microscopy combined with innovative preclinical models—synovial organoids. Crystal deposition, cellular phagocytosis, and subsequent inflammation intensity was imaged in ex vivo synovial organoids using SRS microscopy and other biochemical techniques. Results revealed that MSU crystals were more likely to deposit in OA synovium than in normal synovium. Furthermore, OA synoviocytes were more capable of phagocytosing crystals, leading to severe inflammation, and thus, expediting gout. These findings offer a potential explanation for why gout is preferred in OA joints and offer significant insights into the pathophysiology of gout, thereby informing prevention and management strategies for OA to prevent or alleviate the subsequent progression of gout.

Keywords

gout / monosodium urate crystals / osteoarthritis / stimulated Raman scattering / synovial organoid

Cite this article

Download citation ▾
Ziyi Chen, Wenjuan Wang, Yaxin Chen, Minbiao Ji, Yinghui Hua. Osteoarthritis synovium as a nidus for monosodium urate crystal deposition inducing severe gout studied by label-free stimulated Raman scattering combined with synovial organoids. MedComm, 2025, 6(1): e70040 DOI:10.1002/mco2.70040

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Dalbeth N, Gosling AL, Gaffo A, Gout AbhishekA. Gout. Lancet. 2021; 397(10287): 1843-1855.

[2]

Chen Z, Wang W, Hua Y. Metabolic regulation of immune response and tissue remodeling in gouty arthritis. Crit Rev Eukaryot Gene Expr. 2022; 33(5): 1-16.

[3]

Safiri S, Kolahi AA, Cross M, et al. Prevalence, incidence, and years lived with disability due to gout and its attributable risk factors for 195 countries and territories 1990–2017: a systematic analysis of the global burden of disease study 2017. Arthritis Rheumatol. 2020; 72(11): 1916-1927.

[4]

Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann Rheum Dis. 2015; 74(4): 661-667.

[5]

Hunter DJ, Bierma-Zeinstra S. Osteoarthritis. Lancet. 2019; 393(10182): 1745-1759.

[6]

Neogi T, Krasnokutsky S, Pillinger MH. Urate and osteoarthritis: evidence for a reciprocal relationship. Joint Bone Spine. 2019; 86(5): 576-582.

[7]

Choi HK, McCormick N, Yokose C. Excess comorbidities in gout: the causal paradigm and pleiotropic approaches to care. Nat Rev Rheumatol. 2022; 18(2): 97-111.

[8]

Yokose C, McCormick N, Lu N, Joshi AD, Curhan G, Choi HK. Adherence to 2020 to 2025 dietary guidelines for americans and the risk of new-onset female gout. JAMA Intern Med. 2022; 182(3): 254-264.

[9]

Drivelegka P, Sigurdardottir V, Svärd A, Jacobsson LTH, Dehlin M, Erratum: correction to: comorbidity in gout at the time of first diagnosis: sex differences that may have implications for dosing of urate lowering therapy (Arthritis research & therapy (2018) 20 1 (108)). Arthritis Res Ther. 2018; 20(1): 108.

[10]

Yokose C, Chen M, Berhanu A, Pillinger MH, Krasnokutsky S. Gout and osteoarthritis: associations, pathophysiology, and therapeutic implications. Curr Rheumatol Rep. 2016; 18(10): 65.

[11]

Kuo CF, Grainge MJ, Mallen C, Zhang W, Doherty M. Comorbidities in patients with gout prior to and following diagnosis: case-control study. Ann Rheum Dis. 2016; 75(1): 210-217.

[12]

Roddy E, Zhang W, Doherty M. Are joints affected by gout also affected by osteoarthritis?. Ann Rheum Dis. 2007; 66(10): 1374-1377.

[13]

Xu H, Qin H, Hua Y, Dalbeth N. Contributions of joint damage-related events to gout pathogenesis: new insights from laboratory research. Ann Rheum Dis. 2023; 82(12): 1511-1515.

[14]

Xu H, Zhang B, Chen Y, et al. Type II collagen facilitates gouty arthritis by regulating MSU crystallisation and inflammatory cell recruitment. Ann Rheum Dis. 2023; 82(3): 416-427.

[15]

Inerot S, Heinegård D, Audell L, Olsson SE. Articular-cartilage proteoglycans in aging and osteoarthritis. Biochem J. 1978; 169(1): 143-156.

[16]

Burt HM, Dutt YC. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates. Ann Rheum Dis. 1986; 45(10): 858-864.

[17]

Lee M, Herrington CS, Ravindra M, et al. Recent advances in the use of stimulated Raman scattering in histopathology. Analyst. 2021; 146(3): 789-802.

[18]

Hu F, Shi L, Min W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nat Methods. 2019; 16(9): 830-842.

[19]

Zhang B, Xu H, Chen J, et al. Highly specific and label-free histological identification of microcrystals in fresh human gout tissues with stimulated Raman scattering. Theranostics. 2021; 11(7): 3074-3088.

[20]

Li M, Izpisua Balmonte JC. Izpisua Belmonte JC. Organoids—preclinical models of human disease. N Engl J Med. 2019; 380(6): 569-579.

[21]

Bhamidipati K, Wei K. Precision medicine in rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2022; 36(1): 101742.

[22]

Caire R, Audoux E, Courbon G, et al. YAP/TAZ: key players for rheumatoid arthritis severity by driving fibroblast like synoviocytes phenotype and fibro-inflammatory response. Front Immunol. 2021; 12: 791907.

[23]

Rothbauer M, Byrne RA, Schobesberger S, et al. Establishment of a human three-dimensional chip-based chondro-synovial coculture joint model for reciprocal cross talk studies in arthritis research. Lab Chip. 2021; 21(21): 4128-4143.

[24]

Li ZA, Sant S, Cho SK, et al. Synovial joint-on-a-chip for modeling arthritis: progress, pitfalls, and potential. Trends Biotechnol. 2023; 41(4): 511-527.

[25]

Chen Y, Chen Z, Wang W, Hua Y, Ji M. Spatiotemporal observation of monosodium urate crystals deposition in synovial organoids using label-free stimulated raman scattering. Research. 2024; 7.

[26]

Kiener HP, Watts GF, Cui Y, et al. Synovial fibroblasts self-direct multicellular lining architecture and synthetic function in three-dimensional organ culture. Arthritis Rheum. 2010; 62(3): 742-752.

[27]

Ushiki T. Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch Histol Cytol. 2002; 65(2): 109-126.

[28]

Elsaid K, Merriman TR, Rossitto LA, et al. Amplification of inflammation by lubricin deficiency implicated in incident, erosive gout independent of hyperuricemia. Arthritis Rheumatol. 2023; 75(5): 794-805.

[29]

Cui Z, Crane J, Xie H, et al. Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis. 2016; 75(9): 1714-1721.

[30]

Chen D, Xu H, Sun L, Li Y, Wang T, Li Y. Assessing causality between osteoarthritis with urate levels and gout: a bidirectional Mendelian randomization study. Osteoarthr Cartil. 2022; 30(4): 551-558.

[31]

Chhana A, Pool B, Wei Y, et al. Human cartilage homogenates influence the crystallization of monosodium urate and inflammatory response to monosodium urate crystals: a potential link between osteoarthritis and gout. Arthritis Rheumatol. 2019; 71(12): 2090-2099.

[32]

McCarthy GM, Durcan L. Crystal arthritis: crystallizing our ideas about gout and osteoarthritis. Nat Rev Rheumatol. 2017; 13(12): 698-699.

[33]

Chang SK, Gu Z, Brenner MB. Fibroblast-like synoviocytes in inflammatory arthritis pathology: the emerging role of cadherin-11. Immunol Rev. 2010; 233(1): 256-266.

[34]

You S, Koh JH, Leng L, Kim WU, Bucala R. The tumor-like phenotype of rheumatoid synovium: molecular profiling and prospects for precision medicine. Arthritis and Rheumatology. 2018; 70(5): 637-652.

[35]

Friščić J, Böttcher M, Reinwald C, et al. The complement system drives local inflammatory tissue priming by metabolic reprogramming of synovial fibroblasts. Immunity. 2021; 54(5): 1002-1021. e10.

[36]

Atukorala I, Kwoh CK, Guermazi A, et al. Synovitis in knee osteoarthritis: a precursor of disease?. Ann Rheum Dis. 2016; 75(2): 390-395.

[37]

Roddy E, Doherty M. Gout and osteoarthritis: a pathogenetic link?. Joint Bone Spine. 2012; 79(5): 425-427.

[38]

Zamudio-Cuevas Y, Fernández-Torres J, Martínez-Nava GA, et al. Highlight Article: phagocytosis of monosodium urate crystals by human synoviocytes induces inflammation. Exp Biol Med. 2019; 244(5): 344-351.

[39]

Zheng SC, Zhu XX, Xue Y, et al. Role of the NLRP3 inflammasome in the transient release of IL-1β induced by monosodium urate crystals in human fibroblast-like synoviocytes. J Inflamm (Lond). 2015; 12: 30.

[40]

Chhana A, Lee G, Dalbeth N. Factors influencing the crystallization of monosodium urate: a systematic literature review. BMC Musculoskelet Disord. 2015; 16: 296.

[41]

McGill NW, Dieppe PA. The role of serum and synovial fluid components in the promotion of urate crystal formation. J Rheumatol. 1991; 18(7): 1042-1045.

[42]

Silverstein AM, Stefani RM, Sobczak E, et al. Toward understanding the role of cartilage particulates in synovial inflammation. Osteoarthritis Cartilage. 2017; 25(8): 1353-1361.

[43]

Scanu A, Oliviero F, Gruaz L, et al. High-density lipoproteins downregulate CCL2 production in human fibroblast-like synoviocytes stimulated by urate crystals. Arthritis Res Ther. 2010; 12(1): R23.

[44]

Zamudio-Cuevas Y, Martínez-Flores K, Fernández-Torres J, et al. Monosodium urate crystals induce oxidative stress in human synoviocytes. Arthritis Res Ther. 2016; 18(1): 117.

[45]

Vieira AT, Macia L, Galvão I, et al. A role for gut microbiota and the metabolite-sensing receptor GPR43 in a murine model of gout. Arthritis Rheumatol. 2015; 67(6): 1646-1656.

[46]

Dalbeth N, Phipps-Green A, Frampton C, Neogi T, Taylor WJ, Merriman TR. Relationship between serum urate concentration and clinically evident incident gout: an individual participant data analysis. Ann Rheum Dis. 2018; 77(7): 1048-1052.

[47]

Dalbeth N, Aati O, Kalluru R, et al. Relationship between structural joint damage and urate deposition in gout: a plain radiography and dual-energy CT study. Ann Rheum Dis. 2015; 74(6): 1030-1036.

RIGHTS & PERMISSIONS

2025 The Author(s). MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

191

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/